Performance of a Region of Interest–based Algorithm in Diagnosing International Society of Urological Pathology Grade Group ≥2 Prostate Cancer on the MRI-FIRST Database—CAD-FIRST Study - Laboratoire Interdisciplinaire des Sciences du Numérique
Article Dans Une Revue European Urology Oncology Année : 2024

Performance of a Region of Interest–based Algorithm in Diagnosing International Society of Urological Pathology Grade Group ≥2 Prostate Cancer on the MRI-FIRST Database—CAD-FIRST Study

1 Hôpital Edouard Herriot [CHU - HCL]
2 LabTAU - Laboratoire des applications thérapeutiques des ultrasons / Application des ultrasons à la thérapie
3 LECA - Laboratoire d'Ecologie Alpine
4 Service Radiologie et imagerie médicale - Rangueil / Larrey [CHU Toulouse]
5 IUCT Oncopole - UMR 1037 - Institut Universitaire du Cancer de Toulouse - Oncopole
6 INEM - UM 111 (UMR 8253 / U1151) - Institut Necker Enfants-Malades
7 CHU de Bordeaux Pellegrin [Bordeaux]
8 IPC - Institut Paoli-Calmettes
9 EMA - École, mutations, apprentissages
10 Hôpital Necker - Enfants Malades [AP-HP]
11 UPCité - Université Paris Cité
12 LIB - Laboratoire d'Imagerie Biomédicale [Paris]
13 Service Maladies infectieuses et tropicales [AP-HP Hôpital Cochin]
14 Service d'urologie [CHU Grenoble]
15 UNICANCER/ICL - Institut de Cancérologie de Lorraine - Alexis Vautrin [Nancy]
16 BCL, équipe Linguistique de l’énonciation
17 Service de Radiologie [CHU Saint-Etienne]
18 LISN - Laboratoire Interdisciplinaire des Sciences du Numérique
19 COMET - COuplages Multiphysiques Et Transferts - LISN
20 Pôle Urologie - Néphrologie - Dialyse - Transplantations - Brûlés - Chirurgie plastique - Explorations fonctionnelles et physiologiques [CHU Toulouse]
21 Département biostatistiques et modélisation pour la santé et l'environnement [LBBE]
22 LBBE - Laboratoire de Biométrie et Biologie Evolutive - UMR 5558
23 CHU Lyon
24 HCL - Hospices Civils de Lyon
25 Service de Biostatistiques [Lyon]
26 Biostatistiques santé [LBBE]
Nicolas Arfi
  • Fonction : Auteur
Flavie Bratan
  • Fonction : Auteur
Hervé Lang
  • Fonction : Auteur
Frédéric Lefèvre
  • Fonction : Auteur
Clément Marcelin
  • Fonction : Auteur
Paul Moldovan
  • Fonction : Auteur
Nicolas Mottet
  • Fonction : Auteur
Pierre Mozer
  • Fonction : Auteur
Eric Potiron
  • Fonction : Auteur
Daniel Portalez
  • Fonction : Auteur
Philippe Puech
  • Fonction : Auteur
Raphaele Renard-Penna
  • Fonction : Auteur
Catherine Roy
  • Fonction : Auteur
Marc-Olivier Timsit
  • Fonction : Auteur
Thibault Tricard
  • Fonction : Auteur
Arnauld Villers
  • Fonction : Auteur
Jochen Walz
  • Fonction : Auteur
Florence Mège-Lechevallier
  • Fonction : Auteur
Myriam Decaussin-Petrucci
  • Fonction : Auteur
Lionel Badet
  • Fonction : Auteur
Marc Colombel
  • Fonction : Auteur
Alain Ruffion
  • Fonction : Auteur
Sébastien Crouzet
  • Fonction : Auteur
Olivier Rouvière
  • Fonction : Auteur

Résumé

Background and objective: Prostate multiparametric magnetic resonance imaging (MRI) shows high sensitivity for International Society of Urological Pathology grade group (GG) ≥2 cancers. Many artificial intelligence algorithms have shown promising results in diagnosing clinically significant prostate cancer on MRI. To assess a region-of-interest-based machine-learning algorithm aimed at characterising GG ≥2 prostate cancer on multiparametric MRI. Methods: The lesions targeted at biopsy in the MRI-FIRST dataset were retrospectively delineated and assessed using a previously developed algorithm. The Prostate Imaging-Reporting and Data System version 2 (PI-RADSv2) score assigned prospectively before biopsy and the algorithm score calculated retrospectively in the regions of interest were compared for diagnosing GG ≥2 cancer, using the areas under the curve (AUCs), and sensitivities and specificities calculated with predefined thresholds (PIRADSv2 scores ≥3 and ≥4; algorithm scores yielding 90% sensitivity in the training database). Ten predefined biopsy strategies were assessed retrospectively. Key findings and limitations: After excluding 19 patients, we analysed 232 patients imaged on 16 different scanners; 85 had GG ≥2 cancer at biopsy. At patient level, AUCs of the algorithm and PI-RADSv2 were 77% (95% confidence interval [CI]: 70-82) and 80% (CI: 74-85; p = 0.36), respectively. The algorithm's sensitivity and specificity were 86% (CI: 76-93) and 65% (CI: 54-73), respectively. PI-RADSv2 sensitivities and specificities were 95% (CI: 89-100) and 38% (CI: 26-47), and 89% (CI: 79-96) and 47% (CI: 35-57) for thresholds of ≥3 and ≥4, respectively. Using the PI-RADSv2 score to trigger a biopsy would have avoided 26-34% of biopsies while missing 5-11% of GG ≥2 cancers. Combining prostate-specific antigen density, the PI-RADSv2 and algorithm's scores would have avoided 44-47% of biopsies while missing 6-9% of GG ≥2 cancers. Limitations include the retrospective nature of the study and a lack of PI-RADS version 2.1 assessment. Conclusions and clinical implications: The algorithm provided robust results in the multicentre multiscanner MRI-FIRST database and could help select patients for biopsy. Patient summary: An artificial intelligence-based algorithm aimed at diagnosing aggressive cancers on prostate magnetic resonance imaging showed results similar to expert human assessment in a prospectively acquired multicentre test database.

Dates et versions

hal-04549487 , version 1 (17-04-2024)

Identifiants

Citer

Thibaut Couchoux, Tristan Jaouen, Christelle Melodelima-Gonindard, Pierre Baseilhac, Arthur Branchu, et al.. Performance of a Region of Interest–based Algorithm in Diagnosing International Society of Urological Pathology Grade Group ≥2 Prostate Cancer on the MRI-FIRST Database—CAD-FIRST Study. European Urology Oncology, 2024, S2588-9311 (24), pp.00056-7. ⟨10.1016/j.euo.2024.03.003⟩. ⟨hal-04549487⟩
96 Consultations
0 Téléchargements

Altmetric

Partager

More