The optimal kinematic dynamo driven by steady flows in a sphere - Laboratoire Interdisciplinaire des Sciences du Numérique Access content directly
Journal Articles Journal of Fluid Mechanics Year : 2018

The optimal kinematic dynamo driven by steady flows in a sphere

Abstract

We present a variational optimisation method that can identify the most efficient kinematic dynamo in a sphere, where efficiency is based on the value of a magnetic Reynolds number that uses enstrophy to characterize the inductive effects of the fluid flow. In this large scale optimisation, we restrict the flow to be steady and incompressible, and the boundary of the sphere to be no-slip and electrically insulating. We impose these boundary conditions using a Galerkin method in terms of specifically designed vector field bases. We solve iteratively for the flow field and the accompanying magnetic eigenfunction in order to find the minimal critical magnetic Reynolds number Rm c,min for the onset of a dynamo. Although nonlinear, this iteration procedure converges to a single solution and there is no evidence that this is not a global optimum. We find Rm c,min = 64.45 is at least three times lower than that of any published example of a spherical kinematic dynamo generated by steady flows, and our optimal dynamo clearly operates above the theoretical lower bounds for dynamo action. The corresponding optimal flow has a spatially localized helical structure in the centre of the sphere, and the dominant components are invariant under rotation by π.
Fichier principal
Vignette du fichier
sphere_final.pdf (1.12 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-04466160 , version 1 (19-02-2024)

Identifiers

Cite

L Chen, Wietze Herreman, K Li, P W Livermore, J W Luo, et al.. The optimal kinematic dynamo driven by steady flows in a sphere. Journal of Fluid Mechanics, 2018, 839, pp.1 - 32. ⟨10.1017/jfm.2017.924⟩. ⟨hal-04466160⟩
10 View
13 Download

Altmetric

Share

Gmail Facebook X LinkedIn More