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Abstract. We consider the significant class of homogeneous CR manifolds represented by some weighted
homogeneous polynomials and we derive some plain and useful features which enable us to set up a
fast effective algorithm to compute homogeneous components of their Lie algebras of infinitesimal CR
automorphisms. This algorithm mainly relies upon a natural gradation of the sought Lie algebras, and
it also consists in treating separately the related graded components. While classical methods are based
on constructing and solving some associated PpE systems which become time consuming as soon as the
number of variables increases, the new method presented here is based on plain techniques of linear
algebra. Furthermore, it benefits from a divide-and-conquer strategy to break down the computations
into some simpler subcomputations. Also, we consider the new and effective concept of comprehensive
Grobner systems which provides us some powerful tools to treat the computations in the much complicated
parametric case. The designed algorithm is also implemented in the MaPLE software, what required also
implementing a recently designed algorithm of Kapur et al.

1. Introduction

Let M Cc C™** be a Cauchy-Riemann (CR for short) submanifold of CR dimension n > 1 and of codi-
mension k > 1 (see §2 for all pertinent definitions used in this introduction) represented in coordinates
zjand w; := wy+iv for j =1,...,nmand | = 1,...,k. Asis standard in the terminology of CR geometry
([3, 5, 6, 10]), one may often assign the weight [z;] := 1 to all the complex variables z; and [w;] € IN with
1 < [un] < [wa] < -+ [wy] to the variables wy, ..., wi. Accordingly, the weight of the conjugation of each
complex variable and of its real and imaginary parts as well are all equal to that of the variable and,
moreover, the assigned weight of any constant number a € C and of coordinate vector fields are:

[a]:=0, [d;]:=-[z]1=-1, [duw]:=~[wl]  (=1..m I=1..h.
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Furthermore, the weight of a monomial F in the zj, wy, z;, wy is the sum taken over the weights of all variables
of F with regards to their powers and also, the weight of each coordinate vector field of the form F d, with
x = z;, w; is defined as [F] — [x]. For instance, we have [(azw%) Ow,] = [z] + 2[w1] — [w;]. A polynomial or a
vector field is called weighted homogeneous of weight d whenever each of its terms is of homogeneity d.

As is well-known (see [24, Theorem 2.12]), every real analytic generic CR manifold M of CR dimension
n and codimension k can be represented locally in a neighborhood of the origin as the graph of k defining
equations of the form:

v1 1= D1(z,Z,u) + o[ws]),

1)

o = Dz, 7, ) + o([wel),

where the weight of all variables z; is 1 and the weights of the variables w; are the Hormander numbers of
M at the origin. Moreover, each function @ is a certain weighted homogeneous polynomial of the weight
[w;] and o(t) denotes remainder terms having weights > ¢.

For a CR manifold M passing through the origin, the Lie group Autcz(M) is the holomorphic symmetry
group of M, that is the local Lie group of local biholomorphisms mapping M to itself. The Lie algebra
autcr (M), associated to this group is called the Lie algebra of infinitesimal CR automorphisms of M and it
consists of all holomorphic vector fields — (1, 0) fields with holomorphic coefficients — whose real parts
are tangent to M. Due to the fact that many geometric features of CR manifolds can be investigated by means
of their associated Lie algebras of infinitesimal CR automorphisms and because of central applications in
Cartan geometry and in Tanaka theory exist, studying such algebras has gained an increasing interest
during the recent decades (cf. [5, 26] and in particular the results of §12 of [25]). As is known, the Lie
algebra autcr(M) is finite dimensional if and only if M is holomorphically nondegenerate and of finite type
([3, 15, 16, 24, 38]).

Consider the complex space Crk equipped with the coordinates zy, .. ., z,, w1, . .., Wy, where w; := u;+iv;,
assume again that certain weights have been assigned, and consider homogeneous (in Lie theory’s sense)
CR manifolds M C C™** represented as graphs of k certain polynomials:

[ E1(v1,2,Z,u) :=v1 — D1(z,Z,u) =0,
Ho(v2,2,Z,u) := vy — Do(z,Zz,u) =0

7

Ei(vj,z,z,u) ;= v; — Di(z,z,u) =0,

| Ek(vkrzlzl 1/[) =0 — q)k(Z,E, u) = O/

with the right-hand sides ®; being weighted homogeneous polynomials of weight equal to [v;] = [w)] of the
left-hand sides. Recall that a CR manifold M is called homogenous whenever its associated automorphism
group Autcgr(M) is locally transitive near the origin. Since it may arise some confusion with the "homoge-
neous spaces’ terminology, let us stress that we will always use weighted homogeneous about functions,
and plainly homogeneous about Autcr(M).

The so introduced class of CR-generic manifolds is already an extremely wide class in CR geometry
which includes of course well known quadric CR models such as those of Poincaré [30] or of Chern-Moser
[11], and also, there is nowadays an extensive literature dealing with constructing a great number of such
weighted homogeneous CR manifolds (see for example [3, 9, 20, 37] and [5]-[8]), their associated Lie groups
being far from being completely understood.

Indeed, in a series of recent papers (for instance [5]-[8]), Valerii Beloshapka studied extensively the
subject of model surfaces and found some considerable results in this respect. Specifically in [5], he introduced
and established the structure of some nondegenerate models associated (uniquely) to totally nondegenerate
germs having arbitrary CR dimensions and codimensions. Each of Beloshapka’s models M ¢ C"** of certain
CR dimension and codimension n and k enjoys some nice properties ([5], page 484, Theorem 14) which have
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been encouraging enough to merit further investigation. In particular, computing their Lie algebras of
infinitesimal CR automorphisms and studying their structures may reveal some interesting features of
these CR models, and also of all totally nondegenerate CR manifolds corresponding to them (cf. [5, 25]).

It is worth noting that, traditionally the subject of computing Lie algebras of infinitesimal CR auto-
morphisms is concerned with expensive computations and the cost of calculations increases as much as
the number of the variables — namely the dimension or codimension of the CR manifolds — increases.
Indeed, solving the pDE systems arising during these computations (see subsection 2.1) forms the most
complicated part of the procedure. That may be the reason why, in contrast to the importance of the subject,
the number of the relevant computational works is still limited (one finds some of them in [8, 20, 26, 37]).

Very recently, the authors provided in [33] a new general algorithm to compute the desired algebras
by means of the effective techniques of differential algebra. It enables one to use conveniently the ability
of computer algebra for managing the associated computations of the concerning ppE systems. Although
this (general) algorithm is able to decrease a lot the complexity of the computations and in particular to
utilize systematically the ability of computer algebra, but because of dealing with the ppE systems — which
are complicated in their spirit — the computations are still expensive in essence.

In the present paper we aim to study, by means of a weight analysis approach and with an algorithmic
treatment, the intrinsic properties of the under consideration CR manifolds in order to provide an ef-
fective algorithm — entirely different and more powerful than that of [33] — to compute the associated
Lie algebras of infinitesimal CR automorphisms. The obtained results are quite simple but actually en-
able us to bypass constructing and solving the arising systems of ppEs (which is the classical method of
[8,20, 25, 26, 33, 37]) and to reach the sought algebras by employing just simple techniques of linear algebra.
This decreases considerably the cost of computations, hence simultaneously increases the performance of
the algorithm.

We see that for a weighted homogeneous CR manifold M represented as (2), the sought algebra g :=
autcr(M) takes the graded (in the sense of Tanaka) form:

4=0,® - 031030 ®q S - Dg®--- p, 0N 3)
N—— ———— —————
8- 9+

where each component g; is the Lie subalgebra of all weighted homogeneous vector fields having the weight
t. Summarizing, the results provide us with the ways of:

e using a divide-and-conquer method to break down the computations of the sought (graded) algebra g
into some simpler sub-computations of its (homogeneous) components g;;

¢ employing some simple techniques of linear algebra for computing these components g; of infinitesi-
mal CR automorphisms without relying on solving the ppE systems;

We notice that the first assumption of weighted homogeneity for the generic CR manifolds as (2)
provides us the opportunity of computing, separately, each of the above homogeneous components g; of
the desired graded Lie algebras of infinitesimal CR automorphisms. On the other hand, we assumed that
such manifolds are also homogeneous since this assumption enables us to find a simple criterion for how
long it is necessary to compute the mentioned homogeneous components. In other words, it supplies us
to recognize — in an algorithmic point of view — where the maximum homogeneity o in (3) is, while the
minimum homogeneity p is easy to determine. But of particular interest is the Beloshapka’s universal
models, where the first author in his recent paper [31] has showed that their graded infinitesimal CR
automorphisms have no any nontrivial positive part g4, i.e. ¢ = 0. Consequently, one observes that at
least in this interesting case, our designed algorithm provides an appropriate fast algorithm to compute the
desired Lie algebras.

One of the main — somehow hidden — obstacles appearing among the computations arises when the
set of defining equations includes some certain parametric polynomials. This case is quite usual as one
observesin [5, 8, 20, 37]. To treat such cases, we suggest the modern and effective concept of comprehensive
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Grébner systems [17, 18, 27, 28, 41] which enables us to consider and solve (linear) parametric systems
appearing among the computations. Besides all advantages of computing the desired algebras in the general
case, providing this algorithm in the (much complicated) parametric case can give us the opportunity of
studying the modern concept of moduli spaces of model CR manifolds, introduced recently by Beloshapka (cf.
[32]).

This paper is organized as follows. Section 2 presents a brief description of required very basic defini-
tions, notations and terminology. In Section 3, we consider the under consideration manifolds and obtain
some simple results which are, in fact, the key entrance to the desired algorithm. In Section 4, we employ
the results of the previous section to provide the strategy of computing separately the homogeneous com-
ponents of the sought algebras. We also provide the necessary criterion for terminating such computations.
Finally, in section 5 we introduce briefly the modern concept of comprehensive Grébner systems and show
how it provides some effective tools to consider and solve appearing (linear) parametric systems.

The algorithm designed in this paper is implemented in MarLE 15 as the library CRAuT, accessible
online as [34]. To do this, at first we needed to implement the algorithm PGB introduced in the recently
published paper [17] which enables us to consider the parametric defining equations in CRAur.

2. Basic Preliminaries and Definitions

On an arbitrary even-dimensional real vector space V, a complex structure map | : V — V is an R-linear
map satisfying ] o ] = —Idy. For example, in the simple case V := T,R*™ = T,CN, N € N with the local
coordinates (z; :=x1+iyy,...,zy 1= xn+iyy) and withp € CN, one defines the (standard) complex structure
by:

9 pel 0 J .
(=)= =, ]((9_%) = "o j=1,...,N.

One should notice that in general, an arbitrary subspace H, of T,CN is not invariant under the complex
structure map J. Thus, one may give special designation to the largest J-invariant subspace of H,, as:

H, N J(H,) =: H,,
which is called the complex tangent subspace of H,. Due to the equality ] o ] = —Id, this space is even-

dimensional, too.
Similarly, one also introduces the smallest J-invariant real subspace of T,CN which contains H,:

Hy := H, + J(Hp)
and one calls it the intrinsic complexification of H,.
As an application, consider the linear subspace H, := T,M of CV, for some arbitrary connected differen-
tiable submanifold M of CN. In general, it is not at all true that the complex-tangent planes:
T,M = T,MnN [(T,M)

have constant dimensions as p varies in M.

Definition 2.1. Let M be a real analytic submanifold of CN. Then M is called Cauchy-Riemann (CR for short), if
the complex dimensions of T,M are constant as p varies on M. Furthermore, M is called generic whenever:

TiM = T,M + J(T,M) = T,C"

for each p € M, which implies that M is CR thanks to elementary linear algebra.
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One knows ([3, 10, 24]) that any CR real analytic M C CN is contained in a thin strip-like complex
submanifold C’ = CY" with N’ < N in which M ¢ CV" is CR-generic, hence there is no restriction to assume
that M is CR-generic, as we will always do here, since we are interested in local CR geometry.

For such a CR-generic manifold M, we call the complex dimension of T,M by the CR-dimension of M.
Moreover, the subtraction of the real dimension of T;M from that of T,M, which is in fact the real dimension

of the so-called totally real part T,M/T;M of T,M, coincides then with the real codimension of M C (G
A tangent vector field:

N
0 0

of the complexified space CT,CN := C ® T,C" is called of the type (1,0) whenever all b; = 0 and is called
of the type (0,1) whenever all a; = 0. One denotes by T;’OCN and Tg’lCN the corresponding subspaces of
CT,CN. Accordingly, for a CR manifold M and an arbitrary point p of it, we denote:

T,’M :=T,°CNNCT,M, and T,°M:=T,'CYNCT,M.

One easily verifies the equality Tg'lM = T;’OM. It is proved that (see [3], Proposition 1.2.8) the complex
tangent space T, M is the real part of T;’OM, ie. TM ={X+ X:Xe T,},’OM}. Moreover, the complexified
space CT;M is equal to the direct sum T;'OM ® T2’1M.

If n and k are the CR dimension and codimension of a real analytic CR-generic submanifold M c CV,
then of course N = n + k, and also M can be represented (locally) by k real analytic graphed equations:

Imw; := ®j(z,z, Rew), (j=1,...K) 4)
with some real-valued defining functions ®, enjoying the no-pluriharmonic term condition:
0=D.(z,0,Rew) = D.(0,z, Re w).

Solving the above real-valued defining functions in w or in w, one also reformulates the defining functions
of M as complex defining equations of the kind:

wj+w; = Ej(z, zZ,w), (j=1,...k). (5)

For a real analytic CR-generic manifold M represented by the above defining functions as (5) and for
each p € M, it is well-known ([25]) that the space Tg'lM is generated by the following holomorphic vector
fields, tangent to M:

Definition 2.2. A CR-generic submanifold M C C"** of CR dimension n and of codimension k is called of finite

type at a point p € M whenever the above generators Ly, ..., Ln,z1, .. .,Zn together with all of their Lie brackets of
any length span the complexified tangent space CT,M at the point p.

Of course, finite-typeness at a point is an open condition. In [9], Bloom and Graham introduced an
effective method to construct homogeneous CR manifolds that we now explain briefly. Consider the
complex space Cr+k equipped with the variables zi, ...,z,, w1 := uy +ivy, ..., Wy == Uy + ivy, assign weight
1 to the variables z; and assign some arbitrary weights ¢; to each w; for j = 1,...,k. Then a CR manifold
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M c €™ is called represented in Bloom-Graham normal form [9, 10] whenever it is defined as the graph
of some real-valued functions":

0= (e, Z w1, ) + O (-1, (6)

where each @; is a weighted homogeneous polynomial of the weight £; enjoying the following two state-
ments:

(i) there are no pure terms z*uf or z"'uf among the polynomials ®, for some integers « and f3;

(i1) for each 1 < j <iand for any nonnegative integers ay, ..., a;j, the polynomial ®; does not include any
term of the form u{" --- u?f ;.
Every CR manifold represented in this form is of finite type (see [10] page 181). Bloom and Graham
also showed that every CR manifold represented by the above expressions (6) can be transformed to such
a normal form by means of some algebraic changes of coordinates (see [9], Theorem 6.2).

Definition 2.3. A real analytic CR-generic manifold M C CN with coordinates (Z1, ..., Zy) is called holomorphi-
cally nondegenerate at p € M if there is no local nonzero vector field of type (1,0):

al P)
x;:; ﬁ(zl,...,zN)a—Zj

having coefficients f; holomorphic in a neighborhood of p such that X|y is tangent to M near p.

Every connected real analytic generic CR manifold is either holomorphically nondegenerate at every
point or at no point ([24]).

Definition 2.4. ([1, 3, 8, 26]) A (local) infinitesimal CR automorphism of M, when understood extrinsically, is
a local holomorphic vector field:

n 4 ) k 4 )
= ! — ] -
X ; 7z w) 5 + ; Witz w50 7)

whose real part Re X = (X + X) is tangent to M.

The collection of all infinitesimal CR automorphisms of M constitutes a Lie algebra which is called the
Lie algebra of infinitesimal CR automorphisms of M and is denoted by autcr(M).

The notion of holomorphically nondegeneracy was raised by Nancy Stanton in [38] where she proved
that for a hypersurface M C C™*! (always generic), autcg(M) is finite-dimensional if and only if M is holo-
morphically nondegenerate. Amazingly enough, one realizes that the concept of tangent vector fields
completely independent of Zi, ..., Zy which points out a strong degeneracy can in fact be traced back at
least to Sophus Lie’s works (cf. pp. 13-14 of [22]). In general codimension k > 1, the Lie algebra autcgr(M)
of infinitesimal CR automorphisms of a CR-generic real analytic M ¢ C"** is finite-dimensional if and only
if M is holomorphically nondegenerate and of finite type ([15]).

Determining such Lie algebras autcgr (M) is the same as knowing the CR-symmetries of M, a question which
lies at the heart of the (open) problem of classifying all local analytic CR manifolds up to biholomorphisms.
In the groundbreaking works of Sophus Lie and his followers (Friedrich Engel, Georg Scheffers, Gerhard
Kowalewski, Ugo Amaldi and others), the most fundamental question in concern was to draw up lists of
possible Lie algebras autcr(M) which would classify all possible M’s according to their CR symmetries.

DThere is also a more general definition of Bloom-Graham normal form which one can find it for example in [4]



M. Sabzevari et al / Filomat 30:6 (2016), 1387-1411 1393

2.1. Infinitesimal CR automorphisms

Now, let us explain briefly the common strategy for computing the Lie algebra autcr(M) associated to
an arbitrary real analytic generic CR manifold M c C"*, represented as the graph of the k complex defining
equations as (5) (cf. [8, 20, 25, 33, 37]).

According to definition, a holomorphic vector field:

n k
X = Z Ziz,w) 9., + Z W(z, w) O,
=1 =1

belongs to autcr (M) whenever it enjoys the tangency equations:
0= X+ X)[@; +w; - E(z,z,w)|

=X[w;j+w; -5z w)] + X [@; + w; - Ej(Z, 2, w)

—W(zw) ZZ(zw) (zzw)

+ Wiz, w) - Zlew) (zzw) ZWl(zw)—(zzw)

(j=1-K).

Foreach j=1,...,k, let us refer to the above equality as the j-th tangency equation of M. Now, the Taylor
series formulas:

Zi(z,w) = Z 2% Zi (w) and Wz, w) = Z z% WL(w), )

aeN" aeN"

bring the tangency equations into the form:

0= Y W (-wsE)-Y ¥ 2 Z(-0r5)

aeN" k=1 acN"
4 I, £ 9, (10)
B A7 B 7k Tz B V! Iz
+ Z zZ W (w Z Z Zﬁ(w) g (z,z,w) — Z Z Z Wﬁ(w) g (z,z,w)
BeN™ k=1 BeN" I=1 BeN"

(j=1-K).

After this, one replaces the appearing functions W.(-w + E) and z:(—w + E) according to the following
slightly artificial expansions:

Z(—w+§)=Z(w+(—2w+§))

= (w) % ( - 2w+ E(z w))y,

and one next substitutes each —2w; + Ej with:

—2w; + B(Z,z,w) = Z Z 2" 2 B p(w) (j=1-h).

aeN" BeNn

Modifying the equations (10) by the two already presented formulaes, we reach k homogenous equations
so that their right hand sides are some certain combinations of the (yet unknown) functions Z, (w) and Wllﬂ (w),
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their derivations and also the variables wy, ..., wy with the coefficients of the form z*Z" for yu = (u1, ..., i)
and v = (vi,...,v,) (here we set z, := z‘f1 ...zZy"). To satisfy these equations, one should extract the
coefficients of the various monomials z/Z" and equate them to zero. Then, one attains a (usually lengthy
and complicated) homogeneous linear system of complex partial differential equations with the unknowns
Zi(z,w) and W!(z,w) — namely a linear system of differential polynomials of the differential algebra
R = C(w, w)[Z, W/lg]. The solution of this system yields the desired coefficients Z(z, w) and W'(z, w) in
(9). To solve this already constructed rpE system, we employed in [33] the effective tools of differential
algebra, equipped with some additional operators such as bar-reduction. The provided algorithm manages
to compute systematically the desired algebras associated to arbitrary CR manifolds M c C"**. Moreover, it
employs the powerful techniques of differential algebra and the ability of computer algebra to provide a
more effective method. In fact, ithandles more appropriately the most complicated part of the computations,
namely solving the associated ppE systems (cf. [8, 20, 25, 26, 37]). Specifically, for the significant class of rigid
CRmanifolds — those whose defining equations E are independent of the variables w — the computations
are considerably eased up. However, the main obstacle we encounter is that, because of the complexity of
the pPDE systems, as much as the number of variables z; and w; increases, then the cost of the associated
computation grows extensively and the implementation of the algorithm rapidly reveals limits concerning
the capacity of computer systems.

3. Useful Results

Consider the complex space C"** equipped with n complex variables z1, . . ., z, of weight one, identically,
and k complex variables w; := uy +ivy, ..., Wy := Uy + ivx of certain weights 1 < [w1] < [wy] < ... < [wy] and
define the homogeneous manifold M of CR dimension 7 and codimension k as:

[ El(vlrzlgl 1/[) =01 - q)l(z/gru) = 0/
Ho(v2,2,Z,u) := vy — Do(z,Zz,u) =0

7

M:={(z,w): , (11)

Ei(vj,z,Z,u) :=vj - Dj(z,Z,u) =0,

| Ek(Uk,Z,Z, M) =0 — CDk(Z,E, M) = 0/

with the weighted homogeneous polynomials @; of the certain weight [w;] for j = 1,..., k. Additionally, we
also assume that these manifolds are holomorphically nondegenerate and of finite type, which guarantees
the finite dimensionality of their associated algebras of infinitesimal CR automorphisms. Notice passim
that these two assumptions are made for convenience and even without these assumptions one can still
employ the designed algorithm to compute the homogeneous components of the under consideration CR
manifolds.

Before proceeding to design our desired algorithm, we first need some plain observations and facts.
These simple results lead us to discover the key entrance to the algorithm.

3.1. Gradation and polynomiality

At first, let us show two intrinsic features of the already mentioned weighted homogeneous CR mani-
folds, namely gradation (in the sense of Tanaka) and polynomiality of their associated algebras of infinites-
imal CR automorphisms.

For a CR manifold M as above, consider the holomorphic vector field:

n k
X:= Zl Z)(z,w)dz, + 121 Wiz, W)z,
= m
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as an element of g := autcg(M). Since the above coefficients Z/ and W' are all holomorphic, then one can
expand them as their Taylor series and thus decompose X into its weighted homogeneous components as
follows:

Xi=Xpt++Xg+Xo+Xg+--+Xp+-0,  (p,teN). (12)
We need the following facts:

Lemma 3.1. The minimum homogeneous component X_,, in the above decomposition of Xis of the weight —p = —[wy],
where wy has the maximum homogeneity among the complex variables appearing in (11).

Proof. 1t is just enough to observe that the tangent space of holomorphic vector fields can be generated by
the standard fields QZj,(?zu, of the certain weights —[z;] and —[w;] for j = 1,...,nand [ = 1,..., k. Among

these standard fields, the minimum homogeneity belongs to aiwk' This completes the proof. [

Lemma 3.2. Each of the above weighted homogeneous components X;, t > —p is again an infinitesimal CR automor-
phism, namely belongs to g.

Proof. Since X is an infinitesimal CR automorphism then we have:
0= (X + i)lgi, (j=1,....k).

Now, for each component X; of homogeneity t and since each defining function E; is homogeneous of weight

; := [w;] then one verifies that the polynomial (X; + it)lgl is either zero or a homogeneous polynomial of
weight t + ;. Hence we have:

0= (X + Y)|:]. = (X_p + Y_p)|5], oo+ (Xt + Z‘)la, FIpN (=1,
N —_— (13)
Py, Py

in which each polynomial function P;; is either zero or a homogeneous polynomial of the weight t + ¢;.
Hence, we have some certain weighted homogeneous polynomials P, with distinct homogeneities and
consequently with linear independency. Hence, one obtains from (13) that:

0=Pj(z,w) = (Xt + X)lgj, t2=p, (j=1,..k).
This equivalently means that each component X; of X is an infinitesimal CR automorphism. [
Now, we can prove the polynomiality of the sought algebras:
Corollary 3.3. If:
n k
X; := Z Zl(z,w)d:, + Z W(z, w)a,
j=1 1=1

is a weighted homogeneous CR automorphism of weight t > —p then, its coefficients Z{ (z, w) and W'(z, w) are weighted
homogeneous polynomials of the weights t + 1 and t + [w].

Proof. 1t is a straightforward consequence of the decomposition (12). [J

Now, let us consider the gradation of g. First we need the following definition:



M. Sabzevari et al / Filomat 30:6 (2016), 1387-1411 1396

Definition 3.4. The Lie algebra g := autcr(M) of an arbitrary CR manifold is called graded in the sense of Tanaka,
whenever it can be expressed in the form:

=0 pP3 1D Dg 10D D DGy, p,0€N
with [g;, 8] C givj. Furthermore, we say that M has rigidity if the positive subalgebra:

g4 = 9169...@90
of autcr(M) is trivial.

Proposition 3.5. For a finite type holomorphically nondegenerate CR manifold M C C"** represented by the above
defining function (11), the associated Lie algebra g of infinitesimal CR automorphisms is a graded Lie algebra, in the
sense of Tanaka, of the form:

g:=g_P®...®g_1@go@gl@...GBQQ, p,0€N.

Proof. According to the above two lemmas, if g; is the collection of infinitesimal CR automorphisms of
weight ¢, then g admits a gradation like:

G =0-,D.. 001900y D---DGD - .

Furthermore, holomorphically nondegeneracy and finite typness of M guarantees that g is finite dimensional
and hence there exists an integer ¢ in which gg = 0 for each § > p. Now, it remains to show that this
gradation is in the sense of Tanaka. Namely, we shall prove that for each two homogeneous infinitesimal
CR automorphisms X; and X, of certain homogeneities ¢; and t,, the Lie bracket [X;, X;] belongs to g;,++,.
For this, it is enough to show this statement for vector fields of the forms X; := F;(z, w)%{,i = 1,2 where x;
is a complex variable z, or w,. According to the homogeneities of these vector fields, F; and F, are two
polynomials of the weights t; + [x1] and #;, + [x;], respectively. Now, we have:

dF, 0 dF; 0

[X1/X2] =F a_xlg_xz - 2&_3Cza_x1

In this expression, the derivations 3%2 and ‘3% are either zero or homogeneous polynomials of the weights

fp + [x2] = [x1] and #; + [x1] — [x2], respectively. Now, simple simplifications yields that the above Lie bracket
is a homogeneous vector field of the weight t; + f, as desired. [

For a CR manifold M c C"*, of fixed CR-dimension n and codimension k represented in coordinates
Z1,--,2Zn, W1, ..., W as (11), consider the infinitesimal CR automorphism:

n k
X = Z Zi(z,w)d,, + ; W!(z, )0y,

j=1

Finding the basis elements of the Lie algebra autcr(M), one should naturally find the explicit expressions
of the appearing coefficient functions Z(z, w) and W(z, w). After necessary computations, these coefficients
will be found as certain polynomials with some arbitrary coefficients, what we call them in this paper by
the free parameters. For example, according to [25] (see also the case K = 3 of [37], Theorem 1 for another
presentation), an infinitesimal CR automorphism for the CR manifold M c C!*3, represented in coordinates
Clz, w1, wo, w3} as the graph of the defining functions:

w1 — El =2izz
Wy — W = 2i22(z + Z) (14)
w3 — w3 =22z(z — 2)
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is a holomorphic vector field:

3

X := Z(z,w) d; + 2 Wz, w) O,

1=1
with the desired coefficients:
Z(z,w)=a+ib+(d+ie)z,

Wlz,w)=ci+2({b+ia)z+2dw,
Wz(z,w):Cz+2(b+ia)zz+4aw1 +3dw, —ews, (15
W3 (z,w)=c3+2(@—-ib)z*> +4bw; + ew, + 3dw;,

for some seven real integers, namely free parameters a,b, cy,Cy, C3,d, €. Then, the Lie algebra autcr(M) is
seven dimensional, with the basis elements extracted as the coefficients of these parameters in the above
general form of X:

X1 =0, + 2120y, + (22> + 4wW1) Dy, +22° O,

Xy =id; +220y, + 222 O, + (-2iz% + 4w1) dy,,

1 X3 = awl/
X4 = 8wZ, (16)
X5 = 8w3,

X6 = Z(;z +2ZU1 awl +3ZU2 (9102 + 37/()3 (9;03,

oolEBEIEo

X7 = iz&z ) 8wZ + Wy &ws.
The weights associated to the appearing complex variables are:
[z21=1, [wn]=2, [wy]=][ws]=3.

Hence, a glance at the obtained basis holomorphic vector fields X, ..., X7 gives the following weighted
homogeneities for them:

X ‘ 1 X2 X3 X4 X5 X6 X7
Hom |-1 -1 2 -3 -3 0 0

Therefore, the Lie algebra autcgr(M) can be represented as:
autcr(M) == 9-3 © -2 ® 31 @ o,
with g_3 = <X4, X5>, with g = <X3>, with -1 := <X1,X2> and with go = <X6, X7>

3.2. Homogeneous components

Now, let us inspect the structure of homogeneous components of the desired algebras of infinitesimal
CR automorphisms. First, let us consider those CR manifolds which have rigidity.

Proposition 3.6. Let M be a holomorphically nondegenerate CR manifold of CR-dimension n and codimension k
represented as (11). Then, M has rigidity if and only if for any weighted homogeneous infinitesimal CR automorphism:

n k
X:= Z;‘ Z](Z,'(,U) aZj + lzl WI(Z/ w) 8wl
j= =

of M, each weighted homogeneous polynomial ZI(z,w) (respectively W'(z, w)) is of weight at most [z;] (respectively
of weight at most [w)]). In particular, Z)(z,w) (respectively W'(z,w)) is independent of the variables of the weights
z [z;] (respectively of the weights 2 [w;]).
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Proof. If X is of weight homogeneity d, then since the standard fields d.; and d, have the constant weights
—[zi] and —[wy], respectively, then the weighted homogeneous polynomials Z/ and W' have the constant
degrees d + [z;] and d + [w;], respectively. Now, assume that M has rigidity. The dimension of the Lie
algebra autcr(M) is equal to the number of free parameters involved in the expressions of the functions
Zi(z,w),i=1,...,nand W!(z,w),l = 1,...,k. Each generator is extracted from one of such free parameters
as its coefficient in the general form X := /7 Z)(z,w) d.; + YX Wl(z,w) dy,. In such expression, coefficients
of the standard fields 0., come from the found functions Z/(z, w). Now, rigidity of M means to have no
any (homogeneous) basis element belonging to autcgr(M) of the positive weighted homogeneity. Hence,
when we have standard field 821, of the weight —[z;], then no term of weight bigger than [z;] appears in
its coefficient. Consequently, Z/(z, w) — which provides the coefficients of d., in the basis elements — is
independent of the variables of the weights bigger than [z;]. Similar fact holds when one considers the
coefficients W'(z, w) of the standard fields dy,.
For the converse, if none of the (weighted homogeneous) holomorphic coefficients Z/(z,w),j = 1,...,n
admits the terms of weight larger than [z;], then the weight [Zi(z, w)] - [z;] of each term Zi(z, w)d;, of
X is non-positive. Similar fact holds for the terms Wiz, w)dy, 1 = 1,...,k. Consequently, autcr(M) does
not contain any (weighted homogeneous) basis element X of the positive weight. In other words, M has
rigidity. O

For a graded Lie algebra:

§=0p® 96198 Dgq DDy,

let us denote by ¢ the graded subspace:

o i=g @ ®g, (=—p-0.

According to definition of the graded algebras, one easily convinces oneself that for t = —p,...,0 each
subspace g% is in fact a Lie subalgebra of g. The idea behind the proof of Proposition 3.6 can lead one to
obtain the following more general conclusion.

Proposition 3.7. Let M be a homogeneous CR manifold of CR-dimension n and codimension k represented as (11).
Let g = autcr(M) be of the graded form:

§4=0,@ 03 10O D Dy, 17)

and let the (weighted homogeneous) infinitesimal CR automorphism:

n k
X = Z; Zi(z,w) 9., + IZ; W'(z, w) O,
= =

belongs to g. Then,

(i) X belongs to g; for t = —p, ..., 0, if and only if each coefficient Z/(z, w) (respectively W'(z,w)) is homogeneous
of the precise weight [z;] + t (respectively [w;] + t). In particular, each Zi(z,w) (respectively W'(z, w)) is
independent of the variables of weights 2 [z;] + t (respectively of weights Z [w;] + t).

(i) X belongs to g if and only if each coefficient Z(z, w) (respectively W'(z, w)) is homogeneous of weight at most
[zj] + t (respectively of weights at most [w;] + t). Specifically, each function ZJ(z, w) (respectively, W'(z, w)) is
independent of the variables of weights Z [z;] + t) (respectively of weights Z [w;] + t)

(iii) In particular, the negative part g- = g of the CR manifold M is generated by the elements X of g with the
coefficients Z1(z,w) (respectively W'(z,w)) independent of the variables of weights 2 [z;]1 = 1 (respectively of
weights Z [w;] - 1).
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Proof. The proof is similar to that of Proposition 3.6. Here, we prove the first item (i). If a holomorphic
vector field X belongs to g;, then it is homogeneous of the weight t. In the expression of X, each standard
field dz, is of the fixed weight —[z;] and hence having the field Z/(z, w) 9z, of the precise homogeneity ¢, then
the coefficient Z/(z, w) must be of the weigh [z;] +t. Similar conclusion holds for the functions Wiz, w). The
converse of the assertion can be concluded in a very similar way. In particular, since all the variables in
ZJ(z,w) have the positive weight then, each function Z/(z, w) — which must be of the weight [z jl+t—is
independent of the variables of the weights bigger than [z;] +¢. [

4. Computing the Homogeneous Components

According to Proposition 3.7, to compute the holomorphic coefficients Z/(z, w) and W'(z, w) of the vector
fields X € g%, one can assume these functions independent of the variables with the associated weights
larger than [z;] + t and [w;] + ¢, respectively. In this section, we aim to develop this result for constructing a
very convenient method of computing each subspace g and each component g; associated to our weighted
homogeneous CR manifolds.

4.1. Computing each component g;

For each element X of the ¢-th component g;, Proposition 3.7 enables one to attain an upper bound for the
weight degree of each of its desired (polynomial) coefficients Z/(z, w) and W'(z, w). Hence, we can predict
the expression of these polynomials as the elements of the polynomial ring C[z, w]. Then, finding these
expressions, it is necessary and sufficient to seek their constant coefficients. One can pick the following
convenient strategy for computing the t-th component g; of the desired algebra g as (17), for a fixed integer

t=-p,...,0.

(s1) First, we construct the tangency equations (8) of M corresponding to (in general form) holomorphic
vector fields:

n k
X = Z; Zl(z, w) d; + ZZ; W(z, w) 0y,
= -

of g; Cg.

(s2) Now, to compute the coefficients Z/(z, w) and W'(z, w), it is no longer necessary to use the Taylor series
(9) and construct and solve the arising PpE systems as is the classical method of [8, 20, 26, 33, 37].
Here there is another, entirely different and much simpler way to proceed the computation. Namely
by Corollary 3.3, all desired functions Z/(z,w) and W'(z, w) are polynomials with bounded degrees.
Then, according to Proposition 3.7(i), the desired coefficients Zi(z,w) and W!(z,w) are weighted
homogeneous polynomials of the precise weights [z;] + t and [w;] + ¢, respectively. Hence, we can
assume the following expressions:

7/ (z,w) := E Cap-2" wh,
aeN"
ﬁe]Nk
91+ [wP 1=z 1+t

E o . 2% WP, (=1,m, 1=1,..8),
aeN"
peNk

[+ [P |=[oy ]+t

(18)

Wz, w) :

for some (unknown yet) complex free parameters C,g and dqg. Here, by z* we mean z{' z)* ... z," for

1“2
a:=(ay,...,a,) € N". Furthermore, we have:
n

2] = Z 1= alzj
j=1

=1
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Similar notations hold for w? and [wf].

(s3) Determining the parameters C, g and d, g is in fact equivalent to find the explicit expressions of the
CR automorphisms X of g;. For this, we should just put the already assumed expressions (18) in the k
tangency equations (8) and next solve the extracted (nof ppE) homogeneous linear system of equations
with the unknowns ¢, 4 and d, g, and with the equations obtained as the coefficients of the various
powers z*w’ of the variables z and w.

Let us denote by Sys"/ the system of equations, mentioned in the step (s3), associated to a weighted
homogeneous CR manifold M of CR dimension and codimension n and k, extracted from the j-th tangency
equation for j = 1,...,k along the way of computing the t-th component g; of g = autcr(M). Furthermore,
we denote by Sys' the general system of equations:

k
sys':= | ] sys".
=1

Definition 4.1. A graded Lie algebra of the form:
g- =g, ®---®g1, peN
is called fundamental whenever it can be generated by g_y.

In the case that the negative part g_ of the desired algebra g is fundamental, it is even not necessary
to compute the homogeneous components g, ...,3-2. In this case, one can easily compute the (—t)-th
components g-; inductively as the length ¢ iterated Lie brackets g_; = [9_1, —++1]. There are many situations
where this occurs. For example, all Beloshapka’s models enjoy it (see [5], Proposition 4).

In the case that g- is fundamental, one plainly can add the following item to the already presented
strategy (s1)-(s3).

(ib) After computing the basis elements of g_;, to achieve each component g_,,, m = 2,..., p one should
just compute all the length m iterated brackets like:

[Xi, DXy, [Xigs oo [Xa, 1022 ], dr<in<eo<ing
of the basis elements X, of g_1.

Example 4.2. Consider again the CR-submanifold M c C'*3 of CR-dimension n = 1 and codimension k = 3
represented as the graph of the defining polynomials (14). The Lie algebra autcr(M) is computed in [37] and [25],
using the classical method of constructing and solving the arising PDE system. Here, we use our new and simple
method. According to (8), the three fundamental tangency equations are:

0=[W'-W -2z - 2i27] (19)

w=w+E(z,z,W0)

0=[w?- W — 4izzZ — 2727 — 227 — 4277

w=w+E(z,z,W0)

0=[W- W — 4227 - 227 + 227 + 4277)

=w+E(z,Z,0)

First let us compute the subalgebra g_,. For this aim, we may set the following expressions for the unknown functions
Z(z, w1, wo, w3), Wz, wy, wy, ws) for | = 1,2,3 with their homogeneities at their left hand sides (cf. (18)):

vy | Z(z,w) =P,
24(-1) |+ Wl(Z, ZU) =Qz,

o] WA(z,w) = rw; + 822,

o] WR(z,w) :i=tw, +uz?,
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for some six complex functions p,q,r,s,t,u. Putting these expressions into the tangency equations and equating to
zero the coefficients of the appeared polynomials of Clz, w1, w,, w3], we obtain the following three systems of linear
homogeneous equations:

Sys‘l'lz{—2i5+q=0, —2ip—a=0},
sys—lrzz{s_ziﬁzo, -2p-2p+r=0, 2p+25—r=0},

Sys™% = {u—25=0, —2i5+2ip+t:0}.

Solving the homogeneous linear system Sys™" of all the above equations, we can write:
p:=a+ib, q=s:=2(b+ia), r:=4a, t:=4b, u:=2(a-ib),

for two real constants a and b which brings the following general expressions for the desired holomorphic coefficients
of the elements X € g_1 (compare with (15)):

Z(z,w)=a+ib,
Wl(z,w) =2(b+ia)z,
W2(z,w) =2(b+ia)z> + 4daw,
W3(z,w)=2(a—-ib)z> + 4bw;.

Thanks to the two free parameters a, b appeared in the above expressions, we will have two infinitesimal CR automor-
phisms as the generators of g_1:

X1 := 0, +2i2dy, + (2i2% + +4w1) dy, +22% s,

Xy :=id; +2z0y, + 2228102 +(-2i% + 4w1) Iy,
Now, we can follow the step (ib) to seek the elements of the homogeneous components g_, and §_3 by computing the
iterated Lie brackets of X; and X (here notice that M is one of the Beloshapka’s models and hence g is fundamental.

Moreover, since the maximum homogeneity of the appearing variables is 3 then, the minimum homogeneity in g is
—3). For g_ we have only one generator:

Xz :=[X1, Xo] = 49y,
Then, g_3 includes two basis elements

X4 = [X1/X3] = _4 81412/

X5 = [Xz,X3] = —48w3.
At present we found 5 = 2 X 1 + 3 basis elements for the subalgebra g- = §_3 ® g_» ® g-1. Similarly, one
achieves the zeroth component gy of g. For this, we may assume the following expressions for the functions

Z(z, w1, wa, w3), W!(z, w1, wo, w3) for 1 =1,2,3 with their homogeneities at their left hand sides:

140 |2 Z(Z, w) =p1z

[2+0]: Wl(z,w) := gy w;y + 222,
© W2z, w) i=rywy + faws + ra3z° + 14 zwy,

340 : WS(Z,ZU) =S4 ZU2+52ZU3+3323+S42101.



M. Sabzevari et al / Filomat 30:6 (2016), 1387-1411 1402

Aguain, substituting the recent expressions in the tangency equations (19) and equating to zero the coefficients of the
appeared polynomials of Clz, w1, wy, w3], we get the following systems of equations:

Sys¥! = {qZ =0, -p1-p1+qs= 0},

SYSO’2={r3=0, —P1+P1+r4a—T4=0, T4=0, r1—p1—2p1+13=0, r2:0},

— — i i— — i [— 3 3 __
Sys°/3:{53:0, $4-54=0, §4=0, S4+s1+5p1-5P1=0 —84-S—5pi+;pr=0, —-P1—-p1+52=0}-

Solving the linear homogeneous system Sys® of all the above equations, we receive the solution:

p1=d+ie, qi=2d, ri=s,=3d, ro=-¢, Sy=g¢,
Oo=r3=rs=83=0,

which implies the following expressions for the desired functions:

Z(z,w)y=(d+ie)z,
Wl(z,w) =2dw;,
Wz(z,w) =3dw, —ews,
W3(z,w) = ew, + 3dws,

where d and e are two real constants. Extracting the coefficients of these two integers brings the following two tangent
vector fields, belonging to go:

Xe: =20, + 2wy aw] +3w28wz +3W38w3,
Xy = izé’z — W3 8102 + W a103'

Remark 4.3. It is worth noting that for computing each subspace g, although one can achieve its basis elements by
computing the corresponding components gs, t = —p, ..., t, it is also possible to adopt the above strategy (s1)-(s3) by
modifying the assumed expressions of the functions Z/(z,w) and W'(z, w) as follows (cf. Proposition 3.7(ii)):

Z Cap - 2" wh,

aeN"
ﬁe]Nk
[Za]+[I(Y’$]<[Zj]+I

E dogp.z" wh, (=1, 1=1,..4).
aeN"
ﬁs]Nk

[z“]+[wﬁ]<[wl]+t

Zl(z,w) :

(20)

Wz, w) :

4.2. Finding the maximum homogeneity

For an arbitrary homogeneous CR manifold, represented as (2), so far we have provided an effective
way to compute homogeneous components g; of the graded desired algebra g := autcr(M) of the form:

gq:= g_Pea@gO@@gQ

We also know that the value of p in this gradation is equal to the maximum weight [w;] appearing among
the complex variables. The only not-yet-fixed problem is to answer how much we have to compute the
homogeneous components g; to arrive at the last one g,, in the case that g is finitely generated or equivalently
where M is holomorphically nondegenerate of finite type. Here, we do not aim to find the precise value of
o but — in an algorithmic point of view — it suffices to find a criterion to stop the computations. For this
aim, we employ the transitivity of the Lie algebra g. In fact, it is for this reason we assume in this paper
that the under consideration CR manifolds are homogeneous, in Lie theory’s sense.
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Definition 4.4. A graded Lie algebra g as above is called transitive whenever for each element x € gy with t > 0, the
equality [x, g-] = 0 implies that X = 0. In the case that g_ is fundamental then, the transitivity means that for any x
as above, the equality [X, g-1] = 0 implies that x = 0.

Proposition 4.5. Consider a transitive graded algebra g as above. For each integer t > 0, if ¢t = g1 = -+ =
9t+p-1 = 0 then we have gy, = 0. Moreover, if § is also fundamental then the equality g; = 0 implies independently
that Ot41 = 0.

Proof. Assume the following gradation for the transitive algebra g:

3:=0-99®0P.. 0319 0 & 0 &...6 0 @9, 9...
—— —— N——

Ot Ot+1 Gt+p-1

and let X € g;4,. According to the inequality [g;, g;] C gi1j, we have:

[X,8-1] C gt+p-1 =0,
[X/ g—Z] - gt+p—2 = 0/

[X/ g*p] c gterfp = Or

which implies that [, g-] = 0. Now, the transitivity of g immediately implies that x = 0. For the second
part of the assertion, similarly assume the following gradation for g:

g:=0_-DgP®31®..93.19 0 DG 10...,
N——
gt

and let x € gi.1. Consequently we have:
[X,8-1] € 8t+1-1 =8 = 0.

Again, the definition of fundamental transitive algebras immediately implies that x = 0. This completes
the proof. O

Accordingly, for a homogeneous CR manifold M and to realize how much we have to compute the
homogeneous components of g to arrive at the last weighted homogeneous component g, we can apply the
following plain strategy:

e When g_ is fundamental. Compute the homogeneous components g; of g as much as it appears the
first trivial component.

e When g_ is not fundamental. Compute the homogeneous components g; of g as much as they appear
p successive trivial components.

Example 4.6. In Example 4.2, we computed the negative part §_ = g_3 ® g_» ® -1 and also zeroth component g
of the graded algebra g := autcr(M) associated to the presented homogeneous CR manifold M C C'*3 (it is known
from [14] that M is homogeneous). Here, let us finalize computation of the desired algebra. Proceeding further in this
direction, now let us compute the next component g;. In this case, we can set the following expressions for four desired
coefficients Z(z, w) and W'(z, w) I = 1,2, 3, with their weighted homogeneities at their left hand sides (cf. (18))

1412 Z(Z, w) =ap w + ay Zz,
Z Wl(Z,ZU) = a3wz+a4w3+a5z3+a6zw1,
: Wz(Z, ZU) = ay w% + ag ZzZU1 + g Z4 + adjp Zzwy + A1 ZWs,

3+1: WS(Z, ZU) = anp w% + a3 zzwl + ays Z4 + a5 ZWy + A16 ZW3.
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Now, we should check these predefined expressions in the tangency equations (19). This gives us the total system
Sys' = U;o-’:l Sys" as follows:

Sys! =

as =0, i(a6+a3—a2=0)+a4=0, i(ag—éz)—a4+2a1=0, —2ia; +a¢ =0,
as=0, —2ia;—a,=0, az—az=0, ay—a; =0, ag=0, i(a10—2a2+a8)+a11=0,
i(alo—a2—§2)+8a1—2a11—4a7=0, —2ia;+ag=0, a;—iap=0, a;=0,
an=0, i(ay-ay-@ =0)=0, @ =0, -8—2ia; =0, a=0, any=0, ayu=0,
a;—ay; =0, i(a13+a15)+a16—2a2=0, —2a12+az—al6—52+i(a15—4a1)=0,
az—2a; =0, a,+ia; =0, iap—-a;+a; =0, a5=0, a;=0, au =0,
—513+231=0, —515=0, —516=0, 312—512=0

This system has only the trivial solution a; = --- = ay¢ = 0 which means that we have g1 = 0. Furthermore as we

know, the desired algebra g is fundamental which guarantees that the next components are trivial, too. Summing up
the results of this example with those of Example 4.2, one finds the sought 7-dimensional Lie algebra of infinitesimal
CR automorphisms associated to M as the gradation:

3=063®32®3g-1®do,

with g_3 = (Xq, X5), with g_» = (X3), with g_1 = (X1, X2), with g9 = (X¢, Xy) and with the Lie commutators
displayed in the following table:

Xs Xy X Xo X Xg Xy
Xs | 0 0 0 0 0 3Xs =Xy
X4 * 0 0 0 0 3X4 X5
X3 * * 0 4X5 4X4 2X3 0
X2 * * * 0 —4X3 Xz —X1
X1 % * * % 0 X1 X5
Xs * * * * * 0 0
Xz * * * * * * 0

One observes that the achieved algebra is exactly that of (16).

One can find another computation of the Lie algebra achieved in the above example via the classical
method of solving the arisen ppE system in [25]. Comparing the above process with that of [25] clarifies the
effectiveness of the prepared algorithm.

4.3. Summing up the results

Here, let us gather the results obtained so far to provide an algorithm for computing the sought Lie
algebras of infinitesimal CR automorphisms associated to the holomorphically nondegenerate homoge-
neous CR manifolds, represented as (11). The strategy introduced in subsection 4.1 enabled one to compute
separately the homogeneous components g;, t = —p,...,0 of the graded algebra g of infinitesimal CR
automorphisms of such CR manifolds as:

§:=0,® B 1BY® - B, (21)

One may follow the following two points for computing the desired algebras associated to the under
consideration class of CR manifolds:

Point 1 Executing three steps (s1) — (s2) — (s3) introduced in subsection 4.1 and finding homogeneous com-
ponents g; successively. In particular if g_ is fundamental then one can execute the step (ib).
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Point 2 In the above gradation, the minimum homogeneity —p is equal to [wi] where wy has the maximum
homogeneity among the complex variables appearing in (11). Moreover, it suffices to compute
successively the homogeneous components gy, g1, . . . as much as we find p successive trivial algebras.
In particular if g_ is fundamental, we can terminate the computations as much as we find first trivial
component.

Let us conclude this section by computing Lie algebras of infinitesimal CR automorphisms associated

to the following CR manifold:

wl—%l :ZiZZ,
M:={ wr—wy =2izz Z+Z), (22)
_ .= I
w3 — W3 =2i2Z(22+ 322 +Z )

It may be worth noting to state that this CR manifold — which admits some interesting features [23, 25] —
does not belong to the class of CR models introduced by Beloshapka [5].

Example 4.7. To compute the Lie algebra g := autcr(M) associated to the CR manifold M defined as (22), first one
should notice that we have the following assigned weights to the complex variables:

[zZ1=1, [wi]=2, [w:]=3, [ws]=4

Hence the minimum homogeneity of the homogeneous components will be —p = —4. Here, an infinitesimal CR
automorphism is of the form:

X 1= Z(z,w) 9, + W(z,w) 9y, + W(z, W) I, + W3(2, W) Dups,
enjoying the following three fundamental tangency equations:
0=[W'-W -2i7z-2i27] ,
0= W2 -W -4iz2z - %77 - 27 - 4iz2Z) (23)
0= W - W' - 6i22Z - 6i22°Z - 272 - 2i2°Z - 6i 772 - 6122,
Let us start by computing the negative part g_. For the (—1)-th component g_1, the sought coefficients are of the forms:

Z(z,w) := ay,

Wiz, w) = ay z,

W3(z,w) == az z> + ag w1,

Wh(z, w) := a5 2% + ag zw; + ay w,.

Checking these predefined polynomials into the tangency equations (23) gives the following system:

S S_l . 32—2i§1=0 —4ia1—4i§1 +2i54=0 33—2i51:0
y - a4—§4=0 a5—2i51=0 =0 8.7—57:0

which has the solution:

a;:=a+ib, ap=2b+2ia, az=2b+2ia, a;=4a,
as=2b+2ia, ag=0, a;=6a3a, (abeR).

Consequently, the sought homogeneous component §_1 is 2-dimensional with the generators:

X1 = 0, + 2iz 0y, + 2i2° Oy, + 4w1 Dy, + 2i2° Doy + 6102 oy,
Xo =10, + 220y, +272% 0y, +22° ;-
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Similar (and even simpler) computations give three vector fields:

X3 = &wl,
X4 = awz/
X5 = 8w3,

of homogeneities —2, -3, —4, respectively. Then, we have the negative part of the sought algebra as:
9-=0-490 3092908

with g_1 = (Xq, Xp), with g_o := (X3), with g_3 := (Xy) and with g_4 := (Xs). One can see all the possible Lie
commutators of these generators in the table presented below. From this table, one easily verifies that the negative part
a- of g is in fact fundamental. Hence, we have to compute nonnegative components as much as we encounter first
trivial one. Now, we have to continue with computing go. In this case, the sought coefficients are of the form:

Z:=aiz

Wi i=a,w + a322

W, :=agw, + a5z3 + g ZW1

Ws5 := ay ws; + ag w% + Qg ZZZU1 + ayo 4+ ail Zws.

Checking these predefined functions in the tangency equations (19) gives the following complex system:

Sys’ =
az; =0, -2ia —2i51 +2ia, =0, —53 =0, —52 +a,=0, a5 =0,
—4ia; — 2151 +2ia4 +2iag =0, —4i§1 —2ia;+2ia; =0, a¢ —55 =0, _56 =0,
ajp—2ia; +2iag +2iay +2ia;; —6ia; =0, 3iay+2ia;; —4ag—6ia; —6ia; =0,
dyg —54 =0, ag=0, 2iay —6i51 —2ia; =0, 4iag=0, a;; =0, —510 =0,
—a9=0, —a;1 =0, ag—ags=0, ay—ay=0
This system has the solution:
ai=a a=2a a=3a ar=4a, az=as=gs=ag=ag=ap=ap1 =0
for some real number a. Therefore, g is 1-dimensional with the generator:

XO =z &z + 2un &w1 + 3w, &wz + 4w; 8w3.

This nonnegative component was not trivial; hence we have to proceed by computing the next component 1. Similar
computations that we do not present them for saving space shows that this component is trivial. Then, according to
the fundamentality of g_ we can terminate the computations. Consequently, the sought graded algebra g is of the
Sform:

3:=6-493 383 2D9-1Ddo

with the negative components as above, with gy = (Xo) and with the table of commutators displayed as follows (see
also subsection 3 of §6 of [29] for another computation of this Lie algebra):

Xo X1 X2 X3 X4 X5

Xo| 0 =Xi =Xy -2X3 -3Xy -4Xs
X1 * 0 —4X3 —4X4 6X5 0
Xy | # * 0 0 0 0
Xz | = * * 0 0 0
Xy * * * * 0 0
X5 | = * * * * 0
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5. Parametric Defining Equations and Grobner Systems

Actually, one of the main — somehow hidden — obstacles appearing among our computations arises
when the set of defining equations includes some certain parametric polynomials. This case is quite usual
as one observes in [5, 8, 20, 37]. To treat such cases, we suggest the modern and effective concept of
comprehensive Grébner systems [17, 18, 27, 28, 41] which enables us to consider and solve the arisen
(linear) parametric systems.

To begin with, let K be a field and let a := a5,...,4; and x := x1,...,x, be two certain sequences of
parameters and variables, respectively. Naturally, we call:

Kl[a][x] := {2 PaXy" X" | pa, € K[a], a;; € N U {0}}
i=1

the parametric polynomial ring over K with parameters a and variables x. Let P be a set of parametric
polynomials which generates the parametric ideal 7. Obviously, the solutions of the parametric system
P = 0 depend on the extant parameters. The main idea behind the modern concept of comprehensive
Grébner systems is to treat such solutions by discussing the values of the parameters of the system defined
by I. This concept provides some effective and powerful tools in which enables one to divide the space
of parameters into a finite number of partitions for which the general form of solutions arising from each
partition is unique.

Definition 5.1. Let I c K[a][x] be a parametric ideal, K be the algebraic closure of K and < be a monomial ordering
on x. Then the set:

G() ={(E;,N;,Gy) li=1,...,¢ cKla] x K[a] x K[a][x]

at-tuple (A1,...,A¢) € Rt and defined by:

Z;Z] pa,-(all e /at) x?il e xzm [and Z:il pa,(/\lr ceey /\f) x?ﬂ e xzin/
there exists a pair (E;, N;) with (A1, ..., As) € V(E) \ V(N;) such that 6(G;) is a Grobner basis for o(I) with respect to
<. Here by V(E;) and V(N;) we mean the algebraic varieties associated to the polynomial sets E; and Nj;. In this case,
E; and N; are called null and non-null conditions, respectively.

Remark that, by [41, Theorem 2.7], every parametric ideal possesses a (finite) comprehensive Grobner
system, however, by Definition 5.1, we can observe that such a system may be not unique. The concept
of Grobner systems was introduced first by Weispfenning in 1992 [41]. Later on, Montes [28] proposed
DisPGB algorithm for computing Grobner systems. In 2006, Sato and Suzuki [36] provided an impor-
tant improvement for computing Grobner systems by doing only computation of the reduced Grobner
bases in polynomial rings over ground fields. Furthermore, Montes and Wibmer in [27] presented the
GroOBNERCOVER algorithm which computes a finite partition of the parameter space into locally closed
subsets together with polynomial data from which the reduced Grobner basis for a given values of pa-
rameters can immediately be determined. Kapur, Sun and Wang [17, 18] in 2010 and 2013 suggested two
new algorithms for computing Grobner systems by combining Weispfenning’s algorithm with Sato and
Suzuki’s.

It is worth noting that if V(E;) \ V(N;) = 0, for some i, then the triple (E;, N;, G;) is useless and it must
be omitted from the comprehensive Grobner system. In this case, the pair (E;, N;) is called inconsistent.
It is known that inconsistency occurs if and only if N; ¢ V(E;) and thus we need to an efficient radical
membership test to determine it.

In the recently published paper [17], Kapur, Sun and Wang introduced an effective algorithm to compute
comprehensive Grobner system of a parametric polynomial ideal. This algorithm which is called by PGB
uses a new and efficient radical membership criterion based on linear algebra methods. To the best of our
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knowledge, it is the most powerful algorithm of computing comprehensive Grobner systems introduced
so far and it is for this reason that we prefer to employ this algorithm in our computations.

Besides the deep theory encompassing this subject, the concept of comprehensive Grobner bases pro-
vides some effective tools to consider and to solve parametric systems by decomposing the space of the
extant parameters. To illustrate this ability let us borrow the following example from [17].

Example 5.2. Consider the following parametric polynomial system in Cla, b, c][x, y]:

ax—-b = 0
Jby-a =0
L -y = 0
c—x = 0.

Choosing the graded reverse lexicographical ordering y < x and computing the sought comprehensive Grobner system
using the algorithm PGB give the results displayed in the following table:

E; N; G;
{a,b,c} } {x, vl
{a, b} {c} {cx® =y, cy” — ¥}
{a® = 1%, a%c — b°,b°c — a3, {b} {bx — acy, by — a}
ac® —a, bc? — b)
) {a® = b%,a%c — b3, b°c — a’, {1}
ac® —a,bc? — b)

Accordingly, the algorithm divides the solution set of the system L into four partitions, each of them corresponds to
one of the above rows. Let us explain what each of these rows means. For the first row, we have the null conditions
Ey = {a,b,c} and there is no any non-null condition. This means that if the elements of E; are null, namely if
a =b = c =0 then the system L reduces to the system Gi = {x = 0,y = 0} which obviously has the single solution
(0,0). For the second row, we have null conditions E, = {a, b} and non-null condition N, = {c}. This means that
ifa="b=0andc # 0 then the system T reduces to Gy = {cx* — y = 0,cy? — x = 0} which has the solution set

{1, 1), ceCtuf0,0),(= S~ ‘fl, == ‘F’) (= ‘f’, _1; C\F’)} Similar interpretation holds for the third row. Finally, the

last row means that if none of the previous null conditions holds, namely if E1, Ey, E3 # 0, then the under consideration
system L reduces to G4 = {1 = 0} which of course its solution set is empty.

5.1. Implementation

In [34], we have implemented the designed algorithm in MapLE 15 which is available online as a library
entitled CRAuT (together with a sample file relevant to the next example). To do it, at first we implemented
the recent algorithm PGB of Kapur, Sun and Wang [17]. By means of this auxiliary algorithm, we have
employed techniques of comprehensive Grobner systems to consider and solve the appearing parametric
linear systems Sys in the parametric case.

Example 5.3. Consider the following weighted homogeneous rigid defining equations:
W, —wy = 2izz,
Wy — Wy = 21(2 Z+7°2 ) W3 — W3 = (222—222),
w4—w4—21(z Z+Z z)+21azz w5—w5—2(z32—23z)+2ib2222 w6—%6=2i2222, a€eRR,
Wy — Wy = 21(2 Z+ 2z )+ ci <w1 +w1)(z Z+2zZ ), wg — Wg = 2(z4z—zz )+ dz(w1 +w1)(222+ziz), (24)
Wy — Wy = Zz(z Z° +2°Z )+ez(w1 +w1)<222+ziz),
Wi — Wi = 2 <z322 2’z ) + fi (w1 + El) (ZZZ + ZZZ),

— — — ) — . — — )}
Wi — Wy = (w1 + wl) (zzz -2z ), Wiy — Wip = 1(w1 + wl) (222 + 27 ), a,b,c,d, e felR,
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and let My be the Beloshapka’s CR-model of CR-dimension 1 and codimensionk = 1,...,12, represented in coordinates
(z,wy,...,wx)inC*!. Fork =1,...,5, Mis represented as the graph of the above first K equations. Fork = 6,...,11,
it is represented again by the first K equations but with the assumption a,b = 0. Finally, M1 is represented as the
graph of the above 12 equations with the assumption that all the appearing six parameters a, b, ¢, d, e, f are vanished —
namely a non-parametric model as My, Mo, M3 and Mg are. These twelve CR manifolds encompass all the Beloshapka’s
models up to the length five and are constructed by Shananina and Mamai [20, 37]. They also computed the associated
Lie algebras of infinitesimal CR automorphisms, thought Mamai did not present the outputs, perhaps because of the
length of them. It is also known that these models are all homogeneous ([5]). By means of our implementation, we
have computed the associated Lie algebras of infinitesimal CR automorphisms. The following table displays some
properties of the obtained results, where the timings were conducted on a personal laptop with Intel(R) Core(TM) i7
CPU@2.80 GHz and 6.00 GB of RAM:

Model M1 M2 M3 M4 M5 Me M7 Mg Mg M10 M11 M12
Time (sec.) || 0.5 | 0.5 | 1 3 6.2 | 5.8 | 17.6 52.2 131.5 340 198 | 22
p 2 3 3 4 4 4 5 5 5 5 5 5
0 2 0 0 0 0 0 0 0 0 0 -1 -1
dim. 8 |5 | 7 [ 7 19]8]10[10[9 12101211 [14][12| 13 | 14

The last row of the above table needs some explanation. In fact for some models, the dimension of the associated
algebra is not unique and depends on the values of the extant parameters. Being more precise, in this table we observe
two different values for the dimensions associated to some models. In such cases, the left number is the dimension
of the desired Lie algebra associated to the model whereas all the appearing parameters vanish identically; otherwise
the dimension is equal to the number at the right hand side. For example for Mg, we have dim(autCR(Mg)) =121f

¢, d = 0 and = 10, otherwise. More precisely, in the case that c,d # 0, we have the basis elements of the components
of autcr(Ms) as:

g-5 = <aw7r alUg)l g-q4 = <awe/ 8105/ aZU4>/ g-3 = <8w3r awz >/
g2 = (awl + awZauw + beawg >/

3 3
01 = (204 0y, = 2050k, + 20, + W3, + 20, + 2010, + 2y + 20, — 530, + SW2us +
i
(0= = 2220y, — 220, - 22°9,,), 25)

+ czzwlé’w7 + CwWedy, + dzzwlé?w8 + dwedy, + 7

. . . . . . 3 3
— icZ* W10y, — 12°0r, — 1dZ2W1 sy — 1207, — 1Z*0rpy — 120rp, — CWIOry, — Edwgaws - sz&m

1
=0z = 240, — 2019, — 2Ws0r, — iy, ),

4 3 2
— WOy, — 20w — 2 0ws — Z 8w3—2

8o = ().

In the case that ¢, d = 0, the basis elements of g;,i = =1, ..., =5 are as above with of course ¢, d = 0 while in this case
8o has two basis elements as follows:

1 1 2 2 1,
9o = < - ZUS&?W + §w28w3 + w78wg - §w3&wZ + §w4awS - §w5aw4 + glzaz,

1 3 3 4 4 4 2
gzaz + 5103&1,,3 + 5w28wz + 5w58ws + 5106(9106 + §w48w4 + W70y, + Wedy, + 5w18w1>.
Ome easily concludes from the results of the above table, all the above twelve models have rigidity, as is the main result
of Mamai in [20]. Together with the library CRAuT, we also have put a sample file concerning the computations of
this example.

Remark 5.4. A glance on the above timings shows how it increases mostly the complexity of computations as one
passes from each model to the next by adding just one variable and one defining equation to the previous ones. The
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following diagram may be helpful to compare the appearing timings. Moreover, actually the computations in the
case of parametric defining equations are more complicated in comparison to those of the non-parametric case. For
example, compare the timings corresponding to the models M1y and My — notice that the defining equations of M1
are non-parametric.

400
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300
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@ 200
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3 = = 5 = 5 = = £
Models

Example 5.5. Add the following rigid defining equations to the list (24):

— (5= , = — S — — . 4=2 | =4
wlg—w13=2z(252+z z), w14—w14:2(252—z z), w15 — Wis :21(242 +z zz),
= _ 4=2 =4 2 — 5. 323 (26)
Wi — Wi = 2(2°2° —2727), wiyy—wiy=2i2°2,

and for k = 13, ...,17 let M to be the CR manifold of CR-dimension one and codimension K represented as the graph
of the equations of (24) together the first K — 12 equations of the above list. These are the next five rigid Beloshapka’s
models which are the very first models of the length six. Here, we also compute — for the first time — the desired Lie
algebras associated to these models and the results are displayed in the following table:

Model Mz | M1 | Mys | My | My
Time (sec.) || 83.5 | 152 | 286 | 545 | 1157

p 6 6 6 6 6

0 -1 -1 -1 -1 -1

dim 15 | 16 | 17 | 18 19
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