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Version of July 6, 2020

A Lie-Theoretic Construction of Cartan-Moser Chains

Joël Merker∗

Abstract. Let M3 ⊂ C2 be a real-analytic Levi nondegenerate hypersurface.
In the literature, Cartan-Moser chains are detected from rather advanced consider-
ations: either from the construction of a Cartan connection associated with the CR
equivalence problem; or from the construction of a formal or converging Poincaré-
Moser normal form.

This note provides an alternative direct elementary construction, based on
the inspection of the Lie prolongations of 5 infinitesimal holomorphic automor-
phisms to the space of second order jets of CR-transversal curves. Within the
4-dimensional jet fiber, the orbits of these 5 prolonged fields happen to have a
simple cubic 2-dimensional degenerate exceptional orbit, the chain locus:

Σ0 :=
{

(x1, y1, x2, y2) ∈ R4 : x2 = −2x21y1 − 2y31 , y2 = 2x1y
2
1 + 2x31

}
.

Using plain translations, we may capture all points by working only at one
point, the origin, and computations become conceptually enlightening and simple.
Mathematics Subject Classification 2010: Primary: 32V40, 58K50, 34C20, 14R20.
Secondary: 53A55, 53B25, 14B10, 53-08, 53C30, 58K40, 58J70, 34C14, 58A30..
Key Words and Phrases: Lie prolongations of vector fields, Cauchy-Riemann man-
ifolds, Local biholomorphic equivalences, Formal and convergent normal forms.

1. Introduction

The goal of this article is to present a simplified construction of Cartan-Moser chains,
which are certain distinguished curves in Levi nondegenerate Cauchy-Riemann (CR)
manifolds of hypersurface type. We concentrate on real-analytic embedded CR
manifolds, because the interaction between the extrinsic geometry of an ambient
complex manifold X and the intrinsic geometry of a CR submanifold M ⊂ X
is richer than in an abstract seetting. Also, for the sake of intuitive clarity and
for elementariness, we restrict our presentation to the 3-dimensional case. The
Lie-theoretical method that we employ — which certainly has a wider scope —
drastically contracts all required computations by working only at one point, as
we shall rapidly see.

Thus, let M3 ⊂ C2 be a Cω real hypersurface. We are interested in results of
a local nature, hence we will allow to shrink neighborhoods of various points p ∈M .

∗This work was supported in part by the Polish National Science Centre (NCN) via the grant
number 2018/29/B/ST1/02583.
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If J : TC2 −→ TC2 is the standard complex structure, with J2 = −Id, the complex
tangent bundle T cM := TM ∩JTM is J -invariant of real rank 2, hence at all point
p ∈M , the 2-planes T cpM ⊂ TC2 can be viewed as complex affine sublines C ⊂ C2 .

Also, T 1,0M :=
{
X − i JX : X ∈ T cM

}
and T 0,1M :=

{
X + i JX : X ∈ T cM

}
=

T 1,0M are complex vector subbundles of the complexified tangent bundle C⊗RTM .

We will always assume that M3 ⊂ C2 is Levi nondegenerate, namely that
T cM + [T cM, T cM ] = TM , or equivalently [22]:

C⊗R TM = T 1,0M + T 0,1M + [T 1,0M, T 0,1M ].

For detailed foundations, the reader may consult [22].

These “CR bundles” are invariant, in the sense that for any (local) biholo-
morphism h : C2 −→ C′2 defined in some neighborhood of M , with M ′ := h(M)
being a hypersurface of C′2 , one has h∗(T

c
pM) = T ch(p)M

′ , and h∗(T
1,0
p M) = T 1,0

h(p)M
′

as well, where, by h∗ , we denote the differential of h acting both on TM and on
C ⊗R TM , with the convention h∗ = h∗ , cf. [22]. Hence, whenever h is a (local)
biholomorphism, h|M : M −→ h(M) realizes a CR diffeomorphism.

So by definition, biholomorphic or CR equivalences stabilize some horizontal
2-plane distribution T cM , or the pair T 1,0M⊕T 0,1M ⊂ CTM . It seems that there is
no reason that there should exist some CR-transversal structure which would also be
CR-invariant. For instance, does there exist a line field {`p}p∈M with R ∼= `p ⊂ TpM
complementing T cpM in TpM = `p ⊕ T cpM which would be CR invariant? Yes of
course in presence of some extra structure like e.g. a Riemannian metric on M —
just take `p := [T cpM ]⊥ —, but no in general, as is well known and as we will see.

C2

T c
pM

p

M

C2

T c
pM

p

M

`p

M ′

C′2`p
`p

`p

h

h(p)

T c
h(p)

M ′

h∗(`p)

c
h(M)

h(p),h∗(`p)cM
p,`p

Figure 1: Left: representation of various chains at p ∈ M directed by various
directions `p ⊂ TpM with R`p + T cpM = TpM . Right: representation of the
transfer of a chain and its direction through an ambient biholomorphism h : C2 −→
C′2 , making a CR-diffeomorphism h|M : M −→M ′ := h(M).

Élie Cartan [7, 5, 8] discovered that nevertheless, there do exist certain in-
variant CR-transversal curves, called chains, namely unparametrized curves cp,`p
uniquely determined at each p ∈ M and for each line `p 3 p complementary to
T cpM such that the nonzero tangent vector ċp,`p is directed by `p , but their exis-
tence always remained a bit mysterious. This unique determination is similar to that
for a scalar second order ODE ÿ = H(t, y, ẏ) for which a starting point y(0) and a
starting vector ẏ(0) must be prescribed, but here, since M is 3-dimensional, chains
are defined by a system of two scalar second order ODEs, as we now explain.

One may equip C2 with affine coordinates (z, w) = (x+ i y, u+ i v), centered
at some reference point p0 = 0 ∈ M so that the projection T0M −→ R3

x,y,u gives a
local chart on M3 near the origin and even so that T0M = Cz×(Ru+ i {0}), whence
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T c0M = Cz × {0} . Then M can be Cω graphed as:

v = F (z, z, u) =
∑

j+k+l> 1

Fj,k,l z
jzkul (Fk,j,l =Fj,k,l).

Since T c0M = {u = 0} within T0M = R3
x,y,u , any CR-transversal curve may

be parametrized as t 7−→ (x(t), y(t), t) with u(t) ≡ t . One may show that there
exist certain functions A and B such that the equations of chains write as a system:

ẍ = A
(
t, x, y, ẋ, ẏ

)
, ÿ = B

(
t, x, y, ẋ, ẏ

)
,

but the explicit expressions of A and B in terms of F and its derivatives are huge,
never shown in the literature [part of the mystery]. This is because chains are
considered at every point p ∈M near p0 = 0 ∈M , which requires hard elimination
computations in the commutative differential ring with variables

{
Fzjzkul

}
j,k,l∈N

generated by the derivatives of F . As shown in [1, 23] the explicit expression
of Cartan’s primary invariant ICartan , whose identical vanishing characterizes local
biholomorphic equivalence to the Heisenberg sphere {v′ = z′z′} , is even huger.

Fortunately, we will see that thanks to plain translations (z, w) 7−→ (z −
zp, w−wp), one may ‘decipher’ chains only at the origin for a family of hypersurfaces
{Mp}p∈M passing through 0 ∈ C2 and parametrized by all points p ∈ M in the
original hypersurface. Section 2 presents this start.

In the literature, chains are detected from rather advanced considerations:

� either from an almost complete construction of an {e}-structure or of a Cartan
connection associated with the CR equivalence problem [5, 8, 24, 23];

� or from an almost complete construction of a formal or converging Moser-like
normal form [13, 16, 17] for M3 ⊂ C2 at the origin 0 ∈M .

k Step 4

Step 3k

Step 2
F2,3

F3,2

k Step 5

jjj

k

j

Step 1k

j

Figure 2: Successive annihilations (red dashed regions) of coefficient-functions
Fj,k(u) in the graphing function v =

∑
j,k z

jzkFj,k(u) thanks to Moser’s normal-
ization process, with F1,1(u) ≡ 1, until first occurence of chains.

Let us comment only the second technique, which proceeds in five steps. At
any reference point p0 = 0 ∈ M , pick a curve 0 ∈ γ ⊂ M which is CR-transversal,
namely γ̇(0) 6∈ T c0M . Expand F in powers of z, z as:

v = F (z, z, u) =
∑
j,k

zjzk Fj,k(u) (Fj,k(u) :=
∑

l Fj,k,l u
l).

Step 1. Straighten γ to be the u-axis, so that F (0, 0, u) ≡ 0, that is:

v =
∑
j+k>1

zjzk Fj,k(u).
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Step 2. Kill all harmonic terms zj Fj,0(u) and zk F0,k(u), so that:

v =
∑

j>1 or k>1

zjzk Fj,k(u).

Step 3. Normalize F1,1(u) 7−→ 1, using the assumption of Levi nondegeneracy, so
that:

v = zz +
∑

j+k> 3
j>2 or k>2

zjzk Fj,k(u).

Step 4. Absorb all z1zk F1,k(u) and all zjz1 Fj,1(u) inside z1z1 , so that:

v = zz +
∑
j > 2
k> 2

zjzk Fj,k(u).

Step 5. Kill (in some way) F2,2(u), so that:

v = zz + z3z2 F3,2(u) + z2z3 F2,3(u) +
∑

j+k> 6
j > 2 and k> 2

zjzk Fj,k(u).

Each one of these steps requires to perform an application of the Cω implicit
function theorem. Next, what about F3,2(u) and its conjugate F2,3(u) = F3,2(u)?
One (known) paradox is that it is only at an advanced stage of the progressive
normalization process that one can realize that the choice of a CR-transversal curve
γ should not be made haphazardly.

Indeed, Proposition 6 in [17, Chap. 4] states — not in the clearest thoughtful
mathematical way? — : For each direction `p transverse to T cpM at p ∈ M , there
exists a unique (unparametrized) real analytic curve through p and tangent to that
direction such that there exists some biholomorphism taking M to:

v = |z|2 +
∑
j>2
k>2

Fj,k(u) zjzk with F3,2(u) ≡ 0,

and γ to the u-axis.

What are these curves? Why do they exist? Can one get them in advance?
Can one characterize them geometrically? Without relying on the existence of some
normalizing biholomorphisms?

In fact, the proof of this Proposition 6 is the most technical and difficult
to follow in [13] or in [17, Chap. 4]. One first reason is that the argumentation
appears almost at the end of the normalization process, and a second reason is that
it demands to perform biholomorphisms of the shape:

z′ :=
∞∑
j=0

zj fj(w), w′ :=
∞∑
j=0

zj gj(w),

with f0(w) 6= 0 required not to send the curve {z = 0} ∩ M to the same curve
{z′ = 0} ∩M ′ — one really has to change the CR-transversal curve! —, but this
creates substantial computational obstacles.
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As an alternative, we will present a construction which is elementary, simple,
and requires almost no computation. Furthermore, we will work with power series
in 3 variables at one point, the origin, and only up to order 5 included.

Let therefore 0 ∈ M3 ⊂ C2 be Cω Levi nondegenerate, graphed as v =
F (z, z, u), with 0 ∈M . We assign the weights [x] := 1 =: [y] and [u] := 2 =: [v] . It
is well known that one can assume, with a weighted remainder, that M has equation:

v = zz +
∑

36δ65

∑
j+k+2l=δ

Fj,k,l z
jzkul + O(6).

Anybody with a pen or a computer will reconstitute Proposition 2.2, stating
that there exists a change of holomorphic coordinates in which M becomes:

v = zz + O(6).

Next, the key fact is that the ambiguity of such a normalization up to
(weighted) order 5, namely any biholomorphic equivalence:

v = zz + O(6) −−−−−−−→ v′ = z′z′ + O(6),

can be elementarily shown, by Proposition 2.3, to coincide with the expansion, up to
weighted order 5, of the general isotropy group of the sphere v = zz −→ v′ = z′z′

(without remainder), which is known to be:

z′ =
λ (z + αw)

1− 2iα z − (r + iαα)w
, w′ =

λλw

1− 2iα z − (r + iαα)w
,

with λ ∈ C\{0} , α ∈ C , r ∈ R . (For 2-nondegenerate constant Levi rank 1
hypersurfaces M5 ⊂ C3 , this fact becomes false, unfortunately [15].)

Then miraculously, the existence of Cartan-Moser chains amounts to just
understanding how the isotropy group of the model acts on CR-transversal objects!

This 5-dimensional isotropy group has 5 generators D , R , I1 , I2 , J which are
5 linearly independent holomorphic vector fields X with X + X tangent to v = zz .
Their expressions in the intrinsic coordinates (x, y, u) ∈M3 read as (Section 5):

J + J = (xu− x2y − y3) ∂x + (x3 + xy2 + yu) ∂y +
(
u2 − (x2 + y2)2

)
∂u,

I2 + I2 = (x2 − 3y2) ∂x + (u+ 4xy) ∂y + (2xu− 2yx2 − 2y3) ∂u,

I1 + I1 = (u− 4xy) ∂x + (3x2 − y2) ∂y + (−2x3 − 2xy2 − 2yu) ∂u,

R + R = − y∂x + x ∂y,

D + D = x ∂x + y ∂y + 2u ∂u.

Then according to the beautiful, highly conceptional, theory of Lie [19,
Chap. 25], see also [25, 20, 10], the action of this group on first jets (ẋ(t), ẏ(t)) and
on second jets (ẍ(t), ÿ(t)) of curves t 7−→ (x(t), y(t), t), equipped with coordinates
(x1, y1) and (x2, y2), can be understood infinitesimally by means of the prolongations
to the second jet space J2

1,2 of maps R1
u −→ R2

x,y , thanks to straightforward univer-
sal formulas (Sections 6 and 7). Since we work only at one point, namely above the
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origin, it suffices to compute the coefficients, in front of ∂
∂x1

, ∂
∂y1

, ∂
∂x2

, ∂
∂y2

, of these

five prolonged vector fields only for x = y = u = 0 (Section 7):

∂x1 ∂y1 ∂x2 ∂y2
D(2) −x1 −y1 −3x2 −3y2

R(2) −y1 x1 −y2 x2

I
(2)
1 1 0 −4x1y1 6x2

1 + 2y2
1

I
(2)
2 0 1 −2x2

1 − 6y2
1 4x1y1

J(2) 0 0 0 0.

From the first two columns that are everywhere of rank 2, it is clear that
there does not exist any invariant CR-transversal line `0 3 0 with `0⊕T c0M = T0M .
Moreover, the action on such `0 is transitive.

Next, by some kind of ‘algebraic miracle’ which can be verified by applying a
plain Gauss pivot to the above 4× 4 submatrix:

0 0 −3x2 − 6x2
1y1 − 6y3

1 −3y2 + 6x1y
2
1 + 6x3

1

0 0 −y2 + 2x1y
2
1 + 2x3

1 x2 + 2x2
1y1 + 2y3

1

1 0 −2x2
1 − 6y2

1 4x1y1

0 1 −4x1y1 6x2
1 + 2y2

1

 ,

there appears to eyes (Section 7) a special surface Σ2
0 ⊂ R2

x1,y1
× R2

x2,y2
, graphed as

shown by the (redundant by pairs) entries (1, 3), (1, 4), (2, 3), (2, 4), as:

Σ2
0 :=

{
(x1, y1, x2, y2) ∈ R4 : x2 = −2x2

1y1 − 2y3
1, y2 = 2x1y

2
1 + 2x3

1

}
,

which is a 2-dimensional orbit of the five prolonged vector fields D2 , R2 , I
(2)
1 , I

(2)
2 ,

J(2) , while the complement R4
x1,y1,x2,y2

∖
Σ2

0 is a single orbit (Observation 7.1).

The existence of Σ2
0 together with the normalizability to v′ = z′z′ + O(6)

therefore explain in an elementary manner the existence of Cartan-Moser chains
above 0.

Normalization
Φp

p
M

Translation
τp

0
Mp

z, z, u

0

v v′

z′, z′, u′

NpΦp ◦ τp

Figure 3: Centering (by translation) coordinates at an arbitrary point p ∈ M ,
and sketching what any normalization map Φp does near p = 0.

Lastly, for any Levi nondegenerate hypersurface M3 ⊂ C3 , we can define
Cartan-Moser chains at any point p ∈ M as follows. Denote the translation map
τp : (M, p) −→ (Mp, 0) by:

τp : (z, w) 7−→
(
z − zp, w − wp

)
=: (z, w),

denote any elementary normalization map as mentioned above by:

Φp : (Mp, 0) =
{
v =

∑
16j+k+2l65

F p
jkl z

jzkul+O(6)
}
−→

{
v′ = z′z′+O(6)

}
=: (Np, 0).
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Recall that the action of the 5-dimensional isotropy group is transitive on 1-jets.

Given a 1-jet j1
p at p , using any normalizing map Φp : Mp −→ Np which

sends (Mp, 0) to a hypersurface (Np, 0) of equation v′ = z′z′ + O(6) and also sends
j1
p to the flat 1-jet j1

0 = (0, 0) at 0 ∈ Np , assign the 2-jet j2
p of the Moser chain at

p ∈M associated with j1
p to be the inverse image of the flat 2-jet at 0 ∈ Np :

j2
p :=

(
Φp ◦ τp

)(2)−1(
0, 0, 0, 0

)
.

It is not difficult to verify that this definition provides a map j1
p 7−→ j2

p(j
1
p) which is

Cω on M .

Once chains are known, one can (re)start Step 1 above with the CR-transversal
curve γ being a chain. Then Steps 2, 3, 4 go without modification, while in Step 5,
one realizes that F3,2(u) ≡ 0 automatically (Section 9), as a consequence of the
definition of chains (Assertion 9.4).

For self-contentness and for later use in [15], although there is no originality,
we perform all these steps in Section 10, 11, 12 known as Propositions 1, 2, 3, 4, 5
in [17, Chap. 4]. We conclude by stating Moser’s normal form theorem in Section 13
and by proving some uniqueness property.

Acknowledgments. While the author was visiting Warsaw, Pawe l Nurowski pro-
vided useful hints on how certain distinguished curves exist in parabolic geome-
tries [3, 2, 4].

Grateful thanks are addressed to an anonymous referee for a careful reading
and for insightful suggestions.

2. Point Normalizations of Cω Hypersurfaces M3 ⊂ C2

Consider a local real hypersurface M3 ⊂ C2 of class (at least) C5 . In fact, we will
mainly work with Cω (real-analytic) objects, and sometimes indicate what kind of
lower regularity assumptions can be afforded.

In coordinates (z, w) = (x + i y, u + i v), assume M is graphed as v =
F (z, z, u), with F ∈ C5 . At all points p = (zp, wp) ∈ M with vp = F (zp, zp, up),
expand:

v = F (z, z, u) =
∑

j+k+l65

(z−zp)j

j!

(z−zp)k

k!

(u−up)l

l!
Fzjzkul(zp, zp, up) + O(6),

subtract v− vp , translate coordinates z := z− zp , w := w−wp , and get a family of
hypersurfaces Mp ⊂ C3 passing through the origin:

v = F p(z, z, u) =
∑

16j+k+l65

zjzkul F p
j,k,l + O(6),

namely with F p(0, 0, 0) = 0, having coefficients F p
j,k,l := 1

j!
1
k!

1
l!
Fzjzkul(zp, zp, up)

smoothly parametrized by p . Thanks to this, working at only one point, namely at
the origin, we will treat all points p ∈M .

Local biholomorphisms h : M −→M ′ between any two CR manifolds respect
by definition complex tangent bundles h∗(T

cM) = T cM ′ .



8 Merker

Problem 2.1. Are there CR-transversal structures which are invariant under
biholomorphisms?

The goal of this note is to elaborate a simple, Lie-theoretic approach to this
question which applies to any kind of CR structure, does not require to fully solve
any equivalence problem, and does not rest on the existence of Cartan-Tanaka
connections. To illustrate the process on just one advanced example, we shall
show how to recover in a quite elementary way the famous Moser chains on Levi
nondegenerate hypersurfaces M3 ⊂ C2 . Forthcoming publications will exhibit more
about Lie’s theoretical scope.

Since Question 2.1 is invariant, we are allowed to perform normalizing biholo-
morphisms in order to ‘simplify’ the equations v = F p(z, z, u) of our p-parametrized
hypersurfaces Mp , before searching for CR-transversal structures, if any.

After an elementary biholomorphism, it is well known that one can assume:

v = zz + O(3).

This conducts to attribute weights [z] := 1 =: [z] and [w] := 2 =: [w] . Up to order
5, some monomials have weight > 5, for instance u2z2 , and they will be disregarded.
Thus, with a now weighted remainder O(6):

v = F p(z, z, u) = zz +
∑

36δ65

∑
j+k+2l=δ

F p
j,k,l z

jzkul + O(6).

By performing biholomorphisms of the shape z′ = z + fδ−1(z, w), w′ =
w+ gδ(z, w), with appropriate polynomials fδ−1 , gδ that are weighted homogeneous
of degrees δ − 1, δ , it is not difficult to erase Fδ for δ = 3, 4, 5.

Proposition 2.2. Every Mp can be normalized to v = zz+ 0 + 0 + 0 + O(6).

Of course, such a normalizing biholomorphism is not unique.

Mp

normalization 2

ambiguitynormalization 1

0

v=zz+O(6)

v′=z′z′+O(6)

Figure 4: Representing two 6th order normalization maps at the origin and calling
‘ambiguity’ the ‘difference’ (composition) between them.

The next statement — whose proof is also left as an exercise1 — determines
the ambiguity transformation, which is obtained by expanding up to weight 5 in-

1 It turns out that all detailed proofs given later in Sections 10, 11, 12 do the job (solve the
two exercises).
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cluded the following two fractions in which λ ∈ C∗ , α ∈ C , r ∈ R are free:

z′ =
λ (z + αw)

1− 2iα z − (r + iαα)w
, w′ =

λλw

1− 2iα z − (r + iαα)w
. (1)

Proposition 2.3. Every biholomorphism z′ = f(z, w)+O(5), w′ = g(z, w)+O(6)
with f , g of weight 6 4, 5 sending v = zz + O(6) to v′ = z′z′ + O(6)′ is necessarily
of the form:

z′ = λ z + 2iλα z2 +
(
− 4λα2

)
z3 +

(
− 8iλα3

)
z4

+ λαw +
(
3iλαα + λr

)
zw +

(
− 8λαα2 + 4iαλr

)
z2w

+
(
λαr + iλα2α

)
w2

w′ = λλw + 2iλλα zw +
(
− 4λλα2

)
z2w +

(
− 8iλλα3

)
z3w

+
(
iλλαα + λλr

)
w2 +

(
4iλλαr − 4λλα2α

)
zw2.

But these formulas for this stability
/

ambiguity group are well known!

3. Automorphisms of the Sphere {Imw = zz} Fixing the Origin

Indeed, in C2 3 (z, w) = (x+ i y, u+ i v), consider the Heisenberg sphere:

v = zz,

which is biholomorphic, after a certain Cayley transform, to the standard 3-sphere
S3 ⊂ C2 minus one point sent to infinity. It is known (details in [1, Sec. 3]) that
the 5-dimensional real Lie algebra g5 of holomorphic vector fields X = a(z, w) ∂z +
b(z, w) ∂w with a(0) = 0 = b(0) such that X +X is tangent to S3

∗ consists of:

D := z ∂z + 2w ∂w,

R := iz ∂z,

I1 := (w + 2iz2) ∂z + 2izw ∂w,

I2 := (iw + 2z2) ∂z + 2zw ∂w,

J := zw ∂z + w2 ∂w,

with commutator table:

D R I1 I2 J
D 0 0 I1 I2 2 J
R ∗ 0 −I2 I1 0
I1 ∗ ∗ 0 4 J 0
I2 ∗ ∗ ∗ 0 0
J ∗ ∗ ∗ ∗ 0

Integrating these fields, the finite equations of the istropy Lie group G5 = Iso(0) are:

z′ =
λ (z + αw)

1− 2iα z − (r + iαα)w
, w′ =

λλw

1− 2iα z − (r + iαα)w
,
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where λ ∈ C∗ , α ∈ C , r ∈ R , as above.

So we know precisely the nonuniqueness (ambiguity) in Proposition 2.3.
Therefore, we can pursue exploring our Question 2.1 by asking at first whether some
tangential (order 1) CR-transversal invariant object exists.

Problem 3.1. Is there any vector ~v0 ∈ T0M
p not complex-tangential ~v0 6∈ T c0Mp

which would be invariant under biholomorphisms?

u

~v

~v ~v

y

x
T c
0M

p0

T0M
p

Figure 5: Representing horizontally the complex-tangential plane T c0M
p of Mp

at the origin within the 3-dimensional T0M
p , and drawing various vectors ~v ∈

T0M
p
∖
T c0M

p .

Predictably, the answer is no, because at order 1, the above formulas read as
linear transformations:

z′ = λ z + λαw, w′ = λλw,

and when α ∈ C varies, the ‘slope’ of ~v0 changes arbitrarily. In fact, we must
conceptualize carefully this intuition.

4. Lie Jet Theory

The historical and philosophical monograph [21] explains how near 1870 Helmholtz
involuntarily ‘invented’ the so-called linearized isotropy groups, which were theoret-
ically understood later by Sophus Lie after finding a counterexample to Helmholtz’s
belief that any ‘macroscopic’ (local) group action can be recovered ‘by integration’
from its ‘microscopic’ (infinitesimal, linearized) behavior.

After Felix Klein’s celebrated Erlanger program, Lie indeed developped a
fantastic theory of continuous group actions, having in mind applications to a new
‘Galois theory’ of differential equations. Lie erected a new theory of prolongations of
group actions to jet spaces, see [19, Chap. 25]. Lie also conceptualized prolongations
of infinitesimal transformations (vector fields) to jet spaces, and this is exactly what
we need here!

We must work with the three intrinsic, real, coordinates (x, y, u) on M . A
non CR-tangential vector ~v0 ∈ T0M

p
∖
T c0M

p can be represented as the derivative
γ̇(0) = ~v0 of some parametrized real curve passing by the origin:

t 7−→
(
x(t), y(t), u(t)

)
=: γ(t) (γ̇(0) 6= 0).
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Since T c0M
p = {u = 0} , we have in fact u̇(0) 6= 0.

So we are considering local curves R −→ R2 graphed along the (verti-
cal!) u-axis. We can then represent by putting u in he ‘horizontal’ place as{

(u, x(u), y(u)) : u ∈ R
}

, with two graphing functions.

The associated jet space of order 2 — enough for our purposes — is equipped
with further independent coordinates corresponding to ẋ(u), ẏ(u), ẍ(u), ÿ(u):(

u, x, y, x1, y1, x2, y2

)
.

We denote the first jet space by J1
1,2 ≡ R1+2+2 , and this second jet space by

J2
1,2 ≡ R1+2+2+2 .

Any diffeomorphism (u, x, y) 7−→ (u′, x′, y′) lifts to jet spaces of any order.
The formulas rapidly become complicated ([25, 20, 10]). Lie understood this obstacle,
and he linearized the formulas.

Indeed, by differentiating the prolongation to the second jet space of any one-
parameter diffeomorphism exp(t~v)(u, x, y) obtained as the flow of a vector field ~v
on the base R1+2 , Lie introduced its prolongations ~v(1) to J1

1,2 and ~v(2) to J2
1,2 . A

summarized presentation is available on pages 19–20 of [10].

Here, we just need to apply Lie’s formulas. Start from a general vector field:

~v := ξ(u, x, y)
∂

∂u
+ ϕ(u, x, y)

∂

∂x
+ ψ(u, x, y)

∂

∂y
,

with smooth coefficients. Introduce the total differentiation operator:

Du :=
∂

∂u
+ x1

∂

∂x
+ y1

∂

∂y
+ x2

∂

∂x1

+ y2
∂

∂y1

+ x3
∂

∂x2

+ y3
∂

∂y2

.

Then the second prolongation of ~v :

~v(2) = ~v + ϕ1
∂

∂x1

+ ψ1
∂

∂y1

+ ϕ2
∂

∂x2

+ ψ2
∂

∂y2

,

has coefficients given uniquely by ([25, 20, 10]):

ϕ1 := Du

(
ϕ− ξ x1

)
+ ξ x2, ψ1 := Du

(
ψ − ξ y1

)
+ ξ y2,

ϕ2 := Du

(
Du

(
ϕ− ξ x1

))
+ ξ x3, ψ2 := Du

(
Du

(
ψ − ξ y1

))
+ ξ y3.

5. Intrinsic Isotropy Automorphisms of the Sphere

Coming back to Question 3.1, we must apply Lie’s prolongation formulas within
the first jet space to our 5 vector fields J , I2 , I1 , R , D . But these vector fields
X = a(z, w) ∂z+b(z, w) ∂w were extrinsic, defined in C2 , and holomorphic! Moreover,
only their real parts 1

2

(
X + X

)
matter!

To apply Lie’s theory, we must therefore write them up in the intrinsic
coordinates (x, y, u) ∈ Mp . We leave as an exercise to verify that the projection
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π : (x, y, u, v) 7−→ (x, y, u) is a chart on S3
∗ for which:

π∗
(
2< J

)
= (xu− x2y − y3) ∂x + (x3 + xy2 + yu) ∂y +

(
u2 − (x2 + y2)2

)
∂u,

π∗
(
2< I1

)
= (u− 4xy) ∂x + (3x2 − y2) ∂y + (−2x3 − 2xy2 − 2yu) ∂u,

π∗
(
2< I2

)
= (x2 − 3y2) ∂x + (u+ 4xy) ∂y + (2xu− 2yx2 − 2y3) ∂u,

π∗
(
2<R

)
= − y∂x + x ∂y,

π∗
(
2<D

)
= x ∂x + y ∂y + 2u ∂u.

We will keep the same notation for these five intrinsic vector fields.

6. Prolongation to the Jet Space of Order 1

As we said, it suffices to work above the origin 0 ∈Mp . In fact, the projectivization
P(T0M

p) = P2 of T0M
p ∼= R3 is a real projective plane. But excluding CR-tangential

vectors, we are considering only P2\P1
∞ = R2 , equipped with affine coordinates

(x1, y1) as above.

This means that we are considering vectors ~v0 ∈ T0M
p\T c0Mp of coordinates

(1, x0
1, y

0
1), with unit coordinate 1 along the u-axis. Though we will not work

in the projective space P2 , but only on its affine subset C2 ⊂ P2 , we mention
that there are homogeneous coordinates [U1 : X1 : Y1] on P(T0M

p) = P2 for which[
1: X1

U1
: Y1
U1

]
=: (1, x1, y1).

x1

y1

P1
∞P1

∞

J1
1,2

~v(1)

0

~v ~v Mp

~v(1)
0

R2

I
(1)
2 I

(1)
1

0

0

Figure 6: Left: representing the first prolongation of a vector field ~v on Mp to
the first jet space J1

1,2 . Right: Observing that, above the origin (only), the first

prolongations I
(1)
1 and I

(1)
2 of I1 and I2 are straight (simple).

On the left, the figure represents this real P2 as a line, and on the right, as a
plane. The projective line P1

∞ at infinity is represented as a point, and as a square
perimeter.

By Lie’s theory, any vector field ~v on the base M lifts as a vector field ~v(1)

on the first jet space J1
1,2 = R1+2+2 .

Because our five intrinsic vector fields J , I1 , I2 , R , D vanish at u = x = y = 0,
their prolongations will automatically be tangent to the fiber

{
(0, 0, 0, x1, y1)

}
above

(0, 0, 0) on the first jet space, a fiber which identifies with R2 = P2\P1
∞ .
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Lie’s formulas yield the very simple values of these first prolongations above
the origin, namely for x = y = u = 0:

∂x1 ∂y1
D(1) −x1 −y1

R(1) −y1 x1

I
(1)
1 1 0

I
(1)
2 0 1
J(1) 0 0

Since the rank of the span of just I
(1)
1 and I

(1)
2 is everywhere equal to 2,

the orbit is the whole fiber R2 = {(0, 0, 0, x1, y1)} , and this confirms what we
already guessed, namely that there does not exist any biholomorphically invariant
CR-transversal direction `0 ⊂ T0M

p
∖
T c0M

p .

So what? All this for nothing? Let us keep hope by asking

Problem 6.1. Are there CR-transversal invariants of jet order 2?

7. Prolongation to the Jet Space of Order 2

A non CR-tangential direction `0 ⊂ T0M
p
∖
T c0M

p can be represented as an order 1
jet j1

0 = (x0
1, y

0
1). A general jet of order two then writes as j2

0 =
(
x0

1, y
0
1, x

0
2, y

0
2

)
.

Since we just saw that the stability group of the normalized equation v = zz+
O(6) for Mp , of dimension 5, acts transitively on first-order CR-transversal jets, it is
clearly impossible that a unique second order jet be invariant under biholomorphisms.
Anyway, it might be interesting to see how the second order Lie prolongations R(2) ,
D(2) , I

(2)
1 , I

(2)
2 , J(2) act on second order jets.

Lie’s formulas yield the very simple values of these first prolongations above
the origin, namely for x = y = u = 0:

∂x1 ∂y1 ∂x2 ∂y2
D(2) −x1 −y1 −3x2 −3y2

R(2) −y1 x1 −y2 x2

I
(2)
1 1 0 −4x1y1 6x2

1 + 2y2
1

I
(2)
2 0 1 −2x2

1 − 6y2
1 4x1y1

J(2) 0 0 0 0

The key discovery, due to Cartan and then to Moser who expressed it differ-
ently, now appears elementary. But before writing the statement, let us draw the
key surface Σ2

0 ⊂ R2
x1,y1
× R2

x2,y2
alluded to in the Introduction.
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x1,y1

x2,y2R2

R2

R2

0

J1
1,2

Mp 0

J2
1,2

Σ2
0

Figure 7: On the left, above 0 ∈Mp , we draw the first jet fiber J1
1,2

∣∣
0
∼= R2

x1,y1

and the second jet fiber J2
1,2

∣∣
0
∼= R2

x1,y1 × R2
x2,y2 . On the right, making a zoom,

collapsing twice two dimensions into one dimension, we sketch what the surface
Σ2

0 could be within R2
x1,y1 × R2

x2,y2 , representing it abusively as a 1-curve in a
2-plane.

Lemma 7.1. On R4 = R2
x1,y1
×R2

x2,y2
, there exists a unique invariant 2-dimensional

submanifold Σ2
0 ⊂ R4 , algebraic, graphed as:

x2 = − 2x2
1y1 − 2 y3

1, y2 = 2 x1y
2
1 + 2x3

1.

Moreover, the complement R4\Σ2
0 is a unique orbit under D(2) , R(2) , I

(2)
1 , I

(2)
2 , J(2) .

Proof. Any point of R4 can be represented as:

x2 = − 2x2
1y1 − 2 y3

1 + a2, y2 = 2 x1y
2
1 + 2x3

1 + b2,

with some (a2, b2) ∈ R2 . A Gauss-pivot transforms the matrix of the coefficients of

the 4 vector fields D(2) , R(2) , I
(2)
1 , I

(2)
2 into:

0 0 −3a2 −3b2

0 0 −b2 a2

1 0 −2x2
1 − 6y2

1 4x1y1

0 1 −4x1y1 6x2
1 + 2y2

1

 .

This matrix has maximal rank 4 if and only if (a2, b2) 6= (0, 0), and constant rank 2
for (a2, b2) = (0, 0).

In other words, to every (fixed) first order jet j1
0 = (x1, y1) at the origin

0 ∈Mp is associated a unique second order jet at the origin:

j2
0 =

(
x1, y1, −2x2

1y1 − 2y3
1, 2x1y

2
1 + 2x3

1

)
,

and since Σ2
0 is invariant under the stability group G5 of v = zz + O(6), this

association is invariant under biholomorphic changes of coordinates.
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8. Definition of Moser Chains

Let us denote the translation map τp : (M, p) −→ (Mp, 0) used in Section 2 by:

τp : (z, w) 7−→
(
z − zp, w − wp

)
=: (z0, w0).

Also, taking such coordinates (z0, w0) around (Mp, 0), let the punctual (at the origin)
normalization map offered by Proposition 2.2 be:

Φp : (Mp, 0) =
{
v0 =

∑
16j+k+2l65

F p
0jkl z

j
0z
k
0u

l
0+O(6)

}
−→

{
v = zz+O(6)

}
=: (Np, 0),

and abbreviate:
ϕ := Φp ◦ τp.

Normalization
Φp

p
M

Translation
τp

0
Mp

v

z, z, u

0

z, z, u

v

NpΦp ◦ τp =: ϕ

Figure 8: Again, represent the translation map τp and a normalizing map Φp .

As in Observation 7.1, in the 2-jet fiber above 0 ∈ Np , introduce the surface:

Σ0 :=
{

(x1, y1, x2, y2) ∈ J2
Np,0 : x2 = −2x2

1y1 − 2y3
1, y2 = 2x1y

2
1 + 2x3

1

}
.

Using the second prolongation ϕ(2) , define the 2-dimensional submanifold of J2
M,p :

Σp := ϕ(2)−1
(Σ0).

Since ϕ(1) is a diffeomorphism J1
M,p

∼−→ J1
Np,0 , and the same about ϕ(2) : J2

M,p
∼−→

J2
Np,0 , this Σp is also a graph, say of the form:

xp2 = A(xp1, y
p
1), yp2 = B(xp1, y

p
1),

with (xp1, y
p
1, x

p
2, y

p
2) ∈ J2

M,p , and with two functions A , B which depend on p and
also a priori on the normalizing map ϕ .

Σp
� � // J2

M,p

ϕ(2)
//

��

J2
Np,0

��

Σ0_?

foo

ϕ(2)−1

yy

J1
M,p

ϕ(1)
//

��

J1
Np,0

��
(M, p)

ϕ // (Np, 0)
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Lemma 8.1. This graphed surface Σp ⊂ J2
M,p
∼= R4 is independent of the map

ϕ = Φp ◦ τp normalizing v = F (z, z, u) near p to v = zz + O(6) near 0.

Proof. Suppose another such normalizing map is given:

(Np, 0)

ψ :=ϕ′◦ϕ−1

��9
99

99
99

99
99

99
99

99
9

(M, p)

ϕ
66mmmmmmmmmmmm

ϕ′

++WWWWWWWWWWWWWWWWWWWWWWWWW

(Np
′ , 0),

with (Np
′ , 0) also of equation v′ = z′z′+ O(6). Define the special surface Σ′0 ⊂ J2

Np
′ ,0

by the same two graphed cubic equations x′2 = −2x′1
2y′1−2y′1

3 , y′2 = 2x′1y
′
1

2 + 2 x′1
3 ,

and then define similarly:

Σ′p := ϕ
(2)
′
−1(

Σ′0
)
.

Is it really true that Σ′p = Σp?

Thanks to Proposition 2.3, the relation map ψ := ϕ′ ◦ϕ−1 is a composition of
flows of the five vector fields D , R , I1 , I2 , J . But because the second prolongations
D(2) , R(2) , I

(2)
1 , I

(2)
2 , J(2) of these fields are tangent to Σ0 thanks to Observation 7.1,

the map ψ(2) stabilizes the special surface:

ψ(2)−1(
Σ′0
)

= Σ0.

Then as asserted:

Σ′p = ϕ
(2)
′
−1(

Σ′0
)

= ϕ
(2)
′
−1(

ψ(2)(Σ0)
)

= ϕ
(2)
′
−1
((
ϕ′ ◦ ϕ−1

)(2)
(Σ0)

)
= ϕ

(2)
′
−1
◦ ϕ(2)
′ ◦ ◦

(
ϕ−1

)(2)(
Σ0

)
= ϕ(2)−1(

Σ0

)
= Σp.

Proposition 8.2. There exist two Cω functions A and B such that 2-jets are
invariantly associated to CR-transversal 1-jets as:

x2 = A
(
u, x, y, x1, y1

)
,

y2 = B
(
u, x, y, x1, y1

)
.

These functions A and B can be made explicit in terms of
{
F p
j,k,l

}
16j+k+l65

,

but expressions are huge. To these two jet equations is naturally associated a system
of two second order ordinary differential equations:

ẍ = A
(
u, x, y, ẋ, ẏ

)
,

ÿ = B
(
u, x, y, ẋ, ẏ

)
.



Merker 17

Definition 8.3. At a point (up, xp, yp) ∈ M , a Moser chain directed by some 1-
jet (1, xp1, y

p
1) is the unique solution u 7−→ (x(u), y(u)) to the above Cω ODE system

satisfying the initial conditions:(
x(up), y(up)

)
= (xp, yp) and

(
ẋ(up), ẏ(up)

)
= (xp1, y

p
1).

Equivalently, Moser chains
{

(u, x(u), y(u))
}

are projections onto the base
space M 3 (u, x, y) of integral curves of the vector field on J1

1,2 :

∂

∂u
+ x1

∂

∂x
+ y1

∂

∂y
+ A

(
u, x, y, x1, y1

) ∂

∂x1

+B
(
u, x, y, x1, y1

) ∂

∂y1

.

Another equivalent, alternative, definition of 2-jets of Moser chains uniquely
associated with 1-jets will be useful later. Recall that first prolongations ψ(1) of
maps like ψ = ϕ′ ◦ϕ described in Proposition 2.3 are transitive on 1-jets, according
to Section 6.

So we can restrict considerations to normalizing maps ϕ = τp ◦Φp which send
any 1-jet j1

p at p ∈M to the flat 1-jet j1
0 = (0, 0) at 0 ∈ Np .

Definition 8.4. Given a hypersurface M3 ⊂ C2 , a point p ∈ M , a 1-jet j1
p at

p , given the translation map τp : (M, p) −→ (Mp, 0), and using any normalizing
map Φp : Mp −→ Np which sends (Mp, 0) to a hypersurface (Np, 0) of equation
v = zz + O(6) and also sends j1

p to the flat 1-jet j1
0 = (0, 0) at 0 ∈ Np , assign the

2-jet j2
p of the Moser chain at p ∈M associated with j1

p to be the inverse image of
the flat 2-jet at 0 ∈ Np :

j2
p :=

(
Φp ◦ τp

)(2)−1(
0, 0, 0, 0

)
.

Thanks to the preceding reasonings, the result j2
p is independent of the

normalizing map Φp ◦ τp satisfying (Φp ◦ τp)(1)(j1
p) = (0, 0), the flat 1-jet at 0 ∈ Np .

9. Link of Chains with F p
3,2,0 at the Origin

Once a point p ∈ M and a CR-transversal 1-jet j1
p at p are chosen, by known

existence theorems, there is a unique local Cω curve γ : I −→M passing through p
directed by j1

p which is a Moser chain.

Because such a chain is invariant under biholomorphisms, if one wants to nor-
malize the equation of a hypersurface M3 ⊂ C2 , the very first natural normalization
to perform is to straighten (to normalize) such a chain. This can be done for any
CR-transversal curve, not necessarily a Moser chain.

Lemma 9.1. Given any Cω curve γ : (−1, 1) −→ M with γ(0) = p ∈ M and
γ̇(0) 6∈ T cpM , there exist holomorphic coordinates (z, w) centered at p with w = u+iv
in which Mp is graphed as v = F p(z, z, u) such that:

γ(t) =
(
0, t+ i 0

)
(t∈ I).
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The (easy) proof will be written later in Section 10. So we may assume that
{(0, u)} is a chain, contained in Mp , whence 0 ≡ F p(0, 0, u).

In our preliminary Proposition 2.2, the existence of Moser chains was un-
known. Only successive Taylor coefficients annihilations were performed. Conse-
quently, it is necessary to restart the proof of Proposition 2.2 with the supplementary
constraint to keep invariant the straightened Moser chain {(0, u)} .

First of all, to annihilate all monomials except zz up to weight 4 is again
possible by transformations (z, w) 7−→ (z′, w′) sending (stabilizing) the u-axis to
the u′ -axis — exercise2.

Furthermore, in weight 5, all the monomials:

z5, z4z, zz4, z5, z3u, z2zu, zz2u, z3u, zu2, zu2,

can similarly be killed without modifying the unparametrized straightened Moser
chain {z = v = 0} . Only the two monomials z3z2 and z2z3 remain as causing
troubles. In the notations of Section 2, let us therefore formulate a

Lemma 9.2. Every hypersurface 0 ∈Mp ⊂ C3 of equation:

v0 = F p
0 (z0, z0, u0) with 0 ≡ F p

0 (0, 0, u0),

having a Moser chain straightened to be {(0, u0)}, can be normalized without deform-
ing the chain being {(0, u)}, into a hypersurface of equation:

Np : v = F p(z, z, u) = zz + F p
3,2,0 z

3z2 + F
p

3,2,0 z
2z3 + O(6). (2)

Now, remember that Proposition 2.2 asserted that the remaining coefficient
F p

3,2,0 , can be also killed. However, there is a supplementary constraint, now.

Problem 9.3. Can one annihilate F p
3,2,0 without unstraightening the chain?

It turns out that the answer is ‘no-becomes-yes’ ! Indeed, for some subtle
reason which lies in the definition of chains, it will soon turn out that this coefficient
F p

3,2,0 needs not be annihilated, because it will be shown to be already zero for free!
Let us explain this key fact which will be very useful later in Assertion 12.2.

Lemma 9.4. If F p(z, z, u) is as in (2) with 0 ≡ F p(0, 0, u) and with {(0, u)}
being a chain, then F p

3,2,0 = 0.

Proof. Denote h0 : Mp −→ Np one incomplete normalizing map given by Lemma 9.2.
Since h0 sends {(0, u0)} to {(0, u)} , it sends the flat 1-jet j1

Mp,0 = (0, 0) to the flat
1-jet j1

Np,0 = (0, 0). We will apply Definition 8.4 to (Np, 0) with j1
Np,0 = (0, 0).

We know by Proposition 2.2, that it is possible to continue to perform nor-
malizations by means of a further map:

Mp h0 // Np h // Np
′ ,

2 Again, it turns out that all detailed proofs given later in Sections 10, 11, 12 show how to do
it.
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in order that Np
′ has equation v′ = z′z′+O(6). In fact, the map h = (z+f4, w+g5) =

(z′, w′) with:
z′ := z − i F p

3,2,0z
2w − 1

4
F p

2,3,0w
2 + O(5),

w′ := w − i
2
F p

3,2,0 zw
2 + O(6),

(3)

works. Because h = (z, w)+Oz,w(2), this maps sends the flat 1-jet at 0 ∈ Np to the
flat 1-jet at 0 ∈ Np

′ . Then according to Definition 8.4 of a Moser chain, the 2-jet
of the Moser chain at 0 ∈ Np along {(0, u)} — which is flat! — must be the inverse

image, through h(2)−1
, of the flat 2-jet at 0 ∈ Np

′ . Equivalently, h must send the
flat 2-jet at 0 ∈ Np to the flat 2-jet at 0 ∈ Np

′ .

Let us write a flat 2-jet at 0 ∈ Np as a parametrized curve Ru −→ R2
x,y :

x = O3(u), y = O3(u).

Then at 0 ∈ Np
′ , do we also have x′ = O3(u′) and y′ = O3(u′) through the map (3)?

We claim: No if F p
3,2,0 6= 0!

Indeed, it comes z = x+ i y = O3(u), hence w = u+ i zz+ O(5) = u+ O3(u),
and also u′ = u+ O3(u) or inversely u′ + O3(u′) = u , whence:

x′ + i y′ = −1
4
F p

3,2,0 u
′2 + O3(u).

This Lie-theoretic construction of Moser chains can be applied to any CR
manifold, and the paper could certainly stop at this point.

Ideed, we would like to mention that the normalizations applied in the re-
mainder of this paper, i.e. in the next Sections 10, 11, 12, 13, are known to be done
in the general case of hypersurfaces M2n+1 ⊂ Cn+1 in any CR dimension n > 1 by
Chern-Moser in their celebrated work [13]. More particularly, in part (d), page 246
of [13], Chern-Moser briefly concentrate on the specific case of real hypersurfaces in
C2 .

Although Chern-Moser did not mention precisely all the intermediate normal-
izations which are applicable in C2 , Jacobowitz in Chapter 4 of his monograph [17]
endeavoured to detect and to explain in C2 those appropriate normalizations.

But since, to the best of our knowledge, there is no considerable work in
the literature specifying such normalizations, we hope that the rest of the paper
may raise interest of readers who want to learn Chern-Moser’s normalizations in the
specific case of C2 . Proofs are neither straightforward, nor elementary, because they
require an intensive, repeated use of the implicit function theorem.

Thus, although the next results can not be regarded as new, for self-contentness
reasons, and in order to prepare forthcoming works on new kinds of CR structures
(cf. e.g. [15]), let us start to reconstitute the Chern-Moser normalization theory in
C2 , setting up fully detailed arguments readable by non-experts.

10. Chain Straightening and Harmonic Killing

The main feature being that Moser chains are biholomorphically invariant, it is
natural to take them as a starting point for the process of normalization.

Let M3 ⊂ C2 be a Levi nondegenerate hypersurface passing by the origin
0 ∈ M . Since T c0M

∼= C , an appropriate C-linear transformation makes T c0M =
Cz × {0} in coordinates (z, w) ∈ C2 .
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Our goal is to transform M into certain normal forms, by performing biholo-
morphisms fixing the origin:

C2 ⊃ M3 normalize−−−−−−−→ M ′3 ⊂ C′2,(
z, w

)
−−−−−−−→

(
f(z, w), g(z, w)

)
=:
(
z′, w′

)
.

All objects will be real analytic (Cω ). Thus with w = u+i v and w′ = u′+i v′ ,
both hypersurfaces M and M ′ are Cω -graphed as:

v = F
(
z, z, u

)
and v′ = F ′

(
z′, z′, u′

)
.

We also assume T c0M
′ = {w′ = 0} .

Expand F as:

F
(
z, z, u

)
=

∑
j+k+l>1

Fj,k,l z
jzkul,

with Fj,k,l ∈ C . Define:

F
(
z, z, u

)
:=

∑
j+k+l>1

F j,k,l z
jzkul.

From v = v , it comes F (z, z, u) = F (z, z, u), whence:

F
(
z, z, u

)
≡ F

(
z, z, u

)
. (4)

Applying 1
j!
∂jz

1
k!
∂kz

1
l!
∂lu at (z, z, u) = (0, 0, 0) we get:

F k,j,l = Fj,k,l.

The hypothesis that the biholomorphism (z, w) 7−→
(
f(z, w), g(z, w)

)
=:

(z′, w′) fixing the origin sends M to M ′ expresses as a fundamental identity:

0 ≡ − 1
2i
g
(
z, u+ i F (z, z, u)

)
+ 1

2i
g
(
z, u− i F (z, z, u)

)
+

+ F ′
(
f
(
z, u+ i F (z, z, u)

)
, f
(
z, u− i F (z, z, u)

)
, (5)

1
2
g
(
z, u+ i F (z, z, u)

)
+ 1

2
g
(
z, u− i F (z, z, u)

))
,

which holds in C{z, z, u} .
According to the preceding sections, for any CR-transversal 1-jet j1

0 at 0 ∈
M , there exists a Moser chain directed by j1

0 at 0. We let γ : I −→M with γ(0) = 0
and 0 ∈ I ⊂ R an interval, be such a chain. In fact, the next statement is true for
any local CR-transversal curve.

Lemma 10.1. Let γ : I −→ M be a local Cω curve with γ(0) = 0 ∈ M and
γ̇(0) 6∈ T c0M = {w = 0}. Then there exists a biholomorphism (z, w) 7−→ (z′, w′)
stabilizing T c0M

′ = {w′ = 0} which sends γ to the curve γ′(t) = (0, t) straightened
along the v′ -axis.
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Notice that a third direction γ̇′(0) ∈ T0M
′∖T c0M ′ implies T0M

′ = {u′ = 0} .

Proof. Write:
γ(t) =

(
ϕ(t), ψ(t)

)
∈ C× C.

By assumption, ψ̇(0) 6= 0. Thus the map:

z := z′ + ϕ(w′), w := ψ(w′),

establishes a biholomorphism (inverse).

Similarly, the target curve writes γ′(t) =
(
ϕ′(t), ψ′(t)

)
. Thus for all t ∈ I :

ϕ(t) ≡ ϕ′(t) + ϕ
(
ψ′(t)

)
and ψ(t) ≡ ψ

(
ψ′(t)

)
.

The second equation and the invertibility of ψ forces t ≡ ψ′(t). Replacing this in
the first equation yields 0 ≡ ϕ′(t).

Consequently, the graphing function of the transformed hypersurface writes,
after erasing the primes, as:

M : v = F
(
z, z, u

)
,

with F = O(2) and F (0, 0, u) ≡ 0.

Lemma 10.2. There exists a biholomorphism of the form:

z′ := z, w′ := w + g(z, w),

with g = O(2) and g(0, w) ≡ 0, which transforms {v = F} into {v′ = F ′} satisfying:

0 ≡ F ′
(
z′, 0, u′

)
≡ F ′

(
0, z′, u′

)
.

The second vanishing follows from the first, by (4). Notice that F ′(0, 0, u′) ≡ 0
is preserved.

Proof. If such a biholomorphism exists, the fundamental identity writes for it:

0 ≡ −F
(
z, z, u

)
− 1

2i
g
(
z, u+ i F (z, z, u)

)
+ 1

2i
g
(
z, u− i F (z, z, u)

)
+

+ F ′
(
z, z, u+ 1

2
g
(
z, u+ i F (z, z, u)

)
+ 1

2
g
(
z, u− i F (z, z, u)

))
. (6)

We want F ′(z′, 0, u′) ≡ 0. If this goal would be reached, putting z := 0, we would
deduce:

0 ≡ −F (z, 0, u)− 1
2i
g
(
z, u+ i F (z, 0, u)

)
+ 1

2i
g
(
0, u− i F (z, 0, u)

)
+ 0. (7)

By luck, such an equation can be used to defined g(z, w) uniquely, even with the
supplementary condition that the last term be identically zero.

Indeed, by F = O(2), the implicit function theorem enables to invert:

u+ i F (z, 0, u) =: ω ⇐⇒ u = t(z, ω) = ω + O(2).
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Define therefore g(z, ω), after erasing the third term 1
2i
g above, by:

0 ≡ −F
(
z, 0,t(z, ω)

)
− 1

2i
g(z, ω) + 0,

and notice then that because F (0, 0, u) ≡ 0 by assumption, we fulfill by setting
z := 0, :

0 ≡ g
(
0, ω

)
.

Thus, (7) really holds with 1
2i
g = 0, and then coming back to (6)

∣∣
z=0

, we get as
desired:

0 ≡ 0 + F ′
(
z, 0, u+ 1

2
g
(
z, u+ i F (z, 0, u)

))
.

11. Prenormalization

Now, erase the primes, and assume 0 ≡ F (z, 0, u). Write:

v = F
(
z, z, u

)
= zz F1,1(u)+

∑
j+k>3

j>1, k>1

zjzkFj,k(u) = zz F1,1(u)+z2z
(
· · ·
)
+z2z

(
· · ·
)
.

Since M is Levi nondegenerate at 0, after a C-linear transformation, we make:

F1,1(0) = 1.

This equality F1,1(0) = 1 is known as Poincaré’s realization of nondegenerate hyper-
surfaces in C2 . It is quite crucial in the Chern-Moser normal form construction.

Lemma 11.1. There exists a biholomorphism of the form:

z′ := z ϕ(w), w′ := w,

which transforms M = {v = F} into M ′ with:

v′ = F ′ = z′z′ + z′
2
z′
(
· · ·
)

+ z′
2
z′
(
· · ·
)
.

So we may normalize F ′1,1(u′) ≡ 1. Notice that since z′(· · · ) = z(· · · ), the
preceding normalization is preserved, namely F ′(z′, 0, u′) ≡ 0.

Proof. Expanding:

ϕ
(
u+ i F (z, z, u)

)
= ϕ

(
u+ i zz (· · · )

)
= ϕ(u) + zz

(
· · ·
)
,

the fundamental identity writes:

0 ≡ −F
(
z, z, u

)
+ F ′

(
z ϕ
(
u+ i F (z, z, u)

)
, z ϕ

(
u− i F (z, z, u)

)
, u
)

≡ − zz F1,1(u) + z2z
(
· · ·
)

+ zz2
(
· · ·
)

+ z
(
ϕ(u) + zz (· · · )

)
z
(
ϕ(u) + zz (· · · )

)
F ′1,1(u) + z2z

(
· · ·
)

+ z2z
(
· · ·
)

≡ zz
[
− F1,1(u) + ϕ(u)ϕ(u)F ′1,1(u)

]
+ z2z

(
· · ·
)

+ z2z
(
· · ·
)
.
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To have F ′1,1(u) ≡ 1, it suffices to take:

ϕ(u) :=
√
F1,1(u) (remind F1,1(0) = 1),

which is real on the u-axis, and then to define ϕ(w) := ϕ(u)
∣∣
u:=w

, replacing u by w
in the (converging) power series of ϕ .

Thus, erasing the primes, still with 0 ≡ F (z, 0, u), we have:

v = F
(
z, z, u

)
= zz +

∑
j+k>3

j>1, k>1

zjzk Fj,k(u).

Lemma 11.2. There exists a biholomorphism of the form:

z′ := z + Λ(z, w) = z + z2
(
· · ·
)
, w′ := w,

which transforms M = {v = F} into M ′ :

v′ = F ′ = z′z′ +
∑

j>2, k>2

z′
j
z′
k
F ′j,k(u

′) = z′z′ + z′
2
z′

2 ( · · · ).
Any such biholomorphism with z′ = z+z2(· · · ) preserves the already achieved

normalizations.

Proof. Single out all monomials with k = 1:

v = zz +
∑
j>2

zjz1 Fj,1(u) +
∑
j+k>3

j>1, k>2

zjzk Fj,k(u)

= z

(
z +

∑
j>2

zj Fj,1(u)︸ ︷︷ ︸
=: Λ(z,u)

)
+ z2

(
· · ·
)
.

Expand:

z′ = z + Λ(z, w) = z + Λ
(
z, u+ i F (z, z, u)

)
= z + Λ

(
z, u+ izz (· · · )

)
= z + Λ(z, u) + zz

(
· · ·
)
,

and get:

v = z
(
z′ − zz

(
· · ·
))

+ z2
(
· · ·
)

= z z′ + z2
(
· · ·
)
.

Next, write the inverse as:

z′ + z′
2 ( · · · ) = z′ + Λ′(z′, w′) = z,

so that z2(· · · ) = z′2(· · · ), and continue:

v′ = v = z z′ + z2
(
· · ·
)

=
(
z′ + Λ

′(
z′, w′

))
z′ + z2

(
· · ·
)

=
(
z′ + z′

2 ( · · · )) z′ + z′
2 ( · · · )

= z′z′ + z′
2 ( · · · ).

The remainder after z′z′ being real, it must be also a multiple of z′2 .
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12. Complete Moser Normal Form for Hypersurfaces M3 ⊂ C2

Thus:

v = zz + z2z2 F2,2(u) +
∑
j+k>5

j>2, k>2

zjzk Fj,k(u). (8)

Lemma 12.1. There exists a biholomorphism of the form:

z′ := z λ(w), w′ := w,

with λ(u)λ(u) ≡ 1 and λ(0) = 1, such that the new M ′ has vanishing F ′2,2(u′) ≡ 0:

v′ = z′z′ + 0 +
∑
j+k>5

j>2, k>2

z′
j
z′
k
F ′j,k(u

′).

The condition
∣∣λ(u)

∣∣2 ≡ 1 for w = u ∈ R guarantees that all the previously
achieved normalizations are preserved.

Proof. Expand:

λ
(
u+ i F (z, z, u)

)
= λ

(
u+ i zz + z2z2 (· · · )

)
= λ(u) + λu(u)

[
i zz + z2z2 (· · · )

]
+ z2z2

(
· · ·
)

= λ(u)
(

1 +
λu(u)

λ(u)
i zz + z2z2 (· · · )

)
.

Since we assume
∣∣λ(u)

∣∣2 ≡ 1, i.e. λ(u) = ei ϕ(u) with ϕ(u) real, the quotient λu(u)
λ(u)

is purely imaginary, hence:∣∣λ(u+ i F )
∣∣2 = 1 + 2i zz

λu(u)

λ(u)
+ z2z2

(
· · ·
)
.

Also, it is clear that z′jz′k (· · · ) = zjzk (· · · ).

Thanks to these preliminaries:

v′ = z′z′ + z′
2
z′

2
F ′2,2(u′) + z′

3
z′

2 ( · · · )+ z′
2
z′

3 ( · · · )
=
∣∣λ(u+ i F )

∣∣2 zz +
∣∣λ(u+ i F )

∣∣4 z2z2 F ′2,2(u) + z3z2
(
· · ·
)

+ z2z3
(
· · ·
)

= zz + z2z2 2i
λu(u)

λ(u)
+ z3z3

(
· · ·
)

+ z2z2
(
1 + zz (· · · )

)
F ′2,2(u) + z3z2

(
· · ·
)

+ z2z3
(
· · ·
)

= zz + z2z2
[
2i
λu(u)

λ(u)
+ F ′2,2(u)

]
+ z3z2

(
· · ·
)

+ z2z3
(
· · ·
)
,

and since v′ = v with v given by (8), an identification yields:

2i
λu(u)

λ(u)
+ F ′2,2(u) ≡ F2,2(u).

In order to annihilate F ′2,2(u′) := 0, it suffices therefore to set:

λ(u) := exp

(
1

2i

∫ u

0

F2,2(t) dt

)
.
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Now we come to a crucial moment offering a key simplification which was
prepared in advance by Assertion 9.4.

Lemma 12.2. After having normalized:

0 ≡ Fj,0(u) ≡ F0,k(u) ≡ Fj,1(u)
(j 6=1)

≡ F1,k(u)
(16=k)

, 1 ≡ F1,1(u), 0 ≡ F2,2(u),

the fact that the u-axis, contained in M , is a Moser chain, offers without any further
work:

0 ≡ F3,2(u) ≡ F2,3(u).

Proof. At each point p = (0, up) ∈M with any (small) up ∈ R in the straightened
Moser chain, the equation of M normalized up to this point and truncated after
weighted order 6 writes exactly:

v = zz + z3z2 F3,2(up) + z2z3 F2,3(up) + O(6),

under the form considered in Assertion 9.4, which then yields F3,2(up) = 0 = F2,3(up),
this for any up .

Thus:

v = zz + z4z2 F4,2(u) + z3z3 F3,3(u) + z2z4 F2,4(u) +
∑
j+k>7

j>2, k>2

zjzk Fj,k(u).

Lemma 12.3. There exists a biholomorphism of the form:

z′ := z
√
ψw(w), w′ := ψ(w),

with ψ(R) ⊂ R, with ψ(0) = 0, with ψw(0) ∈ R>0 , such that the new M ′ has
vanishing F ′3,3(u′) ≡ 0:

v′ = z′z′ + z′
4
z′

2
F ′4,2(u′) + 0 + z′

2
z′

4
F ′2,4(u′) +

∑
j+k>7

j>2, k>2

z′
j
z′
k
F ′j,k(u

′).

We will see in the proof why such a biholomorphism preserves all previously
achieved normalizations. The function ψ = ψ(u) will be solution of the ODE:

ψuuu(u) =
3

2

ψ2
uu(u)

ψu(u)
− 3F3,3(u)ψu(u).

Proof. More generally, we perform a biholomorphism of the form:

z′ := z ϕ(w), w′ := ψ(w),

assuming that ϕ(u) ∈ R , ϕ(0) 6= 0, and ψ(u) ∈ R , ψw(0) ∈ R 6=0 . We let
v′ = F ′(z′, z′, u′) be the transformed hypersurface equation. Many computations
are needed.
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Firstly:

v′ = =ψ
(
u+ i F

)
= =

{
ψ(u) + ψu(u) i F + ψuu(u)

(i F )2

2!
+ ψuuu(u)

(i F )3

3!
+ F 4

(
· · ·
)}

= ψu(u)F − 1

6
ψuuu(u)F 3 + z4z4

(
· · ·
)

= ψu(u)
[
zz + z4z2 F4,2(u) + z3z3 F3,3(u) + z2z4 F2,4(u) + Oz,z(7)

]
− 1

6
ψuuu(u)

[
z3z3 + Oz,z(10)

]
+ z4z4

(
· · ·
)
,

so that no terms of order 3, 4, 5 in (z, z) are present:

v′ = zz ψu(u) + z4z2 ψu(u)F4,2(u) (9)

+ z3z3
[
ψu(u)F3,3(u)− 1

6
ψuuu(u)

]
+ z2z4 ψu(u)F2,4(u) + Oz,z(7).

Secondly, one can convince oneself that the normalization v′ = z′z′+z′2z′2
(
· · ·
)

is preserved, so that the equation of the transformed hypersurface is:

v′ = z′z′ +
∑

j>2, k>2

z′
j
z′
k
F ′j,k(u

′).

Thirdly, using ϕ(u) ∈ R and F = zz + Oz,z(6):

z′z′ = zz
(
ϕ(u) + ϕu(u) i F + ϕuu(u)

(i F )2

2!
+ F 3

(
· · ·
))
·

·
(
ϕ(u) + ϕu(u)

(
− i F

)
+ ϕuu(u)

(−i F )2

2!
+ F 3

(
· · ·
))

= zz ϕ(u)2 + zz
[
ϕu(u)2 − ϕ(u)ϕuu(u)

]
F 2 + zz F 3

(
· · ·
)

= zz ϕ(u)2 + z3z3
(
ϕu(u)2 − ϕ(u)ϕuu(u)

)
+ Oz,z(8).

Fourthly, for every j > 2 and every k > 2:

z′
j
z′
k

= zjzk
(
ϕ(u) + ϕu(u) i F + z2z2 (· · · )

)j
·

·
(
ϕ(u) + ϕu(u) (−i F ) + z2z2 (· · · )

)k
= zjzk

(
ϕ(u)j + j ϕ(u)j−1ϕu(u) i zz + z2z2 (· · · )

)
·

·
(
ϕ(u)k − k ϕ(u)k−1ϕu(u) i zz + z2z2 (· · · )

)
= zjzk

(
ϕ(u)j+k + i (j − k)ϕ(u)j+k−1 ϕu(u) zz + z2z2 (· · · )

)
.

Fifthly:

F ′j,k(u
′) = F ′j,k

(
<ψ
(
u+ i F

))
= F ′j,k

(
<
[
ψ(u) + ψu(u) i F + F 2 (· · · )

])
= F ′j,k

(
ψ(u) + 0 + z2z2

(
· · ·
))

= F ′j,k
(
ψ(u)

)
+ z2z2

(
· · ·
)
.
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Thanks to all this:

F
(
z′, z′, u′

)
= z′z′ + z′

2
z′

2
F ′2,2(u′) + z′

3
z′

2
F ′3,2(u′) + z′

2
z′

3
F ′2,3(u′) +

+ z′
4
z′

2
F ′4,2(u′) + z′

3
z′

3
F ′3,3(u′) + z′

2
z′

4
F ′2,4(u′) + Oz′,z′(7)

= zz ϕ(u)2 + z3z3
(
ϕu(u)2 − ϕ(u)ϕuu(u)

)
+ Oz,z(8) +

+ z2z2
(
ϕ(u)4 + 0 + z2z2 (· · · )

)(
F ′2,2
(
ψ(u)

)
+ z2z2 (· · · )

)
+ z3z2

(
ϕ(u)5 + i ϕ(u)4 ϕu(u) zz + z2z2 (· · · )

)
F ′3,2
(
ψ(u)

)
+ z2z3

(
ϕ(u)5 − i ϕ(u)4 ϕu(u) zz + z2z2 (· · · )

)
F ′2,3
(
ψ(u)

)
+ z4z2 ϕ(u)6 F ′4,2

(
ψ(u)

)
+ z3z3 ϕ(u)6 F ′3,3

(
ψ(u)

)
+ z2z4 ϕ(u)6 F ′2,4

(
ψ(u)

)
+ Oz,z(7)

= zz ϕ(u)2 + z2z2 ϕ(u)4 F ′2,2
(
ψ(u)

)
+

+ z3z2 ϕ(u)5 F ′3,2
(
ψ(u)

)
+ z2z3 ϕ(u)5 F ′2,3

(
ψ(u)

)
+

+ z4z2 ϕ(u)6 F ′4,2
(
ψ(u)

)
+ z3z3

[
ϕu(u)2 − ϕ(u)ϕuu(u) + ϕ(u)6 F ′3,3

(
ψ(u)

)]
+ z2z4 ϕ(u)6 F ′2,4

(
ψ(u)

)
+ Oz,z(7).

By identifying powers zjzk with (9), we get:

ψu(u) ≡ ϕ(u)2, (1,1)

0 ≡ ϕ(u)4 F ′2,2
(
ψ(u)

)
, (2,2)

0 ≡ ϕ(u)5 F ′3,2
(
ψ(u)

)
, (3,2)

0 ≡ ϕ(u)5 F ′2,3
(
ψ(u)

)
, (2,3)

ψu(u)F4,2(u) ≡ ϕ(u)6 F ′4,2
(
ψ(u)

)
, (4,2)

ψu(u)F3,3(u)− 1
6
ψuuu(u) ≡ ϕu(u)2 − ϕ(u)ϕuu(u) + ϕ(u)6 F ′3,3

(
ψ(u)

)
, (3,3)

ψu(u)F2,4(u) ≡ ϕ(u)6 F ′2,4
(
ψ(u)

)
. (2,4)

Visibly, to annihilate F ′3,3(u′), it suffices to fulfill:

ψu(u) ≡ ϕ(u)2,

ψu(u)F3,2(u)− 1
6
ψuuu(u) ≡ ϕu(u)2 − ϕ(u)ϕuu(u) + 0.

Assuming ψu(0) = 1, choosing ϕ(u) :=
√
ψu(u), and replacing, it suffices in conclu-

sion that ψ satisfies the solvable ODE:

ψuuu(u) =
3

2

ψuu(u)2

ψu(u)
− 3F3,3(u)ψu(u).

In summary, we have fully reproved with expository details what is actually
the equation (3.18) of Chern-Moser’s celebrated work [13].
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Proposition 12.4. Given a Levi nondegenerate Cω hypersurface M3 ⊂ C2 , for
every p ∈ M and every CR-transversal 1-jet j1

p at p, if γp 3 p denotes the
unique piece of Moser chain directed by j1

p at p, then there exist local holomorphic
coordinates (z, w = u + i v) centered at p in which γp is the u-axis and such that
M is graphed as:

v = zz + z4z2 F4,2(u) + z2z4 F2,4(u) +
∑
j+k>7

j>2, k>2

zjzkFj,k(u).

13. Uniqueness of Moser Normal Form

Starting with a Cω Levi nondegenerate hypersurface M3 ⊂ C2 , at any point p ∈M ,
it is elementary to find holomorphic coordinates (z, w) vanishing at p in which M
has equation v = F = zz + Oz,z,u(3). Such an equation can hence freely be taken as
the starting point towards a complete normalization of F .

In the preceding sections, we have in fact established the existence of a normal
form for M . We can now present the known uniqueness statement.

Theorem 13.1. [13, 17] Given a Cω Levi nondegenerate hypersurface M3 ⊂ C2

with 0 ∈M of the form:
v = zz + Oz,z,u(3),

there exists a biholomorphism (z, w) 7−→ (z′, w′) fixing 0 which maps (M, 0) into
(M ′, 0) of normalized equation:

v′ = z′z′ + F ′4,2(u′) z′
4
z′

2
+ F ′2,4(u′) z′

2
z′

4
+ z′

2
z′

2
Oz′,z′(3).

Furthermore, the map exists and is unique if it is assumed to be of the form:

z′ := z + f(z, w), w′ := w + g(z, w),

fz(0) = fw(0) = 0, gz(0) = gw(0) = < gww(0) = 0.

Proof. By choosing a chain at 0 ∈ M whose first jet is flat, directed along the
u-axis, one can verify (exercise) that all the constructions done in the preceding
sections do indeed give a biholomorphism of this specific form. So our job is to
establish uniqueness.

Suppose that two such normalizations hι : (z, w) 7−→ (z+fι, w+gι), ι = 1, 2,
are given:

M ′
1

h2◦h−1
1

��

M

h1

55kkkkkkkkkkkkkkkkkkk

h2
))SSSSSSSSSSSSSSSSSS

M ′
2,

with 0 = fι,z(0) = fι,w(0) and 0 = gι,z(0) = gι,w(0) = Re gι,ww(0). On C′2 ⊃ M ′
1 ,

let us take for simplicity coordinates with the same name (z, w), and coordinates
(z′, w′) on the C′2 ⊃M ′

2 .
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Lemma 13.2. Then h2 ◦ h−1
1 =: (z + f, w + g) also satisfies 0 = fz(0) = fw(0)

and 0 = gz(0) = gw(0) = Re gww(0).

Proof. Since both h1 and h2 are the identity plus Oz,w(2) terms, the same holds
for h2 ◦ h−1

1 . It remains only to show < gww(0) = 0.

The following lemma then applies to the map h2 ◦ h−1
1 , since M ′

1 and M ′
2 are

in normal form.

Lemma 13.3. If (z, w) 7−→ (z + f, w + g) with f, g = Oz,w(2), maps v =
zz + Oz,z,u(3) to v′ = z′z′ + Oz′,z′,u′(3), then gzz(0) = gzw(0) = 0 and gww(0) ∈ R,
so that:

g(z, w) = w + 1
2
gww(0)w2 + Oz,w(3).

Proof. Writing w′ = w + g = w + α z2 + β zw + (a+ ib)w2 + Oz,w(3), we have:

v′ = v + = (α z2) + =
(
β z (u+ iv)

)
+ 2a uv + b u2 − b v2 + Oz,w(3)

= zz + = (α z2) + = (β zu) + b u2 + Oz,z,u(3),

hence using the inversion z = z′+Oz′,w′(2), w = w′+Oz′,w′(2), we get α = β = b = 0
from:

v′ = z′z′ + = (α z′
2
) + = (β z′u′) + b u′

2
+ Oz′,z′,u′(3).

Thus, the assumption < gι,ww(0) = 0, ι = 1, 2, implies that the hι , are both
of the form

(
z+Oz,w(2), w+Oz,w(3)

)
. Such a form is stable under composition and

inversion, hence h2 ◦ h−1
1 is also of this form, and in particular, one has < gww(0) =

0.

Our uniqueness goal is to obtain h1 = h2 . Equivalently, h2 ◦ h−1
1 = Id. This

will be offered by the next independent key uniqueness statement.

Theorem 13.4. If two Cω Levi nondegenerate hypersurfaces 0 ∈ M3 ⊂ C2 and
0 ∈M ′3 ⊂ C′2 are both in normal form:

v = F = zz + z4z2 F4,2(u) + z2z4 F2,4(u) +
∑
j+k>7

j>2, k>2

zjzkFj,k(u),

v′ = F ′ = z′z′ + z′
4
z′

2
F ′4,2(u′) + z′

2
z′

4
F ′2,4(u′) +

∑
j+k>7

j>2, k>2

z′
j
z′
k
F ′j,k(u

′),

and if there exists a biholomorphism (M, 0) −→ (M ′, 0) of the form:

z′ := z + f(z, w), w′ := w + g(z, w),

fz(0) = fw(0) = 0, gz(0) = gw(0) = < gww(0) = 0,

then (f, g) ≡ (0, 0), and the biholomorphism is the identity.

Proof. Equivalently, the graphing function F =
∑

j,k Fj,k(u) zjzk of M satisfies
the general prenormalization conditions:

0 ≡ Fj,0(u) ≡ F0,k(u), 0 ≡ Fj,1(u) ≡ F1,k(u) (j, k∈N),
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except of course 1 ≡ F1,1(u), together with the sporadic normalization conditions:

0 ≡ F2,2(u) ≡ F3,2(u) ≡ F2,3(u) ≡ F3,3(u),

and the same holds about F ′ .

Accordingly, let us introduce:

S :=
{

(j, 0), (0, k), (j, 1), (1, k)
}
∪
{

(2, 2), (3, 2), (2, 3), (3, 3)
}
.

For a general real converging power series vanishing at (z, z, u) = (0, 0, 0):

G =
∑
j,k,l

Gj,k,l z
jzkul (Gk,j,l =Gj,k,l),

i.e. with G0,0,0 = 0, introduce the projection:

ΠS(G) :=
∑

(j,k)∈S

∞∑
l=0

Gj,k,l z
jzkul,

so that:

ΠS(F ) = zz and ΠS(F ′) = z′z′.

Also, reminding that granted our current assumption < gww(0) = 0, we
already understood in Lemma 13.3 that we have in fact g = w + Oz,w(3). Next,
taking integers ν > 3, reminding weights [z] = 1, [w] = 2, let us decompose in
weighted homogeneous components:

f(z, w) =
∑
j+l>2

fj,l z
jwl =

∑
ν>3

fν−1, g(z, w) =
∑
j+l>3

gj,l z
jwl =

∑
ν>3

gν ,

fν−1 :=
∑

j+2l=ν−1

fj,l z
jwl gν :=

∑
j+2l=ν

gj,l z
jwl.

Still for any ν > 3, introduce the projections:

πν−1(f) := fν−1, πν(g) := gν , πν(G) := Gν :=
∑

j+k+2l=ν

Gj,k,l z
jzkul,

so that:

ΠS

(
πν(F )

)
= 0 = ΠS

(
πν(F

′)
)

(ν > 3).

Also, introduce:

πν := π2 + · · ·+ πν .

For later use, observe that for any holomorphic function eµ = eµ(z, w) which is
weigthed µ-homogeneous, it holds (exercise):

πµ
(
eµ
(
z, u+ i [zz + Oz,z,u(3)]

))
= eµ

(
z, u+ izz

)
. (10)
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Next, since f = f2 + f3 + · · · and g = g3 + g4 + · · · , the fundamental identity
writes:

0 ≡ −=
(
w+g3+g4+· · ·

)
+F ′

(
z+f2+f3+· · · , z+f 2+f 3+· · · , <

(
w+g3+g4+· · ·

))
,

identically in C{z, z, u} after replacing (z, w) =
(
z, u+ i F (z, z, u)

)
.

To prove (f, g) = (0, 0), we may proceed progressively:

• (f2, g3) = (0, 0);

• (f3, g4) = (0, 0);

• (fµ−1, gµ) = (0, 0) for µ = 3, . . . , ν−1 and some ν > 5 implies (fν−1, gν) = (0, 0).

Lemma 13.5. One has (f2, g3) = (0, 0).

Proof. Applying π3 to the fundamental identity gives, using (10):

0 ≡ π3

(
− =

(
w + g3

)
+ F ′

(
z + f2, z + f 2, <

(
w + g2

)))
≡ π3

(
− v −= g3 +

(
z + f2

) (
z + f 2

)
+ F ′3

(
z, z, u

))
≡ π3

(
− zz◦◦ − F3(z, z, u)

◦
−= g3 + zz◦◦ + zf 2 + zf2 + f2f 2 + F ′3

(
z, z, u

)
◦

)
,

and since M and M ′ are normalized by assumption, with π3(f2f 2) ≡ 0, it remains
only:

0 ≡ <
{
i g3

(
z, u+ izz

)
+ 2 z f2

(
z, u+ izz

)}
.

Replacing f2 = f2,0 z
2 + f0,1w with f0,1 = 0 by assumption and replacing

g3 = g3,0 z
3 + g1,1 zw , this is:

0 ≡ i
2
g3,0 z

3− i
2
g3,0 z

3 +
(
f2,0− 1

2
g1,1

)
z2z +

(
f 2,0− 1

2
g1,1

)
zz2 + i

2
g1,1 zu− i

2
g1,1 zu,

and starting from the end, this forces 0 = g1,1 = f2,0 = g3,0 , so as asserted
0 = f2 = g3 .

Lemma 13.6. One has (f3, g4) = (0, 0).

Proof. Applying now π4 to the fundamental identity, taking into account that F
and F ′ are normalized, we compute:

0 ≡ π4

(
− =

(
w + 0 + g4

)
+
(
z + 0 + f3

) (
z + 0 + f3

)
+
∑

36µ64

F ′µ

(
z + 0 + f3, z + 0 + f3, <

(
w + 0 + g4

)))

≡ π4

(
− zz − F3(z, z, u)

◦
− F4(z, z, u)

◦
+ <

(
i g4
)

+ zz + zf3 + zf3 + f3f3◦ + F ′3
(
z, z, u

)
◦

+ F ′4
(
z, z, u

)
◦

)
≡ π4

(
<
{
i g4
(
z, u+ i[zz + Oz,z,u(3)]

)
+ 2 z f3

(
z, u+ i[zz + Oz,z,u(3)]

)})
≡ <

{
i g4
(
z, u+ i zz

)
+ 2 z f3

(
z, u+ i zz

)}
.



32 Merker

Replacing f3 = f3,0 z
3 + f1,1 zw and g4 = g4,0 z

4 + g2,1 z
2w + g0,2w

2 with
< g0,2 = 0 by assumption (or even g0,2 = 0, but only null real part will suffice), this
is:

0 ≡ i
2 g4,0 z

4 − i
2 g4,0 z

4 +
(
f3,0 − 1

2 g2,1
)
z3z +

(
f3,0 − 1

2 g2,1
)
zz3 +

(
i f1,1 − i f1,1 − i

2 g0,2 + i
2 g0,2

)
z2z2

+ i
2 g2,1 z

2u− i
2 g2,1 z

2u+
(
f1,1 + f1,1 − g0,2 − g0,2

)
zzu+

(
i
2 g0,2 −

i
2 g0,2

)
u2,

and starting from the end, since g0,2 is purely imaginary, this forces 0 = g0,2 , then
f1,1 + f 1,1 = 0, then 0 = g2,1 , then 0 = f1,1 , then 0 = f3,0 , and lastly 0 = g4,0 , so as
asserted 0 = f3 = g4 .

Now, we discuss the induction vanishing process. Assuming therefore that
(fµ−1, gµ) = (0, 0) for µ = 3, . . . , ν−1 and some ν > 5, we want to have (fν−1, gν) =
(0, 0).

At first, it is not difficult to verify (left to the reader) that, then:

F ′µ
(
z, z, u

)
≡ Fµ

(
z, z, u

)
(µ= 3,..., ν−1).

Using this, the fundamental identity then reads:

0 ≡ πν
(
− =

(
w + gν

)
+
(
z + fν−1

) (
z + fν−1

)
+
∑

36µ6ν

F ′µ

(
z + fν−1, z + fν−1, u+ < gν

))

≡ πν
(
− zz◦ −

∑
36µ6ν−1

Fµ
(
z, z, u

)
◦◦
− Fν

(
z, z, u

)
−= gν + zz◦ + zfν−1 + zfν−1 + fν−1fν−1◦

+
∑

36µ6ν−1

F ′µ
(
z, z, u

)
◦◦

+ F ′ν
(
z, z, u

))

≡ πν
(
<
{
i gν
(
z, u+ i [zz + Oz,z,u(3)]

)
+ 2 z fν−1

(
z, u+ i [zz + Oz,z,u(3)]

)}
− Fν

(
z, z, u

)
+ F ′ν

(
z, z, u

))
≡ <

{
i gν
(
z, u+ izz

)
+ 2 z fν−1

(
z, u+ izz

)}
− Fν

(
z, z, u

)
+ F ′ν

(
z, z, u

)
.

Now, we project further this equation by applying to it ΠS(•). Since F and
F ′ are in normal form, we obtain, still for any ν > 5:

0 ≡ ΠS

(
<
{
i gν
(
z, u+ izz

)
+ 2 z fν−1

(
z, u+ izz

)})
− 0 + 0.

This is a linear system of equations in the coefficients gj′,l′ of gν and fj′,l′ of fν−1 .
Instead of solving this linear system for any fixed ν > 5 (the cases ν = 3, 4 have
been done above), we will solve in one stroke all such systems for any ν > 3, and
this will simplify our job, especially by lightening a bit the combinatorics.

In any case, by taking the coefficients of all the monomials zjzkul with
(j, k) ∈ S and j + k + 2l = ν , we know that there exist linear forms Lj,k,l such
that the above system writes:

0 = Lj,k,l

({
fj′,l′

}
j′+2l′=ν−1

,
{
gj′,l′

}
j′+2l′=ν

)
,

a system that we may abbreviate as:

(Eν) : 0 = Lj,k,l
(
f•,•, g•,•

)
((j,k)∈S, j+k+2l= ν).
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From now on, ν > 3, so we incorporate ν = 3, 4 in the discussion.

On the other hand, by considering the complete f = f2 + f3 + · · · and the
complete g = g3 + g4 + · · · , we can introduce the analog ‘complete’ linear system:

0 ≡ ΠS

(
<
{
i g
(
z, u+ izz

)
+ 2 z f

(
z, u+ izz

)})
,

which, similarly, after extracting the coefficients of all monomials zjzkul with (j, k) ∈
S and any l ∈ N , can be abbreviated as:

(E) : 0 = Lj,k,l
(
f•,•, g•,•

)
((j,k)∈S, l∈N).

The key and elementary observation is that, because u + izz is 2-homogeneous,
the full system (E) splits in the linear subsystems (Eν) having separate unknowns(
fν−1, gν

)
:

(E) = (E3) ∪ (E4) ∪ · · · ∪ (Eν) ∪ · · · .

Therefore:(
(E) =⇒ (f, g) = (0, 0)

)
⇐⇒

(
(Eν) =⇒

(
fν−1, gν

)
= (0, 0) for all ν > 3

)
.

Thus, we are left with establishing the following main technical statement,
which will close the proof of Theorem 13.4.

Theorem 13.7. Let f(z, w) and g(z, w) be holomorphic of weights > 2 and > 3,
namely f = f2 + f3 + · · · and g = g3 + g4 + · · · , and with:

0 = fw(0), 0 = < gww(0).

If for all (j, k) ∈ S and all l ∈ N:

0 =
[
zjzkul

](
<
{
i g
(
z, u+ izz

)
+ 2 z f

(
z, u+ izz

)})
,

then (f, g) ≡ (0, 0).

Proof. The key simplification is to gather all powers ul in the linear system so
as to deal with finitely many functions of the CR-transversal variable u .

Indeed, given a holomorphic function e = e(w), we may expand:

e
(
u+ i zz

)
= e(u) + ew(u) i zz + eww(u) 1

2!

(
i zz
)2

+ ewww(u) 1
3!

(
i zz
)3

+ · · · ,

and we will write e′(u), e′′(u), e′′′(u), etc., instead of ew(u), eww(u), ewww(u), etc.
Thus:

f
(
z, u+ i zz

)
=
∑
k>0

zk fk
(
u+ i zz

)
=
∑
k>0

zk
[
fk(u) + f ′k(u) i zz + f ′′k (u) 1

2!

(
i zz
)2

+ f ′′′k (u) 1
3!

(
i zz
)3

+ · · ·
]
,
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and similarly:

g
(
z, u+ i zz

)
=
∑
k>0

zk gk
(
u+ i zz

)
=
∑
k>0

zk
[
gk(u) + g′k(u) i zz + g′′k(u) 1

2!

(
i zz
)2

+ g′′′k (u) 1
3!

(
i zz
)3

+ · · ·
]
,

Hence our zero equation is:

0 ≡ 2<
{

2 z f
(
z, u+ i zz

)
+ i g

(
z, u+ i zz

)}
≡ 2 z f + 2 z f + i g − i g

≡
∑
k>0

(
2 fk z

kz + 2 i f ′k z
k+1z2 − f ′′k zk+2z3 − i

3
f ′′′k z

k+3z4 + · · ·
)

+
∑
k>0

(
2 fk zz

k − 2 i f
′
k z

2zk+1 − f ′′k z3zk+2 + i
3
f
′′′
k z

4zk+3 + · · ·
)

+
∑
k>0

(
i gk z

k − g′k zk+1z − i
2
g′′k z

k+2z2 + 1
6
g′′′k z

k+3z3 + · · ·
)

+
∑
k>0

(
− i gk zk − g′k zzk+1 + i

2
g′′k z

2zk+2 + 1
6
g′′′k z

3zk+3 + · · ·
)
,

where the common argument of all fk , f ′k , f ′′k , gk , g′k , g′′k , g′′′k is u ∈ R .

We are thus capturing the coefficients [zjzk](•) of this identity, not anymore
all [zjzkul](•). This means that we are extracting identities satisfied by functions of
u .

Let us therefore list the coefficients of zjzk , indicating plainly (j, k). Note
that we can restrict the considerations to only j > k , since the above zero equation
is real.

543210 543210{
f0, f1, f2

} {
g0, g1

}

g
f

Figure 9: Two infinite red-shaded families of coefficients f3(u) ≡ f4(u) ≡ · · · ≡ 0
and g2(u) ≡ g3(u) ≡ · · · ≡ 0 easily shown to vanish identically.

Firstly, we extract the coefficients of zk with k > 2 and of zkz for k > 3:

0 = i gk, (k>2, 0)

0 = 2 fk − g′k−1. (k>3, 1)

So gk(u) ≡ 0 for all k > 2 and fk(u) ≡ 0 for all k > 3, and therefore:

f = f0(w) + z f1(w) + z2 f2(w), g = g0(w) + z g1(w).
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Next, we extract the remaining coefficients of zjzk , and we get 7 equations:

0 = i g0 − i g0, (0, 0)

0 = 2 f 0 + i g1, (1, 0)

0 = 2 f1 + 2 f 1 − g′0 − g′0, (1, 1)

0 = 2 f2 − 2i f
′
0 − g′1, (2, 1)

0 = 2i f ′1 − 2i f
′
1 − i

2
g′′0 + i

2
g′′0, (2, 2)

0 = 2i f ′2 − f
′′
0 − i

2
g′′1 , (3, 2)

0 = − f ′′1 − f
′′
1 + 1

6
g′′′0 − 1

6
g′′′0 . (3, 3)

Now, since:

0 = f(0) ⇐⇒ f0(0) = 0, 0 = g(0) ⇐⇒ g0(0) = 0,

0 = fz(0) ⇐⇒ f1(0) = 0, 0 = gz(0) ⇐⇒ g1(0) = 0,

0 = fw(0) ⇐⇒ f ′0(0) = 0, 0 = gw(0) ⇐⇒ g′0(0) = 0,

and since:

0 = < gww(0) ⇐⇒ < g′′0(0) = 0,

the assumptions of the theorem are equivalent to the ones formulated in the next
statement, which will finish everything.

Lemma 13.8. If five functions f0 , f1 , f2 , g0 , g1 of the real variable u ∈ R with:

0 = f0(0) = f ′0(0), 0 = g0(0) = g′0(0) = < g′′0(0),

0 = f1(0), 0 = g1(0),

satisfy the above 7 linear ordinary differential equations, then they all vanish identi-
cally:

0 ≡ f0(u) ≡ f1(u) ≡ f2(u), 0 ≡ g0(u) ≡ g1(u).

Proof. From (0, 0), solve g0 := g0 . From (1, 0), solve g1 := 2i f 0 . Then the five
remaining equations become:

0 = 2 f1(u) + 2 f 1(u)− 2 g′0(u), (1, 1)

0 = 2 f2(u)− 4i f
′
0(u), (2, 1)

0 = 2i f ′1(u)− 2i f
′
1(u), (2, 2)

0 = 2i f ′2(u), (3, 2)

0 = − f ′′1 (u)− f ′′1(u). (3, 3)

From (3, 2), we see f2 = α ∈ C is constant. From (2, 1) at u = 0, since
f ′0(0) = 0 by assumption, we get α = 0. So f2(u) ≡ 0 in (2, 1) gives f0(u) ≡ 0 too.
Thus g1(u) ≡ 0 as well.
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From (3, 3) and d
du

(2, 2), it comes f ′′1 (u) ≡ 0, and since f1(0) = 0 by
assumption, f1(u) = c u with c ∈ R by (2, 2). From (1, 1), it comes g′0(u) = 2 c u ,
and since < g′′0(0) = 0, we get c = 0. Thus f1(u) ≡ 0.

From g′0(u) ≡ 0 and g0(0) = 0 by assumption, we get g0(u) ≡ 0. This
concludes everything.
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