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A GRÖBNER-BASES ALGORITHM FOR THE COMPUTATION
OF THE COHOMOLOGY OF LIE (SUPER) ALGEBRAS

MANSOUR AGHASI, BENYAMIN M.-ALIZADEH, JOËL MERKER,
AND MASOUD SABZEVARI

ABSTRACT. We present an effective algorithm for computing the standard co-
homology spaces of finitely generated Lie (super) algebras over a field K of
characteristic zero. In order to reach explicit representatives of some genera-
tors of the quotient space Z k

/
Bk of cocycles Z k modulo coboundaries Bk,

we apply Gröbner bases techniques (in the appropriate linear setting) and take
advantage of their strength. Moreover, when the considered Lie (super) alge-
bras enjoy a grading — a case which often happens both in representation the-
ory and in differential geometry —, all cohomology spaces Z k

/
Bk naturally

split up as direct sums of smaller subspaces, and this enables us, for higher di-
mensional Lie (super) algebras, to improve the computer speed of calculations.
Lastly, we implement our algorithm in the MAPLE software and evaluate its
performances via some examples, most of which have several applications in
the theory of Cartan-Tanaka connections.

1. INTRODUCTION

The concept of cohomology group — one of the central concepts in contempo-
rary science — possesses established applications in several areas of pure math-
ematics, for instance: deformation of Lie algebras ([11]); analytic partial dif-
ferential equations; global foliation theory; combinatorics (Mcdonald identities);
invariant differential operators; cobordism theory; infinite-dimensional Lie alge-
bras ([10]); exterior differential systems; Cartan-Tanaka theory of connections
([5, 1, 2, 19]); etc. Moreover, cohomology groups also have applications in quan-
tum physics; for quasi-invariancy of certain Lagrangians; in the Wess-Zumino-
Novikov-Witten model (cf. [3]); when one reinterprets general relativity by means
of so(3, 1)-valued connections; etc. It therefore turns out to be worthwhile to set
up appropriate efficient algorithms for the computation of Lie (super) algebra co-
homologies, granted that calculations quickly become hard by hand.

Recently, a few articles have been published in this direction. Kornyak [14, 15]
devised an algorithm and implemented it in the C program. Moreover, Grozman,
Leites, Post and Von Hijligenberg ([12, 17, 20]) prepared some packages for com-
puting Lie (super) algebra cohomologies in REDUCE and in MATHEMATICA. In
the present article, motivated by the specific objective of developing the construc-
tion of effective Cartan-Tanaka connections that are valued in Lie algebras which
are not semi-simple (see [5, 1, 2, 19] for some instances of that research program

Date: 2013-2-22.
2000 Mathematics Subject Classification. 17B56, 68U05.
To appear in Advances in Applied Clifford Algebras. DOI: 10.1007/s00006-011-0319-z. The

final publication is available at www.springerlink.com.
1



2 Mansour Aghasi, Benyamin M.-Alizadeh, Joël Merker and Masoud Sabzevari

and also [8] in the parabolic/simple case), our main aim is to set up an alternative
algorithm and to implement it in the MAPLE software. We would like to employ
the method of Gröbner bases, a modern, effective and widespread tool in com-
putational mathematics. Of course, the continued regular progresses in Gröbner
bases algorithms enrich de facto any algorithm that is built on them. For conve-
nience and self-contentness, a short reminder of Gröbner bases concepts will be
given in Section 2. But before that, let us present a brief description of the def-
initions, notations and formulas in Lie super algebras, and let us introduce their
cohomology groups, precisely.

A Lie super algebra over a field K of characteristic zero is a (Z/2Z)-graded
algebra which is a direct sum (as a vector space):

g = g0 ⊕ g1

of two subspaces g0 and g1 subjected to the following structural properties. An
element x ∈ g is homogeneous if either x ∈ g0 or x ∈ g1, and in this case, its
weight |x| is defined to be 0 or 1, accordingly (the elements of g0 and of g1 are
called even and odd, respectively). The algebra structure is a degree-zero bilinear
Lie bracket [·, ·] : g× g −→ g which is graded, namely it satisfies:[

gi, gj
]
⊆ gi+j ,

for any i, j = 0, 1 where i+ j = i + j mod 2. The bracket also satisfies, for
arbitrary homogeneous elements x, y, z belonging either to g0 or to g1:

[x, y] = −(−1)|x||y|[y, x] (super skew-symmetry),[
x, [y, z]

]
=

[
[x, y], z

]
+ (−1)|x||y|

[
y, [x, z]

]
(super Jacobi identity),

these relations being then extended by K-linearity to all elements of g. In
differentialo-geometric applications ([5, 8, 1, 2, 19]), the field K of characteristic
zero is usually assumed to be either just Q, or R, or C, plainly.

A g-module V is a vector space over the same field K together with a bilinear
map (denoted shortly with a dot) · : g× V → V having the property:

[x, y] · v = x · (y · v)− (−1)|x||y|y · (x · v),
for any two homogeneous x, y ∈ gi, i = 0, 1, and any v ∈ V . One of the most
important instances of such g-modules occurs when g happens to be a Lie (super)
subalgebra of a certain larger Lie (super) algebra h =: V , with the bilinear map
· : g× h → h being just precisely the Lie bracket of h, of course.

Thus, let g be an m-dimensional Lie super algebra and let V be a g-module.
For any integer k > 0, the space C k(g, V ) of k-cochains consists of the space of
k-multilinear maps:

Φ: gk −→ V,

where gk = g × · · · × g (k times, with g0 = {0} naturally), that are super skew-
symmetric in the sense that:

Φ
(
z1, . . . , zi, zi+1, . . . , zk

)
= −(−1)|zi||zi+1|Φ

(
z1, . . . , zi+1, zi, . . . , zk

)
,

for any homogeneous arguments. Then for any integer k > 0, there is a funda-
mental linear differential operator:

∂k : C k
(
g, V

)
−→ C k+1

(
g, V

)
,
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mapping a k-cochain Φ uniquely to a (k + 1)-cochain ∂kΦ that acts as follows
(see [10, 13]) on any collection of k + 1 homogeneous elements e0, . . . , ep ∈ g0,
and op+1, . . . , ok ∈ g1:

(1)

(∂kΦ)
(
e0, . . . , ep, op+1, . . . , ok

)
:=

:=

p∑
i=0

(−1)i+1 ei · Φ
(
e0, . . . , êi, . . . , ep, op+1, . . . , ok

)
+

+
∑

06i<j6k

(−1)i+j+1 Φ
(
[ei, ej ], e0, . . . , êi, . . . , êj , . . . , ep, op+1, . . . , ok

)
+

+

p∑
i=0

k∑
j=p+1

(−1)i Φ
(
e0, . . . , êi, . . . , ep, [ei, oj ], op+1, . . . , ôj , . . . , ok

)
+

+
∑

p+16i<j6k

Φ
(
[oi, oj ], e0, . . . , ep, op+1, . . . , ôi, . . . , ôj , . . . , ok

)
+

+ (−1)p
k∑

i=p+1

oi · Φ
(
e0, . . . , . . . , ep, op+1, . . . , ôi, . . . , ok

)
,

where as usual, ẑl means removal of the term zl (in the case of Lie algebras,
comparing with some references such as [1, 3, 11, 19], there is an overall minus
sign in the right-hand side). One checks ([10]) that in the case of standard Lie
algebras g ⊂ h = V , only the first two lines of the above definition are non-zero,
and in fact, for any k + 1 vectors z0, z1, . . . , zk ∈ g, one has:

(2)
(∂kΦ)

(
z0, z1, . . . , zk

)
:=

k∑
i=0

(−1)i
[
zi, Φ(z0, . . . , ẑi, . . . , zk)

]
+

+
∑

06i<j6k

(−1)i+j Φ
(
[zi, zj ], z0, . . . , ẑi, . . . , ẑj , . . . , zk

)
.

In both cases, this (k + 1)-cochain ∂kΦ is clearly linear with respect to each
argument, and furthermore, it is (super) skew-symmetric ([10]). Furthermore, one
can verify that the compositions ∂k+1 ◦ ∂k vanish for any k ∈ N, hence we have
the following cochain complex:

(3) 0
∂0−→ C 1 ∂1−→ C 2 ∂2−→ · · · ∂

m−2

−→ Cm−1 ∂
m−1

−→ Cm ∂m−→ 0.

Based on these definitions, the k-th cohomological space Hk(g, V ) is defined to
be the following quotient space:

Hk
(
g, V

)
=

Z k(g, V )

Bk(g, V )
,

where Z k(g, V ) := ker
(
∂k

)
and Bk(g, V ) := im

(
∂k−1

)
.

Within MAPLE, there exists a package entitled LieAlgebraCohomology
which computes a somewhat different type of Lie algebra cohomology, called rel-
ative cohomology. In particular, this package computes the De Rham cohomoloy,
quite central in differential geometry. But still, there is no package or command
for computing the above-mentioned type of cohomological spaces of Lie (super)
algebras, although it has several applications to, e.g., the differential geometry of
Cartan-Tanaka connections.
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The article is divided into five sections. In Section 2, some preliminaries about
Gröbner bases are reviewed. Section 3 is devoted to the main results of this paper.
In Section 4 we describe our algorithm to compute the cohomological spaces of
certain Lie algebras. Lastly, in Section 5 we show, with some examples, that
computations naturally split up, in the case of a pair of plain Lie (sub)algebras
g ⊂ h = V , when g and h are simultaneously graded.

1.1. Acknowledgments. We express our grateful thanks to an anonymous ref-
eree who provided fine corrections and suggestions. The last two authors grate-
fully acknowledge the financial support of the University of Vienna for their par-
ticipations to the Workshop “Cartan Connections, Geometry of Homogeneous
Spaces, and Dynamics” organized by Andreas Čap, Charles Frances and Karin
Melnick at the International Erwin Schrdinger Institute in Vienna during July 10 –
July 23, 2011.

2. GRÖBNER BASES AND ELIMINATION IDEALS

The theory of Gröbner bases is a key computational tool for studying poly-
nomial ideals. This theory was introduced and developed by Buchberger, who
devised its general scheme in the early 1960’s ([6, 7]). Nowadays, there exist sev-
eral refined and improved algorithms that are more efficient than the original one,
such as F4, F5, FGB, GB, G2V and GVW, and most of them have been regularly
implemented in computer algebra systems like MAPLE, MAGMA, MATHEMAT-
ICA, SINGULAR, MACAULAY2, COCOA and SAGE.

To provide a summarized description of the theory, borrowing the notation and
the results to the monograph [9] of Cox, Little and O’Shea, let K[x1, . . . , xn] be
a polynomial ring in n > 1 variables on some arbitrary field K of characteristic
zero and let I = 〈f1, . . . , fk〉 be any ideal of K[x1, . . . , xn] generated by a finite
number (noetherianity!) of polynomials f1, . . . , fk ∈ K[x1, . . . , xn].

Definition 2.1. A monomial ordering on K[x1, . . . , xn] is a binary relation ≺ on
the set of monomials xα = xα1

1 · · ·xαn
n in K[x1, . . . , xn] which satisfies:

• ≺ is a strict total ordering, namely it is transitive, asymmetric and any two
monomials are comparable;

• xα ≺ xβ implies xγxα ≺ xγxβ for every monomial xγ , γ ∈ Nn;
• ≺ is a well-ordering, namely, every nonempty set of monomials has a

minimal element.

For example, the usual lexicographical ordering, here denoted ≺lex, is a mono-
mial ordering defined as follows ([4, 9]): if degi(m) denotes the degree in xi of
a monomial m, if m′ and m′′ are two monomials, then m′ ≺lex m

′′ if and only if
(by definition) the first nonzero entry of the vector of Zn:(

deg1(m
′′)− deg1(m

′), . . . ,degn(m
′′)− degn(m

′)
)

is positive.
Let now ≺ be any monomial ordering on K[x1, . . . , xn]. The leading monomial

of a polynomial f ∈ K[x1, . . . , xn] is the greatest monomial — with respect to
≺ — which appears in f , and we denote it by LM(f). Furthermore, the leading
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coefficient of f , written by LC(f) ∈ K, is the K-coefficient of LM(f) in f and
the leading term of f is the product:

LT(f) := LC(f) · LM(f).

The following theorem states a fundamental division algorithm in K[x1, . . . , xn].

Theorem 2.1. ([4, 9]) Given a fixed monomial ordering ≺ on K[x1, . . . , xn],
for any ordered k-tuple (f1, . . . , fk) of polynomials in K[x1, . . . , xn], every
f ∈ K[x1, . . . , xn] can be written as:

f = a1f1 + · · ·+ akfk + r,

for some ai, r ∈ K[x1, . . . , xn], with the main property that either r = 0 or r
is a linear combination of monomials, none of which is divisible by any LT(fj),
j = 1, . . . , k.

Usually, one calls r a (one) remainder of f on division by (f1, . . . , fk), because
most often, it is not unique, and because in addition, it strongly depends on the
ordering of the fi’s. This theorem, a higher-dimensional version of the standard
Euclidean division algorithm valid for the one-dimensional ring K[x1], is the main
effective cornerstone in the field of Gröbner bases; in fact, search for higher speed
concentrates mainly on improving the efficiency of division. Next, we define what
is a Gröbner basis for a polynomial ideal I ⊂ K[x1, . . . , xn].

Definition 2.2. A finite subset G = {g1, . . . , gl} ⊂ I is called a Gröbner basis
of I with respect to some fixed monomial ordering ≺ if the ideal generated by
the leading monomials of all elements of I coincides with the monomial ideal
generated by the LT(gj), j = 1, . . . , l:〈

LT(f) : f ∈ I
〉
=

〈
LT(g1), . . . ,LT(gl)

〉
.

Next, if G = {g1, . . . , gl} is a Gröbner basis of an ideal with respect to some
monomial ordering ≺, one proves that the remainder, on division by G, of any
f ∈ K[x1, . . . , xn] is unique, one calls this remainder the normal form of f
with respect to G and one denotes it by NFG(f), cf. again [4, 9]. Also, one
proves that if G is a Gröbner basis for J , then NFG(f) = 0 if and only if
f ∈ J = 〈 G 〉. Then the fundamental theorem of the theory is that every nonzero
ideal I ⊂ K[x1, . . . , xn] possesses at least one Gröbner basis, with (refinable)
algorithms which produces such a Gröbner basis from any set of generators, by
taking so-called S-polynomials between any two distinct generators and by ap-
plying, inductively, the division Theorem 2.1. Furthermore, if G is any Gröbner
basis of I , it also generates I , hopefully. However, Gröbner bases for an ideal
are not unique. Once a monomial order is chosen, reduced Gröbner bases fully
insure uniqueness.

Definition 2.3. A reduced Gröbner basis of an ideal I is a Gröbner basis G =
{g1, . . . , gl} of I whose polynomials gj are all monic such that, for any two
distinct gj1 , gj2 ∈ G, no monomial appearing in gj2 is a multiple of LT(gj1).

Then one establishes ([4, 9]) that, given a fixed monomial ordering ≺ on the
ring K[x1, . . . , xn], every ideal I ⊂ K[x1, . . . , xn] possesses a unique reduced
Gröbner basis.
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The concept of elimination ideal, a natural application of Gröbner bases, will
be a very useful tool for us. Consider again K[x1, . . . , xn] and pick a (finite)
subset of m, with 1 6 m 6 n− 1, variables among the n variables {x1, . . . , xn};
possibly after a permutation, these (sub)variables may of course be assumed to be
just x1, . . . , xm. Then, for any ideal I ⊂ K[x1, . . . , xm, xm+1, . . . , xn], we call:

I ∩K[x1, . . . , xm],

the elimination ideal of I with respect to the (sub)variables:{
x1, . . . , xm} ⊂

{
x1, . . . , xm, xm+1, . . . , xn

}
.

The following proposition provides one with a way to compute elimination ideals,
using Gröbner bases, and, as a bonus, it also yields at the same time a reduced
Gröbner basis for the elimination ideal.

Proposition 2.4. ([4, 9]) Let ≺ be a monomial ordering on the ring
K[x1, . . . , xm, xm+1, . . . , xn] having the property that xj ≺ xk for any
j = 1, . . . ,m and any k = m+ 1, . . . , n, and let G be the reduced Gröbner basis
of I with respect to ≺. Then G ∩ K[x1, . . . , xm] is a reduced Gröbner basis for
the elimination ideal I ∩K[x1, . . . , xm] with respect to ≺.

3. COMPUTATION OF COHOMOLOGY SPACES

Now, coming back to our goal, let g = g0 ⊕ g1 be an m-dimensional Lie super
algebra generated as a K-vector space by p even elements e1, . . . ep and by m− p
odd elements op+1, . . . om, and let V be an n-dimensional g-module generated by
vectors v1, . . . , vn, as a K-vector space too. It is natural to divide any algorithm
on the computation of Lie super algebra cohomologies into three steps:

• computation of the space of cocycles Z k(g, V );

• computation of the space of coboundaries Bk(g, V );

• computation of the cohomology spaceHk(g, V ) = Z k(g, V )
/
Bk(g, V ).

Sometimes, we shall abbreviate simply by Z k the space Z k(g, V ), and so on.
Obviously, the most substantial step of the algorithm is the third one, in which
one has to compute the quotient of the two spaces obtained, at the first and sec-
ond steps, by somewhat routine computations. Accordingly, we shall divide this
section into three steps in which we explain the corresponding fraction of the al-
gorithm.

3.1. Computation of Z k(g,V). At first, we have to determine a basis for the
vector space C k(g, V ). For any r = 0, . . . , k, for any 1 6 i1 < · · · < ir 6 p, for
any p+ 1 6 jr+1 6 · · · 6 jk 6 m and for any l = 1, . . . , n, let us denote by:

Λ
(i1,...,ir|jr+1,...,jk)
l

the basic element (map) of C k(g, V ) whose value on (ei1 , . . . , eir , ojr+1 , . . . , ojk)
is exactly 1 · vl, which acts super-symmetrically and which is zero elsewhere.
One verifies that the set of these maps constitutes a basis over K for the vector
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space C k(g, V ), hence a general k-cochain Φ naturally decomposes as a linear
combination:

Φ =
k∑
r=0

∑
16i1<···<ir6p

∑
p+16jr+16···6jk6m

n∑
l=1

φl(i1,...,ir|jr+1,...,jk)
Λ
(i1,...,ir|jr+1,...,jk)
l ,

where the φl(i1,...,ir|jr+1,...,jk)
∈ K are arbitrary scalars in the ground field.

For more brevity and without much abuse of notation, let us denote φl(i|j)r,k ,

Λ
(i|j)r,k
l and (ei, oj)r,k instead of φl(i1,...,ir|jr+1,...,jk)

, Λ
(i1,...,ir|jr+1,...,jk)
l and

(ei1 , . . . , eir , ojr+1 , . . . , ojk), respectively. Thus, with these abbreviated nota-
tions, the above expansion of a general k-cochain reads:

(4) Φ =
∑
r

∑
i1<···<ir

∑
jr+16···6jk

∑
l

φl(i|j)r,k Λ
(i|j)r,k
l .

In the important (special) case of standard Lie algebras g ⊂ h = V represented
by means of bases:

g = K e1 ⊕ · · · ⊕K em and h = K f1 ⊕ · · · ⊕K fn,

odd elements are plainly absent, whence the expression of a general k-cochain
reduces to:

Φ =
∑

16i1<···<ik6m

n∑
l=1

φli1,...,ik Λi1,...,ikl ,

where the basic k-cochains Λi1,...,ikl also write as follows in terms of the dual e∗i :

(5) Λi1,...,ikl = e∗i1 ∧ · · · ∧ e∗ik ⊗ fl.

Now, in order to compute the cocycle subspace Z k ⊂ C k, one proceeds by
applying the fundamental formula (1) to know what value ∂kΦ has on each (k+1)-
tuple (ei, oj)s,k+1, for all s = 0, . . . , k + 1, for all 1 6 i1 < · · · < is 6 p, for all
p + 1 6 js+1 6 · · · 6 jk+1 6 m, and afterwards, by just equating to zero each
such expression (∂kΦ)

(
(ei, oj)s,k+1

)
, a task which is of course left to a computer.

With more precisions, because each such (∂kΦ)
(
(ei, oj)s,k+1

)
belongs to the n-

dimensional K-vector space V , one in fact gets n scalar equations in this way.
After all, this gives in sum a finite number of homogeneous equations that are
all linear with respect to the unknown coefficients φl(i|j)r,k . Then by computer-
solving the obtained linear system which we shall denote by:

Systφ
(
Z k

)
,

one completely identifies those coefficients φl(i|j)r,k which make up cocycles Φ =∑
φl(i|j)r,k Λ

(i|j)r,k
l which belong to Z k. The first step ends so.

3.2. Computation of Bk(g,V). This second step is rather similar to the first
one, though less direct, for it requires the use of elimination ideals (Proposi-
tion 2.4). Indeed using once more the general representation (4) with k replaced
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by k − 1, a general (k − 1)-cochain writes quite similarly under the form:

(6) Ψ =

k−1∑
r=0

∑
16i1<···<ir6p

∑
p+16jr+16···6jk−16m

n∑
l=1

ψl(i|j)r,k−1
Λ
(i|j)r,k−1

l ,

where the ψl(i|j)r,k−1
∈ K are arbitrary scalars in the ground field. By definition,

the elements of Bk, namely the coboundaries, are k-cochains of the form ∂k−1Ψ,
for such a Ψ. With more precision, Bk is the space of k-cochains Φ as in (4) that
are of the form Φ = ∂k−1Ψ, for some (k−1)-cochains Ψ as in (6). Consequently,
applying once again the fundamental formula (1), we have to compute the value
of ∂k−1Ψ on each of the k-tuples (ei, oj)r,k belonging to gk and then to equate
them to the value of Φ on these k-tuples, where we recall that:

Φ
(
(ei, oj)r,k

)
= Φ(ei1 , . . . , eir , ojr+1 , . . . , ojk) =

n∑
l=1

φl(i1,...,ir|jr+1,...,jk)
vl.

But looking at (1), and without performing explicit computations (left to a com-
puter in specific examples), one easily convinces oneself that there are certain
linear forms Li,j,r,k in the coefficients ψl

′

(i′|j′)r′,k−1
of Ψ such that:

(∂k−1Ψ)
(
(ei, oj)r,k

)
=

n∑
l=1

Li,j,r,k
({
ψl

′

(i′|j′)r′,k−1

})
vl.

Hence for any i, j, r, k, by equating the coefficients of the vl, l = 1, . . . , n, in
both sides of the equalities:

∂k−1Ψ
(
(ei, oj)r,k

)
= Φ

(
(ei, oj)r,k

)
,

it therefore follows that a k-cochain Φ = ∂k−1Ψ is a k-coboundary if and only if
all its coefficients φl(i|j)r,k are of the form:

φl(i|j)r,k = Li,j,r,k

({
ψl

′

(i′|j′)r′,k−1

})
,

for some (k − 1)-cochain Ψ having coefficients ψl
′

(i′|j′)r′,k−1
. The task of writing

explicitly the right-hand sides being left to a computer, we obtain in this way a
finite number of linear equations. Lastly, we can use Gröbner bases to eliminate
all the variables ψl

′

(i′|j′)r′,k−1
in these linear equations (cf. Proposition 2.4), which

provides at the end a collection of linear equations (automatically organized as
a reduced Gröbner basis) involving only the variables φl(i|j)r,k . If we denote this
new system by:

Systφ
(
Bk

)
,

the fact that one always has Bk ⊂ Z k entails that any solution of Systφ
(
Bk

)
is necessarily a solution of Systφ

(
Z k

)
. However as usual in linear algebra, this

does not mean that the (finite) collection of equations for Systφ
(
Z k

)
is included,

as a set, in the (finite) collection of equations for Systφ
(
Bk

)
: one in general needs

to make linear combinations until this becomes true.



A Gröbner-bases algorithm for the computation of the cohomology of Lie (super) algebras 9

3.3. Computation of Hk(g,V). Now we are ready to start the third, main step,
namely the computation of the k-th cohomological space Hk = Z k

/
Bk. (Of

course, any technique which decreases the complexity of this last step simultane-
ously increases the speediness of computations.) The two systems Systφ(Z

k) and
Systφ(B

k) of linear equations in the unknown variables φl(i|j)r,k identify exactly

all the elements of Z k and Bk, respectively. Therefore, every nonzero element
of the quotient K-vector space:

Hk = Z k
/
Bk

is of the form:
Φ+ Bk,

where the coefficients φ(i|j)r,kl of the k-cochain Φ =
∑

φl(i|j)r,k Λ
(i|j)r,k
l satisfy

all the equations in Systφ(Z
k) and do not satisfy at least one of the equations in

Systφ(B
k).

3.4. Finding a basis for a quotient K-vector space. Temporarily, let us set
aside our cohomological objective and let us present some results in the theory
of Gröbner basis that are useful to the purpose of finding representatives of the
quotient V/W of any two K-vector subspaces W ⊂ V ⊂ E sitting inside a
certain (large) ambient K-vector space E.

In a first moment, given a vector subspace F ⊂ E of some K-vector space E
which is represented as the zero-set of some linear forms — as for instance Z k ⊂
C k which is represented by Systφ

(
Z k

)
—, by allowing fully the use of Gröbner

bases, we want to find an explicit set of vectors f1, . . . , fdimF ∈ E which make up
a basis for F . Then in a second moment and still employing Gröbner bases, given
instead two K-vector subspaces W ⊂ V ⊂ E of dimensions p := dimK V and
q := dimKW which are both represented as zero-sets of some linear forms —
as for instance Bk ⊂ Z k ⊂ C k which are represented by Systφ

(
Bk

)
and by

Systφ
(
Z k

)
—, we will show how to find explicitly p − q linearly independent

vectors v1, . . . , vp−q ∈ V such that the cosets:

v1 +W, . . . , vp−q +W

make up a basis for the quotient vector space V/W (following notation from [18],
pp. 347–348).

Thus, letE be a K-vector space of dimension n > 1, let {e1, . . . , en} be a basis
of E and let (x1, . . . , xn) ∈ Kn be the associated coordinates in terms of which
any vector e ∈ E ' Kn represents uniquely as:

e = x1 e1 + · · ·+ xn en.

By convention, the variable names xi will be reserved to write down Cartesian
equations of vector subspaces, and we will also need some other auxiliary vari-
ables (y1, . . . , yn). Often, x and y will abbreviate (x1, . . . , xn) and (y1, . . . , yn).
With slight abuse, polynomials in K[x] will sometimes be written f(x) — with
‘argument’ x —, in order to see without ambiguity the indeterminate which
will be either x or y, and this functional notation is justified by the fact that
to any polynomial P = a0 + a1 t + · · · + an t

n ∈ K[t] is associated the map
K 3 t 7−→ a0 + a1 t+ · · ·+ an t

n ∈ K.
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To begin with, consider the circumstance where a given vector subspace F ⊂
E ' Kn is represented as generated by µ vectors f1, . . . , fµ ∈ F that are not
necessarily linearly independent. Each such vector decomposes according to the
basis:

f1 = f11 e1 + · · ·+ f1n en, . . . . . . , fµ = fµ1 e1 + · · ·+ fµn en,

for some scalars fλi ∈ K, and using the auxiliary variables (y1, . . . , yn), we asso-
ciate to them the following µ linear forms:

f1(y) := f11 y1 + · · ·+ f1n yn, . . . . . . , fµ(y) := fµ1 y1 + · · ·+ fµn yn,

which we simply view as (degree 1) polynomials belonging to K[y1, . . . , yn]. The
proofs of the three statements below, including the following preliminary propo-
sition, will be postponed to the end of the present section.

Proposition 3.1. Fix a lexicographic ordering ≺ on monomials of the ring
K[y1, . . . , yn]. With F = VectK(f1, . . . , fµ) as above, and with the associated lin-
ear forms f1(y), . . . , fµ(y), if G := {g1(y), . . . , gm(y)} is the reduced Gröbner
basis of the ideal: 〈

f1(y), . . . , fµ(y)
〉

in K[y1, . . . , yn] with respect to ≺, then:

(i) dimK F = m = precisely the cardinal of G;
(ii) all gj(y), j = 1, . . . ,m, are linear forms, namely:

gj(y) = gj1 y1 + · · ·+ gjn yn

for some scalars gji ∈ K, and furthermore, the m vectors:

g1 := gj1 e1 + · · ·+ gjn en, . . . . . . , gm := gm1 e1 + · · ·+ gmn en

constitute a basis for F as a vector space;
(iii) an arbitrary vector h = h1 e1+· · ·+hn en ∈ E, with coordinates hi ∈ K,

belongs to F if and only if the normal form of the associated h(y) :=
h1 y1 + · · ·+ hn yn with respect to the reduced Gröbner basis G is zero:

0 = NFG(h).

However, as we said, the K-vector subspace F ⊂ E we want to consider for
applications to (super) Lie algebra cohomologies, namely Z k ⊂ C k (or also
Bk ⊂ C k) should be thought of as being represented as the zero-set of some
(Cartesian) linear equations. The appropriate statement will better be brought to
light by means of a simple illustration.

Example 3.2. Consider the system of three (Cartesian) linear equations:
f1(x) := x1 − x4 + x5 = 0,

f2(x) := 2x1 + x2 + x4 = 0,

f3(x) := −x3 + 2x4 + x5 = 0,

in the vector space E = K5 with coordinates (x1, x2, x3, x4, x5) which repre-
sents a certain vector subspace F ⊂ E. Transforming (either by hand or with
a computer) the ideal

〈
f1(x), f2(x), f3(x)

〉
to the reduced Gröbner basis with

respect to the lexicographic ordering x5 ≺ x4 ≺ x3 ≺ x2 ≺ x1, one gets that
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F ⊂ E is equivalently defined as the set of all (x1, x2, x3, x4, x5) ∈ K satisfying:
0 = g1(x) = g2(x) = g3(x), where:

g1(x) := x1−x4+x5, g2(x) := x2+3x4−2x5, g3(x) := x3−2x4−x5,
and where G := {g1(x), g2(x), g3(x)} is the reduced Gröbner basis in question.
Thus, x4 and x5, are horizontal parameters for F , x1, x2, x3 are functions of
(x4, x5), and F is a graphed 5−3 = 2-dimensional subspace of the 5-dimensional
vector space E = K5.

Next, choosing firstly (x4, x5) = (1, 0) and secondly (x4, x5) = (0, 1),
one sees that F is generated by the two column vectors (1,−3, 2, 1, 0)t and
(−1, 2, 1, 0, 1)t. To these two vectors, one then associates the following set of
two linear forms:{

y1 − 3y2 + 2y3 + y4, −y1 + 2y2 + y3 + y5

}
,

in some five auxiliary variables y1, y2, y3, y4, y5 ∈ K. On the other hand, granted
that computing a normal form with respect to G just means replacing x1 by x4−x5,
x2 by −3x4 + 2x5 and x3 by 2x4 + x5, and considering the auxiliary bilinear
form

∑5
i=1 xi yi, we see that:

NFG

(∑5
i=1 xi yi

)
= (x4−x5) y1+(−3x4+2x5) y2+(2x4+x5) y3+x4 y4+x5 y5.

Reorganizing, we easily find the coefficients of the parameters x4 and x5 in this
expression:

x4 : y1 − 3 y2 + 2 y3 + y4

x5 : − y1 + 2 y2 + y3 + y5,

and interestingly enough, these two coefficients coincide with the above two linear
forms in the auxiliary variables yi. This is a quite general fact, whose proof is also
postponed to the end of the present section.

Proposition 3.3. Let F ⊂ E ' Kn be a K-vector subspace which is represented
by means of Cartesian linear equations:

F =
{

vectors x1 e1 + · · ·+ xn en s.t. 0 = f1(x) = · · · = fµ(x)
}
,

for a certain collection of µ > 1 linear forms fλ(x). Let G be the reduced Gröbner
basis of the ideal

〈
f1(x), . . . , fµ(x)

〉
with respect to some fixed lexicographic

ordering. Given n new auxiliary indeterminates y1, . . . , yn, let:

hy(x) := NFG

(
x1y1 + · · ·+ xnyn

)
∈ K[x1, . . . , xn]

be the normal form, with respect to G, of the bilinear form
∑n

i=1 xi yi. Then the
following four assertions hold true:

(i) hy(x) is linear in (x1, . . . , xn);
(ii) hy(x) involves exactly dimF =: m variables xi:

hy(x) = xi1 h1(y) + · · ·+ xim hm(y),

for some 1 6 i1 < · · · < im 6 n;
(iii) all the appearing coefficients hj(y) of hy(x) are linear forms in the vari-

ables (y1, . . . , yn);
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(iv) if one expands them:

hj(y) = hj1 y1 + · · ·+ hjn yn (j=1 ···m)

in terms of some scalars hji ∈ K, then the m associated vectors:

h1 := h11 e1 + · · ·+ h1n en, . . . . . . , hm := hm1 e1 + · · ·+ hmn en

make up a basis for F .

The last data h1, . . . , hm are exactly what we wanted: an explicit basis for the
K-vector subspace F ⊂ E which was represented by linear equations.

We can now come back to our initial goal. Let E ' Kn be an ambient n-
dimensional K-vector space as above, fix coordinates (x1, . . . , xn) on E and fix
some lexicographic ordering on monomials of K[x1, . . . , xn]. Let W ⊂ E and
V ⊂ E be two K-vector subspaces which are both represented by means of Carte-
sian linear equations:

W =
{

vectors x1 e1 + · · ·+ xn en s.t. 0 = g1(x) = · · · = gν(x)
}
,

V =
{

vectors x1 e1 + · · ·+ xn en s.t. 0 = f1(x) = · · · = fµ(x)
}
,

for certain two collections of linear forms g1(x), . . . , gν(x) and f1(x), . . . , fµ(x),
with the further assumption that W ⊂ V . For our cohomological objective, the
initial data are precisely presented under such form: Bk ⊂ C k and Z k ⊂ C k are
the zero-sets of Systφ

(
Bk

)
and of Systφ

(
Bk

)
, respectively, with Bk ⊂ Z k, of

course. It goes without saying that Proposition 3.3 provides two explicit bases for
W and V , namely:

W = SpanK
(
w1, . . . ,wq

)
and V = SpanK

(
v1, . . . , vp

)
,

where q := dimKW and p := dimK V . The following theorem then realizes the
goal of finding a basis for V/W as a K-vector space.

Theorem 3.1. Let E be an n-dimensional K-vector space equipped with a ba-
sis {e1, . . . , en}, let V ⊂ E and W ⊂ E be two K-vector subspaces having
dimensions p := dimK V and q := dimKW that are both represented:

V = SpanK
(
v1, . . . , vp

)
and W = SpanK

(
w1, . . . ,wq

)
,

as the span of some basis vectors:

vi = vi1 e1 + · · ·+ vin en and wj = wj1 e1 + · · ·+ wjn en

(i=1 ··· p) (j=1 ··· q)

which are explicitly given in terms of their coordinates vik ∈ K and wjk ∈ K.
Suppose that W ⊂ V , whence q 6 p, and associate to these two bases the follow-
ing two collections of linear forms:

fi(y) := vi1 y1 + · · ·+ vin yn and gj(y) := wj1 y1 + · · ·+ wjn yn

in some auxiliary K[y1, . . . , yn]. Lastly, let:

BV :=
{
f1(y), . . . , fp(y)

}
and BW :=

{
g1(y), . . . , gq(y)

}
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be the two reduced Gröbner bases of the two ideals
〈
f1(y), . . . , fp(y)

〉
and〈

g1(y), . . . , gq(y)
〉

with respect to some fixed lexicographic ordering ≺ on the
monomials of K[y1, . . . , yn]. Then the reduced Gröbner basis BV/W of the ideal:〈

NFBW

(
f
)
: f ∈ BV

〉
generated by the normal forms with respect to BW of all elements of BV , is of
cardinal equal to p− q = dimV − dimW , and furthermore, if:

hl(y) = hl1 y1 + · · ·+ hln yn (l=1 ··· p− q)

are its elements, the p− q associated vectors:

hl := hl1 e1 + · · ·+ hln en (l=1 ··· p− q)

belong to V and the cosets hl +W make up a basis for V/W .

Computer tests (cf. examples below) show that, compared with standard lin-
ear algebra methods, the use of Gröbner bases improves speed and efficiency,
especially because the computations underlying Proposition 3.3 and Theorem 3.1
can be achieved within a polynomial ring, without the need of several transfor-
mations between polynomials and vectors; indeed, from the two collections of
Cartesian linear equations Systφ

(
Z k

)
and Systφ

(
Bk

)
, Proposition 3.3 extracts

two collections of polynomials in some auxiliary variables υ(i|j)r,kl to which one
can directly apply Theorem 3.1 in order to find a basis for the sought cohomol-
ogy space Hk = Z k

/
Bk, see also the description of the algorithm in the next

section. One further reason why the use of the standard Gauss-Jordan elimination
through pivoting is less quick when applied to the examples we know from differ-
ential geometry, is probably that the associated matrices are large, though plenty
of 0’s, hence the computer must make many operations with large lines or rows.
But when one translates the cohomology computation problem in terms of degree
1 polynomials as above, the 0’s disappear, just existing terms are taken account
of.

Proof of Proposition 3.1. We begin by making a preliminary observation. Ac-
cording to the process of producing any Gröbner basis, each element gj(y) of G
is obtained by subjecting all pairs {fλ1(y), fλ2(y)} to an S-polynomial elimina-
tion of leading terms, by performing division (Theorem 2.1) and by repeating the
process until stabilization, whence one easily convinces oneself that only linear
forms, namely degree one polynomials having no constant term, can come up at
each stage. At the end, every gj(y) is therefore a linear form. Of course, the ideal
is the same:

〈 f1(y), . . . , fµ(y) 〉 = 〈 g1(y), . . . , gm(y) 〉 .
Thus, because all considered polynomials are linear forms, there necessarily exist
some scalars cjλ ∈ K such that gj(y) =

∑µ
λ=1 cjλ fλ(y) for all j = 1, . . . ,m,

and in the other direction also, there necessarily exist some scalars dλj ∈ K such
that fλ(y) =

∑m
j=1 dλj gj(y) for all λ = 1, . . . , µ. It follows that the vector

subspace FG associated to the gj by (ii) is contained in the original vector subspace
F ⊂ E to which the fλ(y) were associated, and also in the other direction that
F ⊂ FG. Consequently, we have F = FG.
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To finish with (i) and (ii), it remains to prove the linear independency of the
vectors g1, . . . , gm associated to g1(y), . . . , gm(y). Suppose by contradiction that
0 = c1 g1 + · · · + cm gm for some ci ∈ K that are not all zero. It immediately
follows that c1 g1(y) + · · · + cm gm(y) ≡ 0. Consequently there exist at least
two different integers j1 6= j2 such that LM(gj1) = LM(gj2), contrarily to the
assumption that the chosen G was a reduced Gröbner basis. In sum:

m = Card G = dimK F.

Lastly, we check (iii). Of course, a vector h belongs to F = FG if and only if
thre exist scalars ci ∈ K such that h = c1 g1 + · · · + cm gm. Equivalently, the
associated polynomial (linear form) h(y) = c1 g1(y)+ · · ·+ cm gm(y) belongs to
the ideal generated by the Gröbner basis G. But this is so if and only if the normal
form NFG(h) of h(y) with respect to G is zero. �
Proof of Proposition 3.3. We already saw, in the beginning of the proof of the
preceding proposition, that all elements of G are linear forms and that any division
by G preserves linearity in K[x1, . . . , xn]. Since

∑n
i=1 xi yi is linear in the xi, its

normal form hy(x) with respect to G is also linear, which is (i).
Next, let m denote the cardinal of the reduced Gröbner basis G of the ideal〈
f1(x), . . . , fµ(x)

〉
, and denote its elements by g1(x), . . . , gm(x). Since G is

reduced, for all l = 1, . . . ,m, the leading terms of gl(x) are monic, of degree one
of course, and distinct, say:

LT(g1) = xi1 , . . . ,LT(gm) = xim for some 1 6 i1 < · · · < im 6 n.

Again because G is reduced, each gl does not contain any xi1 , . . . , xim , aside from
its leading term xil . After relabelling the xi if necessary, we can (and we shall)
assume that i1 = n − m + 1, . . . , im = n. Then the gl write under a graphed
form:

gl
(
x1, . . . , xn−m, xn−m+1, . . . , xn

)
= xl − g′l(x1, . . . , xn−m)

(l=n−m+1, ..., n),

for some linear forms g′l in only the n−m first variables x1, . . . , xn−m. But then,
since the vector subspace F ⊂ E is as well represented by the corresponding m
Cartesian linear equations 0 = xl − g′l(x1, . . . , xm), for l = n−m+ 1, . . . , n, it
goes without saying that, in the notation of the proposition:

m := dimK F = n−m,

so that we can replace m by n−m everywhere. Furthermore, if we expand:

g′l(x1, . . . , xm) =
m∑
j=1

g′lj xj (l=m+1 ···n)

with some scalars g′lj ∈ K, it is clear that a certain basis for F which is naturally
associated to the Cartesian linear equations in question just consists of the m
vectors obtained by setting one xj equal to 1 and the others equal to 0, for any
choice of j = 1, . . . ,m, which yields the m vectors:

(7) ej +
n∑

l=m+1

g′lj el (j=1 ···m).
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On the other hand, the reduction of the auxiliary bilinear form
∑n

i=1 xi yi to
normal form with respect to G then just means replacing xl by g′l(x1, . . . , xm), for
l = m+ 1, . . . , n, so that:

hy(x) = NFG

(∑n
i=1 xiyi

)
=

n∑
j=1

xj yj +

n∑
l=m+1

g′l(x1, . . . , xm) yl

=
m∑
j=1

xj yj +
n∑

l=m+1

m∑
j=1

g′lj xj yl

=

m∑
j=1

xj

(
yj +

n∑
l=m+1

g′lj yl︸ ︷︷ ︸
=:hj(y)

)
,

and from this last expression, one realizes that the m vectors:

hj = ej +
n∑

l=m+1

g′lj el (j=1 ···m)

associated to the obtained coefficients hj(y) of hy(x) with respect to x1, . . . , xm
do indeed coincide with the m = dimF vectors (7) which were seen to constitute
a basis for F a moment ago. The simultaneous proof of properties (ii), (iii), (iv)
is therefore complete. �

Proof of Theorem 3.1. After a permutation of both the gj and the variables yi, we
can assume that the lexicographic ordering is just yn ≺ · · · ≺ y2 ≺ y1 and that
the q leading terms of the generators g1(y), . . . , gq(y) of the Gröbner basis BW
are just y1, . . . , yq. Since BW is reduced, its q elements necessarily write under a
graphed, linear form:

BW =
{
yj −

∑i=n
i=q+1 bj,i yi︸ ︷︷ ︸
gj(y)

}
16j6q

for some scalars b•,• ∈ K. Similarly, the p elements f1(y), . . . , fp(y) of the
Gröbner basis BV must also be of a certain graphed, linear form. Let q′ 6 q
be the number of leading terms of elements of BV that are equal to one leading
term yj with 1 6 j 6 q appearing in the members of BW . Possibly after an
independent renumbering of both y1, . . . , yq and yq+1, . . . , yn, it follows that there
is a decomposition of the yi-variables into four groups of variables:(

y1, . . . , yq′ , yq′+1, . . . , yq, yq+1, . . . , yp+q−q′ , yp+q−q′+1, . . . , yn
)

such that the p = q′ + (p − q′) elements of BV do precisely have those leading
monomials that are underlined and do write under the following graphed form:

BV =
{
yj′ −

∑i=q
i=q′+1 aj′,i yi −

∑i=n
i=p+q−q′+1 aj′,i yi

}
16j′6q′

⋃
⋃{

yl −
∑i=q

i=q′+1 al,i yi −
∑i=n

i=p+q−q′+1 al,i yi

}
q+16l6p+q−q′
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for some scalars a•,• ∈ K. However, all al,i in the first sum of the second line
must necessarily be equal to 0, because by assumption, we have:

yl ≺ yq′+1, . . . , yq for all q + 1 6 l 6 p+ q − q′,

whence if some al,i would be nonzero, the number q′ defined above would be
larger. Thus, after simply erasing these al,i, it remains:

BV =
{
yj′ −

∑i=q
i=q′+1 aj′,i yi −

∑i=n
i=p+q−q′+1 aj′,i yi

}
16j′6q′

⋃
⋃{

yl −
∑i=n

i=p+q−q′+1 al,i yi

}
q+16l6p+q−q′

.

But now, we recall the assumptionW ⊂ V which reads in terms of ideals naturally
as the constraint 〈 BW 〉 ⊂ 〈 BV 〉. Since all existing polynomials are (degree-one)
linear forms, each element yj−

∑i=n
i=q+1 bj,i yi of BW for j = q′+1, . . . , q must in

particular be a certain linear combination of elements of BV with scalar (degree-
zero) coefficients. But all elements of BV above are under a graphed form, with
no such yj with j = q′ + 1, . . . , q appearing in either the yj′ or in the yl of BV ,
from what we deduce q′ = q, whence immediately:

BV =
{
yj −

∑i=n
i=p+1 aj,i yi

}
16j6q

⋃ {
yl −

∑i=n
i=p+1 al,i yi

}
q+16l6p

.

Now that q′ = q, the constraint 〈 BW 〉 ⊂ 〈 BV 〉 means that, for every j = 1, . . . , q,
there exist scalars λj,j1 ∈ K and µj,l1 ∈ K such that one has:

yj −
∑i=n

i=q+1 bj,i yi ≡
j1=q∑
j1=1

λj,j1

(
yj1 −

∑i=n
i=p+1 aj1,i yi

)
+

+

l1=p∑
l1=q+1

µj,l1

(
yl1 −

∑i=n
i=p+1 al1,i yi

)
,

identically in K[y1, . . . , yn]. It necessarily follows that λj,j = 1 while λj,j1 = 0
for j1 6= j and that:

− bj,i = µj,i for i = q + 1, . . . , p.

After simplifying terms which cancel out, there remain the q equations:

−
∑i=n

i=p+1 bj,i yi ≡ −
∑i=n

i=p+1 aj,i yi +
∑l1=p

l1=q+1

∑i=n
i=p+1 bj,l1 al1,i yi

(j=1 ··· q),

holding identically in K[y1, . . . , yn], and this yields by identification of the coef-
ficients of the yi in both sides:

(8)
bj,i = aj,i −

∑l1=p
l1=q+1 bj,l1 al1,i

(j=1 ··· q ; i= p+1 ... n).
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On the other hand, recalling that computing the normal form with respect to
BW just means replacing each yj by

∑i=n
i=q+1 bj,i yi for j = 1, . . . , q, we have:

〈
NFBW

(
f
)
: f ∈ BV

〉
=

〈{∑i=n
i=q+1 bj,i yi −

∑i=n
i=p+1 aj,i yi

}
16j6q

,{
yl −

∑i=n
i=p+1 al,i yi

}
q+16l6p

〉
.

In the first family, we use the relation (8) obtained right above to replace the bj,i
for 1 6 j 6 q and for p+ 1 6 i 6 n, which yields after a cancellation:

〈
NFBW

(
f
)
: f ∈ BV

〉
=

〈{∑i=p
i=q+1 bj,i yi −

∑i=n
i=p+1

∑l1=p
l1=q+1 bj,l1 al1,i yi

}
16j6q

,{
yl −

∑i=n
i=p+1 al,i yi

}
q+16l6p

〉
.

But now, we observe that each element in the first family belongs in fact already
to the ideal generated by the members of the second family, because the linear
combination: ∑l=p

l=q+1 bj,l

(
yl −

∑i=n
i=p+1 al,i yi

)
identifies, after change of indices, to the j-th element of the first family. In con-
clusion, the ideal:〈

NFBW

(
f
)
: f ∈ BV

〉
=

〈{
yl −

∑i=n
i=p+1 al,i yi

}
q+16l6p

〉
is generated by exactly p− q = dimK V −dimKW elements, with are de facto in
reduced Gröbner basis form for the lexicographic ordering ≺, and the associated
vectors:

hl = el −
∑i=n

i=p+1 al,i ei (l= q+1 ··· p)

belong to V by assumption (since vectors associated to elements of BV belong
to V ) and are mutually linearly independent modulo W , as one can easily real-
ize thanks to the fact that W is graphed over K e1 ⊕ · · · ⊕ K eq. The proof of
Theorem 3.1 is complete. �

4. DESCRIPTION OF THE ALGORITHM BASED ON GRÖBNER BASES

In this section we propose our new algorithm to compute the cohomology
spaces of Lie (super) algebras, based on Proposition 3.3 and Theorem 3.1. This
section includes also an example which illustrates the behavior of this algorithm.
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Algorithm 1 “LSAC”

Require:

 g = g0 ⊕ g1 : an m-dimensional Lie (super) algebra
V : an n-dimensional g-module
k : the cohomology order

Ensure: Hk(g, V );
• Vars :=

{
φl(i|j)r,k , ψ

l
(i|j)r,k−1

}
;

• ≺ := a lexicographical ordering on K[Vars] with φl(i|j)r,k ≺ ψl
′

(i′|j′)r,k−1
;

• Systφ(Z k) := the set of equations (∂kΦ)
(
(ei, oj)s,k+1

)
= 0;

• GZ k := the reduced Gröbner basis of
〈
Systφ(Z

k)
〉

with respect to ≺;

• Systψ,φ(Bk) := the set of equations ∂k−1Ψ
(
(ei, oj)r,k

)
= Φ

(
(ei, oj)r,k

)
;

• GBk := the reduced Gröbner basis of
〈
Systψ,φ(B

k)
〉
∩K

[
φl(i|j)r,k

]
;

•
{
υ
(i|j)r,k
l

}
:= the auxiliary variables with the same order ≺ as for

{
φl(i|j)r,k

}
and satisfying υ(i|j)r,kl ≺ φl

′

(i′|j′)r′,k′
;

• BilinearForm :=
∑

φl(i|j)r,k υ
(i|j)r,k
l the auxiliary bilinear form in the two

collections of variables φ·· and υ··;

• CZ k :=
{
Coeffφl

(i|j)r,k

(
NFG

Z k

(
BilinearForm

))}
;

• Basis(Z k) := the reduced Gröbner basis of CZ k with respect to ≺;

• CBk :=
{
Coeffφl

(i|j)r,k

(
NFG

Bk

(
BilinearForm

))}
;

• Basis(Bk) := the reduced Gröbner basis of CBk with respect to ≺;

Return: Basis
(
Z k/Bk

)
:= the reduced Gröbner basis of:〈

NFBasis(Bk)

(
ϑ
)
: ϑ ∈ Basis(Z k)

〉
.

Example 4.1. Consider the 2-dimensional vector space V = Ce0 ⊕ Ce1 and 4-
dimensional Lie super algebra g := gl(1|1) = g0 ⊕ g1, with g0 = Cc ⊕ Ch and
g1 = Cx⊕ Cy, with the following table of commutators:

c h x y
c 0 0 0 0
h ∗ 0 x −y
x ∗ ∗ 0 c
y ∗ ∗ ∗ 0,

and with the following action of g on V :

e0 e1
c 0 0
h 2e0 e1
x 0 0
y e1 0.
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We aim to compute the second cohomology space H2(g, V ). First computations
give the following two required systems:

GZ 2 =
{
φe1x,x, φ

e0
y,y, −φe1c,y + φe0x,y, −2φe1c,x + φe0x,x, −3φe1y,y + 2φe0h,y,

φe1c,h − φe1x,y + φe0h,x, φ
e0
c,y, φ

e0
c,x, −2φe1c,y + φe0c,h

}
,

GB2 =
{
φe1x,x, φ

e1
h,x, φ

e1
c,x, φ

e0
y,y, −φe1c,y + φe0x,y, φ

e0
x,x, −3φe1y,y + 2φe0h,y,

φe1c,h − φe1x,y + φe0h,x, φ
e0
c,y, φ

e0
c,x, −2φe1c,y + φe0c,h

}
.

In the next step, we collect the coefficients of the variables φl(i|j)r,k in the normal

form of the corresponding bilinear form
∑
φl(i|j)r,kv

(i|j)r,k
l with respect to the

above reduced Gröbner bases and we obtain:

Basis
(
Z 2

)
=
{
vc,he1 − vh,xe0 , v

c,x
e1 + 2vx,xe0 , 2v

c,h
e0 + vx,ye0 + vc,ye1 , v

h,x
e1 , v

h,y
e1

}
,

Basis
(
B2

)
=
{
vc,he1 − vh,xe0 , 2v

c,h
e0 + vx,ye0 + vc,ye1 , v

h,y
e1

}
,

of cardinalities 5 and 3, respectively. Now the last step of the algorithm provides
5− 3 = 2 basis elements:

Basis(Z 2/B2) =
{
vh,xe1 , v

c,x
e1 + 2vx,xe0

}
,

which correspond to the following basis for H2(g, V ) in the notation (5):

H2(g, V ) =
〈
Λh,xe1 ,Λ

c,x
e1 + 2Λx,xe0

〉
.

Example 4.2. Let h be the 7-dimensional standard Lie algebra over Q whose
basis elements {l1, l2, d, t1, t2, t3, r} enjoy the following commutator table ([19]):

t1 t2 t3 l1 l2 r d
t1 0 0 0 − t2 −t3 0 2t1
t2 ∗ 0 0 0 0 t3 −3 t2
t3 ∗ ∗ 0 0 0 − t2 −3 t3
l1 ∗ ∗ ∗ 0 t1 l2 −l1
l2 ∗ ∗ ∗ ∗ 0 −l1 −l2
r ∗ ∗ ∗ ∗ ∗ 0 0
d ∗ ∗ ∗ ∗ ∗ ∗ 0

and let g be the Lie subalgebra of h which is generated by {l1, l2, t1, t2, t3}. We
would like to compute the fourth cohomology space H4(g, h). Applying the al-
gorithm, a computer yields the reduced Gröbner basis:

GZ 4 =
{
φr
l1,t1,t2,t3 − φd

l2,t1,t2,t3 , φ
d
l1,t1,t2,t3 + φr

l2,t1,t2,t3 , 2φd
l1,l2,t2,t3 − φl1

l1,t1,t2,t3
− φl2

l2,t1,t2,t3
,

φr
l1,l2,t1,t2 − 3φd

l1,l2,t1,t3 + φl1
l1,l2,t2,t3

− φt1
l2,t1,t2,t3

,

3φd
l1,l2,t1,t2 + φr

l1,l2,t1,t3 + φl2
l1,l2,t2,t3

+ φt1
l1,t1,t2,t3

}
,
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together with:

GB4 =
{
φr
l2,t1,t2,t3 , φ

d
l2,t1,t2,t3 , φ

r
l1,t1,t2,t3 , φ

d
l1,t1,t2,t3 , φ

l2
l1,t1,t2,t3

+ φl1
l2,t1,t2,t3

,

− φl2
l2,t1,t2,t3

+ φl1
l1,t1,t2,t3

, −φl1
l2,t1,t2,t3

+ φr
l1,l2,t2,t3 , −φl2

l2,t1,t2,t3
+ φd

l1,l2,t2,t3 ,

φr
l1,l2,t1,t2 − 3φd

l1,l2,t1,t3 + φl1
l1,l2,t2,t3

− φt1
l2,t1,t2,t3

,

3φd
l1,l2,t1,t2 + φr

l1,l2,t1,t3 + φl2
l1,l2,t2,t3

+ φt1
l1,t1,t2,t3

}
.

Now, collecting the coefficients of the variables φl(i|j)r,k in the normal form of∑
φl(i|j)r,kv

(i|j)r,k
l with respect to GZ 4 and GB4 , we obtain:

Basis(Z 4) =
{
vl2,t1,t2,t3t3

, vl2,t1,t2,t3t2
, vl2,t1,t2,t3l1

, vl1,t1,t2,t3r + vl2,t1,t2,t3d , vl1,t1,t2,t3t3
, vl1,t1,t2,t3t2

,

vl1,t1,t2,t3d − vl2,t1,t2,t3r , vl1,t1,t2,t3l2
, −vl2,t1,t2,t3l2

+ vl1,t1,t2,t3l1
, vl1,l2,t2,t3r , vl1,l2,t2,t3t3

, vl1,l2,t2,t3t2
,

vl1,l2,t2,t3t1
, vl1,l2,t2,t3d + 2vl2,t1,t2,t3l2

, −vl1,t1,t2,t3t1
+ vl1,l2,t2,t3l2

, vl1,l2,t2,t3l1
+ vl2,t1,t2,t3t1

,

− vl1,t1,t2,t3t1
+ vl1,l2,t1,t3r , vl1,l2,t1,t3t3

, vl1,l2,t1,t3t2
, vl1,l2,t1,t3t1

, −3vl2,t1,t2,t3t1
+ vl1,l2,t1,t3d ,

vl1,l2,t1,t3l2
, vl1,l2,t1,t3l1

, vl2,t1,t2,t3t1
+ vl1,l2,t1,t2r , vl1,l2,t1,t2t3

, vl1,l2,t1,t2t2
, vl1,l2,t1,t2t1

,

− 3vl1,t1,t2,t3t1
+ vl1,l2,t1,t2d , vl1,l2,t1,t2l2

, vl1,l2,t1,t2l1

}
,

Basis(B4) =
{
vl2,t1,t2,t3t3

, vl2,t1,t2,t3t2
, vl1,t1,t2,t3t3

, vl1,t1,t2,t3t2
, −vl1,t1,t2,t3l2

+ vl1,l2,t2,t3r + vl2,t1,t2,t3l1
,

vl1,l2,t2,t3t3
, vl1,l2,t2,t3t2

, vl1,l2,t2,t3t1
, vl1,t1,t2,t3l1

+ vl1,l2,t2,t3d + vl2,t1,t2,t3l2
, −vl1,t1,t2,t3t1

+ vl1,l2,t2,t3l2
,

vl1,l2,t2,t3l1
+ vl2,t1,t2,t3t1

, −vl1,t1,t2,t3t1
+ vl1,l2,t1,t3r , vl1,l2,t1,t3t3

, vl1,l2,t1,t3t2
, vl1,l2,t1,t3t1

,

− 3vl2,t1,t2,t3t1
+ vl1,l2,t1,t3d , vl1,l2,t1,t3l2

, vl1,l2,t1,t3l1
, vl2,t1,t2,t3t1

+ vl1,l2,t1,t2r , vl1,l2,t1,t2t3
,

vl1,l2,t1,t2t2
, vl1,l2,t1,t2t1

, −3vl1,t1,t2,t3t1
+ vl1,l2,t1,t2d , vl1,l2,t1,t2l2

, vl1,l2,t1,t2l1

}
,

of cardinalities 30 and 25, respectively. The last step provides a basis of 5 =
30 − 25 vectors for Z 4/B4 represented by means of the following 5 associated
linear forms:

Basis
(
Z 4

/
B4

)
=

{
vl2,t1,t2,t3l1

, vl1,t1,t2,t3r + vl2,t1,t2,t3d , vl1,t1,t2,t3d − vl2,t1,t2,t3r ,

vl1,t1,t2,t3l2
, −vl2,t1,t2,t3l2

+ vl1,t1,t2,t3l1

}
.

Coming back to the notation (5), this means that the desired fourth cohomology
space H4

(
g, h

)
is 5-dimensional with the following generators:

H4
(
g, h

)
=

{
Λl2,t1,t2,t3l1

, Λl1,t1,t2,t3r + Λl2,t1,t2,t3d , Λl1,t1,t2,t3l2
, Λl1,t1,t2,t3d − Λl2,t1,t2,t3r ,

− Λl2,t1,t2,t3l2
+ Λl1,t1,t2,t3l1

}
,

More explicitly, one can rewrite these generators as follows:

H4
(
g, h

)
=

{
l∗2 ∧ t∗1 ∧ t∗2 ∧ t∗3 ⊗ l1, l∗1 ∧ t∗1 ∧ t∗2 ∧ t∗3 ⊗ r + l∗2 ∧ t∗1 ∧ t∗2 ∧ t∗3 ⊗ d,

l∗1 ∧ t∗1 ∧ t∗2 ∧ t∗3 ⊗ l2, l∗1 ∧ t∗1 ∧ t∗2 ∧ t∗3 ⊗ d− l∗2 ∧ t∗1 ∧ t∗2 ∧ t∗3 ⊗ r,

− l∗2 ∧ t∗1 ∧ t∗2 ∧ t∗3 ⊗ l2 + l∗1 ∧ t∗1 ∧ t∗2 ∧ t∗3 ⊗ l1
}
.

5. IMPROVEMENT OF THE ALGORITHM WHEN COHOMOLOGY SPACES SPLIT

As we saw, the two collections of Cartesian linear equations Systφ(Z
k) and

Systφ(Z
k) have an essential rôle in the process, and if the number of variables in

them increases, one can expect that the complexity of computations will increases
too. Here, in the case of standard Lie algebras g ⊂ h = V , one further aim could
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to set up a refined algorithm which inspects whether these equations split up into a
collection of sub-equations each of which involves a smaller number of variables.
However, this kind of problem lies a bit outside the scope of the present article,
closer to plain searching-and-listing algorithmic procedures, because it amounts
to read, by means of a computer, some two given systems of linear equations
in some variables (x1, . . . , xn) and to pick up step by step the appearing nonzero
λi xi until one gathers pairs of collections of equations which involve only a subset
of variables, all subsets being pairwise distinct.

Nevertheless, the circumstance of spitting up naturally occurs for instance
when the Lie algebras g and h are graded at the beginning, in the sense of Tanaka
([21, 1, 2]), namely when one has decompositions into direct sums of K-vector
subspaces:

h = h−a ⊕ · · · ⊕ h−1 ⊕ h0 ⊕ h1 ⊕ · · · ⊕ hb

g = h−a ⊕ · · · ⊕ h−1,

where a > 1 and b > 0 are certain two integers, with the property that:[
h`1 , h`2

]
⊂ h`1+`2 ,

for all `1, `2 ∈ Z, after prolonging trivially h` := {0} for either ` 6 −a − 1 or
` > b+ 1. Then each space of k-cochains C k(g, h) naturally splits up as a direct
sum of so-called homogeneous k-cochains as follows: a k-cochain Φ ∈ C k(g, h)
is said to be of homogeneity a certain integer h ∈ Z whenever for any k vectors:

zi1 ∈ h`1 , . . . . . . , zik ∈ h`k

belonging to certain arbitrary but determined h-components, its value:

Φ(zi1 , . . . , zik) ∈ h`1+···+`k+h

belongs to the (`1 + · · ·+ `k + h)-th component of h. Then one easily convinces
oneself (see also [11]) that any k-cochain Φ ∈ C k(g, h) splits up as a direct sum
of k-cochains of fixed homogeneity:

Φ = · · ·+Φ[h−1] +Φ[h] +Φ[h+1] + · · · ,

where we denote the completely h-homogeneous component of Φ just by Φ[h]. In
other words:

C k(g, h) =
⊕
h∈Z

C k
[h](g, h),

where of course the spaces C k
[h](g, h) reduce to {0} for all large |h|. Further-

more, applying the definition (2), one verifies the important fact that ∂k respects
homogeneity for all k = 0, 1, . . . , n, that is to say, for any h ∈ Z, one has:

∂k
(
C k
[h]

)
⊂ C k+1

[h] ,

whence the complex (3) splits up as a direct sum of complexes:

0
∂0
[h]−→ C 1

∂1
[h]−→ C 2

∂2
[h]−→ · · ·

∂m−2
[h]−→ Cm−1

∂m−1
[h]−→ Cm

∂m
[h]−→ 0

indexed by h ∈ Z, where ∂k[h] naturally denotes the restriction:

∂k[h] := ∂k
∣∣
C k
[h]

: C k
[h] −→ C k+1

[h] .
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Consequently, one may introduce the spaces of h-homogeneous cocycles of order
k:

Z k
[h](g, h

)
:= ker

(
∂k[h] : C k

[h] → C k+1
[h]

)
,

together with the spaces of h-homogeneous coboundaries of order k:

Bk
[h](g, h

)
:= im

(
∂k−1
[h] : C k−1

[h] → C k
[h]

)
.

The computation of the h-homogeneous k-th cohomology spaces:

Hk
[h]

(
g, h

)
:=

Z k
[h](g, h

)
Bk

[h](g, h
)

then requires to deal with vector (sub)spaces of smaller dimensions and enables
one to reconstitute the complete cohomology space:

Hk(g, g) =
⊕
h∈Z

Hk
[h](g, g).

Example 5.1. Let h be the 8-dimensional Lie algebra over Q whose basis ele-
ments {t, h1, h2, r, d, i1, i2, j} enjoy the following commutator table:

t h1 h2 d r i1 i2 j
t 0 0 0 2 t 0 h1 h2 d
h1 ∗ 0 4 t h1 h2 6 r 2 d i1
h2 ∗ ∗ 0 h2 −h1 −2 d 6 r i2
d ∗ ∗ ∗ 0 0 i1 i2 2 j
r ∗ ∗ ∗ ∗ 0 −i2 i1 0
i1 ∗ ∗ ∗ ∗ ∗ 0 4 j 0
i2 ∗ ∗ ∗ ∗ ∗ ∗ 0 0
j ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

and let g be the Lie subalgebra of h which is generated by t, h1, h2, see [1] for ap-
plication to the differential study of Cartan connection in local Cauchy-Riemann
geometry. We want to compute H2(g, h). The geometry provides a natural grad-
uation:

h = h−2 ⊕ h−1︸ ︷︷ ︸
g

⊕h0 ⊕ h1 ⊕ h2

where:

h−2 = R t, h−1 = R h1⊕R h2, h0 = R d⊕R r, h1 = R i1⊕R i2, h2 = R j,
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and one verifies that the commutator table written above respects this graduation.
A general 2-cochain Φ ∈ Λ2g∗ ⊗ h writes under the form:

Φ = φh1h2
t h∗1∧ h∗2 ⊗ t+ 0

1 + φth1
t t∗∧ h∗1 ⊗ t+ φth2

t t∗∧ h∗2 ⊗ t+ φh1h2
h1

h∗1∧ h∗2 ⊗ t+ φh1h2
h2

h∗1∧ h∗2 ⊗ h2+

2 + φth1
h1

t∗∧ h∗1 ⊗ h1 + φth1
h2

t∗∧ h∗1 ⊗ h2 + φth2
h1

t∗∧ h∗2 ⊗ h1 + φth2
h2

t∗∧ h∗2 ⊗ h2+

+ φh1h2
d h∗1∧ h∗2 ⊗ d+ φh1h2

r h∗1∧ h∗2 ⊗ r+

3 + φth1
d t∗∧ h∗1 ⊗ d+ φth1

r t∗∧ h∗1 ⊗ r + φth2
d t∗∧ h∗2 ⊗ d+ φth2

r t∗∧ h∗2 ⊗ r

+ φh1h2
i1

h∗1∧ h2
∗ ⊗ i1 + φh1h2

i2
h∗1∧ h∗2 ⊗ i2+

4 + φth1
i1

t∗∧ h∗1 ⊗ i1 + φth1
i2

t∗∧ h∗1 ⊗ i2 + φth2
i1

t∗∧ h∗2 ⊗ i1 + φth2
i2

t∗∧ h∗2 ⊗ i2

+ φh1h2
j h∗1∧ h∗2 ⊗ j+

5 + φth1
j t∗∧ h∗1 ⊗ j+ φth2

j t∗∧ h∗1 ⊗ j,

where framed numbers denote homogeneity of their lines. After computations, a
2-cochain Φ is a 2-cocycle if and only if its 24 coefficients satisfy the following
seven linear equations, ordered line by line by increasing homogeneity:

2 0 = 2φh1h2
d − 4φth2

h2
− 4φth1

h1
,

3 0 = φh1h2
i1

− φth2
d − φth1

r , 0 = φh1h2
i2

− φth2
r + φth1

d ,

4 0 = φh1h2
j − 2φth2

i2
− 2φth1

i1
, 0 = −6φth2

i1
+ 6φth1

i2
,

5 0 = −φth2
j , 0 = φth1

j .

Next, a general 1-cochain Ψ ∈ Λ1g∗ ⊗ h writes under the form:

Ψ = ψh1
t h∗1 ⊗ t+ ψh2

t h∗2 ⊗ t+ -1

0 + ψt
t t

∗ ⊗ t+ ψh1
h1

h∗1 ⊗ h1 + ψh1
h2

h∗1 ⊗ h2 + ψh2
h1

h∗2 ⊗ h1 + ψh2
h2

h∗2 ⊗ h2+

1 + ψt
h1

t∗ ⊗ h1 + ψt
h2

t∗ ⊗ h2 + ψh1
d h∗1 ⊗ d+ ψh1

r h∗1 ⊗ r + ψh2
d h∗2 ⊗ d+ ψh2

r h∗2 ⊗ r+

2 + ψt
d t

∗ ⊗ d+ ψt
r t

∗ ⊗ r + ψh1
i1

h∗1 ⊗ i1 + ψh1
i2

h∗1 ⊗ i2 + ψh2
i1

h∗2 ⊗ i1 + ψh2
i2

h∗2 ⊗ i2+

3 + ψt
i1 t

∗ ⊗ i1 + ψt
i2 t

∗ ⊗ i2 + ψh1
j h∗1 ⊗ j+ ψh2

j h∗2 ⊗ j+

4 + ψt
j t

∗ ⊗ j.

The condition that Φ = ∂1Ψ then reads in homogeneous-decomposed form:

1 φth1
t = 2ψh1

d − 4ψt
h2

2 φth1
h1

= ψh1
i1

− ψt
d

2 φth1
h2

= ψh1
i2

− ψt
r

3 φth1
d = ψh1

j − 2ψt
i2

3 φth1
r = −6ψt

i1

4 φth1
i1

= −ψt
j

4 φth1
i2

= 0

5 φth1
j = 0

1 φth2
t = 2ψh2

d + 4ψt
h1

2 φth2
h1

= ψh2
i1

+ ψt
r

2 φth2
h2

= ψh2
i2

− ψt
d

3 φth2
d = ψh2

j + 2ψt
i1

3 φth2
r = −6ψt

i2

4 φth2
i1

= 0

4 φth2
i2

= −ψt
j

5 φth2
j = 0

0 φh1h2
t = 4ψh2

h2
+ 4ψh1

h1
− 4ψt

t

1 φh1h2
h1

= ψh2
d + ψh1

r − 4ψt
h1

1 φh1h2
h2

= ψh2
r − ψh1

d + 4ψt
h2

2 φh1h2
d = 2ψh2

i2
+ 2ψh1

i1
− 4ψt

d

2 φh1h2
r = 6ψh2

i1
− 6ψh1

i2
− 4ψt

r

3 φh1h2
i1

= ψh2
j − 4ψt

i1

3 φh1h2
i2

= −ψh1
j − 4ψt

i2

4 φh1h2
j = −4ψt

j .

One can then apply our algorithm to each subcollection of equations for every
fixed homogeneity, and find that H2(g, h) is 2-dimensional, generated by:

t∗ ∧ h∗2 ⊗ i2 − 2h∗1 ∧ h∗2 ⊗ j

and: t∗ ∧ h∗2 ⊗ i1 − t∗ ∧ h∗1 ⊗ i2,
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with the further observation that all cohomologies are zero except in homogeneity
4:

Homogeneity dimC 2 dimZ 2 dimB2 dimH2

0 1 1 1 0
1 4 4 4 0
2 6 5 5 0
3 6 4 4 0
4 5 3 1 2
5 2 0 0 0

To conclude the presentation, in the next table, we present the speediness of the
algorithm for our two Examples 4.2 and 5.1, and also for Hk(gl(3), sl(3)):

Cohomology Order time(sec.) memory(M) dim(C k) dim(Z k) dim(Bk) dim(Hk)
Example 4.1 2 0.0 0.23 16 6 4 2
Example 4.2 2 0.125 3.6 70 25 33 8
Example 4.2 3 0.125 4.3 70 37 45 8
Example 4.2 4 0.03 1.4 35 25 30 5
Example 4.2 5 0.0 0.16 7 5 7 2
Example 5.1 2 0.015 0.7 24 15 17 2
Example 5.1 3 0.0 0.18 8 7 8 1
(gl(3), sl(3)) 2 2 8.6 252 64 64 0
(gl(3), sl(3)) 3 24 40 504 188 189 1
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