Improving IoT data stream analytics using summarization techniques - Laboratoire Interdisciplinaire des Sciences du Numérique Access content directly
Theses Year : 2020

Improving IoT data stream analytics using summarization techniques

Amélioration de l’analyse des flux de données IoT à l’aide de techniques de réduction de données


With the evolution of technology, the use of smart Internet-of-Things (IoT) devices, sensors, and social networks result in an overwhelming volume of IoT data streams, generated daily from several applications, that can be transformed into valuable information through machine learning tasks. In practice, multiple critical issues arise in order to extract useful knowledge from these evolving data streams, mainly that the stream needs to be efficiently handled and processed. In this context, this thesis aims to improve the performance (in terms of memory and time) of existing data mining algorithms on streams. We focus on the classification task in the streaming framework. The task is challenging on streams, principally due to the high -- and increasing -- data dimensionality, in addition to the potentially infinite amount of data. The two aspects make the classification task harder.The first part of the thesis surveys the current state-of-the-art of the classification and dimensionality reduction techniques as applied to the stream setting, by providing an updated view of the most recent works in this vibrant area.In the second part, we detail our contributions to the field of classification in streams, by developing novel approaches based on summarization techniques aiming to reduce the computational resource of existing classifiers with no -- or minor -- loss of classification accuracy. To address high-dimensional data streams and make classifiers efficient, we incorporate an internal preprocessing step that consists in reducing the dimensionality of input data incrementally before feeding them to the learning stage. We present several approaches applied to several classifications tasks: Naive Bayes which is enhanced with sketches and hashing trick, k-NN by using compressed sensing and UMAP, and also integrate them in ensemble methods.
Face à cette évolution technologique vertigineuse, l’utilisation des dispositifs de l'Internet des Objets (IdO), les capteurs, et les réseaux sociaux, d'énormes flux de données IdO sont générées quotidiennement de différentes applications pourront être transformées en connaissances à travers l’apprentissage automatique. En pratique, de multiples problèmes se posent afin d’extraire des connaissances utiles de ces flux qui doivent être gérés et traités efficacement. Dans ce contexte, cette thèse vise à améliorer les performances (en termes de mémoire et de temps) des algorithmes de l'apprentissage supervisé, principalement la classification à partir de flux de données en évolution. En plus de leur nature infinie, la dimensionnalité élevée et croissante de ces flux données dans certains domaines rendent la tâche de classification plus difficile. La première partie de la thèse étudie l’état de l’art des techniques de classification et de réduction de dimension pour les flux de données, tout en présentant les travaux les plus récents dans ce cadre.La deuxième partie de la thèse détaille nos contributions en classification pour les flux de données. Il s’agit de nouvelles approches basées sur les techniques de réduction de données visant à réduire les ressources de calcul des classificateurs actuels, presque sans perte en précision. Pour traiter les flux de données de haute dimension efficacement, nous incorporons une étape de prétraitement qui consiste à réduire la dimension de chaque donnée (dès son arrivée) de manière incrémentale avant de passer à l’apprentissage. Dans ce contexte, nous présentons plusieurs approches basées sur: Bayesien naïf amélioré par les résumés minimalistes et hashing trick, k-NN qui utilise compressed sensing et UMAP, et l’utilisation d’ensembles d’apprentissage également.
Fichier principal
Vignette du fichier
90368_BAHRI_2020_archivage.pdf (3.41 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-02865982 , version 1 (12-06-2020)


  • HAL Id : tel-02865982 , version 1


Maroua Bahri. Improving IoT data stream analytics using summarization techniques. Machine Learning [cs.LG]. Institut Polytechnique de Paris, 2020. English. ⟨NNT : 2020IPPAT017⟩. ⟨tel-02865982⟩
533 View
648 Download


Gmail Facebook X LinkedIn More