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Rigid Biholomorphic Equivalences 1

We study the local equivalence problem for real-analytic (C ω ) hypersurfaces M 5 ⊂ C 3 which, in some holomorphic coordinates (z1, z2, w) ∈ C 3 with w = u + √ -1v, are rigid in the sense that their graphing functions:

are independent of v. Specifically, we study the group Hol rigid (M ) of rigid local biholomorphic transformations of the form:

where a ∈ R\{0} and

which preserve rigidity of hypersurfaces. After performing a Cartan-type reduction to an appropriate {e}-structure, we find exactly two primary invariants I0 and V0, which we express explicitly in terms of the 5-jet of the graphing function F of M . The identical vanishing 0 ≡ I0(J 5 F ) ≡ V0(J 5 F ) then provides a necessary and sufficient condition for M to be locally rigidly-biholomorphic to the known model hypersurface:

We establish that dim Hol rigid (M ) 7 = dim Hol rigid (M LC ) always. If one of these two primary invariants I0 ≡ 0 or V0 ≡ 0 does not vanish identically, then on either of the two Zariskiopen sets {p ∈ M : I0(p) = 0} or {p ∈ M : V0(p) = 0}, we show that this rigid equivalence problem between rigid hypersurfaces reduces to an equivalence problem for a certain 5-dimensional {e}-structure on M , that is, we get an invariant absolute parallelism on M 5 . Hence dim Hol rigid (M ) drops from 7 to 5, illustrating the gap phenomenon.

Introduction

In 1907, Poincaré [START_REF] Poincaré | Les fonctions analytiques de deux variables complexes et la représentation conforme[END_REF] gave a heuristic counting argument to show that real analytic hypersurfaces in C 2 possess infinitely many local invariants under biholomorphic transformations. This gives rise to the classification problem of real submanifolds in complex spaces, which still occupies a central place in CR geometry.

The equivalence problem for Levi nondegenerate hypersurfaces in C 2 was first solved by Élie Cartan [START_REF] Cartan | Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, I[END_REF][START_REF] Cartan | Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, II[END_REF], as an application of his powerful method of equivalence, rooted in the « Méthode du repère mobile » of Darboux-Ribaucour.

In a landmark paper of 1974, Chern-Moser [START_REF] Chern | Real hypersurfaces in complex manifolds[END_REF] successfully solved the equivalence problem for Levi nondegenerate hypersurfaces in C n in any dimension n 2, by applying Cartan's method of equivalence, as well as Poincaré's method of normal forms. For a treatment of both methods, we refer to the book of Jacobowitz [START_REF] Jacobowitz | An introduction to CR structures[END_REF] and the references therein. Other approaches to solving the equivalence problem in CR Geometry were also developed earlier by Tanaka [START_REF] Tanaka | Graded Lie algebras and geometric structures[END_REF], and later by Čap-Slovák [START_REF] Čap | Parabolic geometries. I. Background and general theory[END_REF] using parabolic geometry.

The classification and equivalence problems of Levi degenerate hypersurfaces in complex spaces are much less understood than the non-degenerate case. The task of identifying suitable higher non-degeneracy conditions was first considered by Freeman [START_REF] Freeman | Local biholomorphic straightening of real submanifolds[END_REF], and the modern language speaks of '2-nondegeneracy'. An elementary self-contained presentation of foundational aspects is available in [START_REF] Merker | Equivalences of 5-dimensional CR manifolds (II): General classes I, II, III -1, III -2, IV -1, IV -2[END_REF], and will be enough for our purposes in this paper.

The appropriate setting for equivalence problem of degenerate hypersurfaces M 5 ⊂ C 3 has been determined to be the class of real analytic 5-dimensional 2-nondegenerate real hypersurfaces in C 3 of constant Levi rank 1, which we denote by C 2,1 using the notation of Fels-Kaup. It is intermediate between the well-understood class of products of 3-dimensional hypersurfaces and C, and the class of general 5-dimensional hypersurfaces in C 3 . First investigations of this class started in the late 1990's, and in 2008, Fels-Kaup [START_REF] Fels | Classification of Levi degenerate homogeneous CR-manifolds in dimension 5[END_REF] gave a complete classification of homogenous models. Merker-Nurowski [START_REF] Merker | On degenerate para-CR structures: Cartan reduction and homogeneous models[END_REF][START_REF] Merker | Five-dimensional para-CR manifolds and contact projective geometry in dimension three[END_REF] recently extended these results to the more general para-CR context, cf. also [START_REF] Nurowski | Three-dimensional Cauchy-Riemann structures and second order ordinary differential equations[END_REF].

For this C 2,1 class, an {e}-structure was constructed by Isaev-Zaitsev [START_REF] Isaev | Reduction of five-dimensional uniformly Levi degenerate CR structures to absolute parallelisms[END_REF] and even better, a Cartan connection by Medori-Spiro [START_REF] Medori | The equivalence problem for five-dimensional Levi degenerate CR manifolds[END_REF][START_REF] Medori | Structure equations of Levi degenerate CR hypersurfaces of uniform type[END_REF] -for not necessarily embedded CR manifolds. Effective computations have been conducted independently in the thesis [START_REF] Pocchiola | Explicit Absolute Parallelism for 2-Nondegenerate Real Hypersurfaces M 5 ⊂ C 3 of Constant Levi Rank 1[END_REF][START_REF] Merker | Explicit Absolute Parallelism for 2-Nondegenerate Real Hypersurfaces M 5 ⊂ C 3 of Constant Levi Rank 1[END_REF] of Pocchiola, who 'discovered' two explicit primary invariants W 0 and J 0 , now known as Pocchiola invariants. Foo-Merker [START_REF] Foo | Differential e-structures for equivalences of 2-nondegenerate Levi rank 1 hypersurfaces M 5 ⊂ C 3[END_REF] completed the {e}-structure, and confirmed the existence of these invariants.

We also refer the readers to our recent treatment [START_REF] Foo | On Convergent Poincaré-Moser Reduction for Levi Degenerate Embedded 5-Dimensional CR Manifolds[END_REF] of the classification problem for this class by Moser's method of normal form. As for degenerate hypersurfaces in C n , n 4, the classification problem is widely open, and to the best of our knowledge, the works of Porter [START_REF] Porter | The local equivalence problem for 7-dimensional, 2-nondegenerate CR manifolds[END_REF], and Porter-Zelenko [START_REF] Porter | Absolute parallelism for 2-nondegenerate CR structures via bigraded Tanaka prolongation[END_REF] are the only treatments of the equivalence problem of 7-dimensional hypersurfaces in C 4 , and higher dimensional cases seem to be completely unexplored.

In this paper, we solve the equivalence problem for a special class of real analytic 5dimensional 2-nondegenerate rigid hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1 under the action of rigid transformations, and we obtain two primary invariants. This is the first step towards a solution to the classification problem for this class of hypersurfaces, which is accomplished in our joint paper with Chen [START_REF] Chen | Normal Forms for Rigid C 2,1 Hypersurfaces M 5 ⊂ C 3[END_REF]. The class of rigid hypersurfaces was introduced by the late Isaev in his investigations [START_REF] Isaev | Affine rigidity of Levi degenerate tube hypersurfaces[END_REF][START_REF] Isaev | On the CR-curvature of Levi degenerate tube hypersurfaces[END_REF][START_REF] Isaev | Zero CR-curvature equations for Levi degenerate hypersurfaces via Pocchiola's invariants[END_REF][START_REF] Isaev | Rigid Levi degenerate hypersurfaces with vanishing CR-curvature[END_REF]] of Pocchiola's invariants. This allows for a lot of simplifications in comparison with the case of general Levi degenerate hypersurfaces, while still giving rise to an interesting theory. There are also studies on rigid CR manifolds in other settings, such as rigid Levi non-degenerate real hypersurfaces in C n+1 by Stanton [START_REF] Stanton | A normal form for rigid hypersurfaces in C 2[END_REF][START_REF] Stanton | Infinitesimal CR automorphisms of rigid hypersurfaces[END_REF] and rigid spheres by Ezhov-Schmalz [START_REF] Ezhov | Spherical rigid hypersurfaces in C 2[END_REF].

More precisely, a hypersurface M 5 in C 3 with coordinates (z 1 , z 2 , w = u + i v) is called rigid if there is a vector field of the form T = X + X tangent to M, where X is a nonzero holomorphic vector field, such that T M = T c M ⊕ RT . One can apply a local biholomorphic straightening transformation to obtain X = i ∂ ∂w and X + X = 2 ∂ ∂v . It follows that M can be written as graph:

M 5 : u = F (z 1 , z 2 , z 1 , z 2 ),
with a C ω function F independent of v. The rigid equivalence problem is studied under the action of rigid biholomorphic transformations, of the form:

(z 1 , z 2 , w) -→ f (z 1 , z 2 ), g(z 1 , z 2 ), a w + h(z 1 , z 2 ) ,
where f , g, h are holomorphic, independently of w, and where a ∈ R * . Section 2 gives more details.

Our main tool is Cartan's method of equivalence, and we refer our readers to [START_REF] Olver | Equivalence, Invariance and Symmetries[END_REF][START_REF] Ivey | Differential geometry via moving frames and exterior differential systems[END_REF] for a presentation. For a given CR manifold M , this method constructs a principal bundle π : P -→ M and a coframe of everywhere linearly independent 1-forms θ 1 , . . . , θ dim P on P such that:

(1) for any other CR manifold M , every CR diffeomorphism Φ : M -→ M lifts uniquely to a diffeomorphism Π : P -→ P satisfying Π * θ i = θ i for 1 i dim P , where P and the θ i 's are also constructed from M by Cartan's method of equivalence; (2) conversely, every diffeomorphism Π : P -→ P commuting with projections π, π whose horizontal part is a diffeomorphims Φ : M -→ M :

P Π / / π P π M Φ / / M which also satisfies Π * θ i = θ i for 1 i dim P , has a horizontal part Φ a CR diffeomorphism.
In practice, as is the case in this paper, Cartan's method of equivalence is computationally intensive. Carrying out the method is a long, demanding and nontrivial task.

The very first step in investigating equivalence problems is to determine the homogeneous models for the class under consideration. In our case, it is the well-known tube over the future light cone:

Re(z 1 ) 2 + Re(z 2 ) 2 = u 2 (u > 0),
whose Lie algebra was determined by Gaussier-Merker [START_REF] Gaussier | A new example of a uniformly Levi degenerate hypersurface in C 3[END_REF], and Fels-Kaup [START_REF] Fels | Classification of Levi degenerate homogeneous CR-manifolds in dimension 5[END_REF] to be the 10-dimensional so(2, 3, R). The following equivalent hypersurface, discovered by Gaussier-Merker [START_REF] Gaussier | A new example of a uniformly Levi degenerate hypersurface in C 3[END_REF], will be more useful for our purpose:

M LC : u = z 1 z 1 + 1 2 (z 2 1 z 2 + z 2 1 z 2 ) 1 -z 2 z 2 .
The Lie algebra of CR infinitesimal rigid automorphism will be determined in Section 2.

Our first result is the following: 

dρ = (α + α) ∧ ρ + √ -1κ ∧ κ, dκ = α ∧ κ + ζ ∧ κ, dζ = (α -α) ∧ ζ + 1 c I 0 κ ∧ ζ + 1 cc V 0 κ ∧ κ, dα = ζ ∧ ζ - 1 c I 0 ζ ∧ κ + 1 cc Q 0 κ ∧ κ + 1 c I 0 ζ ∧ κ,
conjugate equations for dκ, dζ, dα being understood.

The two primary invariants are explicitly given by

I 0 := - 1 3 
K (L 1 (L 1 (k))) L 1 (k) 2 + 1 3 
K (L 1 (k))L 1 (L 1 (k)) L 1 (k) 3 + 2 3 L 1 (L 1 (k)) L 1 (k) + 2 3 L 1 (L 1 (k)) L 1 (k) , V 0 := - 1 3 L 1 (L 1 (L 1 (k))) L 1 (k) + 5 9 
L 1 (L 1 (k)) L 1 (k) 2 - - 1 9 
L 1 (L 1 (k))P L 1 (k) + 1 3 L 1 (P) - 1 9 PP,
while the secondary invariant is

Q 0 := - 1 2 L 1 (I 0 ) + 1 3 P - L 1 (L 1 (k)) L 1 (k) I 0 + 1 6 P - L 1 (L 1 (k)) L 1 (k) I 0 + 1 2 K (V 0 ) L 1 (k) .
It will be shown that Q 0 is real-valued, see equation (7.7). We refer the readers to the next section for the definitions of the vector fields {L 1 , K }, and of the functions {P, k}.

Both I 0 and V 0 vanish identically for the Gaussier-Merker model M LC , and it is a fundamental theorem in Cartan theory [START_REF] Olver | Equivalence, Invariance and Symmetries[END_REF][START_REF] Ivey | Differential geometry via moving frames and exterior differential systems[END_REF] that the identical vanishing of all invariants provides constant coefficients Maurer-Cartan equations of a uniquely defined Lie group. 

0 ≡ I 0 ≡ V 0 .
A basis for the Maurer-Cartan forms on the local Lie group Hol rigid (M LC ) is provided by 7-differential 1-forms:

{ρ, κ, ζ, κ, ζ, α, α},
where ρ = ρ is real, which enjoy the 7 structure equations with constant coefficients:

dρ = (α + α) ∧ ρ + √ -1κ ∧ κ, dκ = α ∧ κ + ζ ∧ κ, dκ = α ∧ κ + ζ ∧ κ, dζ = (α -α) ∧ ζ, dζ = (α -α) ∧ ζ, dα = ζ ∧ ζ, dα = ζ ∧ ζ.
On the other hand, one can also obtain the same solution to the equivalence problem for M LC using the vector fields method giving the Gaussier-Merker list.

Proposition 1.3. For the model hypersurface:

M LC : u = z 1 z 1 + 1 2 (z 2 1 z 2 + z 2 1 z 2 ) 1 -z 2 z 2 ,
the Lie algebra hol rigid (M LC ) of infinitesimal rigid biholomorphisms is 7-dimensional, generated by: 

X 1 = √ -1∂ w , X 2 = z 1 ∂ z1 + 2w∂ w , X 3 = √ -1z 1 ∂ z1 + 2 √ -1z 2 ∂ z2 , X 4 = (z 2 -1)∂ z1 -2z 1 ∂ w , X 5 = ( √ -1 + √ -1z 2 )∂ z1 -2 √ -1z 1 ∂ w , X 6 = z 1 z 2 ∂ z1 + (z 2 2 -1)∂ z2 -z 2 1 ∂ w , X 7 = √ -1z 1 z 2 ∂ z1 + ( √ -1z 2 2 + √ -1)∂ z2 - √ -1z 2 
1 ∂ w . Let (∂ ρ , ∂ κ , ∂ ζ , ∂ α , ∂ κ , ∂ ζ , ∂ α )
, ∂ κ , ∂ ζ , ∂ α , ∂ κ , ∂ ζ , ∂ α } and the Lie algebra generated by {X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 }.
Next, when either I 0 ≡ 0 or V 0 ≡ 0, we may restrict considerations to either of the Zariski-open subsets {p ∈ M : I 0 (p) = 0} or {p ∈ M : V 0 (p) = 0}, where one may perform Cartan's method of equivalence and obtain the following Theorem 1.4. Let M 5 ⊂ C 3 be a local rigid 2-nondegenerate C ω constant Levi rank 1 hypersurface. If either I 0 = 0 or V 0 = 0 everywhere on M , the local rigid-biholomorphic equivalence problem reduces to an invariant 5-dimensional {e}-structure on M .

In fact, once the last remaining group parameter c ∈ C * is seen to be normalizable from either:

1 c I 0 = 1 or 1 cc V 0 = 1,
the proof is completed if one does not require to make explicit the {e}-structure on M . Because of the complexity of computations, we will not attempt to set up such an explicit {e}-structure.

From general Cartan theory, we deduce the Corollary 1.5. All rigid M 5 ⊂ C 3 that are not rigidly-biholomorphic to the model M LC satisfy dim Hol rigid (M ) 5.

Let us now briefly explain how our rigid real analytic C 2,1 hypersurfaces M 5 ⊂ C 3 can be equipped with a Cartan geometry, whatever J 0 , V 0 are. This is analogous to the Cartan connection construced by Medori-Spiro [START_REF] Medori | The equivalence problem for five-dimensional Levi degenerate CR manifolds[END_REF][START_REF] Medori | Structure equations of Levi degenerate CR hypersurfaces of uniform type[END_REF].

Historically, Élie Cartan introduced the notion of "espaces généralisés", first in the context of Riemannian geometry, then in the widest possible universe of arbitrary homogeneous spaces X = G/H, where G is a connected Lie group, H ⊂ G is a closed connected Lie subgroup, with Lie algebras h ⊂ g. In today's language, a Cartan-like 'generalised space' is conceptualized as a certain g-valued differential 1-form ω which constitutes a Cartan connection on a certain H-principal bundle P over a manifold M equipped with the right action R h : g → gh for h ∈ H and g ∈ G, subjected to following three key conditions:

(1) ω p : T p P → g is an isomorphism at each point p ∈ P ;

(2) for every y ∈ h, if

Y + p = d dt p exp(ty) t=0 ,
then ω(Y + ) = y;

(3) at every p ∈ P , for every v p ∈ T p P , one has

ω ph R h * (v p ) = Ad(h -1 )[ω p (v p )].
The Cartan connection for the homogeneous space M := G/H with the bundle P := G, satisfies Maurer-Cartan structure equation:

0 = dω + 1 2 [ω ∧ ω].
In general, Cartan's structure equation involves the curvature:

Ω := dω + 1 2 [ω ∧ ω].
In our case, a general rigid real analytic C 2,1 manifold is modelled on the tube over the future light cone M LC . Cartan's equivalence method realises M LC as a homogenous space G 7 /H 2 , where g is generated by the vector fields

{∂ α , ∂ α , ∂ ρ , ∂ κ , ∂ ζ , ∂ κ , ∂ ζ }, and H 2 is the two dimensional isotropy subgroup.
From the structure equations of Theorem 1.1, it is easy to construct a g-valued 1-form ω satisfying the three conditions of being a Cartan connection (details will be skipped).

Theorem 1.6. Associated to every rigid C 2,1 local C ω hypersurface M 5 ⊂ C 3 , there is a canonical Cartan connection modelled on the homogeneous space G 7 /H 2 = M LC .
In continuation with these results, a further problem appears: to classify up to rigid biholomorphisms the 'submaximal' hypersurfaces with dim Hol rigid (M ) = 5 whose rigid biholomorphic group is locally transitive. Another question would be to classify under rigid biholomorphisms those rigid M 5 ⊂ C 3 that have identically vanishing Pocchiola invariants 0 ≡ W 0 ≡ J 0 , hence which are equivalent to M LC , but under a general biholomorphism, not necessarily rigid. Upcoming publications will be devoted to advances in these directions.

The remainder of the article is devoted to prove Theorem 1.1.
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Geometry of Levi rank

1 real hypersurfaces M 5 ⊂ C 3 In appropriate affine coordinates (z 1 , z 2 , w) ∈ C 3 with w = u + √ -1v, a real-analytic (C ω ) real hypersurface M 5 ⊂ C 3 may locally be represented as the graph of a C ω function F over the 5-dimensional real hyperplane C z1 × C z2 × R v . When F is independent of v: M : u = F (z 1 , z 2 , z 1 , z 2 ),
the hypersurface is called rigid. Its fundamental CR-bundle:

T 1,0 M := C ⊗ R T M ) ∩ T 1,0 C 3
is of complex rank 2 = CRdimM , as well as its conjugate T 0,1 M = T 1,0 M . Relevant foundational material for CR geometry focused on the local biholomorphic equivalence problem of C ω CR submanifolds M ⊂ C N has been set up in the memoir [START_REF] Merker | Equivalences of 5-dimensional CR manifolds (II): General classes I, II, III -1, III -2, IV -1, IV -2[END_REF].

The Levi forms at various points p ∈ M are maps measuring Lie bracket noninvolutivity [28, p. 45]:

T 1,0 p M × T 1,0 p M -→ C ⊗ R T p M mod T 1,0 p M ⊕ T 0,1 p M , M p , N p -→ √ -1 M , N p mod T 1,0 p M ⊕ T 0,1 p M ,
where M and N are any two local sections of T 1,0 M defined near p which extend M p = M p and N p = N p , the result being independent of extensions.

Levi forms are known to be biholomorphically invariant. In terms of two natural intrinsic generators for T 1,0 M :

L 1 := ∂ ∂z 1 - √ -1F z1 ∂ ∂v and L 2 := ∂ ∂z 2 - √ -1F z2 ∂ ∂v ,
the Levi forms at all points p ∈ M identify with the matrix-valued map:

LF M (p) := 2 F z1z1 F z2z1 F z1z2 F z2z2 (p).
Throughout this article, we will make two main (invariant) assumptions. The first one is that the rank of LF M (p) be constant equal to 1 at every point p ∈ M . Since 2 = rank T 1,0 M , this implies that there is a rank 1 Levi kernel subbundle:

K 1,0 M ⊂ T 1,0 M,
which is generated by the vector field:

K := kL 1 + L 2 ,
incorporating the slant function:

k := - F z2z1 F z1z1 .
Indeed, a direct check convinces that both [K , L 1 ] and [K , L 2 ] vanish modulo T 1,0 M ⊕ T 0,1 M . The known involutivity properties of the Levi kernel subbundle K 1,0 M ⊂ T 1,0 M together with its conjugate K 0,1 M ⊂ T 0,1 M then read as (see [28, pp. 72-73]):

K 1,0 M, K 1,0 M ⊂ K 1,0 M, K 0,1 M, K 0,1 M ⊂ K 0,1 M, K 1,0 M, K 0,1 M ⊂ K 1,0 M ⊕ K 0,1 M.
Another fundamental function will also be needed in a while:

P := F z1z1z1 F z1z1 .
All this justifies the introduction of the so-called Freeman form ([28, p. 89]):

K 1,0 p M × T 1,0 p M mod K 1,0 p M -→ T 1,0 p M ⊕ T 0,1 p M mod K 1,0 p M ⊕ T 0,1 p M , K p , L p -→ K , L p mod K 1,0 p M ⊕ T 0,1 p M ,
where K and L are any two local sections of K 1,0 M and of T 1,0 M defined near p which extend K p = K | p and L p = L | p , the result being independent of extensions. In bases, these Freeman forms at various points p ∈ M are simply maps C × C -→ C. They are known to be biholomorphically invariant [START_REF] Merker | Equivalences of 5-dimensional CR manifolds (II): General classes I, II, III -1, III -2, IV -1, IV -2[END_REF].

Our second main (invariant) assumption will be that the rank of the Freeman form be maximal equal to 1 at every point p ∈ M . Such manifolds M are called 2-nondegenerate.

A computation:

(2.1)

K , L 1 = kL 1 + L 2 , L 1 = -L 1 (k)L 1 + k L 1 , L 1 + L 2 , L 1 • = -L 1 (k)L 1
shows that

M is 2-nondegenerate at p ∈ M ⇐⇒ L 1 (k)(p) = 0.
2.2. The initial Darboux-Cartan structure. The differential 1-form

ρ 0 = dv + √ -1F z1 dz 1 + √ -1F z2 dz 2 - √ -1F z1 dz 1 - √ -1F z2 dz 2
has kernel

kerρ 0 = {ρ 0 = 0} = T 1,0 M ⊕ T 0,1 M.
If M is not Levi-flat, after a suitable change of coordinates in the (z 1 , z 2 )-space, we may assume without loss of generality that:

ρ 0 √ -1[L 1 , L 2 ] = 2F z1 z1 = 0
everywhere on M , and hence the vector field

T := √ -1[L 1 , L 1 ] = 2F z1,z1 ∂ ∂v := ∂ ∂v
vanishes nowhere on M . In the rigid case, a direct calculation shows that

L 1 (k) = - -F z1,z1 F z2 z1z1 + F z2 z1 F z1 z1z1 (F z1 z1 ) 2 , L 1 (k) = -F z1 z1 F z2 z1 z1 + F z2 z1 F z1 z1 z1 (F z1 z1 ) 2 , T (k) = 0.
Moreover, we will invoke the following:

Lemma 2.3. [See Pocchiola [START_REF] Pocchiola | Explicit Absolute Parallelism for 2-Nondegenerate Real Hypersurfaces M 5 ⊂ C 3 of Constant Levi Rank 1[END_REF] or Foo-Merker [START_REF] Foo | Differential e-structures for equivalences of 2-nondegenerate Levi rank 1 hypersurfaces M 5 ⊂ C 3[END_REF]] The following 3 functional identities hold on M : K ( k) ≡ 0,

K (P) ≡ -PL 1 (k) -L 1 (L 1 (k)), K (P) ≡ -PL 1 (k) -L 1 (L 1 (k)).
According to Pocchiola [30, p. 37], there are 10 Lie bracket identities

[T , L 1 ] ≡ -PT , [T , K ] ≡ L 1 (k)T + 0, [T , L 1 ] ≡ -P T , [T , K ] ≡ L 1 (k)T + 0, [L 1 , K ] ≡ L 1 (k)L 1 , [L 1 , L 1 ] ≡ √ -1T , [L 1 , K ] ≡ L 1 (k)L 1 , [K , L 1 ] ≡ -L 1 (k)L 1 , [K , K ] ≡ 0, [L 1 , K ] ≡ L 1 (k)L 1 ,
where the "+0" is deliberately added to show the difference from the general case. The following 1-forms

ρ 0 = 1 dv -A 1 dz 1 -A 2 dz 2 -Ā1 dz 1 -Ā2 dz 2 , κ 0 = dz 1 -kdz 2 , ζ 0 = dz 2 , κ0 = dz 1 -kdz 2 , ζ0 = dz 2 ,
are, by a simple computation, dual to the corresponding vector fields T , L 1 , K , L 1 , K .

In terms of these new vector fields and 1-forms, the exterior differential of any

C ω function G = G(z 1 , z 2 , z 1 , z 2 , v) rewrites simply as (2.4) dG = T (G) ρ 0 + L 1 (G) κ 0 + K (G) ζ 0 + L 1 (G) κ 0 + K (G) ζ 0 .
Using the Lie-Cartan formula which states that for any smooth vector fields X, Y and any differential 1-form ω, one has

dω(X, Y ) = Xω(Y ) -Y ω(X) -ω([X, Y ]),
the initial Darboux-Cartan structure equations are therefore obtained

dρ 0 = P ρ 0 ∧ κ 0 -L 1 (k) ρ 0 ∧ ζ 0 + P ρ 0 ∧ κ0 -L 1 ( k) ρ 0 ∧ ζ0 + √ -1κ 0 ∧ κ0 , dκ 0 = -L 1 (k) κ 0 ∧ ζ 0 + L 1 (k) ζ 0 ∧ κ0 , dζ 0 = 0.
Here, conjugate equations for dκ 0 and for dζ 0 are not written, as they can be immediately deduced.

By anticipation, let us state that Cartan's method will force us to replace the three independent 1-forms {ρ 0 , κ 0 , ζ 0 }, first by {ρ 0 , κ 0 , ζ0 }, next by {ρ 0 , κ 0 , ζ 0 }, and that we will have to calculate more complicated initial structure equations.

Initial G-structure for rigid equivalences of rigid real hypersurfaces

Our objective is to study the equivalence problem of rigid hypersurfaces under rigid biholomorphic transformations. 

ϕ : (z 1 , z 2 , w) -→ f (z 1 , z 2 ), g(z 1 , z 2 ), aw + h(z 1 , z 2 ) =: (z 1 , z 2 , w ),
sending M to M , where a ∈ R × and f , g, h are holomorphic of (z 1 , z 2 ) only.

The interest, advocated by Stanton and by Isaev, is that rigid biholomorphisms preserve rigidity. Indeed, starting from the target rigid hypersurface

w + w 2 -F (z 1 , z 2 , z 1 , z 2 ) = 0,
the pullback by ϕ again has rigid defining equation

0 = w + w 2 + 1 a 1 2 h(z 1 , z 2 ) + 1 2 h(z 1 , z2 ) -F f (z 1 , z 2 ), g(z 1 , z 2 ), f (z 1 , z2 ), ḡ(z 1 z2 ) .
Since ϕ is holomorphic, its differential ϕ * : CT C 3 → CT C 3 stabilises the holomorphic (1, 0) and the anti-holomorphic (0, 1) vector bundles

ϕ * T 1,0 M ⊆ T 1,0 M , ϕ * T 0,1 M ⊆ T 0,1 M .
Furthermore, by the invariance of the Freeman forms, ϕ * also respects the Levi kernel bundles ϕ * K 1,0 M ⊂ K 1,0 M . Consequently, there exist functions f , c , e on M such that

(3.2) ϕ * (K ) = f K , ϕ * (L 1 ) = c L 1 + e K . Next, if R (z 1 , z 2 , z 1 , z 2 , v
) is any C ω function on M , then by definition of the pushforward of a vector field, with T = ∂ v and T = ∂ v , we have

(ϕ * T ) R (z 1 , z 2 , z 1 , z 2 , v ) = T (R • ϕ) = ∂ ∂v R f (z 1 , z 2 ), g(z 1 , z 2 ), f (z 1 , z 2 ), g(z 1 , z 2 ), av + Im h(z 1 , z 2 ) = a ∂R ∂v • ϕ = a • ϕ • ϕ ∂R ∂v • ϕ = a • ϕ (T R ) • ϕ.
Hence, there exists a real-valued function a nowhere vanishing on M such that

ϕ * T = a T .
In fact, this function is determined as a = c c , since by using (3.2), (2.1), we see that

a T = ϕ * T = ϕ * √ -1[L 1 , L 1 ] = √ -1[ϕ * L 1 , ϕ * L 1 ] = c c √ -1[L 1 , L 1 ] mod T 1,0 M ⊕ T 0,1
M . Summarising, we therefore have the following matrix

ϕ *       T L 1 K L 1 K       =       c c 0 0 0 0 0 c e 0 0 0 0 f 0 0 0 0 0 c ē 0 0 0 0 f             T L 1 K L 1 K       .
Transposing the matrix, we obtain the pullback formula for the two coframes

ϕ *       ρ 0 κ 0 ζ 0 κ 0 ζ 0       =       c c 0 0 0 0 0 c 0 0 0 0 e f 0 0 0 0 0 c 0 0 0 0 ē f             ρ 0 κ 0 ζ 0 κ0 ζ0       .
In conclusion, for our rigid equivalence problem, the initial G-structure is constituted by the following 5 by 5 matrices

      cc 0 0 0 0 0 c 0 0 0 0 e f 0 0 0 0 0 c 0 0 0 0 ē f       , with the free complex variables c, f ∈ C\{0}, e ∈ C.
Henceforth, we will forget about the conjugated 1-form, and the initial G-structure that we need is represented by the lifted coframe:

ω :=   ρ κ ζ   :=   cc 0 0 0 c 0 0 e f     ρ 0 κ 0 ζ 0   =: gω 0 .
In the next few sections, we will perform reductions of this G-structure by making suitable changes to the horizontal coframe

(ρ 0 , ζ 0 , κ 0 ) -→ ρ 0 , L 1 (k)ζ 0 , κ 0 -→ ρ 0 , L 1 (k)ζ 0 + Bκ 0 , κ 0 ,
where B is a certain function, corresponding to the group reductions

  cc 0 0 0 c 0 0 e f   -→   cc 0 0 0 c 0 0 e c c   -→   cc 0 0 0 c 0 0 0 c c   .

Cartan process: first loop

In the exterior derivative of matrix group formula dω = (dg)g -1 ω + gdω 0 , the Maurer-Cartan matrix is

(dg)g -1 =   α + ᾱ 0 0 0 α 0 0 δ ε   ,
where

α := dc c , δ := de c - e c df f , ε := df f .
A direct computation gives (4.1)

dρ = α ∧ ρ + ᾱ ∧ ρ + P c + eL 1 (k) cf ρ ∧ κ + P c + ēL 1 ( k) cf ρ ∧ κ + -L 1 (k) f ρ ∧ ζ + -L 1 ( k) f ρ ∧ ζ + √ -1κ ∧ κ, dκ = α ∧ κ + -L 1 (κ) f κ ∧ ζ + - eL 1 (k) cf κ ∧ κ + cL 1 (k) cf ζ ∧ κ, dζ = δ ∧ κ + ε ∧ ζ + -eL 1 (k) cf κ ∧ ζ + -e 2 L 1 (k) ccf κ ∧ κ + eL 1 (k) cf ζ ∧ κ.
Next, we proceed with the absorption by introducing 3 × 5 indeterminates

α = α -x ρ ρ -x κ κ -x ζ ζ -x κ κ -xζ ζ, δ = δ -y ρ ρ -y κ κ -y ζ ζ -y κ κ -yζ ζ, ε = ε -z ρ ρ -z κ κ -z ζ ζ -z κ κ -zζ ζ.
By solving a system of linear equations in order to eliminate as many torsion coefficients as possible in (4.1), we find values of these indeterminates to arrange that

dρ = (α + α) ∧ ρ + √ -1κ ∧ κ, dκ = α ∧ κ + cL 1 (k) cf ζ ∧ κ, dζ = δ ∧ κ + ε ∧ ζ.
Notice that the nowhere vanishing function appearing in dκ cL 1 (k) cf is an essential (not absorbable) torsion coefficient, so from general Cartan theory, it is invariant under equivalences, hence it may be normalised to 1 by setting

f := cL 1 (k) c .

Cartan process: second loop

This normalisation of f conducts us to change our base coframe by introducing

ζ0 := L 1 (k) ζ 0 ,
so that the new G-structure (without f) and new lifted coframe become

  ρ κ ζ   =   cc 0 0 0 c 0 0 e c c     ρ 0 κ 0 ζ0   .
In the new coframe ρ 0 , κ 0 , ζ0 , the exterior differential (2.4) of any C ω function G on M becomes

dG = T (G) ρ 0 + L 1 (G) κ 0 + 1 L 1 (k) K (G) ζ0 + L 1 (G) κ 0 + 1 L 1 (k) K (G) ζ0 .
Since both k and L 1 (k) are independent of v, we have

T (k) ≡ 0, T (L 1 (k)) ≡ 0.
Borrowing equation (5.5) of Foo-Merker [START_REF] Foo | Differential e-structures for equivalences of 2-nondegenerate Levi rank 1 hypersurfaces M 5 ⊂ C 3[END_REF] and its proof, or proceeding directly, the reader will see that the new Darboux-Cartan structure equations become (5.1)

dρ0 = P ρ0 ∧ κ0 - L1(k) L 1(k) ρ0 ∧ ζ0 + P ρ0 ∧ κ0 - L 1( k) L1( k) ρ0 ∧ ζ0 + √ -1κ0 ∧ κ0, dκ0 = - L1(k) L 1(k) κ0 ∧ ζ0 + ζ0 ∧ κ0, d ζ0 = L1(L 1(k)) L 1(k) κ0 ∧ ζ0 - L 1(L 1(k)) L 1(k) ζ0 ∧ κ0 + L 1( k) L1( k) ζ0 ∧ ζ0.
Moreover, the Maurer-Cartan matrix is

(dg)g -1 =   α + ᾱ 0 0 0 α 0 0 δ α - ᾱ  ,
with the 1-forms

α := dc c , δ := de c - e c dc c - dc c .
After computations, we obtain

dρ = (α + ᾱ) ∧ ρ + P c + L1(k) L 1(k) ec c 2 ρ ∧ κ + - L1(k) L 1(k) c c ρ ∧ ζ + P c + L 1( k) L1( k) ēc c2 ρ ∧ κ + - L 1( k) L1( k) c c ρ ∧ ζ + √ -1κ ∧ κ, dκ = α ∧ κ + - L1(k) L 1(k) c c κ ∧ ζ - e c κ ∧ κ + ζ ∧ κ, dζ = δ ∧ κ + (α -ᾱ) ∧ ζ + - L1(k) L 1(k) ec c 2 + L1(L 1(k)) L 1(k) 1 c κ ∧ ζ + - e 2 c 2 + L ( k) L1( k) eē c2 + L 1(L 1(k)) L 1(k) e cc κ ∧ κ + e c - L 1( k) L1( k) ēc c2 - L 1(L 1(k)) L 1(k) 1 c ζ ∧ κ - L 1( k) L1( k) e c κ ∧ ζ + cL 1( k) cL1( k) ζ ∧ ζ.
As before, we proceed with the absorption by setting

α =: α -x ρ ρ -x κ κ -x ζ ζ -x κ κ -xζ ζ, δ =: δ -y ρ ρ -y κ κ -y ζ ζ -y κ κ -yζ ζ.
By examining all the absorption equations which would conduct to some essential torsions (appropriate linear combinations of torsion coefficients), we come to three key equations

x κ + x κ = - P c - L 1 ( k) L 1 ( k) ēc c2 , x κ = e c , x κ -x κ = - e c + L 1 ( k) L 1 ( k) ēc c2 + L 1 (L 1 (k)) L 1 (k) 1 c .
After elimination of the two indeterminates x κ , x κ on the left, we receive on the right an essential torsion combination which, when set equal to zero, conducts us to normalize the group parameter

e := c c - 1 3 P + 1 3 L 1 (L 1 (k)) L 1 (k) .
We would like to remark that in [START_REF] Foo | Differential e-structures for equivalences of 2-nondegenerate Levi rank 1 hypersurfaces M 5 ⊂ C 3[END_REF], a normalisation is also done during the second loop of the Cartan process, not of e, but of a certain group parameter b (absent or equal to 0 in the rigid context), namely

b := - √ -1ce + √ -1 3 c L 1 L 1 (k) L 1 (k) -P ,
and when b = 0 (rigidity assumption), the above normalization for e pops up again! Before proceeding to the final loop of the Cartan process, let us set

B := - 1 3 P + 1 3 L 1 (L 1 (k)) L 1 (k) ,

Final loop

We now make a final change of base coframe by setting

ζ 0 = ζ0 + Bκ 0 ,
so that the reduced G-structure and lifted coframe become (6.1)

  ρ κ ζ   =   cc 0 0 0 c 0 0 0 c c     ρ 0 κ 0 ζ 0   .
At this stage, the computation of the Darboux-Cartan structure of {ρ 0 , κ 0 , ζ 0 } requires some work. The exterior differential of any function G independent of c and c becomes (6.2)

dG = T (G)ρ0 + L1(G) -B K (G) L 1(k) κ0 + K (G) L 1(k) ζ 0 + L 1(G) -B K (G) L 1(k) κ0 + K (G) L 1(k) ζ 0 := ∂ρ 0 (G) ρ0 + ∂κ 0 (G) κ0 + ∂ ζ 0 (G) ζ 0 + ∂κ 0 (G) κ0 + ∂ ζ 0 (G) ζ 0 .
After replacement of ζ0 = ζ 0 -Bκ 0 in dρ 0 from (5.1), we may re-express

dρ0 = P - PL1(k) 3L 1(k) + L 1(L 1(k))L1(k) 3L 1(k) 2 ρ0 ∧ κ0 - L1(k) L 1(k) ρ0 ∧ ζ 0 + P - PL 1(k) 3L1(k) + L1(L1(k))L 1(k) 3L 1(k) 2 ρ0 ∧ κ0 - L 1(k) L1(k) ρ0 ∧ ζ 0 + √ -1κ0 ∧ κ0 =: R1 ρ0 ∧ κ0 + R2 ρ0 ∧ ζ 0 + R1 ρ0 ∧ κ0 + R2 ρ0 ∧ ζ 0 + √ -1κ0 ∧ κ0,
Notice that two abbreviated quantities R 1 , R 2 have been implicitly introduced. Similarly

(6.3) dκ0 = - L1(k) L 1(k) κ0 ∧ ζ 0 + P 3 - L 1(L 1(k)) 3L 1(k) κ0 ∧ κ0 + ζ 0 ∧ κ0 =: K5 κ0 ∧ ζ 0 + K6 κ0 ∧ κ0 + ζ 0 ∧ κ0,
The computation of dζ 0 starts as

dζ 0 = d ζ0 + dB ∧ κ 0 + B dκ 0 .
The first term is also treated by a plain replacement of ζ0 = ζ 0 -Bκ 0 in dζ 0 from (5.1):

d ζ0 = L1(L 1(k)) L 1(k) κ0 ∧ ζ 0 -B L 1(k) L1(k) κ0 ∧ ζ 0 - L 1(L 1(k)) L 1(k) + B L 1(k) L1(k) ζ 0 ∧ κ0 + B L 1(L 1(k)) L 1(k) + BB L 1(k) L1(k) κ0 ∧ κ0 + L 1(k) L1(k) ζ 0 ∧ ζ 0 ,
as well as the third term

B dκ 0 = -B L 1 (k) L 1 (k) κ 0 ∧ ζ 0 -B 2 κ 0 ∧ κ 0 + B ζ 0 ∧ κ 0 .
The second term dB ∧ κ 0 is more delicate. One not only needs (6.2) applied to G := B observing that T (B) ≡ 0 by the rigidity assumption, but also, one needs the following key relation coming from the Levi rank 1 assumption (use Lemma 2.3 or borrow Assertion 7.4 of Foo-Merker [START_REF] Foo | Differential e-structures for equivalences of 2-nondegenerate Levi rank 1 hypersurfaces M 5 ⊂ C 3[END_REF])

K (B) = -BL 1 (k).
Summing carefully, observing that L 1 (•) and L 1 (•) commute on functions independent of v, and reorganizing patiently conducts to (6.4)

dζ 0 = PL 1 (k) 3L 1 (k) - L 1 (L 1 (k))L 1 (k) 3L 1 (k) 2 + 2L 1 (L 1 (k)) 3L 1 (k) - P 3 - K (L 1 (L 1 (k))) 3L 1 (k) 2 + K (L 1 (k))L 1 (L 1 (k)) 3L 1 (k) 3 κ 0 ∧ ζ 0 + -P 2 9 - PL 1 (L 1 (k)) 9L 1 (k) + 5L 1 (L 1 (k)) 2 9L 1 (k) 2 - L 1 (L 1 (L 1 (k))) 3L 1 (k) + L 1 (P) 3 κ 0 ∧ κ 0 + -P 3 - 2L 1 (L 1 (k)) 3L 1 (k) + PL 1 (k) 3L 1 (k) - L 1 (L 1 (k))L 1 (k) 3L 1 (k) 2 ζ 0 ∧ κ 0 + L 1 (k) L 1 (k) ζ 0 ∧ ζ 0 =: Z 5 κ 0 ∧ ζ 0 + Z 6 κ 0 ∧ κ0 + Z 8 ζ 0 ∧ κ0 + Z 9 ζ 0 ∧ ζ 0 .
Again, notice that abbreviated quantities Z 5 , Z 6 , Z 8 , Z 9 are introduced. Thanks to this preliminary, the new lifted 1-forms ρ, κ, ζ from (6.1) have differentials

dρ = (α + ᾱ) ∧ ρ + 1 c R1 ρ ∧ κ + c c R2 ρ ∧ ζ + 1 c R1 ρ ∧ κ + c c R2 ρ ∧ ζ + √ -1κ ∧ κ, dκ = α ∧ κ + c c K5 κ ∧ ζ + 1 c K6 κ ∧ κ + ζ ∧ κ, dζ = (α -ᾱ) ∧ ζ + 1 c Z5 κ ∧ ζ + 1 c2 Z6 κ ∧ κ + 1 c Z8 ζ ∧ κ + c c Z9 ζ ∧ ζ.
Lastly, by introducing the modified Maurer-Cartan 1-form

α =: α -1 c K 6 -1 c R 1 κ -c c L1(k) L 1 (k) ζ -1 c B κ,
the final absorbed equations become: (6.5)

dρ = (α + α) ∧ ρ + √ -1κ ∧ κ, dκ = α ∧ κ + ζ ∧ κ, dζ = (α -α) ∧ ζ + 1 c (Z 5 -Z 8 ) κ ∧ ζ + 1 c2 Z 6 κ ∧ κ.
Looking at the expressions of Z 5 , Z 8 , Z 6 and comparing with the introduction confirms

Z 5 -Z 8 = I 0 , Z 6 = V 0 .
Before we proceed to terminate the {e}-structure, the differential of any function G of all variables (z 1 , z 2 , z 1 , z 2 , v, c, c) within the full coframe ρ, κ, ζ, κ, ζ, α, α

dG = ∂ α (G) α + ∂ α (G) α + ∂ ρ (G) ρ + ∂ κ (G) κ + ∂ ζ (G) ζ + ∂ κ (G) κ + ∂ ζ (G) ζ.
expresses explicitly in terms of the derivations (6.6)

∂ρ(•) = 1 cc T (•), ∂κ(•) = 1 c L1(•) - 1 c B L 1(k) K (•) + R1 -K6 ∂c(•) -B ∂ c (•), ∂ ζ (•) = c c 1 L 1(k) K (•) -c L1(k) L 1(k) ∂c(•), ∂α(•) = c ∂c(•), the unwritten vector fields ∂ κ , ∂ ζ , ∂ α being complex conjugate of ∂ κ , ∂ ζ , ∂ α , respectively.
7. Termination of the {e}-structure: end of proof of Theorem 1.1

In the structure equations finalized above

dρ = (α + α) ∧ ρ + √ -1κ ∧ κ, dκ = α ∧ κ + ζ ∧ κ, dζ = (α -α) ∧ ζ + 1 c I 0 κ ∧ ζ + 1 cc V 0 κ ∧ κ, let us introduce (abbreviate) I := 1 c I 0 , V := 1 c 2 V 0 , ψ := -I ζ -V κ, so that dζ = (α -α) ∧ ζ + ψ ∧ κ.
Taking exterior derivatives to exploit 0 = d • d, for instance

0 = dα + dα) ∧ ρ -α + α ∧ dρ + √ -1dκ ∧ κ - √ -1κ ∧ dκ
and replacing dρ, dκ, dζ in the obtained 3 equations, we obtain (7.1)

0 = (dα + dα) ∧ ρ, 0 = (dα -ζ ∧ ζ + I ζ ∧ κ) ∧ κ, 0 = (dα -dα) ∧ ζ -(α -α) ∧ dζ + dψ ∧ κ -ψ ∧ α ∧ κ.
In the second equation of (7.1), Cartan's lemma provides a 1-form A with

(7.2) dα = ζ ∧ ζ -I ζ ∧ κ + A ∧ κ.
Decomposing A along the coframe (7.3)

A = A ρ ρ + A κ κ + A ζ ζ + A κ κ + A ζ ζ + A α α + A α α,
we want to determine these seven coefficients functions. Substituting (7.2) and ( 7.3) into the first equation of (7.1), we realize that

A ζ = 0, A κ is real, Aζ = I, A α = A α = 0,
and so

(7.4) dα = ζ ∧ ζ -I ζ ∧ κ + A ρ ρ ∧ κ + A κ κ ∧ κ + I ζ ∧ κ.
Next, inserting this dα into the third equation of (7.1), and wedging (•) ∧ ζ, we obtain the supplementary information

A ρ = 0, 0 = 2A κ κ ∧ κ ∧ ζ ∧ ζ + α ∧ ψ ∧ κ ∧ ζ + dψ ∧ κ ∧ ζ. (7.5) Now, we expand dψ so that dψ ∧ κ ∧ ζ = -dI ∧ ζ -I dζ -dV ∧ κ -V dκ ∧ κ ∧ ζ = -∂ κ (I) -∂ ζ (V) κ ∧ κ ∧ ζ ∧ ζ + • • • .
By inspecting the coefficient of κ ∧ κ ∧ ζ ∧ ζ on the right side of equation (7.5), one could think the {e}-structure would terminate by declaring

A κ := -1 2 ∂ κ (I) -∂ ζ (V)
, which is a secondary invariant. But to make sure that this assignement makes sense, we must still argue that the right-hand side is real-valued, and this requires some computation. and observing lastly that Z 9 = -K 5 , we conclude that A κ is indeed real-valued. Thus the {e}-structure is finally complete, and we have therefore fully proved Theorem 1.1.

We can attribute a name to the 'horizontal part' of A κ , namely to the following function defined on M independently of c, c (7.7)

Q 0 := cc A κ = cc A κ (real-valued) = - 1 2 L 1 I 0 -B K I 0 L 1 (k) + BI 0 - K V 0 L 1 (k) ,
and realize that its expression can be further normalized thanks to Proposition 7.8. One has:

K (I 0 ) L 1 (k) = -2I 0 .
Proof. Start from the {e}-structure 

dρ = (α + α) ∧ ρ + √ -1κ ∧ κ, dκ = α ∧ κ + ζ ∧ κ, dζ = (α -α) ∧ ζ + 1 c I 0 κ ∧ ζ + 1 cc V 0 κ ∧ κ, dα = ζ ∧ ζ - 1 c I 0 ζ ∧ κ + 1 cc Q 0 κ ∧ κ + 1 c I 0 ζ ∧ κ,
= dα ∧ ζ ∧ α ∧ α ∧ ρ ∧ κ -dα ∧ ζ ∧ α ∧ α ∧ ρ ∧ κ + ∂ ζ 1 c I 0 ζ ∧ κ ∧ ζ ∧ α ∧ α ∧ ρ ∧ κ,
where ∂ ζ is the following vector field coming from (6.6)

∂ ζ = c c 1 L 1 (k) K -c L 1 (k) L 1 (k) ∂ c .
Then using dα and dα from the {e}-structure, we obtain the desired identity.

Thus we recover the expression of Q 0 shown in the introduction. More advanced (and nontrivial) computations performed in [START_REF] Chen | Normal Forms for Rigid C 2,1 Hypersurfaces M 5 ⊂ C 3[END_REF] provide an alternative expression which immediately shows that Q 0 is real

Q 0 := 2 Re 1 9 K L 1 (k) L 1 L 1 (k) 2 L 1 (k) 4 - - 1 9 K L 1 L 1 (k) L 1 L 1 (k) L 1 (k) 3 - 1 9 K L 1 (k) L 1 L 1 (k) P L 1 (k) 3 - - 1 9 
L 1 L 1 (k) L 1 L 1 (k) L 1 (k) 2 + 1 9 K L 1 L 1 (k) P L 1 (k) 2 - - 2 9 
L 1 L 1 (k) P L 1 (k) - 1 9 
L 1 L 1 (k) P L 1 (k) + 1 3 L 1 L 1 L 1 (k) L 1 (k) + 1 6 L 1 (P) - 1 9 P 2 + 1 3 L 1 L 1 (k) L 1 (k) 2 .

Representation by Vector Fields

By a result of Gaussier-Merker [START_REF] Gaussier | A new example of a uniformly Levi degenerate hypersurface in C 3[END_REF], the Lie algebra of infinitesimal CR automorphisms of the tube over future light cone M LC is generated by the following 10 holomorphic vector fields Hence, we can easily see that the flows of the vector fields X i for 1 i 7 are rigid, and by argument of Cartan's equivalence method in the previous sections, these are the only ones.

X 1 = √ -1∂ w , X 2 = z 1 ∂ z1 + 2w∂ w , X 3 = √ -1z 1 ∂ z1 + 2 √ -1z 2 ∂ z2 , X 4 = (z 2 -1)∂ z1 -2z 1 ∂ w , X 5 = ( √ -1 + √ -1z 2 )∂ z1 -2 √ -1z 1 ∂ w , X 6 = z 1 z 2 ∂ z1 + (z 2 2 -1)∂ z2 -z 2 1 ∂ w , X 7 = √ -1z 1 z 2 ∂ z1 + ( √ -1z 2 2 + √ -1)∂ z2 - √ -1z 2 1 ∂ w , X 8 = √ -1wz 1 ∂ z1 - √ -1z 2 
In the interest of comparing with the Maurer-Cartan coframe on M LC , we provide the following table of Lie brackets of the first 7 vector fields

X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 1 0 2X 1 0 0 0 0 0 X 2 0 0 -X 4 -X 5 0 0 X 3 0 X 5 -X 4 2X 7 -2X 6 X 4 0 4X 1 -X 4 -X 5 X 5 0 X 5 -X 4 X 6 0 -2X 3 X 7 0
One can deduce directly from the table that the Lie algebra hol rigid (M LC ) is not semisimple. Indeed, the Killing form applied to the first vector field vanishes for any X in the Lie algebra: trace ad(X 1 )ad(X) = 0, and the conclusion follows from Cartan's criterion. This shows that parabolic geometry does not apply to our study. Let

∂ ρ , ∂ κ , ∂ ζ , ∂ κ, ∂ζ, ∂ α , ∂ ᾱ,
be the right-invariant vector fields that are respective duals to the Maurer-Cartan 1-forms of the homogeneous model, and let g be the Lie algebra generated by these vector fields.

In what follows, we will seek a Lie algebra isomorphism τ : hol rigid (M LC ) -→ g between hol rigid (M LC ) and g. We recall the following fact which can be found in Olver [34, page 257]. Consider a set of 1-forms θ = {θ 1 , . . . , θ m } on a manifold M producing the fundamental structure equations

dθ i = 1 j<k m T i jk θ j ∧ θ k (i=1,...,m).
If ∂ θ i are the vector fields dual to θ i , one has the following commutation relations

∂ θ j , ∂ θ k = - m i=1 T i jk ∂ θ i (1 i<j m).
Following this formula, and if we adopt the order of indices

ρ < κ < ζ < α < κ < ζ < ᾱ,
the Maurer-Cartan structure equations in Theorem 1.2 therefore provide the following commutator table of the vector fields:

∂ ρ ∂ κ ∂ ζ ∂ α ∂ κ ∂ζ ∂ ᾱ ∂ ρ 0 0 0 ∂ ρ 0 0 ∂ ρ ∂ κ 0 0 0 ∂ κ - √ -1∂ ρ ∂ κ 0 ∂ ζ 0 0 0 ∂ ζ -∂ κ -∂ α + ∂ ᾱ -∂ ζ ∂ α -∂ ρ -∂ κ -∂ ζ 0 0 ∂ζ 0 ∂ κ 0 √ -1∂ ρ ∂ κ 0 0 0 ∂ κ ∂ζ 0 -∂ κ -∂ ᾱ + ∂ α -∂ζ 0 0 ∂ζ ∂ ᾱ -∂ ρ 0 ∂ ζ 0 -∂ κ -∂ζ 0 
Let W 1 , . . . , W 7 be vector fields defined by One can see that

W 1 := - √ -1 2 ∂ ρ , W 2 := ∂ α + ∂ ᾱ,
[W i , W j ] = [X i , X j ].
The following map concludes the proof of Proposition 1.3 τ : X i -→ τ (X i ) := W i (i=1,...,7).
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 12 A 2-nondegenerate C ω constant Levi rank 1 local rigid hypersurface M 5 ⊂ C 3 is rigidly biholomorphic to the model M LC if and only if

Définition 3 . 1 .

 31 Two local C ω rigid real hypersurfaces M 5 ⊂ C 3 and M 5 ⊂ C 3 are said to be rigidly equivalent if there exists a (local) biholomorphic map of the form:

  apply d(•) to the third equation dζ, use d•d ≡ 0, and wedge on both sides with α∧α∧ρ∧κ, to obtain 0

X 9 = (z 2 1 - 2 √-1z 1 z 2 + 2 √-1z 1 )∂ z2 - 2 √-1wz 1 1 + A 2 (z 1 , z 2 ) ∂ ∂z 2 +

 91221211212 wz 2 -w)∂ z1 + (2z 1 z 2 + 2z 1 )∂ z2 + 2wz 1 ∂ w , X 10 = (-∂ w .For a C ω rigid hypersurface M 5 ⊂ C 3 , define the Lie pseudogroupHol rigid (M ) := h : M -→ M local rigid biholomorphism .Its Lie algebra, obtained by differentiating 1-parameter local groups of rigid biholomorphisms, is:Lie Hol rigid (M ) = hol rigid (M ) := X = A 1 (z 1 , z 2 ) ∂ ∂z (αw + B(z 1 , z 2 )) ∂ ∂w : (X + X)| M is tangent to M ,where A 1 , A 2 , B are holomorphic functions of only (z 1 , z 2 ), and where α ∈ R.

W 3 :

 3 = ∂ ζ -∂ζ, W 4 := ∂ κ -∂ κ, W 5 := ∂ κ + ∂ κ, W 6 := ∂ ζ + ∂ζ, W 7 := -∂ α + ∂ ᾱ.

  Theorem 1.1. The equivalence problem under local rigid biholomorphisms of C ω rigid real hypersurfaces {u = F (z 1 , z 2 , z 1 , z 2 )} in C 3 whose Levi form has constant rank 1 and which are everywhere 2-nondegenerate reduces to classifying {e}-structures on the 7-dimensional bundle M 5 × C equipped with coordinates (z 1 , z 2 , z 1 , z 2 , v, c, c) together with a coframe of 7 differential 1-forms:

	{ρ, κ, ζ, κ, ζ, α, α},
	which satisfy invariant structure equations of the shape:

  be vector fields that are respective duals to the Maurer-Cartan 1-forms (ρ, κ, ζ, α, κ, ζ, α) in Theorem 1.2. Then there is an isomorphism of Lie algebras between the Lie algebra generated by {∂ ρ
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Applying (6.6), it comes

Lemma 7.6. One has the following identity

Proof. Starting from dζ 0 in (6.4), it suffices to capture the coefficient of

Using (6.2) and reorganizing leads to the result.

Substituting this identity into Ak above, we can therefore rewrite