Diagrammatic Theory of Linear and Non-Linear Optics for Composite Systems - Institut de Chimie Physique
Article Dans Une Revue Physical Review A Année : 2021

Diagrammatic Theory of Linear and Non-Linear Optics for Composite Systems

Résumé

We present a general formalism to model and calculate linear and nonlinear optical processes in composite systems, based on a graphical representation of light-matter interactions by loop diagrams associated with Feynman rules. Through this formalism, we recover the usual second-order response of a simple system by drawing four times fewer loop diagrams than doubled-sided ones. For composite systems, we introduce coupling Hamiltonians between subsystems (for example, a molecule and a substrate), graphically represented by virtual bosons. In this way, we enumerate all the diagrams describing the second-order response of the system and show how to select those relevant for the calculation of the molecular second-order hyperpolarizabilities under the influence of the substrate, including effective second-order contributions from the molecular third-order response. As it applies to all nonlinear processes and an arbitrary number of interacting partners, this representation provides a general frame for the calculation of the nonlinear response of arbitrarily complex systems.
Fichier principal
Vignette du fichier
ArtDiag1_version_acceptée.pdf (2.35 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03450820 , version 1 (26-11-2021)

Identifiants

Citer

Thomas Noblet, Bertrand Busson, Christophe Humbert. Diagrammatic Theory of Linear and Non-Linear Optics for Composite Systems. Physical Review A, 2021, 104, pp.063504. ⟨10.1103/PhysRevA.104.063504⟩. ⟨hal-03450820⟩
64 Consultations
306 Téléchargements

Altmetric

Partager

More