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ABSTRACT. We develope in great details the Cartan equivalence problem for
Levi-nondegenerate C 6-smooth real hypersurfaces M3 in C2, performing all
computations effectively in terms of local graphing functions. In particular, we
present explicitly the unique (complex) essential invariant J of the problem. A
comparison with our previous joint results [Cent. Eur. J. Math., 10 (2012), no. 5,
1801–1835] shows that the Cartan-Tanaka geometry of these real hypersurfaces
perfectly matches up with their biholomorphic equivalence features.

1. INTRODUCTION

In 1907, Henri Poincaré [19] initiated the question of determining whether two
given Cauchy-Riemann (CR for short) local real analytic hypersurfaces in C2 can
be mapped onto each other by a certain (local or global) biholomorphism. This
problem was solved later on in 1932 by Élie Cartan [6] in a complete way, by
importing techniques from his main original impulse (years 1900–1910) towards
general investigations of a large class of problems which nowadays are known
as Cartan equivalence problems, addressing, in many different contexts, equiva-
lences of submanifolds, of (partial) differential equations, and as well, of several
other geometric structures. Unifying the wide variety of these seemingly different
equivalence problems into a potentially universal approach, Cartan showed that al-
most all continuous classification questions can indeed be reformulated in terms of
specific adapted coframes.

Seeking an equivalence between coframes usually comprises a certain initial
ambiguity subgroup G ⊂ Gl(n) related to the specifc features of the geome-
try under study. The fundamental general set up is that, for two given coframes
Ω := {ω1, . . . , ωn} and Ω′ := {ω′1, . . . , ω′n} on two certain n-dimensional mani-
folds M and M ′, there exists a diffeomorphism Φ: M −→ M ′ making a geomet-
ric equivalence if and only if there is a G-valued function g : M → G such that
Φ∗(Ω) = g · Ω′.

Cartan’s ‘algorithm’ (the outcomes of which is often unpredictable) comprises
three interrelated principal aspects: absorbtion; normalization; prolongation.

In brief outline, starting from:

(1) Ω := g · Ω′,

one has to find the so-called structure equations by computing the exterior differ-
ential:

dΩ = dg ∧ Ω′ + g · dΩ′.
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Inverting (1) as Ω′ = g−1Ω, one begins by replacing this in the first term:

dg ∧ Ω′ = dg ∧ g−1Ω = dg · g−1︸ ︷︷ ︸
Maurer-Cartan
matrix MCg

∧Ω,

with the standard Maurer-Cartan matrix of the matrix group G:

MCg :=

( n∑
k=1

dgik
(
g−1
)k
j

)16j6n

16i6n

=
r∑

s=1

aijs α
s

having n2 entries of which express linearly in terms of some basis α1, . . . , αr of
left-invariant 1-forms on G, with r := dimR G, by means of certain constants aijs.
Then the structure equations become:

dωi =

n∑
j=1

r∑
s=1

aijs α
s ∧ ωj + g · dΩ′

(i=1 ···n).

Moreover, one has to express the second term dΩ′ above, which is a 2-form,
as a combination of the ωj ∧ ωk. Usually, this step is quite costful, computation-
ally speaking. When one executes this, the appearing (complicated) functions T i

jk,
called torsion coefficients:

dωi =
n∑

j=1

r∑
s=1

aijs α
s ∧ ωj +

∑
16j<k6n

T i
jk · ωj ∧ ωk

(i=1 ···n),

usually reveal appropriate invariants of the geometric structure under study.
Then the main thrust of Cartan’s approach is that, when one substitutes each

Maurer-Cartan form αs with αs +
∑n

j=1 z
s
j ω

j for arbitrary functions-coefficients
zsj , while each torsion coefficient T i

jk is simultaneously necessarily replaced by
T i
jk+

∑r
s=1

(
aijs z

s
k−aiks zsj

)
, and when one does choose the functions-coefficients

zsj in order to ‘absorb’ as many as possible torsion coefficients in the Maurer-
Cartan part, then the remaining, unabsorbable, (new, less numerous) torsion coef-
ficients become true invariants of the geometric structure under study. Of course,
the ‘number’ of invariant torsion coefficients is ‘counted’ by means of linear alge-
bra, usually applying the so-called (non-explicit) Cartan’s Lemma.

Since the remaining torsion coefficients are essential and invariant, one then
normalizes them to be equal to a constant, usually 0, 1 or i, simply whether or
not the group parameters they contain must be nonzero in the matrix group G to
preserve invertibility. Setting these essential torsions equal to 0, 1 or i then deter-
mines some entries of the matrix group G, and therefore decreases the dimension
ofG. In high-level equivalence problems ([14, 17]), these potentially normalizable
essential torsions are rather numerous and often overdetermined (unfortunately),
hence one is forced to enter more deeply in explicit computations if one wants to
rigorously settle which group parameters really remain, and which invariants really
really pop up. Hopefully at the end of a long procedure, one reduces the structure
group G to dimension 0, getting a so-called e-structure.

But if, as also often occurs, it becomes no longer possible after several
absorption-normalization steps to determine a (reduced) set of remaining group
parameters, then one has to add the rest of (modified) Maurer-Cartan forms to
the initial lifted coframe Ω and to prolong the base manifold M as the product
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Mpr := M × G. Surprisingly, Cartan observed that the solution of the origi-
nal equivalence problem can be derived from that of Mpr equipped with the new
coframe. Then, one has to restart the procedure ab initio with such a new prolonged
problem. This initiates the third essential feature of the equivalence algorithm: the
prolongation. For a detailed presentation of Cartan’s method, the reader is referred
to [18, 9, 14].

Cartan’s remarkable achievements were encouraging enough to establish his el-
egant geometries, nowadays known as Cartan geometries, a generalization of two
seemingly disparate geometries, that of Felix Klein and that of Bernhard Riemann.
For the study of hypersurfaces in complex Euclidean spaces, Cartan’s method was
applied later on by some other mathematicians, e.g. Chern-Moser [7] and Tanaka
[22], but along two seemingly different ways. In fact, Chern-Moser’s work was a
fairly direct development of that of Cartan, while Tanaka’s was more algebraically-
minded, involving Lie algebra cohomology, infinitesimal CR automorphisms, and
so-called Tanaka prolongations.

Coming to the heart of the matter, let M3 ⊂ C2 be a C 6-smooth Levi-
nondegenerate real hypersurface passing through the origin, in some suitable affine
holomorphic coordinates (z, w) = (x + iy, u + i v) represented as the graph of a
certain C 6-smooth defining function:

v = ϕ(z, z, u) := zz +O(3),

satisfyingϕ(0). Our purpose in this paper is to reformulate Cartan’s construction of
an {e}-structure associated to such hypersurfaces effectively in terms of the single
datum ϕ of the problem.

In [15], inspired by [8], we already performed, within the Tanaka framework,
an effective construction of a Cartan geometry that is invariantly associated to such
M3 ⊂ C2. As the main result there, we explicitly computed the two essential
real curvature coefficients of the geometry, the vanishing of which characterizes
biholomorphic equivalency of M to the Heisenberg sphere v = zz (see Theorem
7.4 in [15]). In the present paper, we have to keep track of how the under consid-
eration Cartan equivalence problem for real hypersurfaces M3 matches up to their
Cartan-Tanaka geometry. In particular, we will explicitly observe a close relation-
ship between the single complex essential invariant of the equivalence problem and
the two real invariants of the Cartan geometry.

As an outline of this paper, first in section 2, we set up the equivalence problem
for Levi-nondegenerate real hypersurfacesM3 ⊂ C2 by constructing the necessary
adapted coframe on it. We begin by presenting generators L and L of T 1,0M and
of T 0,1M . Then, the bracket T := i

[
L ,L

]
completes a frame on for C⊗RTM .

Dually, we deduce an initial complex coframe
{
ρ0, ζ0, ζ0

}
on C⊗R T

∗M .
Next, we determine the initial ambiguity group for equivalences under local

biholomorphisms:

G :=

{
g :=

(
a 0 0
b c 0

b 0 c

)
, a ∈ R, b, c ∈ C

}
.

In section 3, we proceed to the equivalence algorithm by performing the
absorbtion-normalization procedure. After normalizing the group parameter a, we
continue in section 4 by performing a first prolongation. Namely, we prolong the
equivalence problem of the under consideration CR-manifolds M3 to that of a
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certain 7-dimensional prolonged spaces Mpr := M3 × G equipped with the ini-
tial coframe

{
ρ0, ζ0, ζ0

}
to which we add the four certain Maurer-Cartan 1-forms

α, β, α, β — associated to certain four remaining group parameters b, c, b, c —
and with four new appearing prolonged group parameters r, s, r, s. Subsequently,
we consider this new prolonged equivalence problem ab initio.

The well-known Cartan’s Lemma (see Lemma 4.1) also enables us to tem-
porarily bypass some relatively painful computations (cf. Proposition 4.3), that,
anyway, we do perform later on. After two absorbtions-normalizations and
after one prolongation along the way, the desired equivalence problem trans-
forms to that of some — explicitly computed — eight-dimensional coframe{
ρ, ζ, ζ, α, β, α, β, δ

}
having e-structure equations:

dρ = α ∧ ρ+ α ∧ ρ+ i ζ ∧ ζ,
dζ = β ∧ ρ+ α ∧ ζ,
dζ = β ∧ ρ+ α ∧ ζ,
dα = δ ∧ ρ+ 2 i ζ ∧ β + i ζ ∧ β,
dβ = δ ∧ ζ + β ∧ α+ I ζ ∧ ρ,
dα = δ ∧ ρ− 2 i ζ ∧ β − i ζ ∧ β,
dβ = δ ∧ ζ + β ∧ α+ I ζ ∧ ρ,
dδ = δ ∧ α+ δ ∧ α+ i β ∧ β + T ρ ∧ ζ + T ρ ∧ ζ,

with the single primary complex invariant:

I := −1

3

L (L (L (P )))

cc3
+

2

3

L (L (P ))P

cc3
+

1

2

L (L (L (P )))

cc3
− 7

6

L (L (P ))P

cc3
−

− 1

6

L (P )L (P )

cc3
+

1

3

L (P )P
2

cc3
,

in which the fundamental function P can expresses explicitly in terms of the single
datum ϕ of the problem as:

P :=
`z − `Au +A`u

`
,

where:

A :=
i ϕz

1− i ϕu
and where: ` := i

(
Az +AAu −Az −AAu

)
,

this last Levi factor ` being nowhere vanishing, because we assume M to be Levi
nondegenerate. Furthermore, the other secondary invariant T can be expressed in
terms of the first one I as:

T =
1

c

(
L (I)− P I

)
− i

b

cc
I.

Finally in section 5, we turn to a brief discussion of the Cartan-Tanaka geometry
of the under consideration hypersurfaces M3 and — being aware of the results
of the papers [8, 15] — we observe that the equivalence problem matches up to
their Cartan geometry so that the complex essential primary invariant J can be
reexpressed effectively in terms of the two (real) essential primary invariants we
obtained there (this also matches up with the results of [12]).

Theorem 1.1. (see Theorem 5.2 at the end) For Levi-nondegenerate C 6-smooth
real hypersurfaces M3 ⊂ C2, the following relation holds between the essential
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complex invariant J of their equivalence problem and the essential real invariants
∆1 and ∆2 of their Cartan geometry:

I =
4

cc3
(
∆1 + i∆4

)
.

We close up this introduction by mentioning that, although it is well known that
a close relationship exists between equivalences of hypersurfaces M3 ⊂ C2 and
second-order ordinary differential equations ([6, 7, 11, 10, 16, 12]), and although
the (nonexplicit) geometric features of the results we present here are well known
too (but often with hidden computations), a completely effective and systematic
presentation of the related (complicated) computational aspects is necessary to un-
derstand in a deeper way the core of Cartan’s method.

In fact, the present (preliminary) paper was written up in order to serve as a
ground-companion to much higher level explorations of equivalence problems for
embedded CR structures, that will soon appear soon ([14, 17]). Intentionally, we
endeavour here to develope our systematic computational formalism at first for
the simplest known CR structures M3 ⊂ C2, before applying it to more delicate
5-dimensional real analytic CR structures.

The remarkable works of Beloshapka [1, 2, 3, 4, 5] have shown that there ex-
ists a wealth of model CR-generic submanifolds whose algebras of infinitesimal
CR automorphisms have been computed explicitly there, and this paper together
with [5, 14, 17] are a very first step in the Cartan-like study of the geometry-
preserving deformations of just a few of these models, with a door potentially
open towards the exploration of a great number of higher models with a similar
emphasis on effectiveness.

Acknoweldgments. The third author was in part supported by a grant from IPM
(No. 91530040).

2. SETTING UP THE EQUIVALENCE PROBLEM

Our aim in this section is to construct — in terms of a certain fundamental
graphing function ϕ — an initial complex coframe on the under consideration
three dimensional CR-manifold M3 ⊂ C2, and next to set up the related equiv-
alence problem. First, let us consider this approach dually, namely by constructing
a local frame on M3.

2.1. Local frame adapted to 3-dimensional embedded CR structures. Con-
sider therefore a local C 6-smooth hypersurface M3 ⊂ C2 passing through the
origin. In some suitable affine holomorphic coordinates (z, w) = (x+ iy, u+ i v)
adapted so that R ∂

∂v

∣∣
0
6∈ T0M , the implicit function theorem enables one to rep-

resent M3 as a graph over the (x, y, u)-space. Since any function of (x, y, u) =(
z+z
2 , z+z

2i , u) can be considered as one of (z, z, u), the graph in question may be
thought of as being of the form:

v = ϕ(z, z, u),

for some C 6 function ϕ satisfying ϕ(0) = 0. In the sequel, all appearing in-
variant objects — vector fields, differential forms, torsion coefficients, essential
functions — will depend only on ϕ and its partial derivatives with respect to the
three (complex and real) initial coordinates (z, z, u), the latter being understood as
intrinsic coordinates on M3.
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According to [11, 13, 15], a local (1, 0) vector field on C2 defined near the
origin:

L :=
∂

∂z
+ A

∂

∂w
is tangent to M3 if and only if, on restriction to M3, its coefficient A satisfies:

0 = L
(
− w−w

2i + ϕ
(
z, z, w+w

2

))
= − 1

2i
A+

1

2
Aϕu + ϕz.

For this to hold true, it suffices to set:

A :=
−2 ϕz

i+ ϕu
,

which is thus de facto a function of only (z, z, u). Furthermore, restricting L to
M3, one must simply and only drop the (extrinsic) vector field ∂

∂v :

L
∣∣
M

=
∂

∂z
+ A

(
1

2

∂

∂u
− i

2

∂

∂v ◦

)
=

∂

∂z
− ϕz

i+ ϕu

∂

∂u
.

Now, it will be convenient to introduce an extra notation for the appearing coef-
ficient of ∂

∂u , say:

(2) A :=
i ϕz

1− i ϕu
,

not to be confused with A = 2A, which, anyway, will be left aside from now on.
Thus intrinsically on M3, the CR-structure induced by the ambient C2 on M3

is encoded by the complex (1, 0) vector field L and its conjugate L :

L =
∂

∂z
+A

∂

∂u
and L =

∂

∂z
+A

∂

∂u
.

In this set up, the non-vanishing property of the Lie bracket:[
L , L

]
=
(
Az +AAu −Az −AAu

) ∂

∂u

at any point of M3 indicates precisely that M3 is Levi nondegenerate at every
point, an assumption that will be held throughout. Since it is slightly better — for
convenience reasons — to deal with real functions, we introduce the fundamental
Levi factor:

(3) ` := i
(
Az +AAu −Az −AAu

)
,

so that the reality of ` ∂
∂u in the first structural Lie bracket relation, viewed again in

this abbreviated way [L , L ] = −i ` ∂
∂u , shows now well that the −i mere factor

on the right provides the pure imaginarity of the bracket in question:[
L ,L

]
= −

[
L , L

]
.

For normalization reasons, it is furthermore natural to introduce the auxiliary
real field:

T := `
∂

∂u
,
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which is the suitable multiple of ∂
∂u insuring that the bracket:[
L , L

]
= −iT

makes the coefficient-function in front of T to become a plain constant.
Now, in terms of what will be called the complex initial frame on M3 (written

in the following order):

T := i
(
Az +AAu −Az −AAu

) ∂

∂u
,

L :=
∂

∂z
+A

∂

∂u
,

L :=
∂

∂z
+A

∂

∂u
,

it remains to also take up the two further — yet uncomputed — brackets.
Simple computations show that we have:[

T , L
]
= −P T and

[
T , L

]
= −P T ,

for a certain (universal) rational function P of the second-order jet Jz,z,u
(
A,A

)
given by:

P :=
`z − `Au +A`u

`
.

This function P could be completely expanded in terms of the graphing function
ϕ, for in the notation of [15], one checks that:

P = 1
2 Φ1 − i

2 Φ2,

with the full, one-page long, expansions of (the numeratorof) Φ1 and Φ2 in terms
of J3

x,y,uϕ being provided on page 42 of the extensive arxiv.org version of [15].
Because the computations unavoidably explode when one performs them in terms
of ϕ (cf. the end of [15]), it is advisable to reset oneself at the level of just P , aiming
nevertheless to perform everything which will follow in terms of P , granted that P
is explicit with respect to ϕ.

Notice passim that the above two structural bracket relations are conjugate to
each other, just because T = T . Furthermore:

Lemma 2.1. One has the reality condition:

L (P ) = L (P ).

Proof. The already presented expressions simply give:[
L , [T ,L ]︸ ︷︷ ︸

−PT

]
= −L (P )T − PPT ,

[
L , [L ,T ]︸ ︷︷ ︸

PT

]
= L (P )T + PP,

and thanks to the Jacobi identity, one obtains:

−L (P )T + L (P )T =
[
L , [T ,L ]

]
+
[
L , [L ,T ]

]
= −

[
T , [L ,L ]︸ ︷︷ ︸

T

]
= 0,

which visibly yields the desired equality L (P ) = L (P ). �
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2.2. Setting up of an initial Cartan coframe. All these preliminary normaliza-
tions were done in advance to fit dually with a pleasant collection of 1-forms. In-
deed, on the natural agreement that the coframe {du, dz, dz} is dual to the frame
{ ∂
∂u ,

∂
∂z ,

∂
∂z}, let us introduce the coframe:{

ρ0, ζ0, ζ0
}

which is dual to the frame
{
T , L , L

}
.

that is to say which satisfies by definition:

ρ0(T ) = 1 ρ0(L ) = 0 ρ0(L ) = 0,

ζ0(T ) = 0 ζ0(L ) = 1 ζ0
(
L
)
= 0,

ζ0(T ) = 0 ζ0(L ) = 0 ζ0
(
L
)
= 1.

Using the above expressions of our three vector fields T , L , L , we see that
the three dual 1-forms have the following simple explicit expressions in terms of
the function A — strictly speaking in terms of the defining function ϕ — :

(4) ρ0 :=
du−Adz −Adz

`
, ζ0 := dz, ζ0 := dz.

In order to find the exterior differentiations of these initial 1-forms, an applica-
tion of the so-called Cartan formula dω(X ,Y ) = X

(
ω(Y )

)
− Y

(
ω(X )

)
−

ω
(
[X ,Y ]

)
implies that:

Lemma 2.2. Given a frame
{
L1, . . . ,Ln

}
on an open subset of Rn enjoying the

Lie structure: [
Li1 , Li2

]
=

n∑
k=1

aki1,i2 Lk (16 i1 <i2 6n),

where the aki1,i2 are functions on Rn, the dual coframe {ω1, . . . , ωn} satisfying by
definition ωk

(
Li

)
= δki enjoys a quite similar Darboux-Cartan structure, up to an

overall minus sign:

dωk = −
∑

16i1<i26n

aki1,i2 ω
i1 ∧ ωi2 (k=1 ···n)

To apply this lemma, it is convenient to consider the auxiliary array:

T L L

dρ0 dζ0 dζ0[
T , L

]
= −P · T + 0 + 0 ρ0 ∧ ζ0[

T , L
]

= −P · T + 0 + 0 ρ0 ∧ ζ0[
L , L

]
= +i · T + 0 + 0 ζ0 ∧ ζ0 ,

in which, by reading the three columns, we deduce visually the initial Darboux-
Cartan structure in terms of our basic, single function P :

(5)

dρ0 = P ρ0 ∧ ζ0 + P ρ0 ∧ ζ0 + i ζ0 ∧ ζ0,
dζ0 = 0,

dζ0 = 0.



Cartan equivalence problem for M3 ⊂ C2 9

2.3. Complex structure on the kernel of the contact 1-form ρ0. We end up this
preparative part by a thoughtful summary which will offer the natural geometric
meaning of ρ0. The defining equation of M3 may be understood as:

r = 0 with r = r(z, z, u, v) := −v + ϕ(z, z, u).

Given any function G = G(z, z, w,w), one classically defines its (1, 0) and (0, 1)
differentials respectively by:

∂G := Gz dz +Gw dw and ∂G := Gz dz +Gw dw,

and one easily checks that its complete real differential:

dG = Gx dx+Gy dy +Gu du+Gv dv

is the plain sum of these two holomorphic and antiholomorphic differentials:

dG = ∂G+ ∂G.

Lemma 2.3. With r = 0 being any real defining equation for a C 1 hypersurface
M3 ⊂ C2, the restriction to M3 of the (1, 0) form i ∂r, namely:

% := i ∂r
∣∣
M

is a real form on M3:
% = %.

Moreover, at every point p ∈ M , the real kernel of % in TpM identifies with the
complex tangent bundle at p:{

Xp ∈ TpM : %(Xp) = 0
}
= T c

pM,

while its kernel in the complexified tangent bundle C ⊗ TpM identifies with C ⊗
T c
pM : {

Xp ∈ C⊗ TpM : %(Xp) = 0
}
= C⊗ T c

pM = T 1,0
p M ⊕ T 0,1

p M.

Proof. For the first part of the assertion, since r|M3 ≡ 0, then on restriction to M3

we also have dr = 0 which means ∂r = −∂r. Hence the i factor in % in front of
∂r makes it real. For the rest, see [11], page 25. �

To go into this lemma in detail, with r(z, z, u, v) = −v + ϕ(z, z, u) and with
w = u+ iv, we have:

dw = du+ i dv = du+ i dϕ(z, z, u)

= du+ i
(
ϕz dz + ϕz dz + ϕu du

)
,

and hence the expression of % can be expressed in terms of the functions ϕ:
(6)

% = i ∂r|M3 = i
(
rz dz + rw dw

)
|M3

= i
(
ϕz dz + ( 12 ϕu + i

2 ) dw
)

= i
(
ϕz dz + ( 12 ϕu + i

2 )(du+ i ϕz dz + i ϕz dz + i ϕu du)
)

=
(
− 1

2 − 1
2 (ϕu)

2
)
du+

(
i
2 ϕz − 1

2 ϕz ϕu

)
dz +

(
− i

2 ϕz − 1
2 ϕz ϕu

)
dz.

Furthermore, a plain computations show that (see (2), (3) and (4) for the expres-
sions):

(7) ρ0 = −1

`

2

1 + ϕ2
u

%.
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Then, non-vanishing property of the Levi factor ` also implies the equality:

Ker(%) = Ker(ρ0).

2.4. Differential facts about CR equivalences. Now, we explain how one may
launch Cartan’s method in the case under study, namely for deformations of the
Heisenberg sphere:

(8) w − w = 2i zz.

that are geometry-preserving in the sense that Levi nondegeneracy is preserved.
Consider therefore two Levi-nondegenerate real hypersurfaces of class C 6, rep-

resented in two systems of coordinates (z, w) and (z′, w′) as graphs:

M3 : 0 = −v + ϕ(z, z, u) and M ′3 : 0 = −v′ + ϕ′(z′, z′, u′),

for two certain functions, normalized in advance so that ϕ := zz + O(3) and
ϕ′ := z′z′ + O(3). The general problem is to discover when, and if so how, the
two CR hypersurfaces are equivalent through a local ambient biholomorphic map:

(z, w) 7−→ (z′, w′) =
(
z′(z, w), w′(z, w)

)
of C2. This is nothing else than saying that such a map should send any point
of M3 to some determinate point of M ′3. In other words, one should have v′ =
ϕ′(z′, z′, u′) as soon as v = ϕ(z, z, u).

Then a well known simple fact (Lemma 1.2.3 page 47 of [21]) insures that M is
sent to M ′ if and only if there exists a real-valued function a = a(z, w) defined in
a neighborhood of the origin in C2 so that:

− v′ + ϕ′(z′, z′, u′)
∣∣
(z′,w′)=(z′(z,w),w′(z,w))

≡ a(z, , z, w,w) ·
(
− v + ϕ(z, z, u)

)
,

identically as functions of the four real coordinates of C2. For easier reading, we
shall drop the mention of this pullback and simply write down:

−v′ + ϕ′(z′, z′, u′) = a
(
− v + ϕ(z, z, u)

)
,

or even in a shorter way: r′ = a r. We now clearly see that r = 0 implies r′ = 0,
namely that points of M3 are sent to points of M ′3. But now, the two fundamental
1-forms % = i ∂r

∣∣
M

and %′ = i ∂r′
∣∣
M ′ in the two spaces happen to be real multiples

of each other:

i ∂r′
∣∣
M ′ = a i ∂r

∣∣
M

+ r i ∂a
∣∣
M ◦

,

through the same function a.
Of course such a function a highly depends on the equivalence (z, w) → (z′, w′)

betweenM3 andM ′3, when it exists, but the idea of Cartan is to consider it as some
unknown. Taking the relationship (7) into account, the already obtained equality
%′ = a % can be slightly adjusted (with same notation for a new function a) into the
form:

ρ′ := a · ρ

for some unknown real-valued function a := a(z, z, u).
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2.5. Associated ambiguity matrix. Next, let us construct the associated ambigu-
ity matrix which encodes holomorphic equivalence of two hypersurfaces M3 and
M ′3, recently equipped with two coframes:{

ρ0, dz, dz
}

and
{
ρ′0, dz

′, dz′
}
.

Now, on restriction to M3, we have:

z′ = z′
(
z, u+ i ϕ(z, z, u)

)
,

whence differentiation using the general formula dg = gzdz+ gz dz+ gu du gives
(see (6)):

(9)
dz′ =

(
z′z + i z′w ϕz

)
dz +

(
i z′w ϕz

)
dz +

(
i z′w ϕu + z′w

)
du

=
(
z′z + i z′w ϕz

)
dz + z′w

{
i ϕz dz + (i ϕu + 1) du

}
.

On the other hand, multiplying by some (innocuous) complex multiple the funda-
mental 1-form % = i ∂r

∣∣
M

, we also have:

−2 (1 + i ϕu)

1 + (ϕu)2
% = (1 + i ϕu) du+ i ϕz dz +

ϕz(−i+ ϕu)

1− i ϕu
dz,

which enables us to substitute the (underlined) 1-form that we left in braces after
z′w just above (we also replace % = −1

2 `(1 + (ϕu)
2) ρ0 in terms of ρ0, see (7)):

i ϕz dz + (i ϕu + 1) du = −2 (1 + i ϕu)

1 + (ϕu)2
%− ϕz(−i+ ϕu)

1− i ϕu
dz

= ` (1 + i ϕu) ρ0 −
ϕz(−i+ ϕu)

1− i ϕu
dz.

This implies from (9) that dz′ is a linear combination — with some complicated
coefficients — of dz and of ρ, without dz component:

dz′ =

(
z′w ` (1 + i ϕu))︸ ︷︷ ︸

=:b(z,z,v)

)
ρ0 +

(
z′z + i z′w ϕz − z′w

ϕz(−i+ ϕu)

1− i ϕu︸ ︷︷ ︸
=:c(z,z,v)

)
dz.

We thus have obtained:

Proposition 2.4. Two local C 1 real hypersurfaces M3 and M ′3 of C2 are equiva-
lent through some biholomorphism whenever their two corresponding fundamental
coframes:{

ρ0, ζ0 = dz, ζ0 = dz0
}

and
{
ρ′0, ζ

′
0 = dz′, ζ ′0 = dz′0

}
are mapped one to another by means of a certain matrix of functions:ρ′0ζ ′0

ζ ′0

 =

a 0 0
b c 0

b 0 c

 ρ0ζ0
ζ0

 ,

in which a := a(z, z, v) is a real-valued function on M3, and where b := b(z, z, v)
and c := c(z, z, v) are both complex-valued. �
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2.6. The related structure group. As we saw, when a CR equivalence exists, the
functions a, b and c depend — in a somewhat complicated way — upon the CR
equivalence, whose existence is under question! The gist of Cartan’s method is
to consider these functions as new unknowns, hence to add them as extra group
variables. So we consider the subgroup of matrices inside GL3(C):a 0 0

b c 0

b 0 c

 ,

where now a ∈ R, b ∈ C, c ∈ C are arbitrary parameters and we consider the
so-called lifted coframe on the eight-dimensional space (z, z, u, a, b, b, c, c):ρζ

ζ

 :=

a 0 0
b c 0

b 0 c

ρ0ζ0
ζ0

 ,

that is to say:
ρ = a ρ0,

ζ = b ρ0 + c ζ0,

ζ = b ρ0 + c ζ0.

Of course, the 1-form ρ is real and the ζ is the conjugate of ζ.
So far, we have provided the necessary data for launching the Cartan algorithm

of equivalence. Next, we have to perform normalization, absorption and prolonga-
tion.

3. ABSORBTION AND NORMALIZATION

Associated to the equivalence problem for real hypersurface M3 ⊂ C2, we set
up the structure matrix group:

G :=

{
g :=

(
a 0 0
b c 0

b 0 c

)
, a ∈ R, b, c ∈ C

}
.

The lifted coframe writes out as:(
ρ
ζ

ζ

)
:= g.

(
ρ0
ζ0
ζ0

)
=

(
aρ0

bρ0 + cζ0
bρ0 + cζ0

)
.(10)

Applying the differential operator d to these three equations and next substitut-
ing the expressions of dρ0, dζ0, dζ0, presented in (5), gives:

dρ = da ∧ ρ0 + ai ζ0 ∧ ζ0 + aP ρ0 ∧ ζ0 + aP ρ0 ∧ ζ0

dζ = db ∧ ρ0 + dc ∧ ζ0 + bi ζ0 ∧ ζ0 + bP ρ0 ∧ ζ0 + bP ρ0 ∧ ζ0

dζ = db ∧ ρ0 + dc ∧ ζ0 + bi ζ0 ∧ ζ0 + bP ρ0 ∧ ζ0 + bP ρ0 ∧ ζ0,

or equivalently in matrix notation:

(11) d

 ρ
ζ

ζ

 =

 da 0 0
db dc 0

db 0 dc


︸ ︷︷ ︸

dg

∧

 ρ0
ζ0
ζ0

+

 aP aP a i
bP bP b i

bP bP bi

 ρ0 ∧ ζ0
ρ0 ∧ ζ0
ζ0 ∧ ζ0

 .
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On the other hand, multiplying both sides of (10) by the inverse matrix:

g−1 =

( 1
a

0 0
− b

ac
1
c

0

− b
ac

0 1
c

)

yields the expressions of ρ0, ζ0, ζ0 in terms of ρ, ζ, ζ:

(12)

ρ0 =
1

a
ρ

ζ0 = − b

ac
ρ+

1

c
ζ

ζ0 = − b

ac
ρ+

1

c
ζ.

We may then compute the three exterior products between these basic 1-forms:

(13)


ρ0 ∧ ζ0 = 1

ac
ρ ∧ ζ

ρ0 ∧ ζ0 = 1
ac
ρ ∧ ζ

ζ0 ∧ ζ0 = b
acc

ρ ∧ ζ − b
acc

ρ ∧ ζ + 1
cc
ζ ∧ ζ.

In addition, one has to replace the first part dg ∧ (ρ0, ζ0, ζ0)
t in (11) by:

dg · g−1︸ ︷︷ ︸
ωMC

∧ g .

 ρ0
ζ0
ζ0


︸ ︷︷ ︸

(ρ,ζ,ζ)t

,(14)

and finally we obtain from (11), the exterior differentiations of the lifted 1-forms
ρ, ζ, ζ:

(15)
d

 ρ
ζ

ζ

 =


γ 0 0

β α 0

β 0 α


︸ ︷︷ ︸

ωMC

∧

 ρ
ζ

ζ

+


U1 ρ ∧ ζ + U1 ρ ∧ ζ + U2ζ ∧ ζ

V1 ρ ∧ ζ + V2 ρ ∧ ζ + V3 ζ ∧ ζ

V 2 ρ ∧ ζ + V 1 ρ ∧ ζ − V 3 ζ ∧ ζ

 ,

which incorporate the following torsion coefficients:

U1 :=
P c+bi

cc U2 :=
ai
cc

V1 :=
P bc+bbi

acc V2 :=
P bc−b2i

acc V3 :=
bi
cc

,

and in which the three plain Maurer-Cartan 1-forms are:

α :=
dc

c
, β :=

db

a
− b dc

ac
, γ :=

da

a
.

Here the obtained equations are called the structure equations of the problem and
moreover the appearing matrix ωMC is the so-called Maurer-Cartan form of G.

3.1. Absorbtion and normalization. One of the most essential parts of the Car-
tan (equivalence) algorithm is the absorbtion-normalization step, which, generally
speaking, is expressed as follows.
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Observation 3.1. (see [14]) Let Θ := {θ1, . . . , θn} be a lifted coframe associated
to an equivalence problem having structure equations:

dθi =

n∑
k=1

( r∑
s=1

aiks β
s +

k−1∑
j=1

T i
jk θ

j

)
∧ θk (i=1 ···n).

Then, one can replace each Maurer-Cartan form βs and each torsion coefficient
T i
jk with:

(16)

βs 7−→ βs +

n∑
j=1

zsj θ
j

(s=1 ··· r),

T i
jk 7−→ T i

jk +

r∑
s=1

(
aijs z

s
k − aiks z

s
j

)
(i=1 ···n ; 16 j <k6n),

for some arbitrary functions z•• on the base manifold M . �

Then one does such a replacement so as to annihilate as many torsion coeffi-
cients as possible, by some appropriate determinations of the functions z•• .

Thus, let us perform the following replacements:

(17)

α 7→ α+ p1 ρ+ q1 ζ + r1 ζ,

β 7→ β + p2 ρ+ q2 ζ + r2 ζ,

γ 7→ γ + p3 ρ+ q3 ζ + r3 ζ.

These substitutions convert the structure equations (15) into the form — from now
on and for brevity, we drop presenting the structure equation dζ since it is just the
conjugation of dζ — :

dρ = γ ∧ ρ+ (U1 − q3) ρ ∧ ζ + (U1 − r3) ρ ∧ ζ + U2 ζ ∧ ζ,
dζ = β ∧ ρ+ α ∧ ζ + (V1 − q2 + p1) ρ ∧ ζ + (V2 − r2) ρ ∧ ζ + (V3 − r1) ζ ∧ ζ.

Visually, one sees that by some appropriate determinations of pi, qi, ri, one can
annihilate all the (so modified) torsion coefficients, except just one, namely U2 in
front of ζ ∧ ζ at the end of the first line.

Consequently, this torsion coefficient U2 is essential, and the general theory
([18]) shows that U2 (potentially) provides a normalization of some group param-
eter, and here because U2 is so simple, normalizing it to be U2 := i provides the
simple group parameter reduction:

a := c c.

This then replaces the Maurer-Cartan form γ = da
a by α+α and transforms the

structure equations (15) into the form:

(18)
dρ = (α+ α) ∧ ρ+ U1 ρ ∧ ζ + U1 ρ ∧ ζ + i ζ ∧ ζ,
dζ = β ∧ ρ+ α ∧ ζ + V1 ρ ∧ ζ + V2 ρ ∧ ζ + V3 ζ ∧ ζ,

with new torsion coefficients:

U1 :=
P c+bi

cc

V1 :=
P bc+bbi

c2c2
V2 :=

P bc−b2i
c2c2

V3 :=
bi
cc
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and with the new Maurer-Cartan 1-forms:

α :=
dc

c
β :=

db

cc
− b dc

c2c
.

Now, let us try again a second absorbtion-normalization procedure. Doing sim-
ilar replacements:

α 7→ α+ p1 ρ+ q1 ζ + r1 ζ,

β 7→ β + p2 ρ+ q2 ζ + r2 ζ,

one obtains:
(19)
dρ = (α+ α) ∧ ρ+ (U1 − q1 − r1)ρ ∧ ζ + (U1 − r1 − q1)ρ ∧ ζ + i ζ ∧ ζ,
dζ = β ∧ ρ+ α ∧ ζ + (V1 − q2 + p1)ρ ∧ ζ + (V2 − r2)ρ ∧ ζ + (V3 − r1)ζ ∧ ζ.

Visually, one can annihilate all the (so modified) torsion coefficients by choosing:

q1 := U1 − V 3, r1 := V3,

q2 := V1 + p1, r2 := V2,

while the two remaining functions:

p1 =: s, p2 =: r

can yet be chosen arbitrarily.
Chosing first these last two functions to be 0, and coming back to the explicit

expressions of U1, V1, V2, V3, we see by introducing the following two modified
Maurer Cartan forms:

(20)
α0 =

dc

c
− P c+ 2 i b

cc
ζ − ib

cc
ζ,

β0 =
db

cc
− bdc

c2c
− Pbc+ i bb

c2c2
ζ − Pbc− i b2

c2c2
ζ,

that the whole torsion is absorbed so that the structure equations receive the very
simple form:

(21)
dρ = (α0 + α0) ∧ ρ+ i ζ ∧ ζ,
dζ = β0 ∧ ρ+ α ∧ ζ.

At this stage, no torsion coefficient can be used anymore to reduce the structure
group.

In fact, one verifies that the two complex parameters r and s and their conjuga-
tions are precisely the free variables in the absorption equations, and consequently,
according to the general procedure, one has to prolong the equivalence problem.

4. PROLONGATION OF THE EQUIVALENCE PROBLEM

4.1. Prolongation procedure. If one therefore encodes the general remaining am-
biguity in the choice of α0 and β0 by setting:

(22)
α := α0 + sρ,
β := β0 + r ρ+ s ζ,

,

one will still have that the absorbed equations look the same (without lower index
‘0’):

(23)
dρ = (α+ α) ∧ ρ+ i ζ ∧ ζ,
dζ = β ∧ ρ+ α ∧ ζ.
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At this moment, one has to launch the prolongation procedure. This part of Car-
tan’s algorithm relies on the following general result (see [18], page 395 Proposi-
tion 12.13):

Proposition 4.1. Let Θ and Θ′ be lifted coframes of an equivalence problem which
admits a non-involutive system of structure equations and which has a positive
degree of indeterminancy. Let Λ and Λ′ be the modified Maurer-Cartan forms
after the last absorbtion-normalization step. Then, there exists a diffeomorphism
Φ : M −→ M ′ mapping Θ to Θ′ for some choice of the group parameters if and
only if there is a diffeomorphism Ψ : M × G −→ M ′ × G′ mapping the coframe
(Θ,Λ) to (Θ′,Λ′) for some choice of the prolonged group parameters.

This permits us to change our concentration on the original equivalence prob-
lem of the three dimensional hypersurfaces M3 equipped with the lifted coframes
{ρ, ζ, ζ} to that, along the same lines, of the prolonged manifoldsMpr :=M3×G
with the lifted coframe — living on the product Mpr×Gpr = (M3×G)×Gpr —
of the seven 1-forms ρ, ζ, ζ, ψ, ϕ, ψ, ϕ, defined as follows:

(24)



ρ
ζ

ζ
α
β
α

β


=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
s 0 0 1 0 0 0
r s 0 0 1 0 0
s 0 0 0 0 1 0
r 0 s 0 0 0 1


︸ ︷︷ ︸

gpr∈Gpr

·



ρ
ζ

ζ
α0

β0

α0

β0


,

with the new structure group Gpr, a subgroup of Gl3+4(C) = Gl7(C) constituted
by the prolonged group parameters r, s and their conjugates.

Remark 4.2. This prolonged group (24) resembles much the equations (3.3) on
page 7 of the paper [10], devoted to the equivalence problem for second order ordi-
nary differential equations. In fact, there exists for known reasons (cf. e.g. [16, 12]),
a certain transfert principle showing that these two seemingly different equivalence
problems will follow fairly the same lines of resolution. Our main goal here is to
go beyond the so-called — usually less costful — non-parametric approach and
to perform all computations effectively in terms of the single function P , hence
in terms of the graphing function ϕ(z, z, u) of our hypersurface. In fact, with our
choice {L ,L ,T } of an initial frame for TM3, which is explicit in terms of ϕ,
we deviate from the common approaches.

With the obtained four supplementary 1-forms α, β, α, β, we can now start the
first loop of absorbtion and normalization on the 7-dimensional prolonged space.

Letting a group element gpr ∈ Gpr be in (24) and abbreviating:

Ω0 :=
(
ρ, ζ, ζ, α0, β0, α0, β0

)
, Ω :=

(
ρ, ζ, ζ, α, β, α, β

)
the first simple computation shows that the associated structure equations:

dΩ =
(
dgpr · g−1

pr

)
∧ Ω+ gpr · dΩ0,
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read as:

(25) d



ρ
ζ

ζ
α
β
α

β


=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
δ 0 0 0 0 0 0
γ δ 0 0 0 0 0

δ 0 0 0 0 0 0

γ 0 δ 0 0 0 0


∧



ρ
ζ

ζ
α
β
α

β


+



dρ
dζ

dζ
s dρ+ dα0

r dρ+ s dζ + dβ0

s dρ+ dα0

r dρ+ s dζ + dβ0


for two new basic Maurer-Cartan 1-forms:

γ := dr, δ := ds.

To explicitly find the torsion coefficients which should come from the last four
rows of the rightmost 7× 1 matrix, one needs to express the exterior derivations of
α0 and β0 in terms of the lifted 1-forms, and this task is costful, computationally
speaking. Instead of performing this directly, let us at first employ a well-know in-
direct tool (cf. [9, 18]) which temporarily bypasses this computational obstacle and
has the virtue of enabling one to better predict the way the final structure equations
will look like after absorption.

Cartan’s (elementary) Lemma. Let {ω1, . . . , ωk} be a set of linearly indepen-
dent local 1-forms on some manifold. Then, k arbitrary 1-forms θ1, . . . , θk satisfy∑k

i=1 θ
i ∧ωi = 0 if and only if they express θi =

∑k
j=1A

i
j ω

j for some symmetric

matrix of local functions with Ai
j = Aj

i . �
The truth here is that one intentionally leaves aside the question of how theseAi

j

could be expressed in terms of θ1, . . . , θk, ω1, . . . , ωk.
Now, using the standard differentiation formula for the exterior product of two

1-forms λ and µ (mind the minus sign!):

d
(
λ ∧ µ

)
= dλ ∧ µ− λ ∧ dµ,

the differentiation of the two equations (23) gives:

(26)


d2ρ = 0 ≡

(
(dα+ 2 i β ∧ ζ + i β ∧ ζ) + (dα− 2 i β ∧ ζ − i β ∧ ζ)︸ ︷︷ ︸

=:Ξ1

)
∧ ρ,

d2ζ = 0 ≡ (dα+ 2 i β ∧ ζ + i β ∧ ζ︸ ︷︷ ︸
=:Ξ2

) ∧ ζ + (dβ − β ∧ α︸ ︷︷ ︸
=:Ξ3

) ∧ ρ,

noticing as a ‘trick’ that the redundant term 2i β ∧ ζ in Ξ1 helps us to insure the
reality relation:

Ξ1 = Ξ2 + Ξ2,

which will be useful for our next:

Proposition 4.3. The exterior differentials of the new prolonged lifted 1-forms α
and β can be read as:

dα = δmodified ∧ ρ+
+2 i ζ ∧ β + i ζ ∧ β +W ζ ∧ ζ

dβ = γmodified ∧ ρ+ δmodified ∧ ζ+
+β ∧ α

(27)

for a certain torsion coefficient W which is real, and for some two modified
Maurer-Cartan 1-forms δmodified and γmodified.
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Proof. Applying Cartan’s Lemma 4.1 to (26) brings the following expressions of
Ξ1,Ξ2,Ξ3 for some three 1-forms Aij ,Bij , C :

Ξ1 = −C ∧ ρ,
Ξ2 = A11 ∧ ζ + A12 ∧ ρ, Ξ3 = A12 ∧ ζ + A22 ∧ ρ.

The relation Ξ2 + Ξ2 − Ξ1 = 0 we ‘trickily’ insured then reads as:

A11 ∧ ζ + B11 ∧ ζ + (A12 + A 12 + C ) ∧ ρ ≡ 0.

Again, a further application of Cartan’s Lemma yields the (non-explicit) expres-
sions: 

A11 = R11ζ +R12ζ +R13ρ,

B11 = R12ζ +R22ζ +R23ρ,

A12 + A 12 + C = R13ζ +R23ζ +R33ρ,

by means of some complex functions Rij , i, j = 1, 2, 3. If we now denote the two
1-forms A12 and A22 by δmodified and γmodified (respectively), then the expressions
of Ξ1,Ξ2,Ξ3 change into:

Ξ1 = δmodified ∧ ρ+ δmodified ∧ ρ−R13ζ ∧ ρ−R23ζ ∧ ρ,

Ξ2 = R12ζ ∧ ζ +R13ρ ∧ ζ + δmodified ∧ ρ,

Ξ3 = δmodified ∧ ζ + γmodified ∧ ρ.
Comparing with the initial expressions of Ξ2, Ξ3, Ξ3 in (26) implies that:

dα = −2 i β ∧ ζ − i β ∧ ζ +
(
δmodified −R13ζ

)
∧ ρ−R12ζ ∧ ζ,

dβ = β ∧ α+ δmodified ∧ ζ + γmodified ∧ ρ

dα = 2i β ∧ ζ + i β ∧ ζ +
(
δmodified −R23ζ

)
∧ ρ+R12ζ ∧ ζ.

(28)

Now granted the equality dα = dα, one obtains the following equation, after plain
simplifications:

−R13 ζ ∧ ρ+R12ζ ∧ ζ = −R23ζ ∧ ρ+R12ζ ∧ ζ.

Taking account of the linearly independency between ζ ∧ ρ and ζ ∧ ζ, one imme-
diately concludes that:

R23 = R13 and R12 = R12.

In other words, R12 is a real function and also one can replace R23 with R13 in the
expression of dα. Lastly, the equations (28) can be transformed as follows after the
substitution δmodified −R13ζ 7→ δmodified and putting W := −R12:

dα = −2 i β ∧ ζ − i β ∧ ζ + (δmodified −R13ζ︸ ︷︷ ︸
7→δmodified

) ∧ ρ−R12︸ ︷︷ ︸
+W

ζ ∧ ζ,

dβ = β ∧ α+ (δmodified −R13ζ︸ ︷︷ ︸
7→δmodified

) ∧ ζ + γmodified ∧ ρ,

dα = 2 i β ∧ ζ + i β ∧ ζ + (δ
modified −R13ζ︸ ︷︷ ︸

7→δ
modified

) ∧ ρ+R12︸ ︷︷ ︸
−W

ζ ∧ ζ.

(29)

This completes the proof. �
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The two equations (27) (together with their unwritten conjugates) and the three
equations of (23) constitute the new structure equations of the problem with
δmodified and γmodified as the modified Maurer-Cartan forms after maximal absorb-
tion of torsion. Thus, thanks to the above (non-explicit) proposition, one has by-
passed some painful computations, keeping track of some relevant, somewhat suffi-
cient information, as Cartan usually did in his papers. Nevertheless, we will present
just at the moment the explicit expressions of δmodified and γmodified.

Before doing this, let us present the following assertion which permits one to
consider some two fixed expressions of δmodified and γmodified, enjoying (27).

Lemma 4.4. Let δmodified, γmodified and δmodified
0 , γmodified

0 be two couples of 1-
forms satisfying both the same equations (27):[
dα = δmodified ∧ ρ+ 2i ζ ∧ β + i ζ ∧ β +W ζ ∧ ζ,

dβ = γmodified ∧ ρ+ δmodified ∧ ζ + β ∧ α.

[
dα = δmodified

0 ∧ ρ+ 2i ζ ∧ β + i ζ ∧ β +W ζ ∧ ζ,

dβ = γmodified
0 ∧ ρ+ δmodified

0 ∧ ζ + β ∧ α.

Then necessarily:

(30)
δmodified = δmodified

0 + p ρ,

γmodified = γmodified
0 + p ζ + q ρ,

for some arbitrary complex functions p and q.

Proof. A plain subtraction yields:

0 ≡ (δmodified − δmodified
0 ) ∧ ρ,

0 ≡ (γmodified − γmodified
0 ) ∧ ρ+ (δmodified − δmodified

0 ) ∧ ζ.
Now, Cartan’s lemma applied to the first equation immediately gives the first equa-
tion of (30). Putting then this into the second equation obtained by subtraction
yields, again by means of Cartan’s lemma, the conclusion. �

Next, a straightforward computation provides a general lemma, unavoidably re-
quired when one wants to perform all computations explicitly.

Lemma 4.5. The exterior differential:

dG = L (G) · ζ0 + L (G) · ζ0 + T (G) · ρ0

of some function G(z, z, u) of class at least C 1 on the base manifold M ⊂ C2

reexpresses, in terms of the lifted coframe, as:

(31) dG =

(
1

c
L (G)

)
·ζ+

(
1

c
L (G)

)
·ζ+

(
− b

c2c
L (G)− b

cc2
L (G)+

1

cc
T (G)

)
·ρ. �

Thus, we may now compare and inspect the two separate expressions of dα in
(27) and (25), namely:

(32)
dα = δmodified ∧ ρ+ 2 i ζ ∧ β + i ζ ∧ β +W ζ ∧ ζ,
dα = dα0 + γ ∧ ρ+ s dρ.

Here, we must compute the differential dα0 of α0 given in (20):

dα0 = d
(
dc
c

)
◦
−

(
1

c
dP − P

1

cc
dc+ 2i

1

cc
db− 2i

b

ccc
dc− 2i

b

ccc
dc

)
∧ ζ−

−
(
1

c
P + 2i

b

cc

)
dζ −

(
i
1

cc
db− i

b

ccc
dc− i

b

ccc

)
∧ ζ − i

b

cc
dζ.
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Now, thanks to the expressions (22) and (20), one obtains:

(33)

dc = cα0 +
P c+ 2 i b

c
ζ +

i b

c
ζ

= cα− cs ρ+
P c+ 2 i b

c
ζ +

i b

c
ζ,

db = ccβ0 + bα0 +
2Pbc+ 3 i bb

cc
ζ +

Pb

c
ζ

= bα+ ccβ −
(
ccr + bs

)
ρ+

(2Pbc+ 3 i bb

cc
− scc

)
ζ +

Pb

c
ζ.

These equations together with (31) and (23), enable one to transform the second
expression of dα in (32) into:

dα =

{(
b

c3c
L (P ) +

b

c2c2
L (P )− 1

c2c
T (P )− P s

c
+ 2i r − 2i

sb

cc

)
· ρ+

+

(
− 1

cc
L (P ) + i

Pb

c2c
− 2i

Pb

cc2
− 4

bb

c2c2
+ i s

)
· ζ − 2i β

}
∧ ζ+

+

{(
i r + i

bs

cc

)
· ρ+

(
− i

Pb

c2c
+ 2

bb

c2c2
+ i

Pb

c2c
− bb

c2c2
+ i s

)
· ζ + i β

}
∧ ζ+

+

{(
− P

c
− 2i

b

cc
+ s

)
· β +

(
− i

b

cc
+ s

)
· β + γ

}
∧ ρ.

Chasing then just the coefficient of ζ ∧ ζ in this last (long) expression, which is
the function we called W , we therefore obtain the explicit expression of this single
essential torsion coefficient:

(34) W =
1

cc
L (P )− 2i

b

c2c
P + 2i

b

cc2
P + 6

bb

c2c2
+ 2 i s− 2 i s.

Thanks to Lemma 2.1, one easily realizes that W is a real function as was already
mentioned in Proposition 4.3.

Furthermore, collecting together the coefficients of •∧ρ from these two expres-
sions of dα, one also finds the explicit expression of δmodified:
(35)

δmodified =

(
1

c2c
T (P )− b

c3c
L (P )− b

c2c2
L (P ) +

s

c
P + 2i

bs

cc
− 2i r

)
· ζ +

(
i
bs

cc
− i r

)
· ζ+

+ sα−
(
1

c
P + 2i

b

cc

)
· β + sα− i

b

cc
β+

+ ds.

Likewise, let us consider the two separate expressions:

(36)
dβ = γmodified ∧ ρ+ δmodified ∧ ζ + β ∧ α,
dβ = dβ0 + δ ∧ ρ+ rdρ+ γ ∧ ζ + s dζ,

of dβ in (27) and (25), with dβ0 being the differentiation of β0 in (20) as follows:

dβ0 =

(
− 1

cc2
dc ∧ db+

b

c2c2
dc ∧ dc

)
−

(
Pb

c2c
+ i

bb

c2c2

)
dζ+

+

(
− b

c2c
dP − P

c2c
db+

Pb

c2c2
dc+ 2

Pb

c3c
dc− i

b

c2c2
db− i

b

c2c2
db+ 2i

bb

c3c2
dc+ 2i

bb

c2c3
dc

)
∧ ζ−

+

(
− Pb

cc2
+ i

b2

c2c2

)
dζ+

+

(
− b

cc2
dP − P

cc2
db+

Pb

c2c2
dc+ 2

Pb

cc3
dc+ 2i

b

c2c2
db− 2i

b2

c3c2
dc− 2i

b2

c2c3
dc

)
∧ ζ.
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Performing lines of (rather lengthy) computations similar to those we already did,
we can extract the coefficients of • ∧ ρ from the two equal expressions of dβ in
(36) and we find:
(37)

γmodified =

(
b

c3c2
T (P )− b2

c4c2
L (P )− bb

c3c3
L (P ) +

bs

c2c
P − r

c
P + i

bbs

c2c2
− 2i

br

cc
− i

br

cc
+ ss

)
· ζ+

+

(
b

c2c3
T (P )− b2

c3c3
L (P )− bb

c2c4
L (P ) +

bs

cc2
P − i

b2s

c2c2

)
· ζ+

+ rα−
(

b

c2c
P + i

bb

c2c2
− s+ s

)
· β + 2rα+

(
− b

cc2
P + i

b2

c2c2

)
· β−

+ dr.

From now on and for the sake of simplicity and compatibility among the nota-
tions, let us drop the word ”modified” from δmodified and γmodified and denote them
simply by δ and γ. Summarizing the results, now the structure equations (25) is
transformed into:

dρ = α ∧ ρ+ α ∧ ρ+ i ζ ∧ ζ,
dζ = β ∧ ρ+ α ∧ ζ,
dζ = β ∧ ρ+ α ∧ ζ,
dα = δ ∧ ρ+ 2 i ζ ∧ β + i ζ ∧ β +W ζ ∧ ζ,
dβ = γ ∧ ρ+ δ ∧ ζ + β ∧ α,
dα = δ ∧ ρ− 2 i ζ ∧ β − i ζ ∧ β −W ζ ∧ ζ,
dβ = γ ∧ ρ+ δ ∧ ζ + β ∧ α,

(38)

with the already modified Maurer-Cartan forms δ and γ given by (35) and (37),
and with some relevant real torsion coefficient W given by (34).

4.2. Absorbtion-normalization. After having re-shaped so the structure equa-
tions, one has to apply again the absorbtion-normalization procedure by consid-
ering the substitutions:

δ 7→ δ + p1 ρ+ q1 ζ + r1 ζ + s1 α+ t1 α+ u1 β + v1 β,

γ 7→ γ + p2 ρ+ q2 ζ + r2 ζ + s2 α+ t2 α+ u2 β + v2 β.

One easily verifies by elementary linear algebra computations that here the single
torsion coefficient W is, as guessed, indeed normalizable.

Normalizing then this coefficient to zero determines s as:

(39) s = s− i

2

1

cc
L (P )− b

c2c
P +

b

cc2
P − 3i

bb

c2c2
.

Consequently, one has to differentiate this equation:

ds = ds−
{
3i

b

c2c2
db+ 3i

b

c2c2
db− 6i

bb

c3c2
dc− 6i

bb

c2c3
dc+

P

c2c
db+

b

c2c
dP−

− 2
Pb

c3c
dc− Pb

c2c2
dc− P

cc2
db− b

cc2
dP +

P b

c2c2
dc+ 2

Pb

cc3
dc− i

2c2c
L (P )dc− i

2cc2
L (P )dc+

+
i

2cc
dL (P )

}
,

in which similarly to (31), one has:
(40)

d(L (P )) =

(
1

c
L (L (P ))

)
· ζ +

(
1

c
L (L (P ))

)
· ζ +

(
− b

c2c
L (L (P ))− b

cc2
L (L (P )) +

1

cc
T (L (P ))

)
· ρ.
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Then, putting the expressions (33) of db, dc into the above equation expression of
ds changes it into the following form after simplification:

ds = ds+

(
−

P r

c
+

P r

c
− 9

b2b
2

c4c4
+

L (P )b2

c4c2
+

PPb2

c4c2
+

PPb
2

c2c4
−

b
2
L (P )

c2c4
−

1

4

L (P )L (P )

c2c2
+ i

L (L (P ))b

c3c2
+

+ i
L (L (P ))b

c2c3
− 3

L (P )bb

c3c3
− 2

Pbs

c2c
− 2

PPbb

c3c3
+ 2

Pbs

cc2
+ i

PL (P )b

c3c2
− i

L (P )s

cc
− i

PL (P )b

c2c3
−

−
i

2

L (L (P ))b

c3c2
+ 3i

br

cc
−

i

2

T (L (P ))

c2c2
− 6i

Pbb
2

c3c4
+ 3i

br

cc
− 6

bbs

c2c2
+ 6i

Pb2b

c4c3
−

i

2

L (L (P ))

c2c3

)
· ρ+

+

(
P s

c
−

i

2

L (L (P ))

c2c
−

L (P )b

c3c
+ 3i

bs

cc
+

i

2

PL (P )

c2c
+ 3

bb
2

c3c3
+

1

2

L (P )b

c2c2
− 3i

Pbb

c3c2

)
· ζ+

+

(
−

P
2
b

cc3
+ 6

b2b

c3c3
+ i

L (P )P

cc2
+

L (P )

cc3
+ 3i

bs

cc
− 3i

Pb2

c3c2
−

P s

c
+ 3i

Pbb

c2c3
+

L (P )b

c2c2
+

PPb

c2c2
−

i

2

L (L (P ))

cc2

)
· ζ+

+

(
3i

bb

c2c2
+

i

2

L (P )

cc
−

P b

cc2
+

Pb

c2c

)
· α+

(
−

P

c
− 3i

b

cc

)
· β+

+

(
3i bb

c2c2
+

i

2

L (P )

cc
−

P b

cc2
+

Pb

c2c

)
· α+

(
P

c
− 3i

b

cc

)
· β.

Next, by a careful glance on the expression of δ and its conjugation (see (35)),
we realize that having ds in terms of ds and the lifted 1-forms ρ, ζ, ζ, α, β, α, β
enables us to express δ in terms of δ and the lifted coframe (cf. (35)). More
precisely, our computations show that we have — the coefficients of α, β, α, β
vanish identically after simplification — :

(41) δ := δ + iW1 ρ+W2 ζ −W 2 ζ,

with the coefficients:

W1 :− 1

2

T (L (P ))

c2c2
+

L (L (P ))b

c2c3
− 1

2

L ((P ))b

c3c2
− 1

2

L (L (P ))b

c2c3
+

L (L (P ))b

c3c2
− i

L (P )b2

c4c2
+ i

L (P )b
2

c2c4
+

+

(
− 1

2

L (P )

cc
+ i

Pb

c2c
− 3

bb

c2c2
− i

P b

cc2

)
s+

(
3

b

cc
− i

P

c

)
r+

+

(
− 1

2

L (P )

cc
+ i

Pb

c2c
− 3

bb

c2c2
− i

P b

cc2

)
s+

(
3

b

cc
+ i

P

c

)
r,

W2 := i
L (L (P ))

c2c
− 3

2
i
L (L (P ))

c2c
+

3

2

L (P )b

c2c2
+

i

2

PL (P )

c2c
− 3i

Pbb

c3c2
+ 3

bb
2

c3c3
+ 3i r.

(We notice passim that the first torsion coefficient W1 is real.)
Further, after determining s in (39), the expressions of α and β change and are

not anymore the conjugates of α and β. Hence, we replace the notations α and β
by α̃ and β̃, respectively. Putting this new expression of δ into the last structure
equation (38) changes it into the form:

dρ = α ∧ ρ+ α̃ ∧ ρ+ i ζ ∧ ζ,
dζ = β ∧ ρ+ α ∧ ζ,
dζ = β̃ ∧ ρ+ α̃ ∧ ζ,
dα = δ ∧ ρ+ 2 i ζ ∧ β + i ζ ∧ β,
dβ = γ ∧ ρ+ δ ∧ ζ + β ∧ α,
dα̃ = δ ∧ ρ− 2 i ζ ∧ β − i ζ ∧ β̃ +W2 ζ ∧ ρ−W 2ζ ∧ ρ,
dβ̃ = γ ∧ ρ+ δ ∧ ζ + β̃ ∧ α+ iW1 ρ ∧ ζ +W2 ζ ∧ ζ.

(42)
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4.3. Absorbtion-normalization of the latest structure equation. To determine
essential torsion coefficients, similarly as before, we make substitutions of the kind:

δ 7→ δ + p1 ρ+ q1 ζ + r1 ζ + s1 α+ t1 α+ u1 β + v1 β,

γ 7→ γ + p2 ρ+ q2 ζ + r2 ζ + s2 α+ t2 α+ u2 β + v2 β.

This converts the structure equations into the form:

dα = δ ∧ ρ+ q1 ζ ∧ ρ+ r1 ζ ∧ ρ+ s1 α ∧ ρ+ t1 α̃ ∧ ρ+ u1 β ∧ ρ+ v1 β̃ ∧ ρ+ 2i ζ ∧ β̃ + i ζ ∧ β,

dβ = γ ∧ ρ+ δ ∧ ζ + (q2 − p1)ζ ∧ ρ+ r2 ζ ∧ ρ+ s2 α ∧ ρ+ t2 α̃ ∧ ρ+ u2 β ∧ ρ+ v2 β̃ ∧ ρ+ r1 ζ ∧ ζ+

+ s1 α ∧ ζ + t1 α̃ ∧ ζ + u1 β ∧ ζ + v1 β̃ ∧ ζ + β ∧ α̃,

dα̃ = δ ∧ ρ+ (q1 +W2)ζ ∧ ρ+ (r1 −W 2)ζ ∧ ρ+ s1 α ∧ ρ+ t1 α̃ ∧ ρ+ u1 β ∧ ρ+ v1 β̃ ∧ ρ− 2i ζ ∧ β − i ζ ∧ β̃,

dβ̃ = γ ∧ ρ+ δ ∧ ζ + (q2 − p1 − iW1)ζ ∧ ρ+ r2 ζ ∧ ρ+ s2 α̃ ∧ ρ+ t2 α ∧ ρ+ u2 β̃ ∧ ρ+ v2 β ∧ ρ+

+ (q1 +W2)ζ ∧ ζ + s1 α ∧ ζ + t1 α̃ ∧ ζ + u1 β ∧ ζ + v1 β̃ ∧ ζ.

In order to annihilate as much as possible the appearing (modified) torsion coeffi-
cients, we have to solve the following system of homogeneous equations:

0 = q1 = r1 = s1 = t1 = u1 = v1, 0 = r2 = s2 = t2 = u2 = v2,

0 = q2 − p1, 0 = q1 +W2, 0 = r1 −W 2, 0 = q2 − p1 − iW1.

One readily realizes that besides the following determinations:

q1 = 0, ri = si = ti = ui = vi = 0, i = 1, 2,

q2 = p1, Im(p1) = −1

2
W1,

the homogeneous system will be satisfied if and only if we also have:

0 ≡W2.(43)

In other words, W2 is the only normalizable expression of this step. A careful
glance at the expression of this function shows that it will be normalized to zero as
soon as we put:

(44) r := −1

3

L (L (P ))

cc2
+

1

2

L (L (P ))

cc2
− i

2

L (P )b

c2c2
− 1

6

P L (P )

cc2
+

Pbb

c2c3
− i

b2b

c3c3
.

With this expression of r which reduces the group dimension, the only remaining
(inessential) torsion coefficient W1 takes the form:
(45)

W1 = −
1

2

T (L (P ))

c2c2
+

L (L (P ))b

c2c3
−

1

2

L (L (P ))b

c3c2
+

i

3

PL (L (P ))

c2c2
−

i

3

PL (L (P ))

c2c2
+

i

2

PL (L (P ))

c2c2
−

−
i

2

PL (L (P ))

c2c2
+

3

2

L (L (P ))b

c3c2
+ 3i

L (P )bb

c3c3
+

i

6

PPL (P )

c2c2
−

i

6

PPL (P )

c2c2
+

i

4

L (P )L (P )

c2c2
+ i

L (P )b
2

c2c4
−

− i
L (P )b2

c4c2
−

P L (P )b

c2c3
−

PL (P )b

c2c3
+ 2i

PPbb

c3c3
− i

P
2
b
2

c2c4
− 4

Pbb
2

c3c4
− i

P 2b2

c4c2
+ 8

Pb2b

c4c3
+ 9i

b2b
2

c4c4
+

+

(
−

L (P )

cc
+ 2i

Pb

c2c
− 2i

P b

cc2
− 6

bb

c2c2

)
s.

After determining so the group parameter r, we have to re-compute γ which can
now be expressed as a combination of the lifted coframe ρ, ζ, ζ, α, β, α̃, β̃ inde-
pendently of dr, cf. (37). For this, first we need the expression of dr, not only of
r.
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Differentiating r in (44) gives:

dr = − 1

3 cc2
dL (L (P )) +

L (L (P ))

3 c2c2
dc+

2L (L (P ))

3 cc3
dc+

1

2 cc2
dL (L (P ))− L (L (P ))

2 c2c2
dc−

− L (L (P ))

cc3
dc− i

2

L (P )

c2c2
db− i

2

b

c2c2
dL (P ) + i

L (P )b

c3c2
dc+ i

L (P )b

c2c3
dc− P

6 cc2
dL (P )−

− L (P )

6 cc2
dP +

PL (P )

6 c2c2
dc+

PL (P )

3 cc3
dc+

bb

c2c3
dP +

Pb

c2c3
db+

P b

c2c3
db− 2

Pbb

c3c3
dc− 3

Pbb

c2c4
dc−

− 2i
bb

c3c3
db− i

b2

c3c3
db+ 3i

b2b

c4c3
dc+ 3i

b2b

c3c4
,

in which, similarly to the expressions (31) and (40), one has to replace the differ-
entials:

dL (L (P )) =

(
1

c
L (L (L (P )))

)
· ζ +

(
1

c
L (L (L (P )))

)
· ζ+

+

(
− b

c2c
L (L (L (P )))− b

cc2
L (L (L (P ))) +

1

cc
T (L (L (P )))

)
· ρ,

dL (L (P )) =

(
1

c
L (L (L (P )))

)
· ζ +

(
1

c
L (L (L (P )))

)
· ζ+

+

(
− b

c2c
L (L (L (P )))− b

cc2
L (L (L (P ))) +

1

cc
T (L (L (P )))

)
· ρ.

Then thanks to the expressions (33), one can re-express dr in terms of the lifted
coframe ρ, ζ, ζ, α, β, α̃, β̃. Because of the length of the result, we do not present
this intermediate computation here. After all, replacing r and dr in the Maurer-
Cartan form γ in (37) re-shapes its expression under the form:

(46) γ := V1 ρ+ V2 ζ + V3 ζ,

with three certain functions given by:

V1 := −
1

3

T (L (L (P )))

c2c3
+

T (L (L (P )))

c2c3
+

1

3

L (L (L (P )))b

c3c3
+

1

3

L (L (L (P )))b

c2c4
−

1

2

bL (L (L (P )))

c2c4
−

−
1

2

L (L (L (P )))b

c3c3
+

i

6

PL (L (L (P )))

c2c3
−

i

6

PL (L (L (P )))

c2c3
− 3i

b2bs

c3c3
−

i

3

L (L (P ))b2

c4c3
−

−
5i

2

L (L (P ))bb

c3c4
−

L (L (P ))s

cc2
+

2

3

L (L (P ))Pb

c3c3
−

1

3

L (L (P ))Pb

c2c4
+

3

2

L (L (P ))s

cc2
−

−
L (L (P ))Pb

c3c3
+

2

3

L (L (P ))Pb

c2c4
−

1

3

L (L (P ))Pb

c3c3
+

1

3

L (L (P ))Pb

c3c3
+ i

L (L (P ))b2

c4c3
+

7i

3

L (L (P ))bb

c3c4
−

−
i

12

L (L (P ))L (P )

c2c3
−

3i

2

L (P )bs

c2c2
− 5

b3b
2

c5c5
−

L (P )P s

cc2
−

1

6

L (P )L (P )b

c2c4
+

1

2

L (P )PPb

c3c3
−

− 1

6

L (P )P
2
b

c2c4
− L (P )bb2

c3c5
− 4

L (P )b2b

c4c4
+ 3

Pbbs

c2c3
+

P
2
bb

2

c3c5
− 1

12

L (P )L (P )b

c3c3
− 3

PPb2b

c4c4
+

+ 3i
Pb3b

c5c4
+

5i

6

PL (P )b2

c4c3
− 6i

Pb2b
2

c4c5
+

i

12

L (P )L (P )P

c2c3
− 5i

6

L (P )Pbb

c3c4
,

V2 :=
1

2

L (L (L (P )))

c2c2
− 1

3

L (L (L (P )))

c2c2
− PL (L (P ))

c2c2
+

2

3

PL (L (P ))

c2c2
− 2i

3

L (L (P ))b

c3c2
−

− 1

6

L (L (P ))P

c2c2
− i

L (L (P ))b

c2c3
+

2i

3

L (L (P ))b

c2c3
s2 − L (P )b2

c4c2
+

1

3

PL (P )P

c2c2
+

+
i

3

L (P )Pb

c2c3
+

2i

3

L (P )Pb

c3c2
− 1

6

L (P )L (P )

c2c2
− 2i

Pb2b

c4c3
+ 2

b2b
2

c4c4
,

V3 := −1

3

L (L (L (P )))

cc3
+

2

3

L (L (P ))P

cc3
+

1

2

L (L (L (P )))

cc3
− 7

6

L (L (P ))P

cc3
−

− 1

6

L (P )L (P )

cc3
+

1

3

L (P )P
2

cc3
.
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One should notice that V2 depends on the group parameter s, while V1 and V3 do
not.

Now, substituting this new expression of γ into the lastly achieved structure
equation (42), changes it into the form (remind that W2 vanishes after determining
r):

dρ = α ∧ ρ+ α̃ ∧ ρ+ i ζ ∧ ζ,
dζ = β ∧ ρ+ α ∧ ζ,
dζ = β̃ ∧ ρ+ α̃ ∧ ζ,
dα = δ ∧ ρ+ 2 i ζ ∧ β + i ζ ∧ β,
dβ = δ ∧ ζ + β ∧ α+ V2 ζ ∧ ρ+ V3 ζ ∧ ρ

=
(
δ − V2 ρ

)
∧ ζ + β ∧ α+ V3 ζ ∧ ρ,

dα̃ = δ ∧ ρ− 2 i ζ ∧ β − i ζ ∧ β̃,
dβ̃ = δ ∧ ζ + β̃ ∧ α+ iW1 ρ ∧ ζ + V 3 ζ ∧ ρ+ V 2 ζ ∧ ρ

=
(
δ + iW1 ρ− V 2 ρ

)
∧ ζ + β̃ ∧ α+ V 3 ζ ∧ ρ.

(47)

At present, we have just one group parameter s. The complete absorption will
be rigorously possible only if the seemingly implausible identity:

V2 = −iW1 + V 2,

would be satisfied, because it would enable us to modify-rename:
δ := δ − V2ρ

= δ +
(
iW1 − V 2

)
ρ

such a substitution for δ having no effect on the preceding wedge product δ ∧ ρ in
dα and dα̃.

We claim that the desired identity holds. In fact after simplification, we obtain:
(48)

V 2 − iW1 − V2 =
1

3 c2c2

(
− 3L (L (L (P ))) + 3L (L (L (P ))) + L (L (L (P )))− L (L (L (P )))+

+ PL (L (P ))− PL (L (P ))− PL (L (P )) + PL (L (P ))

)
.

Serendipitously, this imaginary expression is much simplified and it does not
include the group parameter s. To show that it vanishes identically, we need the
following result:

Lemma 4.6. ([15], Proposition 6.1) Let H1 and H2 be two vector fields on a
manifolds M satisfying:

[H1, [H1, H2]] = Φ1[H1,H2], [H2, [H1, H2]] = Φ2[H1,H2],

for some two certain functions Φ1 and Φ2. Then the following four identities in-
volving third-order derivatives are satisfied:

0
I≡ −H1(H2(H1(Φ2))) + 2H2(H1(H1(Φ2)))−H2(H2(H1(Φ1)))−
− Φ2H1(H2(Φ1)) + Φ2H2(H1(Φ1)),

0
II≡ −H2(H1(H1(Φ2))) + 2H1(H2(H1(Φ2)))−H1(H1(H2(Φ2)))−

− Φ1H2(H1(Φ2)) + Φ1H1(H2(Φ2)),

0
III≡ −H1(H1(H1(Φ2))) + 2H1(H2(H1(Φ1)))−H2(H1(H1(Φ1)))+

+ Φ1H1(H1(Φ2))− Φ1H2(H1(Φ1)),
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0
IV≡ H2(H2(H1(Φ2)))− 2H2(H1(H2(Φ2))) +H1(H2(H2(Φ2)))−

− Φ2H2(H1(Φ2)) + Φ2H1(H2(Φ2)). �

Corollary 4.7. The above expression (48) of V 2 − iW1 − V2 in fact vanishes
identically.

Proof. Subtracting the equation II from I gives:

0 ≡ 3H2(H1(H1(Φ2)))− 3H1(H2(H1(Φ2)))−H2(H2(H1(Φ1))) +H1(H1(H2(Φ2)))−
− Φ2H1(H2(Φ1)) + Φ2H2(H1(Φ1)) + Φ1H2(H1(Φ2))− Φ1H1(H2(Φ2)).

Now, it suffices to put Φ1 := P,Φ2 := P and H1 = L ,H2 = L into the above
equation, taking account of the reality condition L (P ) = L (P ). �

Consequently, the equality δ − V2ρ = δ + iW1ρ− V 2ρ permits us to apply the
substitution δ 7→ δ − V2ρ. After renaming the single torsion coefficient V3 as I,
the structure equations (47) received the much simplified form:

dρ = α ∧ ρ+ α̃ ∧ ρ+ i ζ ∧ ζ,
dζ = β ∧ ρ+ α ∧ ζ,
dζ = β̃ ∧ ρ+ α̃ ∧ ζ,
dα = δ ∧ ρ+ 2 i ζ ∧ β + i ζ ∧ β,
dβ = δ ∧ ζ + β ∧ α+ I ζ ∧ ρ,
dα̃ = δ ∧ ρ− 2 i ζ ∧ β − i ζ ∧ β̃,
dβ̃ = δ ∧ ζ + β̃ ∧ α+ I ζ ∧ ρ,

(49)

with the single (modified) Maurer-Cartan form δ (after simplification):
(50)
δ = ds+

+

(
− s2 +

1

3

L (L (L (P )))

c2c2
− 1

2

L (L (L (P )))

c2c2
− 2

3

PL (L (P ))

c2c2
+

2i

3

L (L (P ))b

c3c2
+

L (L (P ))P

c2c2
+

+ i
L (L (P ))b

c2c3
+

1

6

L (L (P ))P

c2c2
− 2i

3

L (L (P ))b

c2c3
− 2i

3

L (P )Pb

c3c2
+

L (P )b2

c4c2
−

− 1

3

L (P )PP

c2c2
− i

3

L (P )P b

c2c3
+

1

6

L (P )L (P )

c2c2
− 2

b2b
2

c4c4
+ 2i

Pb2b

c4c3

)
· ρ+

+

(
P s

c
+ 2i

sb

cc
− i

3

L (L (P ))

c2c
+

i

3

L (P )P

c2c
− L (P )b

c3c
+ 2

bb
2

c3c3
− 2i

Pbb

c3c2

)
· ζ+

+

(
i
bs

cc
− i

2

L (L (P ))

cc2
+

i

3

L (L (P ))

cc2
+

i

6

L (P )P

cc2
+ 2

b2b

c3c3
− i

Pb2

c3c2

)
· ζ+

+ sα−
(
P

c
+ 2i

b

cc

)
· β + s α̃− i

b

cc
β̃,

As mentioned before, I is independent of the only remaining group parameter s,
hence it is impossible to normalize it. Consequently, this torsion coefficient is
actually an essential invariant of the problem.

4.4. Second prolongation. In the situation that we have still one undetermined
group parameter s without the possibility of normalizing the single essential torsion
coefficient I, we have to prolong the latest structure equations (49) by adding the
group parameter s to the set of base variables z, z, u, b, b, c, c and adding the 1-
form δ to the coframe {ρ, ζ, ζ, α, α̃, β, β̃}. Before starting this step, let us present
the following result:
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Lemma 4.8. The above modified 1-form δ is the unique one which enjoys the struc-
ture equations (49).

Proof. Assume that δ and δ′ are two forms satisfying the structure equations, si-
multaneously. A subtraction immediately gives:

0 ≡ (δ − δ′) ∧ ρ, 0 ≡ (δ − δ′) ∧ ζ,

which according to Cartan’s lemma implies that δ − δ′ must be a combination of
only ρ and of only ζ, which clearly implies δ − δ′ = 0. �

This shows that we do not encounter any new (prolonged) group parameter while
starting the next prolongation. In other words, the prolonged structure group will
be automatically reduced to an e-structure. Hence it only remains to compute dδ.

Proposition 4.9. The exterior differentiation dδ has the form:

(51) dδ = δ ∧ α+ δ ∧ α̃+ i β ∧ β̃ + T ρ ∧ ζ + T ρ ∧ ζ,

for a certain complex function T.

Proof. Differentiating dα in the last structure equation (49) gives:

0 ≡ dδ ∧ ρ− δ ∧ α ∧ ρ− δ ∧ α ∧ ρ−i δ ∧ ζ ∧ ζ
a
−2i δ ∧ ζ ∧ ζ

a
−2i β ∧ α ∧ ζ

b
+

+2 i β ∧ α ∧ ζ
b
+ 2i β̃ ∧ β ∧ ρ

c
−i δ ∧ ζ ∧ ζ

a
−i β ∧ α ∧ ζ

d
+i β ∧ α ∧ ζ

d
+ i β ∧ β ∧ ρ

c
,

in which the underlined terms can be simplified together and bring the following
simple equality:

(dδ − δ ∧ α− δ ∧ α− i β ∧ β) ∧ ρ ≡ 0.(52)

On the other hand, from differentiating dβ and dβ we also find:
(53)
(dδ − δ ∧ α− δ ∧ α− i β ∧ β) ∧ ζ + (dI ∧ ζ − 3 Iα ∧ ζ + Iα ∧ ζ︸ ︷︷ ︸

Γ

) ∧ ρ ≡ 0,

(dδ − δ ∧ α− δ ∧ α− i β ∧ β) ∧ ζ + (dI ∧ ζ − 3 Iα ∧ ζ + Iα ∧ ζ︸ ︷︷ ︸
Γ

) ∧ ρ ≡ 0,

after a slight simplification. Now, applying the Cartan’s Lemma 4.1 to the equality
(52) gives:

dδ = δ ∧ α+ δ ∧ α+ i β ∧ β + ξ ∧ ρ,(54)

for some 1-form ξ. Putting then this expression of dδ into (53) brings:

(ξ ∧ ζ − Γ) ∧ ρ = 0,(55)

(ξ ∧ ζ − Γ) ∧ ρ = 0.

Applying again the Cartan’s Lemma to the first equation, we get:

ξ ∧ ζ − Γ = A ∧ ρ,

for some 1-form A , or equivalently:

ξ ∧ ζ − (dI− 3 Iα+ Iα) ∧ ζ − A ∧ ρ = 0.

Applying the Cartan’s Lemma, this time to the last equality, we obtain:

ξ = A1ζ +A2ζ +A3ρ,(56)
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for some certain functions A1, A2, A3. Subtracting the conjugation of the second
equation in (55) from the first one also gives:

(ξ ∧ ζ − ξ ∧ ζ) ∧ ρ ≡ 0,

and hence there is a 1-form C with:

(ξ − ξ) ∧ ζ + C ∧ ρ ≡ 0.

We apply again the Cartan’s lemma and this time we obtain the following equation
for two certain complex functions B1 and B2:

ξ − ξ = B1ζ +B2ρ.(57)

The left-hand side of this equality is imaginary and hence the coefficient of ζ must
vanish: B1 = 0. On the other hand, according to (56) we have:

ξ − ξ = (A1 −A2)ζ + (A2 −A1)ζ + (A3 −A3)ρ.

Comparing this equation with (57) then immediately implies thatA2 = A1. Hence,
denoting −A1 by T gives the following expression for the 2-form ξ ∧ ρ according
to (56):

ξ ∧ ρ = Tρ ∧ ζ + T ρ ∧ ζ.

To complete the proof, it is now enough to put the above expression into (54). �

Consequently we will have the following (prolonged) structure equations after
adding the differentiation of the new lifted 1-form δ to the previous ones:

dρ = α ∧ ρ+ α̃ ∧ ρ+ i ζ ∧ ζ,
dζ = β ∧ ρ+ α ∧ ζ,
dζ = β̃ ∧ ρ+ α̃ ∧ ζ,
dα = δ ∧ ρ+ 2 i ζ ∧ β + i ζ ∧ β,
dβ = δ ∧ ζ + β ∧ α+ I ζ ∧ ρ,
dα̃ = δ ∧ ρ− 2 i ζ ∧ β − i ζ ∧ β̃,
dβ̃ = δ ∧ ζ + β̃ ∧ α+ I ζ ∧ ρ,
dδ = δ ∧ α+ δ ∧ α̃+ i β ∧ β̃ + T ρ ∧ ζ + T ρ ∧ ζ.

(58)

These equations provide the final e-structure.

Our ultimate task is to find the expression of the new coefficient T. For this aim,
we employ the same procedure as that of finding the expression of W in (34). At
first, we have to compute the exterior differentiatial of δ in (50). Unfortunately,
this expression is extensive (almost 2 pages long), hence we do not present it here.

Another much shorther path is to carefully compare this expression of dδ to that
from (58). Considering the coefficient of ρ∧ ζ reveals a compact expression for T,
granted the four equations I–IV of Lemma 4.6 and their first order derivations with
respect to the operators L and L . Then one finds out that the desired function T
can be expressed in terms of the essential invariant I as:

T =
1

c

(
L (I)− P I

)
− i

b

cc
I.

From standard features of the theory, we conclude:
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Theorem 4.1. The equivalence problem for strongly pseudoconvex Levi-
nondegenerate hypersurfaces M3 ⊂ C2 has a single essential primary invariant:

I = −1

3

L (L (L (P )))

cc3
+

2

3

L (L (P ))P

cc3
+

1

2

L (L (L (P )))

cc3
− 7

6

L (L (P ))P

cc3
−

− 1

6

L (P )L (P )

cc3
+

1

3

L (P )P
2

cc3
,

in which the fundamental function P := P (z, z, u) expresses explicitly in terms of
the graphing function ϕ as:

P :=
`z − `Au +A`u

`
,

where:

A :=
i ϕz

1− i ϕu
and ` := i

(
Az +AAu −Az −AAu

)
.

In particular, this invariant vanishes when and only when M3 is biholomorphic to
the model Heisenberg sphere defined as the graph of the function:

v = zz.

Proof. It is only necessary to observe that with the assumption ϕ(z, z, u) := zz,
one immediately gets P ≡ 0, and hence I ≡ 0.

Conversely, if I = 0, whence also T = 0, the constructed {e}-structure identi-
fies with the Maurer-Cartan equations of the real projective group, and one reovers
the Heisengerg sphere as the orbit of the origin under the action of this group. �

5. A BRIEF COMPARISON TO THE
CARTAN-TANAKA GEOMETRY OF REAL HYPERSURFACES M3 ⊂ C2

We now turn to a brief discussion of Cartan geometry of the under consideration
real hypersurfaces M3 ⊂ C2 which is much pertinent to their problem of equiv-
alence. It helps us to understand better the generally close relationship between
the equivalence problems and Cartan geometries. Here, we borrow the results,
notations and terminology from the recent paper [15] (see also [20]).

Definition 5.1. Let G be a Lie group with a closed subgroup H , and let g and h be
the corresponding Lie algebras. A Cartan geometry of type (G,H) on a manifold
M is a principal H-bundle:

π : G −→M

together with a g-valued 1-form ω, called the corresponding Cartan connection, on
G subjected to the following three conditions:

(i) ωp : TpG −→ g is a linear isomorphism at every point p ∈ G ;
(ii) if Rh(p) := ph is the right translation on G by any h ∈ H , then:

R∗
hω = Ad(h−1) ◦ ω;

(iii) ω(H†) = h for every h ∈ h, where:

H†|p := d
dt

∣∣
0

(
(Rexp(th)(p)

)
is the left-invariant vector field on G corresponding to h.
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Among Cartan geometries of type (G,H), the most symmetric one, called Klein
geometry of type (G,H), arises when M = G/H , when π : G → G/H is the
projection onto left-cosets, and when ω = ωMC : TG → g is the Maurer-Cartan
form on G.

In general, with a Cartan connection ω as above, if we associate the vector field
X̂ := ω−1(x) on G to an arbitrary element x of g, then the infinitesimal version of
condition (ii) reads as:

[X̂, Ŷ ] = [̂x, y]g,

whenever y belongs to h. But in the special case of Klein geometries, this equality
holds moreover for any arbitrary element y of g. This difference motivates one to
define the curvature function:

κ : G −→ Hom
(
Λ2(g/h), g

)
associated to the Cartan connection ω by:

κp(x, y) := ωp

(
[X̂, Ŷ ]

)
− [x, y]g (p∈G , x, y∈ g/h).

In a way, the curvature function measures how far a Cartan geometry is from its cor-
responding Klein geometry. In particular, a Cartan geometry is locally equivalent
to its corresponding Klein geometry if and only if its curvature function vanishes
identically (see [20]).

Now, let us return to the Levi-nondegenerate real hypersurfaces M3 regarded
as deformations of the Heisenberg sphere H3. In [15], we built a regular normal
Cartan connection of type (G,H) in which G is the projective group associated to
the 8-dimensional projective Lie algebra:

g := aut(H3) = SpanR(t, h1, h2, d, r, i1, i2, j)

of infinitesimal CR-automorphisms of H3 equipped with the full commutator table:

t h1 h2 d r i1 i2 j

t 0 0 0 2 t 0 h1 h2 d
h1 ∗ 0 4 t h1 h2 6 r 2 d i1
h2 ∗ ∗ 0 h2 −h1 −2 d 6 r i2
d ∗ ∗ ∗ 0 0 i1 i2 2 j
r ∗ ∗ ∗ ∗ 0 −i2 i1 0
i1 ∗ ∗ ∗ ∗ ∗ 0 4 j 0
i2 ∗ ∗ ∗ ∗ ∗ ∗ 0 0
j ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.

Moreover, H is the subgroup of G associated to the 5-dimensional subalgebra:

h := SpanR(d, r, i1, i2, j).

The Lie algebra g is in fact graded, in the sense of Tanaka [22]:

g = g−2 ⊕ g−1︸ ︷︷ ︸
g−

⊕ g0 ⊕ g1 ⊕ g2︸ ︷︷ ︸
h

,

with g−2 := SpanR(t), with g−1 := SpanR(h1, h2), with g0 := SpanR(d, r), with
g1 := SpanR(i1, i2) and with g2 := SpanR(j). Here g− = g

/
h is in fact the

Levi-Tanaka symbol algebra of any Levi nondegenerate M3 ⊂ C2.
According to this grading, the curvature function κ decomposes into homoge-

neous components:
κ := κ(0) + · · ·+ κ(5)
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where κ(s) assigns to each pair (pj1 , pj2) ∈ Λ2g−, for pj1 ∈ gji , ji = −2,−1,
an element of gj1+j2+s. It turns out that each curvature component κ(s) can be
formulated in the form:

(59) κ(s) =
∑

s=j−(j1+j2)

κ
pj1pj2
qj p∗j1 ∧ p∗j2 ⊗ qj ,

where κ
pj1pj2
qj (p) is the real-valued function defined on an arbitrary point p of G

as the coefficient of qj in κ(p)(pj1 , pj2), where pj1 ∈ gj1 , pj2 ∈ gj2 , qj ∈ gj are
some mentioned basis elements of g, for j1, j2 = −2,−1 and j = −2,−1, 0, 1, 2.

In fact, the process of construction the sought Cartan geometry in [15] has
mainly consisted in annihilating as many curvature components as possible, and
finally we were able to annihilate κ(0) (easiest thing), κ(1), κ(2) and κ(3) by an
appropriate progressive building of ω which requires somewhat hard elimination
computations. Such computations have been done in the framework of the pow-
erful algorithm of Tanaka [22] which involves some modern concepts such as Lie
algebras of infinitesimal CR-automorphisms, Lie algebra cohomology, Tanaka pro-
longation and so on. Finally we found out the (Proposition 7.3 and Theorem 7.4 of
[15]):

Theorem 5.1. The Cartan geometry associated to any C 6-smooth Levi nondegen-
erate deformation M3 ⊂ C2 of the Heisenberg sphere H3 ⊂ C2 has the curvature
function:

(60)

κ = κ(4) + κ(5) =

= κh1t
i1

h∗1 ∧ t∗ ⊗ i1 + κh1t
i2

h∗1 ∧ t∗ ⊗ i2 + κh2t
i1

h∗2 ∧ t∗ ⊗ i1+

+ κh2t
i2

h∗2 ∧ t∗ ⊗ i2 + κh1t
j h∗1 ∧ t∗ ⊗ j+ κh2t

j h∗2 ∧ t∗ ⊗ j,

with:
κh1t
i1

= −∆1 c
4 − 2∆4 c

3d− 2∆4 cd
3 +∆1 d

4,

κh1t
i2

= −∆4 c
4 + 2∆1 c

3d+ 2∆1 cd
3 +∆4 d

4,

κh2t
i1

= κh1t
i2

, κh2t
i2

= −κh1t
i1

,

κh1t
j = Ĥ1

(
κh2t
i2

)
− Ĥ2

(
κh1t
i2

)
, κh2t

j = −Ĥ1

(
κh2t
i1

)
+ Ĥ2

(
κh1t
i1

)
and with the essential invariants, explicitly expressed in terms of the defining func-
tion ϕ, as:
(61)
∆1 = 1

384

[
H1(H1(H1(Φ1)))−H2(H2(H2(Φ2))) + 11H1(H2(H1(Φ2)))− 11H2(H1(H2(Φ1)))+

+ 6Φ2 H2(H1(Φ1))− 6Φ1 H1(H2(Φ2))− 3Φ2 H1(H1(Φ2)) + 3Φ1 H2(H2(Φ1))−
− 3Φ1 H1(H1(Φ1)) + 3Φ2 H2(H2(Φ2))−H1(Φ1)H1(Φ1) +H2(Φ2)H2(Φ2)−

− 2 (Φ2)
2 H1(Φ1) + 2 (Φ1)

2 H2(Φ2)− 2 (Φ2)
2 H2(Φ2) + 2 (Φ1)

2 H1(Φ1)
]
,

∆4 = 1
384

[
− 3H2(H1(H2(Φ2)))− 3H1(H2(H1(Φ1))) + 5H1(H2(H2(Φ2))) + 5H2(H1(H1(Φ1)))+

+ 4Φ1 H1(H1(Φ2)) + 4Φ2 H2(H1(Φ2))− 3Φ2 H1(H1(Φ1))− 3Φ1 H2(H2(Φ2))−
− 7Φ2 H1(H2(Φ2))− 7Φ1 H2(H1(Φ1))− 2H1(Φ1)H1(Φ2)− 2H2(Φ2)H2(Φ1)+

+ 4Φ1Φ2 H1(Φ1) + 4Φ1Φ2 H2(Φ2)
]
.

This geometry is equivalent to that of its model H3 if and only if its two essen-
tial curvatures κh1t

i1
and κh1t

i2
vanish identically; equivalently, the two explicit real



32 JOËL MERKER AND MASOUD SABZEVARI

functions ∆1 and ∆4 of only the three horizontal real variables (x, y, u), with
z = x+ iy, w = u+ iv, vanish identically.

Inspecting the method of construction of the fundamental vector fields H1 and
H2 in section 5 of [15] shows that they are in fact the real and imaginary parts
of the tangent vector field 1

2L , introduced in this paper. Moreover, checking the
expressions of T,Φ1,Φ2 in [15], enjoying the equalities:

[H1,H2] = 4T, [H1, T ] = Φ1 T, [H2, T ] = Φ2 T,

specifies that we have:

L =
1

2
H1 −

i

2
H2, L =

1

2
H1 +

i

2
H2, T = −4T,

P =
1

2
Φ1 −

i

2
Φ2.

Now, putting the above complex expressions of L ,L ,T , P , into the single
complex essential invariant J of the equivalence problem of real hypersurfaces
M3 ⊂ C2 and comparing them carefully to the above real expressions of the es-
sential invariants ∆1 and ∆2 of their Cartan geometries surprisingly reveals that:

Theorem 5.2. The following relation holds between essential invariants of the
equivalence problem and Cartan geometry of the Levi-nondegenerate C 6-smooth
real hypersurfaces M3 ⊂ C2:

I =
4

cc3
(
∆1 + i∆4

)
.

This result shows that how much explicitly the two concepts of equivalence prob-
lem and of Cartan geometry match up.
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