New lower bounds for Schur and weak Schur numbers - Laboratoire Interdisciplinaire des Sciences du Numérique Access content directly
Preprints, Working Papers, ... Year : 2021

New lower bounds for Schur and weak Schur numbers

Abstract

This article provides new lower bounds for both Schur and weak Schur numbers by exploiting a "template"-based approach. The concept of "template" is also generalized to weak Schur numbers. Finding new templates leads to explicit partitions improving lower bounds as well as the growth rate for Schur numbers, weak Schur numbers, and multicolor Ramsey numbers $R_n(3)$. The new lower bounds include $S(9) \geq 17\,803$, $S(10) \geq 60\,948$, $\mathit{WS}(6) \geq 646$, $\mathit{WS}(9) \geq 22\,536$ and $\mathit{WS}(10) \geq 71\,256$.
Fichier principal
Vignette du fichier
2112.03175.pdf (520.64 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04377719 , version 1 (07-01-2024)

Identifiers

Cite

Romain Ageron, Paul Casteras, Thibaut Pellerin, Yann Portella, Arpad Rimmel, et al.. New lower bounds for Schur and weak Schur numbers. 2022. ⟨hal-04377719⟩
90 View
23 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More