Error covariance tuning in variational data assimilation: application to an operating hydrological model - Laboratoire Interdisciplinaire des Sciences du Numérique Access content directly
Journal Articles Stochastic Environmental Research and Risk Assessment Year : 2021

Error covariance tuning in variational data assimilation: application to an operating hydrological model

Abstract

Because the true state of complex physical systems is out of reach for real-world data assimilation problems, error covariances are uncertain and their specification remains very challenging. These error covariances are crucial ingredients for the proper use of data assimilation methods and for an effective quantification of the a posteriori errors of the state estimation. Therefore, the estimation of these covariances often involves at first a chosen specification of the matrices, followed by an adaptive tuning to correct their initial structure. In this paper, we propose a flexible combination of existing covariance tuning algorithms, including both online and offline procedures. These algorithms are applied in a specific order such that the required assumption of current tuning algorithms are fulfilled, at least partially, by the application of the ones at the previous steps. We use our procedure to tackle the problem of a multivariate and spatially-distributed hydrological model based on a precipitation-flow simulator with real industrial data. The efficiency of different algorithmic schemes is compared using real data with both quantitative and qualitative analysis. Numerical results show that these proposed algorithmic schemes improve significantly short-range flow forecast. Among the several tuning methods tested, recently developed CUTE and PUB algorithms are in the lead both in terms of history matching and forecast.
Fichier principal
Vignette du fichier
SERRA_2020.pdf (2.94 Mo) Télécharger le fichier
DA_mordor.pdf (214.45 Ko) Télécharger le fichier
MORDORh.pdf (66.91 Ko) Télécharger le fichier
carte_Tarn@Millau_100km2.png (633.89 Ko) Télécharger le fichier
chemin.pdf (69.64 Ko) Télécharger le fichier
fig8a_sc.pdf (10.55 Ko) Télécharger le fichier
fig8b_sc.pdf (10.72 Ko) Télécharger le fichier
fig_laura.png (136.55 Ko) Télécharger le fichier
sb_2003_CI.pdf (17.99 Ko) Télécharger le fichier
sb_2003_Pluie.pdf (16.43 Ko) Télécharger le fichier
sibo_mordor2.pdf (240.57 Ko) Télécharger le fichier
sr_2003_CI.pdf (16.92 Ko) Télécharger le fichier
sr_2003_Pluie.pdf (17.28 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)

Dates and versions

hal-02992507 , version 1 (06-11-2020)

Identifiers

Cite

Sibo Cheng, Jean-Philippe Argaud, Bertrand Iooss, Didier Lucor, Angélique Ponçot. Error covariance tuning in variational data assimilation: application to an operating hydrological model. Stochastic Environmental Research and Risk Assessment, 2021, ⟨10.1007/s00477-020-01933-7⟩. ⟨hal-02992507⟩
147 View
186 Download

Altmetric

Share

Gmail Facebook X LinkedIn More