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Abstract. On a real analytic 5-dimensional CR-generic submanifold M5 ⊂ C4

of codimension 3 hence of CR dimension 1, which enjoys the generically satisfied
nondegeneracy condition:

5 = rankC
(
T 1,0M + T 0,1M +

[
T 1,0M, T 0,1M

]
+

+
[
T 1,0M, [T 1,0M,T 0,1M ]

]
+

[
T 0,1M, [T 1,0M,T 0,1M ]

])
,

a canonical Cartan connection is constructed after reduction to a certain partially
explicit {e}-structure of the concerned local biholomorphic equivalence problem.
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1. Introduction

The goal of this announcement is to study local real analytic (C ω) 5-dimensional
CR-generic submanifolds:

M5 ⊂ C4

of codimension 3 hence of CR dimension 1 that are maximally minimal in the sense
that:

5 = rankC
(
T 1,0M + T 0,1M +

[
T 1,0M, T 0,1M

]
+

+
[
T 1,0M, [T 1,0M,T 0,1M ]

]
+
[
T 0,1M, [T 1,0M,T 0,1M ]

])
.

In the terminology of [4], such CR manifolds M5 ⊂ C4 are said to belong to the
General Class III1. Most considerations being local, by convention, neighborhoods
and their shrinkings will be unmentioned, as in Élie Cartan’s original works, cf. also
Peter Olver’s monograph [6].

Therefore, if L denotes a local vector field generator for T 1,0M , then the 5 vector
fields:

L , L , T :=
√
−1

[
L ,L

]
= T , S :=

[
L ,T

]
, S =

[
L ,T

]
,

1
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are assumed to constitute a (local) frame for C ⊗R TM , that is to say, at each point
p ∈ M :

5 = rankC
(
L

∣∣
p
, L

∣∣
p
, T

∣∣
p
, S

∣∣
p
, S

∣∣
p

)
.

In coordinates (z, w1, w2, w3) ∈ C4 with wj = uj +
√
−1 vj , for Beloshapka’s cubic

model having equations:

M5
c :

 v1 = zz,

v2 = z2z + zz2,

v3 = −√
−1

(
z2z − zz2

)
,

the five vector fields in question ([5], p. 94) are visibly everywhere linearly indepen-
dent:

Lc =
∂
∂z

+
√
−1 z ∂

∂u1
+

√
−1

(
2 zz + z2

)
∂

∂u2
+
(
2 zz − z2

)
∂

∂u3
,

L c =
∂
∂z

− √
−1 z ∂

∂u1
− √

−1
(
2zz + z2

)
∂

∂u2
+
(
2 zz − z2

)
∂

∂u3
,

Tc = 2 ∂
∂u1

+ 4
(
z + z

)
∂

∂u2
− 4

√
−1

(
z − z

)
∂

∂u3
,

Sc = 4 ∂
∂u2

− 4
√
−1

∂
∂u3

,

S c = 4 ∂
∂u2

+ 4
√
−1

∂
∂u3

.

Inspired by other similar models such as the Heisenberg quadric M3
q ⊂ C2 3 (z, w1)

the equation of which is the just the first one v1 = zz above, inspired also by the
companion Beloshapka cubic M4

c ⊂ C3 3 (z, w1, w2) the two equations of which
are just the first two above v1 = zz, v2 = z2z + zz2, knowing that canonical Cartan
connections have been constructed for general geometry-preserving deformations of
these two models, by, respectively, Cartan [2] and by Beloshapka-Ezhov-Schmalz [1],
the objective of the present announcement is to show how to extract, from the recent
prepublication of an extensive memoir ([5]), the construction of a canonical Cartan
connection associated to local biholomorphic equivalences — or equivalently, to real
analytic CR equivalences — for General Class III1 CR manifolds.

Beloshapka’s cubic model M5
c ⊂ C4 happens to be a homogeneous space, namely a

quotient:
M5

c
∼= G7

/
H2 ∼= N5

4 ,

of a 7-dimensional real Lie group G7 by a 2-dimensional closed commutative Lie sub-
group N2 ∼= (C∗,×), the resulting quotient being the unique connected and simply
connected nilpotent Lie group corresponding to the real nilpotent Lie algebra with
generators x1, x2, x3, x4, x5 named n45 in the Goze-Remm classification:

n45 :


[x1, x2] = x3,

[x1, x3] = x4,

[x2, x3] = x5,

unwritten brackets being zero.
Indeed, it is known (see [5] for details) that the Lie algebra autCR(M

5
c ) of infini-

tesimal CR automorphisms of Beloshapka’s cubic model M5
c ⊂ C4 is 7-dimensional,
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generated by the real parts of the following 7 vector fields of type (1, 0) with holomor-
phic coefficients:

S2 :=
∂

∂w3
,

S1 :=
∂

∂w2
,

T := ∂
∂w1

,

L1 :=
∂
∂z

+ 2
√
−1 z ∂

∂w1
+
(
2
√
−1 z2 + 4w1

)
∂

∂w2
+ 2 z2 ∂

∂w3
,

L2 :=
√
−1

∂
∂z

+ 2 z ∂
∂w1

+ 2 z2 ∂
∂w2

−
(
2
√
−1 z2 − 4w1

)
∂

∂w3
,

D := z ∂
∂z

+ 2w1
∂

∂w1
+ 3w2

∂
∂w2

+ 3w3
∂

∂w3
,

R :=
√
−1 z ∂

∂z
− w3

∂
∂w2

+ w2
∂

∂w3
.

Their expressions show well that the isotropy Lie subalgebra of the origin 0 ∈ C4 is
generated by the last two fields D and R, the only ones all of whose coefficients vanish
there. Furthermore, the complete Lie bracket commutator table:

S2 S1 T L2 L1 D R
S2 0 0 0 0 0 3S2 −S1

S1 ∗ 0 0 0 0 3S1 S2

T ∗ ∗ 0 4S2 4S1 2T 0
L2 ∗ ∗ ∗ 0 −4T L2 −L1

L1 ∗ ∗ ∗ ∗ 0 L1 L2

D ∗ ∗ ∗ ∗ ∗ 0 0
R ∗ ∗ ∗ ∗ ∗ ∗ 0

shows that the five fields S2, S1, T , L2, L1 generate a nilpotent Lie subalgebra of
autCR(M

5
c ) visibly isomorphic to n45.

Once an expected appropriate model geometry G/H of Klein type has been set up,
its curved Cartan type deformations can enter the scene.

Recall that a Cartan geometry on a C ω manifold M modelled on a homogeneous
space G/H , where G is a connected Lie group and H ⊂ G is a closed connected Lie
subgroup, with Lie(H) = h ⊂ g = Lie(G), is a pair (P, $) consisting of an H-
principal bundle π : P −→ M , with right action Rh : p 7−→ p h for h ∈ H and p ∈ P ,
together with a g-valued differential 1-form $ : TP −→ g enjoying:

(i) $p : TpP
∼−→ g is isomorphic a every point p ∈ P ;

(ii) for every y ∈ h, if Y † denotes the vector field Y †|p := d
dt

∣∣
0

(
p exp(t y)

)
, then

$(Y †) = y;

(iii) at every p ∈ P , for every vp ∈ TpP :

$ph

(
Rh∗(vp)

)
= Ad(h−1)

[
$p(vp)

]
.

If M is a manifold endowed with a certain determined type of geometric structure,
e.g. an integrable CR structure, either abstract or embedded, it is adequate to call
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canonical a Cartan geometry (P,$) on M when all (local or global) automorphisms
H : M −→ M of the geometric structure lift as bundle automorphisms:

P
Ĥ //

π

��

P

π
��

M
H

// M,

satisfying Ĥ∗($)
= $, and when conversely also, all such π-fiber preserving maps Ĥ

satisfying Ĥ∗($)
= $, descend as automorphisms H : M → M .

The main result here, computationally less advanced than what comes out from [5],
can be summarized as follows.

Theorem 1.1. Associated to every Class III1 local CR-generic C ω submanifold M5 ⊂
C4, there is a canonical Cartan connection (P 7, $) modelled on the nilpotent homo-
geneous space G7

/
H2 ∼= N5

4
∼= M5

c whose natural orbit space is Beloshapka’s cubic
model M5

c ⊂ C4.

Generally, if (P,$) is a canonical Cartan connection on a manifold M belonging
to a determined general class of geometric structures, then it automatically carries an
associated canonical absolute parallelism, or so-called {e}-structure, obtained, with a
basis e1, . . . , er of g and with r := dimRg, by plainly setting:

Vi

∣∣
p
:= $−1

p (ei) (16 i6 r),

the obtained vector fields V1, . . . , Vr making up a frame on P .
The proof of the theorem consists in constructing an absolute parallelism (Section 3)

and to verify that it satisfies the algebraic conditions required to constitute a Cartan
connection (Section 4).

Acknowledgments. The authors would like to thank Professor Alexander Isaev and an
anonymous referee, for realizing that the plain constructions of absolute parallelisms
or of Cartan connections usually stays at a lower level than precise inspections of the
parametric expressions of incoming invariants and of their nonlinear relations.

2. Initial G-structure and initial Darboux structure

The goal being to set up a Cartan procedure in order to reduce to an {e}-structure
the equivalence problem under local biholomorphisms for such M5 ⊂ C4 belonging to
Class III1, and ultimately, to construct an associated Cartan connection, the first task is
to examine how such a frame

{
L ,L ,T ,S ,S

}
transforms under an arbitrary local

biholomorphic map:
H : C4 −→ C′4.

After appropriate unmentioned shrinkings of concerned neighborhoods, the image:

H(M) =: M ′
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also becomes ([4], Section 3) a CR-generic 3-codimensional submanifold M ′5 ⊂ C4

of CR dimension 1, also equipped from its side with an analogous, independently
constructed, frame starting from a local generator L ′ of T 1,0M ′:{

L ′, L
′
, T ′, S ′, S

′}
, with T ′ :=

√
−1

[
L ′,L

′]
, S ′ :=

[
L ′,T ′],

and because the restriction

H
∣∣
M
: M −→ M ′

is known to be a CR-diffeomorphism, namely because H∗(T
1,0M) = T 1,0M ′, there

must exist a nowhere vanishing C ω function defined on M ′ such that ([4], Section 4):

H∗(L ) = a′ L ′,

whence by plain conjugation (conventionally not bearing on the differential H∗):

H∗
(
L

)
= a′ L

′
.

Proposition 2.1. ([5]) Under a local biholomorphic map H : C4 → C′4, two adapted
frames associated to two H-equivalent CR-generic M5 ⊂ C4 and H(M) =: M ′5 ⊂ C′4

transfer, in terms of certain five C-valued local C ω functions a′, b′, c′, d′, e′, defined on
M ′ as: 

L
L
T
S
S

 =


a′ 0 0 0 0
0 a′ 0 0 0

b′ b
′

a′a′ 0 0
e′ d′ c′ a′a′a′ 0

d
′

e′ c′ 0 a′a′a′




L ′

L
′

T ′

S ′

S
′

 .

Proof. Computing further the bracket shows:

H∗
(
T

)
= H∗

(√
−1

[
L , L

])
=

√
−1

[
H∗(L ), H∗(L )

]
=

√
−1

[
a′ L ′, a′ L

′]
= a′a′

√
−1

[
L ′, L

′]−√
−1 a′ L

′
(a′)︸ ︷︷ ︸

=: b′

·L ′ +
√
−1 a′ L ′(a′) · L ′

=: a′a′ T ′ + b′ L ′ + b
′
L

′
,

in terms of some new function b′ to which an independent name is given. Then quite
similarly ([5], p. 98):

H∗(S ) = a′a′a′ S ′ + c′ T ′ + e′ L ′ + d′ L
′
,

H∗(S ) = a′a′a′ S
′
+ c′ T ′ + d

′
L

′
+ e′ L ′,

which completes the proof. �
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The 10 Lie brackets between the 5 local vector fields L , L , T , S , S involve a
first set of 5 local real analytic local functions A, B, P , Q, R appearing in:[

L ,S
]
= P · T +Q · S +R · S ,[

L ,S
]
= A · T +B · S +B · S ,[

L ,S
]
= A · T +B · S +B · S ,[

L ,S
]
= P · T +R · S +Q · S ,

with A being real-valued, as follows from an inspection of Jacobi identities ([5],
Lemma 13.3).

The 5 further real analytic functions E, F , G, J , K, with J also real-valued, appear-
ing in the remaining 3 Lie brackets:[

T ,S
]
= E · T + F · S +G · S ,[

T ,S
]
= E · T +G · S + F · S ,[

S ,S
]
=

√
−1 J · T +K · S −K · S ,

all express in terms of A, B, P , Q, R, for instance:

E =
√
−1

(
L (A)− L (P )− AQ− P R +B P + AB

)
,

F =
√
−1

(
L (B)− L (Q)−RR +BB + A

)
,

G =
√
−1

(
L (B)− L (R) +BR +BB −RQ−BQ− P

)
,

with similar longer expressions for J and K unwritten here ([5], Lemma 13.5).

Introduce then the coframe of C-valued 1-forms on M :{
σ0, σ0, ρ0, ζ0, ζ0

}
,

which is dual to the frame
{
S , S , T , L , L

}
, in this order. The 10 two-forms

making up a basis of C⊗R Λ2T ∗M will be constantly ordered as:

σ0 ∧ σ0, σ0 ∧ ρ0, σ0 ∧ ζ0, σ0 ∧ ζ0,

σ0 ∧ ρ0, σ0 ∧ ζ0, σ0 ∧ ζ0,

ρ0 ∧ ζ0, ρ0 ∧ ζ0,

ζ0 ∧ ζ0.
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Then the above initial Lie bracket structure translates as the following initial Darboux
structure ([5], p. 92) for the exterior differentials of the basis initial 1-forms:

dσ0 = −K · σ0 ∧ σ0 + F · σ0 ∧ ρ0 +Q · σ0 ∧ ζ0 +B · σ0 ∧ ζ0+

+G · σ0 ∧ ρ0 +B · σ0 ∧ ζ0 +R · σ0 ∧ ζ0 +

+ ρ0 ∧ ζ0,

dσ0 = K · σ0 ∧ σ0 +G · σ0 ∧ ρ0 +R · σ0 ∧ ζ0 +B · σ0 ∧ ζ0 +

+ F · σ0 ∧ ρ0 +B · σ0 ∧ ζ0 +Q · σ0 ∧ ζ0+

+ ρ0 ∧ ζ0,

dρ0 =
√
−1 J · σ0 ∧ σ0 + E · σ0 ∧ ρ0 + P · σ0 ∧ ζ0 + A · σ0 ∧ ζ0+

+ E · σ0 ∧ ρ0 + A · σ0 ∧ ζ0 + P · σ0 ∧ ζ0−
− √

−1 ζ0 ∧ ζ0,

while dζ0 = 0 and dζ0 = 0.

3. Reduction of the initial G-structure to an {e}-structure

In accordance with Proposition 2.1, the initial G-structure encoding local biholo-
morphic equivalences of manifolds M5 ⊂ C4 belonging to Class III1 is, after reorder-
ing the frame as

{
S ,S ,T ,L ,L

}
, the following closed Lie subgroup of GL5(C):

GIII1 :=

g :=


aaa 0 c c d
0 aaa c d e
0 0 aa b b
0 0 0 a 0
0 0 0 0 a

 : a ∈ C\{0}, b, c, d, e ∈ C

 .

Following Cartan and Olver ([6]), transposing then this matrix in order to express how
coframes do transfer, introduce the so-called lifted coframe:

σ
σ
ρ
ζ
ζ

 =


aaa 0 0 0 0
0 aaa 0 0 0
c c aa 0 0
e d b a 0
d e b 0 a



σ0

σ0

ρ0
ζ0
ζ0

 ,

with a, b, c, d, e here being independent variables, replacing the (unknown) functions
from Proposition 2.1. The inverse matrix is:

g−1 =


1

aa2
0 0 0 0

0 1
a2a

0 0 0
− c

a2a3
− c

a3a2
1
aa

0 0
b c−eaa
a2a4

bc−aad
a3a3

− b
aa2

1
a

0
bc−aad
a3a3

bc−eaa
a4a2

− b
a2a

0 1
a

 .
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Then the Maurer-Cartan forms of this matrix group GIII1 appear in the full expression
of dg · g−1, a new 5× 5 matrix which happens to be of the form:

dg · g−1 =


α1 + 2α1 0 0 0 0

0 2α1 + α1 0 0 0
α2 α2 α1 + α1 0 0
α3 α4 α5 α1 0
α4 α3 α5 0 α1

 ,

where (the expressions of α3, α4, α5 will not be used):

α1 :=
da

a
, α2 := − c da

aaaa
− c da

aaaa
+

dc

aaa
.

In order to compute at least partly the exterior derivative dσ and to determine the
explicit expressions of at least some of the torsion coefficients X• which will appear:

dσ =
(
2α1 + α1

)
∧ σ+

+X1 σ ∧ σ +X2 σ ∧ ρ+X3 σ ∧ ζ +X4 σ ∧ ζ +

+X5 σ ∧ ρ+X6 σ ∧ ζ +X7 σ ∧ ζ +

+ ρ ∧ ζ,

differentiate σ = a2aσ0, which gives:

dσ =
(
2 aa da+ a2 da

)
∧ σ0 + a2a dσ0,

obtain as an intermediate result:

dσ =
(
2α1 + dα1

)
∧ σ+

+ a2aK σ0 ∧ σ0 + a2aGσ0 ∧ ρ0 + a2aRσ0 ∧ ζ0 + a2aB σ0 ∧ ζ0 +

a2aF σ0 ∧ ζ0 + a2aQσ0 ∧ ζ0+

+ a2a ρ0 ∧ ζ0,

and replace:

σ0 =
1

a2a
σ,

ρ0 = − c

a2a3
− c

a3a2
σ +

1

aa
ρ,

ζ0 =
bc− aad

a3a3
+

bc− aae

a4a2
σ − b

a2a
ρ+

1

a
ζ,
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which, notably, provides:

X2 =
1

a2
G− b

aa2
B − b

a3
R +

d

aa2
,

X3 =
a

a2
R,

X4 =
1

a
B − c

aa2
,

X6 =
1

a
B,

X7 =
1

a
Q− c

a2a
,

other torsion coefficients being useless in what follows.
Proceeding similarly, the remaining two expressions of dρ and of dζ:

dρ = α2 ∧ σ + α2 ∧ σ + α1 ∧ ρ+ α1 ∧ ρ+

+ Y1 σ ∧ σ + Y2 σ ∧ ρ+ Y3 σ ∧ ζ + Y4 σ ∧ ζ +

+ Y 2 σ ∧ ρ+ Y 4 σ ∧ ζ + Y 3 σ ∧ ζ +

+ Y8 ρ ∧ ζ + Y 8 ρ ∧ ζ +

+
√
−1 ζ ∧ ζ,

dζ = α3 ∧ σ + α4 ∧ σ + α5 ∧ ρ+ α1 ∧ ζ +

+ Z1 σ ∧ σ + Z2 σ ∧ ρ+ Z3 σ ∧ ζ + Z4 σ ∧ ζ +

+ Z5 σ ∧ ρ+ Z6 σ ∧ ζ + Z7 σ ∧ ζ +

+ Z8 ρ ∧ ζ + Z9 ρ ∧ ζ +

+ Z10 ζ ∧ ζ,

can in principle be complemented by explicit expressions of all the appearing torsion
coefficients Y• and Z•, but only the single:

Y 8 =
c

a2a
+

√
−1

b

aa

will be useful at this stage, because of absorption facts.
Indeed, following Cartan’s procedure of determining the linear subspace of torsion

coefficients that are absorbable into modified Maurer-Cartan forms ([6]), introduce
modifications:

α̃1 := α1 − A1 · σ −B1 · σ − C1 · ρ−D1 · ζ − E1 · ζ,
α̃2 := α2 − A2 · σ −B2 · σ − C2 · ρ−D2 · ζ − E2 · ζ,

while the remaining three 1-forms α3, α4, α5 are kept untouched, where A•, B•, C•, D•,
E• are functions defined on M , i.e. assumed to be independent of the group variables
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a, b, c, d, e. Replacing then α1 and α2 gives, after collecting appropriately:

dσ =
(
2 α̃1 + α̃

1) ∧ σ+

+ σ ∧ σ
[
X1 − 2A1 −B1

]
+ σ ∧ ρ

[
X2

]
+ σ ∧ ζ

[
X3

]
+ σ ∧ ζ

[
X4

]
+

+ σ ∧ ρ
[
X5 − 2C1 − C1

]
+ σ ∧ ζ

[
X6 − 2D1 − E1

]
+ σ ∧ ζ

[
X7 − 2E1 −D1

]
+

+ ρ ∧ ζ,

dρ = α̃2 ∧ σ + α̃
2 ∧ σ + α̃1 ∧ ρ+ α̃

1 ∧ ρ+

+ σ ∧ σ
[
Y1 +A2 −A2

]
+ σ ∧ ρ

[
Y2 − C2 +A1 +B1

]
+ σ ∧ ζ

[
Y3 − E2

]
+ σ ∧ ζ

[
Y4 −D2

]
+

+ σ ∧ ρ
[
Y 2 − C2 +A1 +B1

]
+ σ ∧ ζ

[
Y 4 −D2

]
+ σ ∧ ζ

[
Y 3 − E2

]
+

+ ρ ∧ ζ
[
Y8 −D1 − E1

]
+ ρ ∧ ζ

[
Y 8 −D1 − E1

]
+

+
√
−1 ζ ∧ ζ.

At first, the fact that in dρ the coefficient X2 of σ ∧ ρ, the coefficient X3 of σ ∧ ζ and
the coefficient X4 of σ∧ ζ are left invariant, namely do not incorporate any A•, B•, C•,
D•, E•, immediately explains the first steps of the following:

Lemma 3.1. The three torsion coefficients X2, X3, X4 are essential, and the same also
holds true for X6 +X7 − 3Y 8.

Indeed, for this last, not immediately seen, linear combination, compute:

X̃6 + X̃7 − 3 Ỹ 8 = X6 − 2D1 − E1+

+X7 − 2E1 −D1+

− 3Y 8 + 3D1 + 3E1 = X6 +X7 − 3Y 8. �

Observe here that when R 6≡ 0, the essential torsion coefficient X3 = a
a2
R can

be assigned the value X3 := 1, which, after relocalization to an open set on which
R is nowhere vanishing, conducts to the normalization of the variable a. This obser-
vation led the first and the third authors in [5] to set up a natural bifurcation in the
concerned equivalence problem, according to whether R ≡ 0 or R 6≡ 0. Several other
potentially normalizable essential torsion coefficients also appeared in the advanced
computational explorations performed in [5] which also concerned the diagonal group
parameter a.

However, on the (simpler) way to construct just a canonical Cartan connection, it is
advisable to ignore all such possible bifurcations, and to only look at normalizations
of group variables which come from X2, X4, X6 +X7 − 3Y 8, disregarding therefore
X3.

In fact, setting equal to zero these three essential torsion coefficients provides, after
elementary resolution, the following three normalizations:

b = a
(√

−1
3

Q− √
−1B

)
,

c = aaB,

d = a
(
− G−

√
−1
3

Q+
√
−1B +

√
−1
3

QR− √
−1BR

)
,
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which can be abbreviated as:

b = aB0, c = aaC0, d = aD0,

the three functions B0, C0, D0 being functions defined on the basis M , independent
of the group variables.

Then following Cartan and Olver ([6]), replace these group normalizations in:

σ = a2aσ0,

ρ = c σ0 + c σ0 + aa ρ0,

ζ = d σ0 + e σ0 + b ρ0 + a ζ0,

which gives:

σ = a2aσ0 =: a2aσ1,

ρ = aa
(
C0 σ0 +C0 σ0 + ρ0

)
=: aa ρ1,

ζ = e σ0 + a
(
D0 σ0 +B0 ρ0 + ζ0

)
=: e σ1 + a ζ1,

and restart the procedure of determining whether some group variables are normaliz-
able. In the present case, the second loop of Cartan’s procedure will happen to be the
last one.

Of course, the new lifted coframe is:
σ
σ
ρ
ζ
ζ

 =


aaa 0 0 0 0
0 aaa 0 0 0
0 0 aa 0 0
e 0 0 a 0
0 e 0 0 a



σ1

σ1

ρ1
ζ1
ζ1

 ,

with two Maurer-Cartan 1-forms (and their conjugates):

β1 :=
da

a
, β2 :=

de

a2a
− e da

a3a
.

Some computations achieved in [5] gave the explicit expressions of the new torsion
coefficients in:

dσ =
(
2β1 + β

1) ∧ σ+

+X ′
1 σ ∧ σ + 0 +X ′

3 σ ∧ ζ + 0+

+X ′
5 σ ∧ ρ+X ′

6 σ ∧ ζ +X ′
7 σ ∧ ζ + ρ ∧ ζ,

the new X ′
2 = 0 and X ′

4 = 0 being zero thanks to the preceding normalizations, and
also the explicit expressions of the new torsion coefficients appearing in:

dρ =
(
β1 + β

1) ∧ ρ+

+ Y ′
1 σ ∧ σ + Y ′

2 σ ∧ ρ+ Y ′
3 σ ∧ ζ + Y ′

4 σ ∧ ζ +

+ Y
′
2 σ ∧ ρ+ Y

′
4 σ ∧ ζ + Y

′
3 σ ∧ ζ +

+
(
1
3
X ′

6 +
1
3
X

′
7

)
ρ ∧ ζ +

(
1
3
X

′
6 +

1
3
X ′

7

)
ρ ∧ ζ +

√
−1 ζ ∧ ζ,
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but if just a Cartan connection is searched for as is admitted in the present article, less
computational efforts are demanded.

Proposition 3.2. The appearing new torsion coefficient Y ′
4 in dρ is essential, and as-

signed to 0, it leads to a normalization of the last non-diagonal group parameter e
under the form:

e = aE0.

Proof. Indeed, the coefficient Y ′
4 of the 2-form σ ∧ ζ can visibly not be absorbed in

(β1 + β
1
) ∧ ρ by modifying:

β̃1 := β1 − A1 σ −B1 σ − C1 ρ−D1 ζ − E1 ζ,

which shows that Y ′
4 is essential. It therefore only remains to explain how to shortly

get at Y ′
4 .

Computing dρ1 and re-expressing it in terms of the new coframe
{
σ1, σ1, ρ1, ζ1, ζ1

}
conducts to certain functions T •

•• defined on M that are independent of the group pa-
rameters:

dρ1 = T ρ1
σ1σ1

σ1 ∧ σ1 + T ρ1
σ1ρ1

σ1 ∧ ρ1 + T ρ1
σ1ζ1

σ1 ∧ ζ1 + T ρ1
σ1ζ1

σ1 ∧ ζ1 +

+ T ρ1
σ1ρ1

σ1 ∧ ρ1 + T ρ1
σ1ζ1

σ1 ∧ ζ1 + T ρ1
σ1ζ1

σ1 ∧ ζ1+

+ T ρ1
ρ1ζ1

ρ1 ∧ ζ1 + T ρ1
ρ1ζ1

ρ1 ∧ ζ1 −

− √
−1 ζ1 ∧ ζ1.

Differentiating ρ = aa ρ1 leads firstly to:

dρ =
(
da
a
+ da

a

)
∧ ρ+

+ aaT ρ1
σ1σ1

σ1 ∧ σ1 + aaT ρ1
σ1ρ1

σ1 ∧ ρ1 + aaT ρ1
σ1ζ1

σ1 ∧ ζ1 + aaT ρ1
σ1ζ1

σ1 ∧ ζ1 +

+ aaT ρ1
σ1ρ1

σ1 ∧ ρ1 + aaT ρ1
σ1ζ1

σ1 ∧ ζ1 + aaT ρ1
σ1ζ1

σ1 ∧ ζ1+

+ aaT ρ1
ρ1ζ1

ρ1 ∧ ζ1 + aaT ρ1
ρ1ζ1

ρ1 ∧ ζ1−

− √
−1 aa ζ1 ∧ ζ1,

then replacing:

σ1 =
1

a2a
σ, ζ1 = − e

a3a
σ +

1

a
ζ, ζ1 = − e

aa3
σ +

1

a
ζ,

only the two underlined 2-forms above contribute to σ∧ζ in the final expression of dρ,
which gives:

Y ′
4 =

1

aa
T ρ1
σ1ζ1

+
√
−1

1

aa2
e.

Setting Y
′
4 = 0 normalizes e under the form claimed. �

Performing therefore the obtained normalizations of all the nondiagonal group pa-
rameters:

b = aB0, c = aaC0, d = aD0, e = aE0,
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the reduced G-structure now involves only a ∈ C∗ and the new lifted coframe becomes:

σ = a2aσ0 =: a2aσ2,

ρ = aa
(
C0 σ0 +C0 σ0 + ρ0

)
=: aa ρ2

ζ = a
(
D0 σ0 + E0 σ0 +B0 ρ0 + ζ0

)
=: a ζ2,

the single Maurer-Cartan 1-form being (with its conjugate):

γ1 :=
da

a
.

Inversion yields:

σ2 =
1

a2a
σ, ρ2 =

1
aa
ρ, ζ2 =

1
a
ζ,

whence immediately:

σ2 ∧ σ2 =
1

a3a3
σ ∧ σ, σ2 ∧ ρ2 =

1
a2a3

σ ∧ ρ, . . . . . . , ζ2 ∧ ζ2 =
1
aa
ζ ∧ ζ.

Then performing a last absorption thanks to the computer programs of the second
author:

λ :=
da

a
+ linear combination of

(
σ, σ, ρ, ζ, ζ

)
,

the structure equations receive the final form:
(1)
dσ =

(
2λ+ λ

)
∧ σ +

a

a2
R σ ∧ ζ + ρ ∧ ζ,

dρ =
(
λ+ λ

)
∧ ρ+

1

a2a2
V1 σ ∧ σ +

1

a2
V3 σ ∧ ζ +

1

a2a
V 3 σ ∧ ρ+

√
−1 ζ ∧ ζ,

dζ = λ ∧ ζ +
1

a2a3
W1 σ ∧ σ +

1

aa3
W2 σ ∧ ρ+

1

a3
W3 σ ∧ ζ +

1

aa2
W4 σ ∧ ζ +

+
1

a2a2
W5 σ ∧ ρ+

1

aa2
W6 σ ∧ ζ +

1

a2a
W7 σ ∧ ζ +

+
1

a2
W8 ρ ∧ ζ +

1

aa
W9 ρ ∧ ζ +

+
1

a
W10 ζ ∧ ζ,

in which all functions R, V•, W• depend only on the variables of M , not on the group
parameter a. But since da

a
occuring in λ is closed, dλ is a linear combination of 2-forms

on M , namely there are certain functions Iνµ for ν, µ = σ, σ, ρ, ζ, ζ so that:

(2) dλ =
∑
ν,µ

Iνµ ν ∧ µ,

and Cartan’s method then naturally stops ([6]).

Theorem 3.1. The 7 differential 1-forms λ, λ, σ, σ, ρ, ζ, ζ define an absolute paral-
lelism on the principal bundle P 7 := M × C∗ satisfying the structure equations (1)
and (2) which reduces the local biholomorphic equivalence problem for Class III1
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CR-generic submanifolds M5 ⊂ C4 with initial structure group GIII1 to an {e}-
structure. �

Lastly, elementary linear algebra shows ([5], end of Section 12) that the Maurer-
Cartan structure equations corresponding to the Lie algebra spanned by the above 7
infinitesimal CR automorphisms S2, S1, T , L2, L1, D, R can be represented as:

(3)

dαc = 0,

dσc =
(
2αc + αc

)
∧ σc + ρc ∧ ζc,

dρc =
(
αc + αc

)
∧ ρc +

√
−1 ζc ∧ ζc,

dζc = αc ∧ ζc,

where αc, σc, ζc are C-valued 1-forms on the tangent bundle TMc to Beloshapka’s
cubic, and where ρc is R-valued 1-form on TMc.

Notably, when all invariants R, V•, W•, I••, vanish in (1) and in (2), renaming λ 7→
αc makes recover (3).

4. Construction of a Cartan connection (Proof of Theorem 1.1)

Introduce then the set of vector fields:{
eα, eα, eσ, eσ, eρ, eζ , eζ

}
that is dual to

{
αc, αc, σc, σc, ρc, ζc, ζc

}
, hence defines the structure of a 7-

dimensional real Lie algebra:
g7 ∼= autCR(M

5
c ).

From (3), the Lie bracket structure of g7 is:[
eα, eσ

]
= − 2 eσ,[

eα, eσ
]
= − eσ,[

eα, eρ
]
= − eρ,[

eα, eζ
]
= − eζ ,

[
eα, eσ

]
= − eσ,[

eα, eσ
]
= − 2 eσ,[

eα, eρ
]
= − eρ,[

eα, eζ
]
= − eζ ,

[
eρ, eζ

]
= − eσ,[

eρ, eσ
]
= − eσ,

[
eζ , eζ

]
= −√

−1 eρ,

unwritten brackets being zero.
Next, let h ∼= R2 be the real Lie algebra spanned by {eα, eα}. Let P 7 be M × C∗

equipped with some local coordinates on M and with the fiber coordinates (a, a).

Theorem 4.1. In terms of the 7 differential 1-forms λ, λ, σ, σ, ρ, ζ, ζ, obtained by
reducing to an {e}-structure the biholomorphic equivalence problem for Class III1 CR-
generic submanifolds M5 ⊂ C4, the 1-form $ with value in g7 defined at an arbitrary
point p ∈ P for every tangent vector vp ∈ TpP

7 by:

$p(vp) := λp(vp)·eα+λp(vp)·eα+σp(vp)·eσ+σp(vp)·eσ+ρp(vp)·eρ+ζp(vp)·eζ+ζp(vp)·eζ

defines a canonical Cartan connection on P 7 = M5 × C∗.
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Proof. Since by construction λ, λ, σ, σ, ρ, ζ, ζ span the cotangent bundle to P 7 at every
point, condition (i) for a Cartan connection that $p : TpP

7 −→ g7 be an isomorphism
at every point p ∈ P is automatically satisfied.

As well, the condition (ii) that $(Y †) = y comes directly from the fact that:

λ =
da

a
+ linear combinations of

(
σ, σ, ρ, ζ, ζ

)
.

Lastly, condition (iii) is known ([7]) to be equivalent to its infinitesimal counterpart:

Liee†α
(
$) = − adeα ◦$, and Liee†α

(
$) = − adeα ◦$,

where LieX($) denotes the Lie derivative of $ with respect to a vector field X on P ,
and where adk is the linear map k −→ k defined on a Lie algebra k by adk(l) := [k, l].

Now, condition (ii) verified at the moment shows — using y to denote interior
product — that in Cartan’s formula:

Liee†α($) = eα†y d$+d
(
e†αy$

)
◦

and in: Liee†α
($) = eα†y d$+d

(
e†αy$

)
◦
,

the second terms, differentiating a constant, drop, so that verifying (iii) amounts to
checking the two coincidences:

eα†y d$ = − adeα
(
$), and eα†y d$ = − adeα

(
$).

But from the structure equations (1) and (2) satisfied by the 7 two-forms occuring in
d$, it is clear that:

e†αy dλ = 0, e†αy dλ = 0, e†αy dσ = σ, e†αy dσ = 2σ,

e†αy dρ = ρ, e†αy dζ = 0, e†αy dζ = ζ,

while the Lie bracket structure shows on the other hand that:
− adeα ◦$ = − adeα ◦

(
λ · eα + λ · eα + σ · eσ + σ · eσ + ρ · eρ + ζ · eζ + ζ · eζ

)
= −λ

[
eα, eα

]
− λ

[
eα, eα

]
− σ

[
eα, eσ

]
− σ

[
eα, eσ

]
− ρ

[
eα, eρ

]
− ζ

[
eα, eζ

]
− ζ

[
eα, eζ

]
= 0 + 0 + σ · eσ + 2σ · eσ + ρ · eρ + 0 + ζ · eζ ,

so that the first coincidence holds; the second one is treated similarly. �

5. Beyond Cartan connections

This article announces that, beyond plain linear algebra considerations that are suffi-
cient to construct {e}-structures and Cartan connections associated to the local biholo-
morphic equivalence problem for CR-generic C ω submanifolds M5 ⊂ C4 belonging
to Class III1, the memoir [5] presents explicit expressions of the incoming invariants
R, V•, W•, I••, it examines the nonlinear relations these invariants may share, and it
conducts a ramified analysis of the bifurcation tree of possible further normalizations
for the diagonal last group parameter a which entails non-uniqueness of the concerned
Cartan connections or {e}-structures.

A unified presentation of recent results on Cartan equivalences for all six general
classes I, II, III1, III2, IV1, IV2 of CR manifolds of dimension 6 5 is upcoming ([3]).
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