HAL CCSD
Metric for attractor overlap
Ishar, Rishabh
Kaiser, Eurika
Morzyński, Marek
Fernex, Daniel
Semaan, Richard
Albers, Marian
Meysonnat, Pascal
Schröder, Wolfgang
Noack, Bernd
Massachusetts Institute of Technology (MIT)
University of Washington [Seattle]
Poznan University of Technology (PUT)
Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig]
Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH)
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI) ; Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919) ; Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE)
International audience
ISSN: 0022-1120
EISSN: 1469-7645
Journal of Fluid Mechanics
Cambridge University Press (CUP)
hal-02398653
https://hal.science/hal-02398653
https://hal.science/hal-02398653
Journal of Fluid Mechanics, 2019, 874, pp.720-755. ⟨10.1017/jfm.2019.447⟩
DOI: 10.1017/jfm.2019.447
info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2019.447
en
[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
info:eu-repo/semantics/article
Journal articles
We present the first general metric for attractor overlap (MAO) facilitating an unsupervised comparison of flow data sets. The starting point is two or more attractors, i.e. ensembles of states representing different operating conditions. The proposed metric generalizes the standard Hilbert-space distance between two snapshot-to-snapshot ensembles of two attractors. A reduced-order analysis for big data and many attractors is enabled by coarse graining the snapshots into representative clusters with corresponding centroids and population probabilities. For a large number of attractors, MAO is augmented by proximity maps for the snapshots, the centroids and the attractors, giving scientifically interpretable visual access to the closeness of the states. The coherent structures belonging to the overlap and disjoint states between these attractors are distilled by a few representative centroids. We employ MAO for two quite different actuated flow configurations: a two-dimensional wake with vortices in a narrow frequency range and three-dimensional wall turbulence with a broadband spectrum. In the first application, seven control laws are applied to the fluidic pinball, i.e. the two-dimensional flow around three circular cylinders whose centres form an equilateral triangle pointing in the upstream direction. These seven operating conditions comprise unforced shedding, boat tailing, base bleed, high- and low-frequency forcing as well as two opposing Magnus effects. In the second example, MAO is applied to three-dimensional simulation data from an open-loop drag reduction study of a turbulent boundary layer. The actuation mechanisms of 38 spanwise travelling transversal surface waves are investigated. MAO comparesand classifies these actuated flows in agreement with physical intuition. For instance, the first feature coordinate of the attractor proximity map correlates with drag for the fluidic pinball and for the turbulent boundary layer. MAO has a large spectrum of potential applications ranging from a quantitative comparison between numerical simulations and experimental particle-image velocimetry data to the analysis ofsimulations representing a myriad of different operating conditions.
2019-09-10