Performance of a Region of Interest–based Algorithm in Diagnosing International Society of Urological Pathology Grade Group ≥2 Prostate Cancer on the MRI-FIRST Database—CAD-FIRST Study
Thibaut Couchoux
(1)
,
Tristan Jaouen
(2)
,
Christelle Melodelima-Gonindard
(3)
,
Pierre Baseilhac
(1)
,
Arthur Branchu
(1)
,
Nicolas Arfi
,
Richard Aziza
(4, 5)
,
Nicolas Barry Delongchamps
(6)
,
Franck Bladou
(7)
,
Flavie Bratan
,
Serge Brunelle
(8)
,
Pierre Colin
(9)
,
Jean-Michel Correas
(10, 11, 12)
,
François Cornud
(13)
,
Jean-Luc Descotes
(14)
,
Pascal Eschwege
(15)
,
Gaelle Fiard
(14)
,
Bénédicte Guillaume
(16)
,
Rémi Grange
(17)
,
Nicolas Grenier
(18, 19)
,
Hervé Lang
,
Frédéric Lefèvre
,
Bernard Malavaud
(20, 5)
,
Clément Marcelin
,
Paul Moldovan
,
Nicolas Mottet
,
Pierre Mozer
,
Eric Potiron
,
Daniel Portalez
,
Philippe Puech
,
Raphaele Renard-Penna
,
Matthieu Roumiguié
(20)
,
Catherine Roy
,
Marc-Olivier Timsit
,
Thibault Tricard
,
Arnauld Villers
,
Jochen Walz
,
Sabine Debeer
(1)
,
Adeline Mansuy
(1)
,
Florence Mège-Lechevallier
,
Myriam Decaussin-Petrucci
,
Lionel Badet
,
Marc Colombel
,
Alain Ruffion
,
Sébastien Crouzet
,
Muriel Rabilloud
(21, 22, 23, 24, 25)
,
Rémi Souchon
(2)
,
Olivier Rouvière
1
Hôpital Edouard Herriot [CHU - HCL]
2 LabTAU - Laboratoire des applications thérapeutiques des ultrasons / Application des ultrasons à la thérapie
3 LECA - Laboratoire d'Ecologie Alpine
4 Service Radiologie et imagerie médicale - Rangueil / Larrey [CHU Toulouse]
5 IUCT Oncopole - UMR 1037 - Institut Universitaire du Cancer de Toulouse - Oncopole
6 INEM - UM 111 (UMR 8253 / U1151) - Institut Necker Enfants-Malades
7 CHU de Bordeaux Pellegrin [Bordeaux]
8 IPC - Institut Paoli-Calmettes
9 EMA - École, mutations, apprentissages
10 Hôpital Necker - Enfants Malades [AP-HP]
11 UPCité - Université Paris Cité
12 LIB - Laboratoire d'Imagerie Biomédicale [Paris]
13 Service Maladies infectieuses et tropicales [AP-HP Hôpital Cochin]
14 Service d'urologie [CHU Grenoble]
15 UNICANCER/ICL - Institut de Cancérologie de Lorraine - Alexis Vautrin [Nancy]
16 BCL, équipe Linguistique de l’énonciation
17 Service de Radiologie [CHU Saint-Etienne]
18 LISN - Laboratoire Interdisciplinaire des Sciences du Numérique
19 COMET - COuplages Multiphysiques Et Transferts - LISN
20 Pôle Urologie - Néphrologie - Dialyse - Transplantations - Brûlés - Chirurgie plastique - Explorations fonctionnelles et physiologiques [CHU Toulouse]
21 Département biostatistiques et modélisation pour la santé et l'environnement [LBBE]
22 LBBE - Laboratoire de Biométrie et Biologie Evolutive - UMR 5558
23 CHU Lyon
24 HCL - Hospices Civils de Lyon
25 Service de Biostatistiques [Lyon]
2 LabTAU - Laboratoire des applications thérapeutiques des ultrasons / Application des ultrasons à la thérapie
3 LECA - Laboratoire d'Ecologie Alpine
4 Service Radiologie et imagerie médicale - Rangueil / Larrey [CHU Toulouse]
5 IUCT Oncopole - UMR 1037 - Institut Universitaire du Cancer de Toulouse - Oncopole
6 INEM - UM 111 (UMR 8253 / U1151) - Institut Necker Enfants-Malades
7 CHU de Bordeaux Pellegrin [Bordeaux]
8 IPC - Institut Paoli-Calmettes
9 EMA - École, mutations, apprentissages
10 Hôpital Necker - Enfants Malades [AP-HP]
11 UPCité - Université Paris Cité
12 LIB - Laboratoire d'Imagerie Biomédicale [Paris]
13 Service Maladies infectieuses et tropicales [AP-HP Hôpital Cochin]
14 Service d'urologie [CHU Grenoble]
15 UNICANCER/ICL - Institut de Cancérologie de Lorraine - Alexis Vautrin [Nancy]
16 BCL, équipe Linguistique de l’énonciation
17 Service de Radiologie [CHU Saint-Etienne]
18 LISN - Laboratoire Interdisciplinaire des Sciences du Numérique
19 COMET - COuplages Multiphysiques Et Transferts - LISN
20 Pôle Urologie - Néphrologie - Dialyse - Transplantations - Brûlés - Chirurgie plastique - Explorations fonctionnelles et physiologiques [CHU Toulouse]
21 Département biostatistiques et modélisation pour la santé et l'environnement [LBBE]
22 LBBE - Laboratoire de Biométrie et Biologie Evolutive - UMR 5558
23 CHU Lyon
24 HCL - Hospices Civils de Lyon
25 Service de Biostatistiques [Lyon]
Nicolas Arfi
- Function : Author
Flavie Bratan
- Function : Author
Hervé Lang
- Function : Author
Frédéric Lefèvre
- Function : Author
Clément Marcelin
- Function : Author
Paul Moldovan
- Function : Author
Nicolas Mottet
- Function : Author
Pierre Mozer
- Function : Author
Eric Potiron
- Function : Author
Daniel Portalez
- Function : Author
Philippe Puech
- Function : Author
Raphaele Renard-Penna
- Function : Author
Catherine Roy
- Function : Author
Marc-Olivier Timsit
- Function : Author
Thibault Tricard
- Function : Author
Arnauld Villers
- Function : Author
Jochen Walz
- Function : Author
Florence Mège-Lechevallier
- Function : Author
Myriam Decaussin-Petrucci
- Function : Author
Lionel Badet
- Function : Author
Marc Colombel
- Function : Author
Alain Ruffion
- Function : Author
Sébastien Crouzet
- Function : Author
Muriel Rabilloud
- Function : Author
- PersonId : 181462
- IdHAL : muriel-rabilloud-ferrand
- ORCID : 0000-0003-1324-0356
- IdRef : 170401731
Olivier Rouvière
- Function : Author
Abstract
Background and objective: Prostate multiparametric magnetic resonance imaging (MRI) shows high sensitivity for International Society of Urological Pathology grade group (GG) ≥2 cancers. Many artificial intelligence algorithms have shown promising results in diagnosing clinically significant prostate cancer on MRI. To assess a region-of-interest-based machine-learning algorithm aimed at characterising GG ≥2 prostate cancer on multiparametric MRI.
Methods: The lesions targeted at biopsy in the MRI-FIRST dataset were retrospectively delineated and assessed using a previously developed algorithm. The Prostate Imaging-Reporting and Data System version 2 (PI-RADSv2) score assigned prospectively before biopsy and the algorithm score calculated retrospectively in the regions of interest were compared for diagnosing GG ≥2 cancer, using the areas under the curve (AUCs), and sensitivities and specificities calculated with predefined thresholds (PIRADSv2 scores ≥3 and ≥4; algorithm scores yielding 90% sensitivity in the training database). Ten predefined biopsy strategies were assessed retrospectively.
Key findings and limitations: After excluding 19 patients, we analysed 232 patients imaged on 16 different scanners; 85 had GG ≥2 cancer at biopsy. At patient level, AUCs of the algorithm and PI-RADSv2 were 77% (95% confidence interval [CI]: 70-82) and 80% (CI: 74-85; p = 0.36), respectively. The algorithm's sensitivity and specificity were 86% (CI: 76-93) and 65% (CI: 54-73), respectively. PI-RADSv2 sensitivities and specificities were 95% (CI: 89-100) and 38% (CI: 26-47), and 89% (CI: 79-96) and 47% (CI: 35-57) for thresholds of ≥3 and ≥4, respectively. Using the PI-RADSv2 score to trigger a biopsy would have avoided 26-34% of biopsies while missing 5-11% of GG ≥2 cancers. Combining prostate-specific antigen density, the PI-RADSv2 and algorithm's scores would have avoided 44-47% of biopsies while missing 6-9% of GG ≥2 cancers. Limitations include the retrospective nature of the study and a lack of PI-RADS version 2.1 assessment.
Conclusions and clinical implications: The algorithm provided robust results in the multicentre multiscanner MRI-FIRST database and could help select patients for biopsy.
Patient summary: An artificial intelligence-based algorithm aimed at diagnosing aggressive cancers on prostate magnetic resonance imaging showed results similar to expert human assessment in a prospectively acquired multicentre test database.