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Once first answers in any dimension to the Green-Griffiths and Kobayashi conjectures for generic algebraic hypersurfaces X n-1 ⊂ P n (C) have been reached, the principal goal is to decrease (to improve) the degree bounds, knowing that the 'celestial' horizon lies near d 2n.

For Green-Griffiths algebraic degeneracy of entire holomorphic curves, we obtain:

and for Kobayashi-hyperbolicity (constancy of entire curves), we obtain:

The latter improves d n 2n obtained by Merker in arxiv.org/1807/11309/.

Admitting a certain technical conjecture I0 I0, the method employed (Diverio-Merker-Rousseau, Bérczi, Darondeau) conducts to constant power n, namely to:

and, respectively, to:

In Spring 2021, a forthcoming prepublication based on intensive computer explorations will present several subconjectures supporting the belief that I0 I0, a conjecture which will be established up to dimension n = 50.

Introduction

The goal is to establish that generic algebraic hypersurfaces of the projective space satisfy the Green-Griffiths conjecture, as well as their complements, with improvements on lower degree bounds.

Theorem 1.1. For a generic hypersurface X n-1 ⊂ P n (C) of degree:

d √ n log n n (∀ n NGG ),
(1) there exists a proper subvariety Y ⊂ P n of codimension 2 such that all nonconstant entire holomorphic curves f : C -→ P n \X have image f (C) ⊂ Y in fact contained in Y;

(2) there exists a proper subvariety W ⊂ X of codimension 2 such that all nonconstant entire holomorphic curves f : C -→ X have image f (C) ⊂ W in fact contained in W.

Preliminary: Link with Darondeau's Work

This section continues [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF], and goes slightly beyond. The jet order κ = n will be chosen equal to the dimension n, because some reflections on the concerned estimates convince that any choice of κ > n cannot improve the degree bound anyway.

Let n 1 be an integer. Let t 1 , . . . , t n be formal variables. Introduce: C(t 1 , . . . , t n ) :=

1 i<j n t j -t i t j -2 t i 2 i<j n t j -2 t i t j -2 t i + t i+1 .

As explained in [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF], this rational expression possesses an iterated Laurent series at the origin as:

C(t) = k 1 ,...,kn ∈ Z k 1 +•••+kn = 0 C k 1 ,...,kn t k 1 1 • • • t kn n ,
for certain coefficients C k 1 ,...,kn ; soon, this object C(t 1 , t 2 , . . . , t n ) will be re-interpreted as a standard converging power series C(w 2 , . . . , w n ) in terms of alternative new variables (w 2 , . . . , w n ), hence it is not necessary to recall what an iterated Laurent series is.

For certain integer weights a 1 , . . . , a n ∈ N * , introduce also an expression which comes from an application of the so-called holomorphic Morse inequalities:

f 0 (t) := a 1 t 1 + • • • + a n t n n 2 .
It expands:

f 0 (t) = m 1 ,...,mn 0 m 1 +•••+mn=n 2 (n 2 )! m 1 ! • • • m n ! a 1 t 1 m 1 • • • a n t n mn ,
by means of (integer) multinomial coefficients:

M m 1 ,...,mn := (n 2 )! m 1 ! • • • m n ! .
It is well known that the binomial 2n n is the unique largest one among all the 2n i with 0 i 2n. In fact, an application of Stirling's asymptotic formula:

n! ∼ n → ∞ √ 2π n n e n 1 + 1 12 n + 1 288 n 2 - 139 51 840 n 3 - 571 2 488 320 n 4 + O 1 n 5 ,
shows that asymptotically as n -→ ∞:

2 n n ∼ 2 2 n √ π n 1 - 1 8 n + 1 128 n 2 + 5 1024 n 3 - 21 32 768 n 4 + O 1 n 5 .
Similarly, the central multinomial coefficient:

M n,...,n := (n 2 )! n! • • • n! = (n 2 )! (n!) n ,
happens to be the unique largest one, as states the next observation (see also Lemma 5.1).

Lemma 2.1. For all integers m 1 , . . . , m n 0 with m 1 + • • • + m n = n 2 and (m 1 , . . . , m n ) = (n, . . . , n), the corresponding multinomial coefficients are smaller than the central one:

M m 1 ,...,mn < M n,...,n .

Proof. This amounts to verify that:

n! m 1 ! • • • n! m i ! • • • n! m n ! ? < 1.
The m i = n are neutral, for n! n! = 1. By assumption, at least one m i = n. • When m i < n, simplify:

n! m i ! = n (n -1) • • • m i + 1).
• When m i > n, simplify:

n! m i ! = 1 (n + 2)(n + 1) • • • m i .
After these simplifications:

1 i n n! m i ! = m i <n (n -0) (n -1) • • • (m i + 1) m i >n (n + 1)(n + 2) • • • m i . Since m 1 + • • • + m n = n 2
, the number of factors in the numerator is the same as that in the denominator, and since each factor upstairs is n, while each factor downstairs is n + 1, the result is indeed < 1.

A further application of Stirling's formula shows that, asymptotically as n -→ ∞: 

(n 2 )! n! • • • n! ∼ n n 2 -n 2 +1 1 ( 2 
I 0 := t n 1 • • • t n n f 0 (t) = (n 2 )! n! • • • n! a n 1 • • • a n n the central monomial.
Since a 1 , . . . , a n ∈ N * , this is a large integer. The notation I 0 is borrowed from [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF].

In fact, Appendices 1 and 2 of [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF] provided almost all the details to verify that the choice of weights:

a i := r n-i (1 i n),
for some constant r independent of n, shall offer a degree bound in the Green-Griffiths conjecture of the form: d constant n . which would improve the current d n n obtained in [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF][START_REF] Merker | Kobayashi hyperbolicity in degree n 2n[END_REF].

For a certain nefness condition required to apply the holomorphic Morse inequalities, it is necessary to have at least: r 3.

It is also allowed to take r larger, for instance: r = 9 or r = 12 or r = 20, but one should try not to choose r increasing with n, like for instance r = √ n, since the final degree bound would otherwise be (explanations will appear later):

d ( √ n) n constant n .
In [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF], the choice was r := n, and this conducted to d n n . With a fixed (bounded) constant r 3, the final degree bound for Green-Griffiths will be close to: d r (1 + ε(r)) n = constant n , as we will verify in details later. The only remaining substantial piece of work to be done is to solve the following Problem 2.3. With the choice of weights:

a 1 := r n-1
, a 2 := r n-2 , . . . . . . , a n-1 := r, a n := 1, to show that the coefficient of the monomial t n 1 • • • t n n in the product C(t) • f 0 (t), namely:

I 0 := t n 1 • • • t n n C(t 1 , . . . , t n ) • f 0 (t 1 , . . . , t n )
is at least equal to the central monomial:

I 0 ? I 0 = (n 2 )! (n!) n r n n(n-1)

2

.

In fact, several computer experiments convince that instead of I 0 I 0 1, a better inequality seems to hold:

I 0 I 0 constant r n ,
for some constant r > 1 which depends on r, and is closer and closer to 1 when r increases. So experimentally, I 0 I 0 is more than true. The goal is to set up a proof. We start in Section 3 by verifying that a proof of I 0 I 0 1 implies a degree bound for Green-Griffiths of the announced form d constant n ; this task was already almost completely performed by Darondeau in [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF].

Then in subsequent sections, we study the product C(t 1 , . . . , t n ) and we establish I 0 I 0 .

End of Proof of Theorem 1.3

It essentially suffices to read Appendices 1 and 2 of [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF], with in mind that Darondeau's (simplifying) choice:

a i := n n-i (1 i n),
should be replaced with the choice:

a i := r n-i (1 i n),
where r 3 is a fixed constant. Later, we will see that the choice r = 3 might expose to some computational difficulties, while as soon that r 9, a serendipitous positivity property occurs. In any case, the estimates of the mentioned Appendix 2 were prepared in advance to work for any choice of r = 3, 9, 12, 20, log n, √ n, n, while they were applied in [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF] to r = n by lack of a solution to Problem 2.3. Before solving this problem in the next sections, let us admit temporarily that it has a positive answer for a certain fixed:

9 r 20 (hypothesis throughout).
End of proof of Theorem 1.3. In the notations of [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF], the lower degree bound:

d d GG (n)
is determined by the largest root of a certain polynomial equation:

d n I 0 + d n-1 I 1 + • • • + d n-p I p + • • • + I n = 0, with I 0 > 0.
Of course, I 0 is the same as in Problem 2.3, hence we assume temporarily not only that it is positive, but also that it is quite large:

I 0 I 0 1.
We refer to [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF] for a presentation of the other coefficients I p .

Proposition 3.1. The polynomial in the degree d of a hypersurface X n ⊂ P n-1 (C):

d n I 0 + d n-1 I 1 + • • • + d n-p I p + • • • + d I n-1 + I n
takes positive values for all degrees:

d 25 n 2 • r + 3 n . =: d GG (n, r).
In fact, a glance at the end of the proof below shows a slightly better, though more complicated:

d GG (n, r) := 20 n 2 + 4 n • r 3 (r -1) 3 (r + 3) • r + 3 n .
Theorem 1.3 terminates by checking on a computer that:

2 5n 20 n 2 + 4 n • r 3 (r -1) 3 (r + 3) • r + 3 n (∀ n 20),
for any choice of 9 r 20.

Proof of Proposition 3.1. In [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF], the pole order of so-called slanted vector fields c n := n(n + 2) is used. But the article [START_REF] Darondeau | Slanted vector fields for jet spaces[END_REF] improves it to:

c n := 5 n -2.
Then with c := c n + 1, the quantity c+2 2 appears several times in [START_REF] Darondeau | On the logarithmic Green-Griffiths conjecture[END_REF], so we may read:

c + 2 2 = 5 n + 1 2 .
Next, with:

a i := r n-i (1 i n), set: µ(a) := 1 a 1 + 2 a 2 + • • • + n a n ,
and for all 1 p n, set:

I p := (n 2 )! (n!) n a n 1 • • • a n n recognize I 0 2 n µ(a) p 1 i 1 <•••<ip n 1 a i 1 • • • 1 a ip .
Importantly, Lemma A.6 on page 1919 of Appendix 2 shows that:

|I p | I p 5n + 1 2 • |B| 2nµ(a)h a 1 , . . . , 2nµ(a)h a n • |C| 1 a 1 , . . . , 1 a n (1 p n).
It is not necessary to dwell into details about the middle quantity |B|, since Lemma A.7 on page 1920 shows that for any choice of weights a 1 , . . . , a n :

|B| 2nµ(a)h a 1 , . . . , 2nµ(a)h a n 2 n 2 n -1 n+1 2 (∀ n 4 -exercise).
Consequently, we get:

|I p | I p 5 n + 1 • |C| 1 a 1 , . . . , 1 a n (1 p n).
Next, page 1914 uses the control:

|C| 1 a 1 , . . . , 1 a n C 1 a 1 , . . . , 1 a n ,
by the 'majorant' series:

C t 1 , . . . , t n :=

1 i<j n t j -t i t j -2 t i 2 i<j n t j -2 t i t j -2 t i -t i-1
.

Replacing the formal variables by the inverses of the weights, we get:

C 1 a 1 , . . . , 1 a n-1 , 1 a n = 1 i<j n a i /a j -1 a i /a j -2 2 i<j n a i /a j -2 a i /a j -2 -a i /a i-1
.

Since a i = r n-i for 1 i n, this rewrites as:

C 1 r n-1 , . . . , 1 r , 1 1 = 1 i<j n r j-i -1 r j-i -2 2 i<j n r j-i -2 r j-i -2 -1 r [Extract i = 1] = 2 j n r j-1 -1 r j-1 -2 2 i<j n r j-i -1 r j-i -2 • r j-i -2 • r j-i -2 -1 r [Simplify] = 2 j n r j-1 -1 r j-1 -2 2 i<j n r j-i+1 -r r j-i+1 -2 r -1 [Rename indices] = 1 k n-1 r k -1 r k -2 2 n-1 r -r r -2 r -1 n- .
Using inequalities valid as soon as r 4 hence for r 9:

1 r k -2 2 r k (∀ k 1),
and using the classical inequality log (1 + ε) ε valid for -1 < ε < ∞, let us show that the first product is bounded by a universal constant, and even by a constant which decreases as r increases:

1 k n-1 1 + 1 r k -2 ∞ k=1 1 + 2 r k = exp ∞ k=1 log 1 + 2 r k [log (1 + ε) ε] exp 2 r ∞ k=0 1 r k = exp 2 r -1 1 + 3 r , because: exp 2 r -1 = 1 + 2 r -1 + 1 2! 2 2 (r -1) 2 + k 3 1 k! 2 k (r -1) k [ 2 k k! 2 for k 3] 1 + 2 r -1 + 2 (r -1) 2 + 2 1 (r -1) 3 1 1 -1 r-1 = 1 + 2 r -1 + 2 (r -1) 2 1 + 1 r -2 = 1 + 2 r -1 1 + 1 r -2 = 1 + 2 r -2 [∀ r 6] 1 + 3 r .
The second product is bounded by a constant power n -2:

2 n-1 r -r r -2 r -1 n- = 2 n-1 1 + r + 1 r -2 r -1 n- 2 n-1 1 + r + 1 r -2 r -1 n-2 ∞ =2 1 + r + 1 r -2 r -1 n-2 .
Let us estimate this constant, which depends on r:

α(r) := ∞ =2 1 + r + 1 r -2 r -1 .
Lemma 3.2. For all r 6, one has:

1 + r + 1 r -2 r -1 1 + 2 r -1 (∀ 2).
Proof. This amounts to:

4 r + 2 ? r 2 -r OK r -r -1 (∀ r 6, ∀ 2).
The first inequality 0 ?

r 2 -5 r -2 is true since 5+ √ 33 2 = 5.37 • • • < 6.
Hence we can majorize still assuming r 9 throughout:

α(r) ∞ =2 1 + 2 r -1 = exp ∞ =0 log 1 + 2 r +1 [log (1 + ε) 1] exp 2 r ∞ =0 1 r = exp 2 r -1 [Seen above] 1 + 3 r .
In summary, we have shown that:

|I p | I p 5 n + 1 • 1 + 3 r • 1 + 3 r n-2 (∀ n 2).
Next, we estimate, still with a i = r n-i for i = 1, . . . , n:

µ(a) = 1 • a 1 + 2 • a 2 + • • • + (n -1) a n-1 + n a n = 1 r n-1 + 2 r n-2 + • • • + (n -1) r 1 + n r 0 = (n + 1) r n-1 + r n-2 + • • • + r 1 + r 0 -n r n-1 -(n -1) r n-2 -• • • -2 r 1 -1 r 0 = (n + 1) r n -1 r -1 - n r n+1 -(n + 1) r n + 1 (r -1) 2 ,
the result in this last line being obtained simply by differentiating with respect to r the classical:

r n + r n-1 + • • • + r 2 + r + 1 = r n+1 -1 r -1 .
A reduction to the same denominator contracts:

µ(a) = r n+1 -(n + 1) r + n (r -1) 2 r n+1 (r -1) 2 = r (r -1) 2 r n .
Next, consider generally a polynomial of degree n 1 with complex coefficients c p ∈ C: 

c 0 z n + c 1 z n-1 + • • • + c n-1 z 1 + c n (c 0 = 0). Theorem 3.3. [Fujiwara] The moduli of all roots of c 0 z n + c 1 z n-1 + • • • + c n are
2 max 1 p n p 5 n + 1 1 + 3 r n-1 • I p I 0 2 max 1 p n p 5 n + 1 1 + 3 r n-1 • max 1 p n p I p I 0 = 2 5 n + 1 1 + 3 r n-1 • max 1 p n p I p I 0 •
Next, coming back to the definition of I p , it remains to estimate the p-th roots of the quotients:

I p I 0 = 2n µ(a) p 1 i 1 <•••<ip n 1 a i 1 • • • 1 a ip =: σp( 1 a 1 ,..., 1 an ) 
, which incorporate the p-th symmetric functions σ p of the weight inverses 1 a i . We start by extracting the p-th root of 2n µ(a)

p easily:

max 1 p n p I p I 0 = 2n µ(a) • max 1 p n p σ p 1 a 1 , . . . , 1 a n [Seen above] 2n r (r -1) 2 r n • max 1 p n p σ p 1 a 1 , . . . , 1 a n .
Lemma 3.4. One has:

max 1 p n p σ p 1 a 1 , . . . , 1 a n = σ 1 1 a 1 , . . . , 1 a n .
Proof. For positive real numbers b 1 , . . . , b n > 0, the renormalized symmetric functions:

s p b 1 , . . . , b n := 1 n p 1 i 1 <•••<ip n b i 1 • • • b ip = 1 n p σ p b 1 , . . . , b p ,
satisfy the classical Mac Laurin inequality:

s 1 2 √ s 2 3 √ s 3 • • • • • • n √ s n .
A modified version, useful to us, is: Assertion 3.5. A similar, less fine, inequality, holds before renormalization:

σ 1 2 √ σ 2 • • • • • • p √ σ p p+1 √ σ p+1 • • • • • • n √ σ n .
Proof. For 1 p n -1, we would deduce from Mac Laurin what we want:

p σ p n p known p+1 σ p+1 n p+1 =⇒ p √ σ p ? p+1 √ σ p+1 ,
provided it would be true that:

p n p p+1 n p+1 ? 1 (∀ 1 p n-1).
We claim that such numerical inequalities hold true. Indeed, from the two visible minorations:

n (n -1) • • • (n -p + 1) n -p p , p + 1 p 1 • 2 • . . . • p, it comes: n (n -1) • • • (n -p + 1) 1 • 2 • . . . • p (n -p) p (p + 1)
p , whence we obtain what we wanted:

n (n -1) • • • (n -p + 1) 1 • 2 • . . . • p p+1 n (n -1) • • • (n -p + 1) 1 • 2 • . . . • p • (n -p) (p + 1) p .
Lastly, with b 1 := 1 a 1 , . . . , b n := 1 an , we get:

σ 1 1 a 1 , . . . , 1 a n p σ p 1 a 1 , . . . , 1 a n (∀ 1 p n),
which forces the maximum to be attained precisely when p = 1.

So we obtain:

max 1 p n p I p I 0 2n r (r -1) 2 r n • σ 1 1 a 1 , . . . , 1 a n .
and it only remains to estimate:

σ 1 1 a 1 , . . . , 1 a n-1 , 1 a n 1 r n-1 + • • • + 1 r + 1 r r -1 ,
in order to finish the proof of Proposition 3.1:

max roots 10 n + 2 1 + 3 r n-1 • max 1 p n p I p I 0 10 n + 2 1 + 3 r n-1 • 2n r (r -1) 2 r n • σ 1 1 a 1 , . . . , 1 a n 10 n + 2 (r + 3) n-1 r n-1 • 2n r (r -1) 2 r n • r r -1 = 20 n 2 + 4 n • r 3 (r -1) 3 (r + 3) • r + 3 n 25 n 2 • r + 3 n .
4. From Coordinates (t 1 , t 2 , . . . , t n ) to Coordinates (w 2 , . . . , w n )

The goal of this section is to transform both the product C(t) and the n 2 -power f 0 (t) into more tractable expressions, by introducing the formal variables:

w 2 := t 1 t 2 , w 3 := t 2 t 3 , . . . . . . , w n := t n-1 t n .
To enhance intuition, start by expanding the writing of the factors of two types in the considered double big product:

C(t 1 , . . . , t n ) = t 2 -t 1 t 2 -2 t 1 t 3 -t 1 t 3 -2 t 1 • • • t n -t 1 t n -2 t 1 t 3 -t 2 t 3 -2 t 2 • • • t n -t 2 t n -2 t 2 . . . . . . t n -t n-1 t n -2 t n-1 t 3 -2 t 2 t 3 -2 t 2 + t 1 • • • t n -2 t 2 t n -2 t 2 + t 1 . . . . . . t n -2 t n-1 t n -2 t n-1 + t n-2 .
To pass to the new variables, compute first for instance:

t 2 -t 1 t 2 -2 t 1 = 1 -t 1 t 2 1 -2 t 1 t 2 = 1 -w 2 1 -2 w 2 , t 3 -t 1 t 3 -2 t 1 = 1 -t 1 t 3 1 -2 t 1 t 3 = 1 -t 1 t 2 t 2 t 3 1 -2 t 1 t 2 t 2 t 3 = 1 -w 2 w 3 1 -2 w 2 w 3 , t 5 -2 t 2 t 5 -2 t 2 + t 1 = 1 -2 t 2 t 3 t 3 t 4 t 4 t 5 1 -2 t 2 t 3 t 3 t 4 t 4 t 5 + t 1 t 2 t 2 t 3 t 3 t 4 t 4 t 5 = 1 -2 w 3 w 4 w 5 1 -2 w 3 w 4 w 5 + w 2 w 3 w 4 w 5 .
Generally, with as above:

w i := t i-1 t i (2 i n),
we can transform all the factors of first type, for indices 2 i j n -mind the shift i -→ i -1 from the original definition of C(t):

E i,j (t) := t j -t i-1 t j -2 t i-1 = 1 -t i-1 t j 1 -2 t i-1 t j = 1 -t i-1 t i • • • t j-1 t j 1 -2 t i-1 t i • • • t j-1 t j = 1 -w i • • • w j 1 -2 w i • • • w j =: E i,j (w).
Similarly, for 3 i j n, again with the shift i -→ i -1:

F i,j (t) := t j -2 t i-1 t j -2 t i-1 + t i-2 = 1 -2 t i-1 t j 1 -2 t i-1 t j + t i-2 t j = 1 -2 t i-1 t i • • • t j-1 t j 1 -2 t i-1 t i • • • t j-1 t j + t i-2 t i-1 t i-1 t i • • • t j-1 t j = 1 -2 w i • • • w j 1 -2 w i • • • w j + w i-1 w i • • • w j =: F i,j (w).
Consequently:

C(t 1 , t 2 , . . . , t n ) = C(w 2 , . . . , w n ) := 1 -w 2 1 -2 w 2 1 -w 2 w 3 1 -2 w 2 w 3 • • • 1 -w 2 w 3 • • • w n 1 -2 w 2 w 3 • • • w n 1 -w 3 1 -2 w 3 • • • 1 -w 3 • • • w n 1 -2 w 3 • • • w n . . . . . . 1 -w n 1 -2 w n 1 -2 w 3 1 -2 w 3 + w 2 w 3 • • • 1 -2 w 3 • • • w n 1 -2 w 3 • • • w n + w 2 w 3 • • • w n . . . . . . 1 -2 w n 1 -2 w n + w n-1 w n .
This can be abbreviated as:

C(w) = 2 i j n 1 -w i • • • w j 1 -2 w i • • • w j 3 i j n 1 -2 w i • • • w j 1 -2 w i • • • w j + w i-1 w i • • • w j = 2 i j n E i,j 3 i j n F i,j .
As is visible -and as was already visible before in variables (t 1 , . . . , t n ) -, the terms 1-2 w i • • • w j that appear in the denominators of the E i,j cancel out with the same terms appearing in the numerators of the F i,j , though only for 3 i j n. These simplifications conduct to the shorter representation:

C(w 2 , . . . , w n ) := 1 -w 2 1 -2 w 2 1 -w 2 w 3 1 -2 w 2 w 3 • • • • • • • • • • • • • • • 1 -w 2 w 3 • • • w n 1 -2 w 2 w 3 • • • w n 1 -w 3 1 -2 w 3 + w 2 w 3 • • • • • • 1 -w 3 • • • w n 1 -2 w 3 • • • w n + w 2 w 3 • • • w n . . . . . . . . . . . . 1 -w n 1 -2 w n + w n-1 w n ,
which can be re-abbreviated as:

C(w 2 , . . . , w n ) = E 2 (w 2 ) E 3 (w 2 , w 3 ) • • • E n (w 2 , w 3 , . . . , w n ) F 3,3 (w 2 , w 3 ) • • • F 3,n (w 2 , w 3 , . . . , w n ) . . . . . . F n,n (w n-1 , w n ),
that is to say:

C(w 2 , . . . , w n ) = 2 j n 1 -w 2 • • • w j 1 -2 w 2 • • • w j =: E j 3 i j n 1 -w i • • • w j 1 -2 w i • • • w j + w i-1 w i • • • w j =: F i,j .
Next, let us re-express in the w i variables:

f 0 (t) = a 1 t 1 + • • • + a n-2 t n-2 + a n-1 t n-1 + a n t n n 2 = a 1 t 1 tn + • • • + a n-2 t n-2 tn + a n-1 t n-1 tn + a n tn tn n 2 t n n 2 = r n-1 w 2 • • • w n + • • • + r 2 w n-1 w n + r w n + 1 n 2 t n n 2
.

To yet transform t n 2 n at the end, observe that:

1 (w 2 ) n (w 3 ) 2n • • • (w n-1 ) n 2 -2n (w n ) n 2 -n = 1 t 1 t 2 n t 2 t 3 2n • • • t n-2 t n-1 n 2 -2n t n-1 tn n 2 -n = 1 t n 1 t n 2 • • • t n n-2 t n n-1 1 t n 2 -n n = t n 2 n t n 1 t n 2 • • • t n n-2 t n n-1 t n n ,
whence:

f 0 (t) = r n-1 w 2 • • • w n + • • • + r 2 w n-1 w n + r w n + 1 n 2 w n 2 w 2n 3 • • • w n 2 -2n n-1 w n 2 -n n 1 t n 1 t n 2 • • • t n n-1 t n n .
Consequently, in Problem 2.3, the coefficient I 0 of the monomial

t n 1 • • • t n n in the product C(t) • f 0 (t) identifies with the constant term, namely the coefficient of w 0 2 • • • w 0 n = 1, in the product: r n-1 w 2 • • • w n + • • • + r 2 w n-1 w n + r w n + 1 n 2 w n 2 w 2n 3 • • • w n 2 -2n n-1 w n 2 -n n • 1 -w 2 1 -2 w 2 1 -w 2 w 3 1 -2 w 2 w 3 • • • • • • • • • • • • • • • 1 -w 2 w 3 • • • w n 1 -2 w 2 w 3 • • • w n 1 -w 3 1 -2 w 3 + w 2 w 3 • • • • • • 1 -w 3 • • • w n 1 -2 w 3 • • • w n + w 2 w 3 • • • w n . . . . . . . . . . . . 1 -w n 1 -2 w n + w n-1 w n .
It is now appropriate to expand the n 2 power in the numerator above plainly as:

1 (w 2 ) n • • • (w n ) n 2 -2n i 1 ,...,in 0 i 1 +•••+in=n 2 (1) i 1 (rw n ) i 2 r 2 w n-1 w n i 3 • • • r n-1 w 2 • • • w n in (n 2 )! i 1 ! i 2 ! i 3 ! • • • i n ! .
Next, we would like to point out that C(w 2 , . . . , w n ) is a product of rational expressions which expand all in converging power series at the origin. More precisely, using the trivial expansion:

E(x) := 1 -x 1 -2 x = 1 + x 1 -2 x = 1 + ∞ i=1 2 i-1 x i ,
together with the expansion of Lemma 6.1 -with the convention that -1

-1 = 0 = -1 -: F (x, y) := 1 -y 1 -2 y + x y = 1 + y -x y 1 -2 y + x y = 1 + ∞ =1 y 0 k (-1) k x k 2 -1-k -1 k + 2 -k -1 k-1 ,
and re-expressing:

C(w 2 , . . . , w n ) = 2 j n E w 2 • • • w j 3 i j n F w i-1 , w i • • • w j , (4.1)
and lastly, multiplying all the obtained converging power series, one can in principle receive an expansion:

C(w 2 , . . . , w n ) = ∞ k 2 =0 • • • ∞ kn=0 C k 2 ,...,kn (w 2 ) k 2 • • • (w n ) kn ,
which is holomorphic in a neighborhood of the origin. However, it is very delicate to reach closed explicit expressions for these integer Taylor coefficients C k 2 ,...,kn , a difficulty which lies at the very core of Problem 2.3.

In summary, the quantity I 0 we want to determine, in order to show that it satisfies

I 0 I 0 , is the coefficient of the constant term w 0 2 • • • w 0 n in a product consisting of 2 rows: ∞ k 2 =0 • • • ∞ kn=0 C k 2 ,...,kn (w 2 ) k 2 • • • (w n ) kn • • 1 (w 2 ) n • • • (w n ) n 2 -n i 1 ,...,in 0 i 1 +•••+in=n 2 (1) i 1 (rw n ) i 2 r 2 w n-1 w n i 3 • • • r n-1 w 2 • • • w n in (n 2 )! i 1 ! i 2 ! i 3 ! • • • i n ! .
Clearly, the second row becomes, after reorganization, a Laurent series of the form:

-n 2 • • • -(n 2 -n) n J 2 ,..., n (w 2 ) 2 • • • (w n ) n .
But because in the first row one always has k 2 , . . . , k n 0, all Laurent monomials (w 2 ) 2 • • • (w n ) n in the second row for which i 1 for some 1 i n do not contribute to the determination of the desired constant term w 0 2 • • • w 0 n . So the summation in the second row can be truncated to:

-n 2 0 • • • -(n 2 -n) n 0 J 2 ,..., n (w 2 ) 2 • • • (w n ) n .
A supplementary change of indices followed by a reorganization conducts to an appropriate reformulation of what is I 0 : the following statement will then constitute the very starting point of our further explorations. Proposition 4.2. One has:

I 0 = w 0 2 • • • w 0 n A(w 2 , . . . , w n ) • C(w 2 , . . . , w n ) ,
where:

A(w 2 , . . . , w n ) := 0 k 2 n 0 k 3 n+k 2 ••••••••••••••••••••• 0 k n-1 n+k n-2 0 kn n+k n-1 (n 2 )! (n -k 2 )!(n + k 2 -k 3 )! • • • (n + k n-2 -k n-1 )!(n + k n-1 -k n )!(n + k n )! • • r n n(n-1) 2 r k 2 +•••+kn 1 (w 2 ) k 2 • • • (w n ) kn ,
and where C(w 2 , . . . , w n ) is as before.

Proof. We therefore rewrite:

1 w n 2 w 2n 3 • • • w (n-2)n n-1 w (n-1)n n i 1 ,...,in 0 i 1 +•••+in =n 2 (1) i1 (r w n ) i2 r 2 w n-1 w n i3 • • • r n-2 w 3 • • • w n-1 w n in-1 r n-1 w 2 w 3 • • • w n-1 w n in • • (n 2 )! i 1 ! i 2 ! i 3 ! • • • i n-1 !i n ! = =: -n 2 -2n 3 • • • -(n-2)n n-1 -(n-1)n n J 2, 3,..., n-1, n (w 2 ) 2 (w 3 ) 3 • • • (w n-1 ) n-1 (w n ) n ,
so that the correspondence between exponents is:

-

n 2 = i n -n, -2 n 3 = i n + i n-1 -2 n, • • • • • • • • • • • • • • • • • • • • • -(n -2) n n-1 = i n + i n-1 + • • • + i 3 -(n -2) n, -(n -1) n n = i n + i n-1 + • • • + i 3 + i 2 -(n -1) n.
Performing the harmless truncations 2 0, . . . , n 0 leads then to the inequalities:

0 i n n, 0 i n + i n-1 2 n, • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0 i n + i n-1 + • • • + i 3 (n -2) n, 0 i n + i n-1 + • • • + i 3 + i 2 (n -1) n,
so that it suffices to consider, before multiplying by C(w 2 , . . . , w n ), the truncated series:

A := i 1 +•••+in=n 2 i 1 0, ..., in 0 0 in n 0 in+i n-1 2 n ••••••••••••••••••••••••••••••••• 0 in+i n-1 +•••+i 3 (n-2) n 0 in+i n-1 +•••+i 3 +i 2 (n-1) n 1 w n-in 2 w 2n-i n-1 -in 3 • • • w (n-2)n-in-i n-1 -•••-i 3 n-1 w (n-1)n-in-i n-1 -•••-i 3 -i 2 n • • r i 2 +2 i 3 +•••+(n-2)i n-1 +(n-1)in • (n 2 )! i 1 ! i 2 ! i 3 ! • • • i n-1 ! i n ! .
To reach the expression shown by the proposition, introduce the new nonnegative integer indices:

k 2 := n -i n (k 2 0), k 3 := 2 n -i n-1 -i n (k 3 0), • • • • • • • • • • • • • • • • • • • • • • • • • • • (•••••••••), k n-1 := (n -2) n -i 3 -• • • -i n-1 -i n (k n-1 0), k n := (n -1) n -i 2 -i 3 -• • • -i n-1 -i n (kn 0).
To finish, three explanations are needed.

Firstly, one has the inequalities:

0 k 2 n, 0 k 3 n + k 2 ,
because i n 0 and because:

k 3 = n -i n-1 + n -i n = n -i n-1 i n-1 0 +k 2 n + k 2 .
Similarly:

0 k 4 = 3 n -i n-2 -i n-1 -i n = n -i n-2 + k 3 n + k 3 ,
and so on up to:

0 k n-1 n + k n-2 , 0 k n n + k n-1 .
Secondly, since:

k 2 +k 3 +• • •+k n-1 +k n = n 1+2+• • •+(n-2)+(n-1) -i 2 -2 i 3 -• • •-(n-2) i n-1 -(n-1) i n ,
the exponent of r becomes:

i 2 + 2 i 3 + • • • + (n -2) i n-1 + (n -1) i n = n n(n-1) 2 -k 2 -k 3 -• • • -k n-1 -k n .
Thirdly and lastly, the factorials become:

i n ! = (n -k 2 )!, i n-1 ! = n + n -i n -k 3 ! = n + k 2 -k 3 !, • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i 2 ! = -k n + (n -1) n -i 3 -• • • -i n ! = n + k n-1 -k n !, i 1 ! = n n -(n + k n-1 -k n ) -• • • -(n + k 2 -k 3 ) -(n -k 2 ) = n + k n !.
These three explanations yield the expression of A(w 2 , . . . , w n ) stated by the proposition.

Next, because only the quotient I 0 I 0 must be studied in order to reach the minoration I 0 I 0 , we can divide everything in advance by the central monomial:

I 0 = (n 2 )! n! • • • n! r n n(n-1)

2

.

Equivalently, we factor:

A = (n 2 )! n! • • • n! r n n(n-1) 2 • • 0 k 2 n 0 k 3 n+k 2 ••••••••••••••••••••• 0 k n-1 n+k n-2 0 kn n+k n-1 n! (n -k 2 )! n! (n + k 2 -k 3 )! • • • n! (n + k n-2 -k n-1 )! n! (n + k n-1 -k n )!(n + k n )! • • 1 r k 2 +k 3 +•••+k n-1 +kn 1 w k 2 2 w k 3 3 • • • w k n-1 n-1 w kn n ,
we keep the same name A after eliminating the factor I 0 on the first line, and we reformulate our goal as a more precise Problem 4.3. For some specific choice of a fixed constant r 3, to show that for any n 2, the coefficient of the constant monomial w 0 2 • • • w 0 n in the product C(w) • A(w) is at least equal to 1, namely:

1 w 0 2 • • • w 0 n C(w 2 , . . . , w n ) • A(w 2 , . . . , w n ) ,
where:

C(w 2 , . . . , w n ) := 1 -w 2 1 -2 w 2 1 -w 2 w 3 1 -2 w 2 w 3 • • • • • • • • • • • • • • • 1 -w 2 w 3 • • • w n 1 -2 w 2 w 3 • • • w n 1 -w 3 1 -2 w 3 + w 2 w 3 • • • • • • 1 -w 3 • • • w n 1 -2 w 3 • • • w n + w 2 w 3 • • • w n . . . . . . . . . . . . 1 -w n 1 -2 w n + w n-1 w n ,
and where:

A(w 2 , . . . , w n ) := 0 k 2 n 0 k 3 n+k 2 ••••••••••••••••••••• 0 k n-1 n+k n-2 0 kn n+k n-1 n! (n -k 2 )! n! (n + k 2 -k 3 )! • • • n! (n + k n-2 -k n-1 )! n! (n + k n-1 -k n )!(n + k n )! • • 1 r k 2 +k 3 +•••+k n-1 +kn 1 w k 2 2 w k 3 3 • • • w k n-1 n-1 w kn n .
Of course, under the hypothesis that the power series expansion of C(w) is known:

C(w 2 , . . . , w n ) = ∞ k 2 =0 • • • ∞ kn=0 C k 2 ,...,kn (w 2 ) k 2 • • • (w n ) kn ,
the coefficient in question writes up as the sum:

CA n n-1 := 0 k 2 n 0 k 3 n+k 2 ••••••••••••••••••••• 0 k n-1 n+k n-2 0 kn n+k n-1 n! (n -k 2 )! n! (n + k 2 -k 3 )! • • • n! (n + k n-2 -k n-1 )! n! (n + k n-1 -k n )!(n + k n )! • • 1 r k 2 +k 3 +•••+k n-1 +kn C k 2 ,k 3 ,...,k n-1
,kn , which should satisfy:

CA n n-1 ? 1 (∀ n 2).

Approximations of multinomial quotients

M n k 2 ,...,kn
Let us attribute a name to the quotients of multinomial coefficients which have appeared above:

M n k 2 ,k 3 ,...,k n-1 ,kn := n! (n -k 2 )! n! (n + k 2 -k 3 )! • • • • • • n! (n + k n-1 -k n )! n! (n + k n )! = (n 2 )! (n-k 2 )! (n+k 2 -k 3 )! ••• (n+k n-1 -kn)! (n+kn)! (n 2 )! n! n! ••• n! n! . When k 2 = k 3 = • • • = k n-1 = k n = 0, this is just:
M n 0,0,...,0,0 = 1. Lemma 5.1. For all indices (k 2 , k 3 , . . . , k n-1 , k n ) = (0, 0, . . . , 0, 0) in the domain:

0 k 2 n, 0 k 3 n + k 2 , •• • • • • • • • • • • • • • • • • • • 0 k n-1 n + k n-2 , 0 k n n + k n-1 ,
there are strict inequalities:

0 M n k 2 ,k 3 ,...,k n-1 ,kn < 1, with equality = 1 only when k 2 = k 3 = • • • = k n-1 = k n = 0.
Proof. Coming back to the old (nonnegative) indices:

i n = n -k 2 , i n-1 = n + k 2 -k 3 , • • • • • • • • • • • • • • • • • • • i 2 = n + k n-1 -k n , i 1 = n + k n , which satisfy i 1 + i 2 + • • • + i n-1 + i n = n n = n 2
and are not all equal to n -otherwise all k λ = 0 -, we have to explain the inequalities:

n! i 1 ! n! i 2 ! • • • • • • n! i n-1 ! n! i n ! ? < 1.
After a reordering, we can assume that:

i 1 = n, . . . . . . , i κ = n, i κ+1 = n, . . . . . . , i n = n,
for a certain integer 1 κ n. Since the factors n! n! = 1 have no effect, we are led to ask whether:

n! i 1 ! • • • • • • n! i λ ! • • • • • • n! i κ ! ? < 1.
Observing that:

i 1 + • • • + i λ + • • • + i κ = κ n,
let us distinguish two cases about these i λ for every 1 λ κ:

i λ < n or i λ > n.
When i λ < n, we simplify:

n! i λ ! = n n -1 • • • i λ + 1 ,
and when i λ > n, we simplify:

n! i λ ! = 1 i λ (i λ -1) • • • (n + 1)
, so that:

n! i 1 ! • • • • • • n! i λ ! • • • • • • n! i κ ! = i λ <n n (n -1) • • • (i λ + 1) i λ >n i λ (i λ -1) • • • (n + 1)
. Now, we observe that in this fraction the number of integer factors at numerator place is equal to the number of integer factors at denominateur place, because the equality above:

κ n = 1 λ κ i λ = i λ <n i λ + i λ >n
i λ can be rewritten as:

i λ <n n -i λ = i λ >n i λ -n .
But each integer factor at denominator place is larger than all integer factors at numerator place, so the fraction must be < 1.

Visibly, in the quantity under study:

M n k 2 ,k 3 ,...,k n-1 ,kn = n! (n -k 2 )! n! (n + k 2 -k 3 )! • • • • • • n! (n + k n-1 -k n )! n! (n + k n )! ,
there are two types of quotients:

n! (n -k)!
with k 0 and n! (n + )! with 0.

We can simplify, factorize, and rewrite the first type quotients as:

n! (n -k)! = n (n -1) • • • (n -k + 1) 1 = n k 1 - 0 n 1 - 1 n • • • 1 - k -1 n = n k 0 i k-1 1 - i n ,
and the second type quotients as:

n! (n + )! = 1 (n + ) • • • (n + 1) = 1 1 + n • • • 1 + 1 n n = n - 1 j 1 + j n -1
.

In order to estimate the proximity to 1 of these products, let us take their logarithms:

log 0 i k-1 1 - i n = log 1 - 0 n + log 1 - 1 n + • • • + log 1 - k -1 n 0,
and:

log 1 j 1 + j n -1 = -log 1 + 1 n -log 1 + 2 n -• • • -log 1 + n 0.
Certainly, we have already seen implicitly in the proof of the previous Lemma 5.1 that all the logarithms of these products are 0. But we are now searching for a minoration of these coefficients:

M n k 2 ,...,kn
what? For a reason that will become transparent just after a preliminary lemma, we will soon restrict ourselves to suppose that:

k 2 + k 3 + • • • + k n-1 + k n √ n.
Lemma 5.2. For all 0 δ 3/5:

log 1 -δ -δ -δ 2 ,
and for all ε 0:

-log 1 + ε -ε.
Proof. The first inequality -which is in fact true for 0 δ 0, 683 as can be seen with the help of a computer -:

-δ - δ 2 2 - δ 3 3 - δ 4 4 - δ 5 5 -• • • ? -δ -δ 2 , is equivalent to: δ 2 2 ? δ 3 3 + δ 4 4 + δ 5 5 + • • • .
In this inequality under questioning, let us insert a computable infinite sum:

1 ? 2 3 δ 1 + δ + δ 2 + • • • 2 3 δ + 2 4 δ 2 + 2 5 δ 3 + • • • ,
in order to come to an elementary minoration:

1 ? 2 3 δ 1 1 -δ ⇐⇒ 3 -3 δ yes 2 δ.
The second inequality log (1 + ε) ε is well known. Now, let us suppose that:

k √ n,
whence as soon as n 4:

k -1 n < 1 √ n 1 2 < 3 5 .
Then:

k-1 i=0 log 1 - i n - k-1 i=0 i n - k-1 i=0 i 2 n 2 = - (k -1) k 2 n - (k -1) k (2 k -1) 6 n 2 = - k 2 2 n + k 2 n - k 3 3 n 2 + k 2 2 n 2 - k 6 n 2 .
The three terms here underlined have a positive contribution and we can even neglect the second of them:

k 2 n + k 2 2 n 2 - k 6 n 2 k 2 n 1 - 1 3 n > 0.
Therefore, we obtain a useful minoration:

k-1 i=0 log 1 - i n - k 2 2 n - k 3 3 n 2 = - k 2 2 n - k 2 3 n k n [ k n 1] - k 2 2 n - k 2 3 n - k 2 n .
Next, for the quotients of second type which are present in the various M n k 2 ,...,kn , the minoration work is easier:

- j=1 log 1 + j n - j=1 j n = - 2 2 n - 2 n [ 2 ] - 2 n .
Without forgetting the powers n k and n -, these estimates can now be summarized as the following Lemma 5.3. For all 0 k 3 5 n: n

! (n -k)! n k e -k 2 n
and for all 0

: n! (n + )! n -e -2 n .
Importantly, we point out that there is a uniform minoration:

n! (n + m)! n -m e -m 2 n ,
valid for all integers m ∈ Z, positive or negative, in the range:

-3 5 n m < ∞.
Notice that the exponential factor is always 1.

Next, thanks to all this, we will assume from now on that the range of the integers k 2 , . . . , k n is restricted to:

0 k 2 + k 3 + • • • + k n-1 + k n √ n c(n) ,
for some function c(n) -→ n→∞ ∞ that will be chosen later -think for instance c(n) := log log log n. In particular, this implies that:

0 k 2 3 5 n, k 2 -k 3 √ n c(n) 3 5 n, . . . . . . , k n-1 -k n √ n c(n) 3
5 n, so that the lemma applies to minorize:

M n k 2 ,k 3 ,...,k n-1 ,kn = n! (n -k 2 )! n! (n + k 2 -k 3 )! • • • • • • n! (n + k n-1 -k n )! n! (n + k n )! n k 2 • e -k 2 2 n n -k 2 +k 3 • e -(k 2 -k 3 ) 2 n • • • • • • n -k n-1 +kn • e -(k n-1 -kn) 2 n n -kn • e -k 2 n n = e -1 n [k 2 2 +(k 2 -k 3 ) 2 +•••+(k n-1 -kn) 2 +k 2 n] = e -1 n [2 k 2 2 -2 k 2 k 3 +2 k 2 3 +•••+2 k 2 n-1 -2 k n-1 kn+2 k 2 n] e -1 n [2 (k 2 +k 3 +•••+k n-1 +kn) 2 ] e -1 n 2 n c(n) 2 = e -2 c(n) 2 -→ n→∞ 1.
We thus have proved the key Proposition 5.4. For any choice of function c(n) n→∞ -→ ∞, the quantities:

M n k 2 ,k 3 ,...,k n-1 ,kn = n! (n -k 2 )! n! (n + k 2 -k 3 )! • • • • • • n! (n + k n-1 -k n )! n! (n + k n )! enjoy the inequalities: e -2 c(n) 2 M n k 2 ,k 3 ,...,k n-1 ,kn 1,
when their indices range in the set:

k 2 , k 3 , . . . , k n-1 , k n ∈ N n : 0 k 2 n, 0 k 3 n + k 2 , • • • • • • • • • • • • • • • • • • 0 k n-1 n + k n-2 , 0 k n n + k n-1 , k 2 + k 3 + • • • + k n-1 + k n √ n c(n) .
6. Majorant power series C(w 2 , . . . , w n ) and its diagonalization C(x, . . . , x)

Now, come back to:

F (x, y) = 1 -y 1 -2 y + x y
and observe that for all 3 i n -1:

1 -x i-1 1 -2 x i-1 + x i = F x, x i-1 .
Its expansion:

F (x, y) = 1 + y -x y 1 -2 y + x y =: 1 + ∞ =1 y ∞ k=0 x k F k,
will be (easily) computed soon. With F (x, y), introduce also -notice the single sign change in the denominator:

F (x, y) = 1 -y 1 -2 y -x y = 1 + y + x y 1 -2 y -x y =: 1 + ∞ =1 y ∞ k=0 x k F k, ,
a new function which will act as a majorant series, in the sense that:

F k, F k, (∀ k 0, ∀ 0).
Such inequalities are made transparent from the following clear explicit expressions, in which just a factor (-1) k drops.

Lemma 6.1. With the convention that -1 -1 = 0 = -1 , the power series expansions are:

F (x, y) = 1 + ∞ =1 y 0 k (-1) k x k 2 -1-k -1 k + 2 -k -1 k-1 , F (x, y) = 1 + ∞ =1 y 0 k x k 2 -1-k -1 k + 2 -k -1 k-1 .
Proof. Expand:

F (x, y) = 1 + y -x y 1 -y (2 -x) = 1 + y -x y ∞ h=0 y h 2 -x h = 1 + y -x y ∞ h=0 y h 0 m h (-1) m x m 2 h-m h m .
[The series converge e.g. for |x|, |y| < 1 4 since in the denominator 1 -2 1 4 -1 4 2 > 0, but we will not need precise information about the domain of convergence.] Two double sums must be reorganized. In the first one, replace h = -1 and m = k:

∞ h=0 y h+1 0 m h (-1) m x m 2 h-m h m = ∞ =1 y 0 k -1 (-1) k x k 2 -1-k -1 k ,
and observe that the last sum can be extended to the range 0 k , thanks to the convention. In the second one, replace h = -1 and m = k -1:

- ∞ h=0 y h+1 0 m h (-1) m x m+1 2 h-m h m = - ∞ =1 y 1 k (-1) k-1 x k 2 -k -1 k -1 ,
and observe that the term k = 0 in the sum can be included, thanks to the convention. Adding these two expressions yield the stated power expansion of F (x, y).

Next, for what concerns:

F (x, y) = 1 + y + x y 1 -2 y -x y = 1 + y + x y ∞ h=0 y h 2 + x h = 1 + y + x y ∞ h=0 y h 0 m h x m 2 h-m h m ,
exactly the same transformations work, except that the (-1) m factor has disappeared.

Next, our goal is to introduce a majorant power series C(w 2 , . . . , w n ) for the power series C(w 2 , . . . , w n ). As anticipated above, it is now clear by means of the triangle inequality that:

F k, F k, , (6.2) 
for all k 0 and all 0. In terms of F (x, y) and of the already seen power series:

E(x) := 1 -x 1 -2 x = ∞ k=0 E k x k ,
having positive coefficients E 0 = 1 and E k = 2 k-1 for k 1, recall from (4.1) that:

C w 2 , . . . , w n =:

2 i n E w 2 • • • w i 2 i<j n F w i , w i+1 • • • w j .
Hence we may introduce similarly:

C w 2 , . . . , w n :=

2 i n E w 2 • • • w i 2 i<j n F w i , w i+1 • • • w j .
The expansions of the factors of the first product show as:

C w 2 , . . . , w n = 2 i n ∞ k=0 E k w 2 • • • w i k 2 i<j n ∞ k=0 ∞ =0 F k, w i k w i+1 • • • w j =: k 2 ,...,kn 0 C k 2 ,...,kn w 2 k 2 • • • w n kn ,
and similarly:

C w 2 , . . . , w n = 2 i n ∞ k=0 E k w 2 • • • w i k 2 i<j n ∞ k=0 ∞ =0 F k, w i k w i+1 • • • w j =: k 2 ,...,kn 0 C k 2 ,...,kn w 2 k 2 • • • w n kn .
Since all E k 0 and all F k, 0, we have all C k 2 ,...,kn 0 as well -however, many C k 2 ,...,kn are -1.

Thanks to (6.2) and to the triangle inequality in expansions, we obtain:

C k 2 ,...,kn C k 2 ,.
..,kn , (6.3) for all k 2 , . . . , k n 0, which means that C is a majorant power series for C. Notice that:

C k 2 ,...,kn ∈ Z and C k 2 ,...,kn ∈ N.
Now, passing to the diagonal:

w 2 = • • • = w n =: x ,
we deduce for every k ∈ N, again by means of the triangle inequality:

C h = k 2 +•••+kn=h C k 2 ,...,kn k 2 +•••+kn=h C k 2 ,...,kn [(6.3)] k 2 +•••+kn=h C k 2 ,...,kn =: C h .
In fact, these integers C h 0 express as coefficients of the diagonal majorant series:

C n-1 (x) := C(x, . . . , x) = 2 i n 1 -x i-1 1 -2 x i-1 2 i<j n 1 -x j-i 1 -2 x j-i -x j-i+1 = k 2 ,...,kn 0 C k 2 ,...,kn x k 2 • • • x kn = ∞ h=0 k 2 +•••+kn=h C k 2 ,...,kn x h =: ∞ h=0 C h x h .
Let us therefore state these observations as a Lemma 6.4. The 1-variable products series:

C n-1 (x) := n-1 i=1 1 -x i 1 -2 x i n-1 i=2 1 -x i-1 1 -2 x i-1 + x i n-i = ∞ h=0 C n-1 h x h , C n-1 (x) := n-1 i=1 1 -x i 1 -2 x i n-1 i=2 1 -x i-1 1 -2 x i-1 -x i n-1 = ∞ h=0 C n-i h x h ,
have coefficients satisfying the inequalities:

C n-1 h C n-1 h (∀ h 0).

Positivity of diagonal sums coefficients C n-1 h

Now, study the power series C(w 2 , . . . , w n ) along the diagonal:

w 2 = • • • = w n =: x ,
that is to say, introduce as in Lemma 6.4:

C n-1 (x) = 1 -x 1 -2 x 1 -x 2 1 -2 x 2 1 -x 3 1 -2 x 3 • • • • • • • • • • • • • • • • • • 1 -x n-1 1 -2 x n-1 1 -x 1 -2 x + x 2 n-2 1 -x 2 1 -2 x 2 + x 3 n-3 • • • • • • 1 -x n-2 1 -2 x n-2 + x n-1 1 .
Furthermore, on the second line, the first fraction to the power (•) n-2 trivially simplifies as:

1 -x (1 -x) 2 = 1 1 -x ,
whence:

C n-1 (x) = 1 -x 1 -2 x 1 -x 2 1 -2 x 2 1 -x 3 1 -2 x 3 • • • • • • • • • • • • • • • • • • 1 -x n-1 1 -2 x n-1 1 1 -x n-2 1 -x 2 1 -2 x 2 + x 3 n-3 • • • • • • 1 -x n-2 1 -2 x n-2 + x n-1 1 .
Let us focus on the second line, which we now call:

P n-1 (x) := 1 1 -x n-2 1 -x 2 1 -2 x 2 + x 3 n-3 • • • • • • 1 -x n-2 1 -2 x n-2 + x n-1 1 =: ∞ h=0 P n-1 h x h .
We believe that all the coefficients of the full product C n-1 (x) are positive, but a restricted statement will be enough for our purposes.

Lemma 7.1. For all indices h in the range:

0 h √ n one has: P n-1 h 1, C n-1 h 2 h .
Proof. First, we make the following transformation for each term in the product P n-1 (x):

1 -x k 1 -2 x k + x k+1 n-k-1 = 1 -x k 1 -x k -(x k -x k+1 ) n-k-1 = 1 1 -x k -x k+1 1-x k n-k-1 = 1 1 - x k 1+x+•••+x k-1 n-k-1 (1 k n-2).
Using the expansion and factorization (valid for |T | < 1):

1 1 -T = 1 + T ∞ i=0 T 2i = 1 + T 1 + T 2 + T 4 + T 6 + • • • and substituting T = x k 1+x+•••+x k-1
(with |x| so small that |T | < 1 for any 1 k n -2) gives us:

1 1 - x k 1+x+•••+x k-1 1 = 1 + x k 1 + x + • • • + x k-1 ∞ i=0 x k 1 + x + • • • + x k-1 2i = 1 + x + • • • + x k 1 + x + • • • + x k-1 ∞ i=0 x k 1 + x + • • • + x k-1 2i .
We then put together these expansions of terms in the product P n-1 (x) to obtain:

P n-1 (x) = 1 + x n-2 1 + x 2 + x 4 + x 6 + • • • n-2 . 1 + x + x 2 1 + x n-3 1 + x 2 1 + x 2 + x 2 1 + x 4 + • • • n-3 • • • • • • • • • . 1 + x + • • • + x k-1 + x k 1 + x + • • • + x k-1 n-k-1 ∞ i=0 x k 1 + x + • • • + x k-1 2i n-k-1 • • • • • • • • • . 1 + x + • • • + x n-3 + x n-2 1 + x + • • • + x n-3 1 1 + x n-2 1 + x + • • • + x n-3 2 + • • • 1 .
Notice that the product of the first terms in all lines admits simplification as follows:

1 + x n-2 1 + x + x 2 1 + x n-3 • • • 1 + • • • + x k-1 + x k 1 + • • • + x k-1 n-k-1 • • • 1 + • • • + x n-3 + x n-2 1 + • • • + x n-3 1 = (1 + x)(1 + x + x 2 ) • • • (1 + x + • • • + x k ) • • • (1 + x + • • • + x n-2 ),
while the other terms can be expanded using

∞ i=0 T 2i m = 1 + T 2 + T 4 + • • • + T 2j + • • • m = ∞ j=0 m + j -1 j T 2j = 1 + m 1 T 2 + m + 1 2 T 4 + • • • + m + j -1 j T 2j + • • • .
The expansion of P n-1 (x) now becomes

P n-1 (x) = 1 + x 1 + x + x 2 • • • 1 + x + • • • + x k • • • 1 + x + • • • + x n-2 . 1 + n -2 1 x 2 + n -1 2 x 4 + n 3 x 6 + • • • . 1 + n -3 1 x 2 1 + x 2 + n -2 2 x 2 1 + x 4 + • • • • • • • • • • • • . ∞ i=0 n -k -1 + i -1 i x k 1 + x + • • • + x k-1 2i • • • • • • • • • . 1 + x n-2 1 + x + • • • + x n-3 2 + x n-2 1 + x + • • • + x n-3 4 + • • • .
Since we are only interested in the coefficients P n-1 h with 0 h √ n , we will ignore the terms

x k 1+x+•••+x k-1 2i with k • 2i > n, i.e. with i > n 2k . The first √ n coefficients
in the power series expansion of P n-1 (x) are the same as those of

1 + x 1 + x + x 2 • • • 1 + x + • • • + x k • • • 1 + x + • • • + x n-2 . 1 + n -2 1 x 2 + n -1 2 x 4 + • • • + n -2 + √ n 2 -1 √ n 2 x 2 √ n 2 . 1 + n -3 1 x 2 1 + x 2 + • • • + n -3 + √ n 4 -1 √ n 4 x 2 1 + x 2 √ n 4 • • • • • • • • • . 1 + • • • + n -k -1 + √ n 2k -1 √ n 2k x k 1 + x + • • • + x k-1 2 √ n 2k • • • • • • • • • . 1 + n - √ n 2 -1 1 x √ n 2 1 + x + • • • + x √ n 2 -1 2 .
Now it is clear that in order to show the positivity of P n-1 h for all 0 h √ n , it suffices to prove that the product

1 + x 2 √ n 4 1 + x + x 2 2 √ n 6 • • • 1 + x + • • • + x √ n 2 -1 2 
is divisible by

1 + x 1 + x + x 2 • • • 1 + x + • • • + x k • • • 1 + x + • • • + x n-2 ,
and at the same time that the quotient also has nonnegative coefficients. Note that for any j 0, one has

1 + x + • • • + x kj+k-1 = 1 + x + • • • + x k-1 1 + x k + x 2k + • • • + x kj , that is 1 + x + • • • + x k-1 is divisible by 1 + x + • • • + x kj+k-1 with quotient having nonnegative coefficients. Now, we divide the set of indices 1, 2, . . . , ( √ n ) 2 -1 into √ n disjoint sets: √ n j + 1, √ n j + 2, . . . , √ n j + √ n for j = 0, 1, . . . , √ n -1.
Then, for each index k, the number of integers of the form

kj + k -1 in the interval √ n k + 1, √ n k + 2, . . . , √ n k + √ n is at least √ n k . Since 2 √ n 2k √ n k , the polynomial 1 + x + • • • + x k-1 2 √ n 2k is divisible by √ n (k+1) i= √ n k+1 1 + x + • • • + x i ,
with quotient having nonnegative coefficients. Taking in account all the values of k = 1, 2, . . . ,

√ n 2
-1 , and making the product of all the

√ n 2
-1 terms gives us the desired divisibility.

At this point, notice further that the set 1, 2, . . . , √ n , corresponding to k = 0, has not been used in obtaining the above divisibility. Thus, the first √ n coefficients of P n-1 (x) are those of the product between

1 + x 1 + x + x 2 • • • 1 + x + • • • + x √ n
and a power series having constant coefficient 1 and the first √ n coefficients nonnegative. This clearly implies the positivity of P n-1 h for all 0 h √ n . For the first √ n coefficients in the power series expansion of C n-1 (x), it is enough to consider the product

1 -x 1 -2x P n-1 (x),
since all the remaining terms in the product C n-1 (x) have power series expansions with nonnegative coefficients and constant coefficient 1. Now using the expansion

1 -x 1 -2x = 1 + ∞ i=1 2 i-1 x i , we get C n-1 h = P n-1 h + h i=1 2 i-1 P n-1 h-i .
Since we have already showed that P n-1 h 1 for all 0 h √ n , it follows that

C n-1 h 1 + h i=1 2 i-1 = 2 h
for all 0 h √ n . This finishes our proof of the lemma.

Cauchy inequalities

Next, we will set up a useful (and trivial) version of the Cauchy inequalities for power series having nonnegative coefficients. We start by determining the radius of convergence R > 0 of C n-1 (x) and the one R > 0 of C n-1 (x), the two products of Lemma 6.4.

Lemma 8.1. The smallest moduli of poles of the two rational functions C n-1 (x) and C n-1 (x) are:

R := 1 2 = 0.5 and R := √ 2 -1 ≈ 0.414 • • • .
Proof. The moduli of the roots of the denominator of the first product

1 i n-1 * 1-2 x i appearing in C n-1 (x) are 1 2 , 1 2 √ 2 , 1 3 √ 2 , . . . , 1 n-1 √
2 , and the smallest among them is 1 2 . But then in the disc x ∈ C : |x| < 1 2 , we assert that all denominators in the second product constituting C n-1 (x) are nowhere vanishing. Indeed, as already observed above, taking account of the simplification for i = 2:

1 -x 2-1 1 -2 x 2-1 + x 2 = 1 1 -x , 9. Estimations of C( 1 r ) and of C( 1 r ) 33
this second product writes as:

1 1 -x n-2 n-1 i=3 * 1 -2 x i-1 + x i n-i .
Then the root 1 is certainly > 1 2 , while the subsequent denominators for 3 i n are nonvanishing when |x| 1 2 , because:

1 -2 x i-1 + x i 1 -2 |x| i-1 -|x| i 1 -2 1 2 i-1 -1 2 i 1 -2 1 2 2 -1 2 3 = 3 8 > 0.
On the other hand, while the first product constituting C n-1 (x) is exactly the same, such a simplification in the second product does not occur, and in fact, in: *

1 -2 x -x 2 n-2 n-1 i=3 * 1 -2 x i-1 -x i n-i
, the same minoration for 3 i n -1 applies:

1 -2 x i-1 -x i 1 -2 |x| i-1 -|x| i 3 8 , whereas the positive root √ 2 -1 of 1 -2 x -x 2 = 0 is smaller than 1 2
, and the other root -1 -√ 2 has (much) larger modulus.

Let therefore 0 < ρ < √ 2-1 be any radius in these convergence discs. A trivial version of the Cauchy inequalities for power series having nonnegative coefficients is as follows. Using the notation of Section 6, from:

C n-1 (ρ) = ∞ h=0 C n-1 h ρ h ,
it comes for any h ∈ N fixed, since all terms are 0:

C n-1 (ρ) C n-1 h ρ h .
Soon, we will take

ρ = ρ(n) > -→ n→∞ 0, in fact: ρ := 1 √ n (later).
Observation 8.2. For any 0 < ρ < √ 2 -1 and every h ∈ N:

C h 1 ρ h C(ρ).
Section 11 provides an exploration of the way moduli of the elementary constituents

1-x k 1-2 x k and 1-x 1-2 x -x +1
vary with drastic oscillations on circles {|x| = ρ}. Thanks to these basic Cauchy inequalities, we can now start to control the growth of C n-1 (ρ). 9. Estimations of C( 1 r ) and of C( 1 r ) At first, we reorganize C n-1 (x) from Lemma 6.4, writing its second product up to i = n included instead of i = n -1, using ( * ) n-n = 1:

C n-1 (x) = n-1 i=1 1 -x i 1 -2 x i n i=2 1 -x i-1 1 -2 x i-1 -x i n-i = n-1 i=1 1 1 -2 x i i =: k n-1 i=1 1 -x i i =: k n i=2 1 -x i-1 n-i i =: k+1 n i=2 1 (1 -2 x i-1 -x i ) n-i i =: k+1 = n-1 k=1 1 1 -2 x k n-1 k=1 1 -x k 1 n-1 k=1 1 -x k n-k-1 n-1 k=1 1 (1 -2 x k -x k+1 ) n-k-1 = n-1 k=1 1 1 -2 x k n-1 k=1 1 -x k n-k n-1 k=1 1 (1 -2 x k -x k+1 ) n-k-1 .
In order to set up a general statement, we will take:

x := 1 r , with r = r(n) -→ n→∞ ∞, always with 0 < 1 r < √ 2 -1.
In fact, to fix ideas, we shall assume at least r 10. Proof. Take logarithm:

log C 1 r = n-1 k=1 -log 1 - 2 r k + (n -k) log 1 - 1 r k -(n -k -1) log 1 - 2 r k - 1 r k+1 = -log 1 - 2 r + (n -1) log 1 - 1 r -(n -2) log 1 - 2 r - 1 r 2 - -log 1 - 2 r 2 + (n -2) log 1 - 1 r 2 -(n -3) log 1 - 2 r 2 - 1 r 3 + + n-1 k=3 -log 1 - 2 r k + (n -k) log 1 - 1 r k -(n -k -1) log 1 - 2 r k - 1 r k+1 .
Now, employ the majorations valuable for 0 δ 0.5:

log 1 -δ -δ -1 2 δ 2 , -log 1 -ε ε + ε 2 , 9. Estimations of C( 1 r ) and of C( 1 r ) 35
to get using the assumption r 10:

log C 1 r 2 r + 4 r 2 + (n -1) - 1 r - 1 2 1 r 2 + (n -2) 2 r + 1 r 2 + 2 r + 1 r 2 2 5 r 2 + + 2 r 2 + 4 r 4 3 r 2 +(n -2) - 1 r 2 - 1 2 1 r 4 < 0 + (n -3) 2 r 2 + 1 r 3 + 2 r 2 + 1 r 3 2 4 r 2 + + n-1 k=3 2 r k + 4 r 2k 3 r k + (n -k) log 1 - 1 r k < 0 +(n -k -1) 2 r k + 1 r k+1 + 2 r k + 1 r k+1 2 3 r k 1 r 2 -n + 1 + 2 n -4 + 1 r 2 4 -n 2 + 1 2 + n -2 + 5 n -10 + 3 -n + 2 + 0 + 4 n -12 + n-1 k=3 3 r k 1 + 0 + n -k -1 1 r n -1 + 1 r 2 17 2 n -29 2 + + 3 r 3 1 1 -1 r n n r + 9 n r 2 + 3 n r 2 .
Similarly to the expression:

C(x) = n-1 k=1 1 1 -2 x k n-1 k=1 1 -x k n-k n-1 k=1 1 (1 -2 x k -x k+1 ) n-k-1 ,
we obtain by simply changing the last signto the sign + in the denominator of the third product:

C(x) = n-1 k=1 1 1 -2 x k n-1 k=1 1 -x k n-k n-1 k=1 1 (1 -2 x k + x k+1 ) n-k-1 .
Lemma 9.2. One has:

C 1 r C 1 r e 17 n r 2 .
Proof. This quotient writes as:

C 1 r C 1 r = n-2 k=1 1 -2 1 r k + 1 r k+1 1 -2 1 r k -1 r k+1 n-k-1
, since the terms for k = n -1 drop. Take logarithm and use the above majorations:

log C 1 r C 1 r = n-2 k=1 n -k -1 log 1 - 2 r k - 1 r k+1 -log 1 - 2 r k + 1 r k+1 = (n -2) log 1 - 2 r - 1 r 2 -log 1 - 2 r + 1 r 2 + + (n -3) log 1 - 2 r 2 - 1 r 3 -log 1 - 2 r 2 + 1 r 3 + + n-2 k=3 n -k -1 log 1 - 2 r k - 1 r k+1 < 0 -log 1 - 2 r k + 1 r k+1 n -2 - 2 r • - 1 r 2 - 1 2 2 r - 1 r 2 2 < 0 + 2 r • + 1 r 2 + 2 r + 1 r 2 2 5 r 2 + + n -3 - 2 r 2 - 1 r 3 < 0 - 1 2 2 r 2 - 1 r 3 2 < 0 + 2 r 2 + 1 r 3 + 2 r 2 + 1 r 3 2 4 r 2 + [ε + ε 2 2 ε] + n-2 k=3 n -k -1 0 + 2 2 r k + 1 r k+1 3 r k
, and notice, importantly, that the 1 r -terms disappear, so that at the end:

log C 1 r C 1 r n -2 7 r 2 + n -3 4 r 2 + 6 n ∞ k=3 1 r k 11 n 1 r 2 + 6 n 1 r 2 1 r -1 .
Lastly, making the choice:

r := √ n a(n),
with a function a(n) -→ n→∞ ∞ tending slowly to infinity -think a(n) := log log n -and satisfying at least a(n) n for any > 0, we want to minorize:

CR ∞ := C 1 r = C 1 √ n a(n) .
Lemma 9.3. One has:

C 1 √ n a(n) e 1 2 √ n a(n) -→ n→∞ ∞.
Proof. Take logarithm:

log C 1 r = n-1 k=1 -log 1 - 2 r k + n -k log 1 - 1 r k -n -k -1 log 1 - 2 r k - 1 r k+1 = -log 1 - 2 r + n -1 log 1 - 1 r -n -2 log 1 - 2 r - 1 r 2 - -log 1 - 2 r 2 + n -2 log 1 - 1 r 2 -n -3 log 1 - 2 r 2 - 1 r 3 + + n-1 k=3 -log 1 - 2 r k + n -k log 1 - 1 r k -n -1 -k log 1 - 2 r k - 1 r k+1
, use the minorations:

-log 1 -ε ε, log 1 -δ -δ -δ 2 , to get: log C 1 r 2 r + n -1 - 1 r - 1 r 2 + n -2 2 r - 1 r 2 + + 2 r 2 + n -2 - 1 r 2 - r 4 -2 r 2 + n -3 2 r 2 - 1 r 3 1 r 2 + + n-1 k=3 2 r k + n -k - 1 r k - 1 r 2k -2 r k + n -k -1 2 r k - 1 r k+1 1 r k 1 r 2 -n + 1 + 2 n -4 + 1 r 2 -n + 1 -n + 2 + 2 -2 n + 4 + n -3 + + n-1 k=3 1 r k 2 -2 n + 2 k + n -k -1 = 1 r n -1 + 1 r 2 -3 n + 6 + n-1 k=3 1 r k -n + k + 1 -n+1 n -1 1 r - 3 r 2 - ∞ k=3 1 r k n -1 1 r - 4 r 2 .
Lastly, again with a(n) n :

log C 1 √ n a(n) n -1 √ n a(n) - 4n -4 n a(n) 2 -4 1 2 
√ n a(n) .

Final minorations

As explained at the end of Section 4, with a suitable choice of r, the goal is to show:

1 ? 0 k 2 n 0 k 3 n+k 2 ••••••••••••••••••••• 0 k n-1 n+k n-2 0 kn n+k n-1 C k 2 ,k 3 ,...,k n-1 ,kn M k 2 ,k 3 ,...,k n-1 ,kn 1 r k 2 +k 3 +•••+k n-1 +kn =: CMR.
Abbreviate this domain range as:

∠ := k 2 , k 3 , . . . , k n-1 , k n ∈ N n : 0 k 2 n, 0 k 3 n + k 2 , • • • • • • • • • • • • • • • • • • 0 k n-1 n + k n-2 , 0 k n n + k n-1 .
Observe that:

k 2 + k 3 + • • • + k n-1 + k n n ⊂ ∠ , hence a fortiori with a function c(n) -→ n→∞
∞ tending slowly to infinity to be chosen later:

k 2 + k 3 + • • • + k n-1 + k n √ n c(n) ⊂ ∠ .
Introduce:

CMR T := k 2 +•••+kn √ n c(n) C k 2 ,...,kn M k 2 ,...,kn 1 r k 2 +•••+kn ,
the letter 'T' standing for 'Truncated', with the Remainder:

CMR -CMR T = (k 2 ,...,kn)∈∠ k 2 +•••+kn 1+ √ n c(n) C k 2 ,...,kn M k 2 ,...,kn 1 r k 2 +•••+kn =: CMR R .
Along with these quantities, introduce also:

CMR + T := k 2 +•••+kn √ n c(n) C k 2 ,...,kn 0 C k 2 ,...,kn M k 2 ,...,kn 1 r k 2 +•••+kn ( 0), CMR - T := k 2 +•••+kn √ n c(n) C k 2 ,...,kn <0 -C k 2 ,...,kn M k 2 ,...,kn 1 r k 2 +•••+kn ( 0),
two nonnegative quantities which decompose:

CMR T = CMR + T -CMR - T .
In addition, without the multinomial-quotient coefficients, introduce:

CR := (k 2 ,...,kn)∈∠ C k 2 ,...,kn • 1 • 1 r k 2 +•••+kn , CR T := k 2 +•••+kn √ n c(n) C k 2 ,...,kn • 1 • 1 r k 2 +•••+kn , CR R := (k 2 ,...,kn)∈∠ k 2 +•••+kn 1+ √ n c(n) C k 2 ,...,kn • 1 • 1 r k 2 +•••+kn ,
and similarly also:

CR + T := k 2 +•••+kn √ n c(n) C k 2 ,...,kn 0 C k 2 ,...,kn • 1 • 1 r k 2 +•••+kn ( 0), CR - T := k 2 +•••+kn √ n c(n) C k 2 ,...,kn <0 -C k 2 ,...,kn • 1 • 1 r k 2 +•••+kn ( 0).
Recall that we are choosing:

r(n) = √ n a(n),
and we now endeavor to find a condition guaranteeing that the remainder CMR R be small in absolute value.

To this aim, choose in the Cauchy inequalities ρ := 1 √ n , apply Lemma 9.1:

C 1 √ n e 12 e √ n ,
so that Observation 8.2 gives:

C h 1 1 √ n h e 12 e √ n (∀ h 0).
Now, majorize the remainder:

CMR R = (k 2 ,...,kn)∈∠ k 2 +•••+kn 1+ √ n c(n) C k 2 ,...,kn M k 2 ,...,kn 1 r k 2 +•••+kn (k 2 ,...,kn)∈∠ k 2 +•••+kn 1+ √ n c(n) C k 2 ,...,kn • 1 • 1 r k 2 +•••+kn k 2 +•••+kn 1+ √ n c(n) C k 2 ,...,kn 1 r k 2 +•••+kn k 2 +•••+kn 1+ √ n c(n) C k 2 ,...,kn 1 r k 2 +•••+kn = ∞ h=1+ √ n c(n) 1 r h k 2 +•••+kn=h C k 2 ,...,kn = ∞ h=1+ √ n c(n) 1 r h C h ,
and hence, thanks to what precedes:

CMR R ∞ h=1+ √ n c(n) 1 r h 1 1 √ n h e 12 e √ n = e 12 e √ n ∞ h=1+ √ n c(n) 1 √ n • a(n) 1 √ n • h = e 12 e √ n 1 a(n) 1+ √ n c(n) ∞ h=0 1 a(n) h = e 12 e √ n e -1+ √ n c(n) log a(n) 1 1 -1 a(n) 2 2 e 12 e -log a(n) e √ n 1- log a(n) c (n) 
.

In order to insure that the right-hand side is small, since e -log a(n) -→ n→∞ 0, it suffices to choose:

c(n) := log a(n) -→ n→∞ ∞, to obtain: CMR R 2 e 12 e -log a(n) -→ n→∞ 0. Lemma 10.1. With c(n) = log a(n), it holds: CMR R k 2 +•••+kn 1+ √ n c(n) C k 2 ,...,kn 1 r k 2 +•••+kn 2 e 12 e -log a(n) .
Further, it is now necessary to estimate the size of the first terms CMR T , and to show that they are large. It will be useful that:

√ n log a(n) = o √ n (n -→ ∞).
Introduce the quantities:

CR ∞ := k 2 ,...,kn 0 C k 2 ,...,kn 1 r k 2 +•••+kn = C n-1 1 r , CR + ∞ := k 2 ,...,kn 0 C k 2 ,...,kn 0 C k 2 ,...,kn 1 r k 2 +•••+kn , CR - ∞ := k 2 ,...,kn 0 C k 2 ,...,kn<0 -C k 2 ,...,kn 1 r k 2 +•••+kn , CR ∞ := k 2 ,...,kn 0 C k 2 ,...,kn 1 r k 2 +•••+kn = C n-1 1 r ,
for which it is clear that:

CR + ∞ + CR - ∞ CR ∞ .
By Lemma 9.2:

CR ∞ CR ∞ e 17 a(n) 2 ,
and next:

CR + ∞ + CR - ∞ CR ∞ e 17 a(n) 2 CR ∞ = e 17 a(n) 2 CR + ∞ -CR - ∞ ,
from which it comes:

CR - ∞ 1 + e 17 a(n) 2 2 e 17 a(n) 2 -1 CR + ∞ , whence: CR - ∞ 1 2 e 17 a(n) 2 -1 CR + ∞ . (10.2)
Next, we want to minorize CMR T in order to show it is large:

CMR T = CMR + T -CMR - T = k 2 +•••+kn √ n c(n) C k 2 ,...,kn 0 C k 2 ,...,kn M k 2 ,...,kn 1 r k 2 +•••+kn - - k 2 +•••+kn √ n c(n) C k 2 ,...,kn <0 -C k 2 ,...,kn M k 2 ,...,kn 1 r k 2 +•••+kn [Proposition 5.4] k 2 +•••+kn √ n c(n) C k 2 ,...,kn 0 C k 2 ,...,kn e -2 c(n) 2 1 r k 2 +•••+kn - [Lemma 5.1] - k 2 +•••+kn √ n c(n) C k 2 ,...,kn <0 -C k 2 ,...,kn • 1 • 1 r k 2 +•••+kn = e -2 c(n) 2 CR + T -CR - T ,
but we yet need to compare these to the quantities CR ± ∞ . Hence we estimate:

CR + ∞ -CR + T = CR + ∞ -CR + T = k 2 +•••+kn 1+ √ n c(n) C k 2 ,...,kn 0 C k 2 ,...,kn 1 r k 2 +•••+kn k 2 +•••+kn 1+ √ n c(n) C k 2 ,...,kn 1 r k 2 +•••+kn 2 e 12 e -log a(n)
and more simply:

-

CR - T -CR - ∞ , since: 0 CR - ∞ -CR - T = k 2 +•••+kn 1+ √ n c(n) C k 2 ,...,kn<0 -C k 2 ,...,kn 1 r k 2 +•••+kn .
Thanks to all this:

CMR T e -2 c(n) 2 CR + T -CR - T e -2 c(n) 2 CR + ∞ -2 e 12 e -log a(n) -CR - ∞ hence applying the minoration (10.2) for -CR - ∞ : CMR T e -2 c(n) 2 CR + ∞ -2 e 12 e -log a(n) -1 2 e 17 a(n) 2 -1 CR + ∞ = CR + ∞ e - 2 (log a(n)) 2 -→ n→∞ 1 -1 2 e 17 a(n) 2 -1 -→ n→∞ 0 -2 e 12 e -log a(n) e - 2 (log a(n)) 2 -→ n→∞ 0 .
Since trivially:

CR + ∞ = CR ∞ + CR - ∞ CR ∞ , it comes: CMR T CR ∞ e - 2 (log a(n)) 2 -1 2 e 17 a(n) 2 -1 -2 e 12 e -log a(n) e - 2 (log a(n)) 2 ,
whence using Lemma 9.3: , since it is visible that this majorant becomes < 1 when n is large enough, say for all n N GG , where N GG can be made effective.

CMR T e 1 
the 'perturbing terms' being underlined, after crossing/clearing the denominators, we are led to establish an inequality which is a 'perturbation' of the one just done above: Without redoing the calculation concerning the (principal, not underlined) terms, and using: For the first term of f ,ρ , since we have: Proof. Observe that this is true even when ρ = 0, since the function g ,0 (θ) = 1cos θ has derivarive sin θ > 0 on ]0, π 4 . Anyway, we assume 0 < ρ 0.25.

0 ? 1 -2 ρ +
1 < 2 1 -2 • 0.
Our aim is to minorize this derivative: g ,ρ (θ) = sin θ + 2 ρ ( + 1) sin ( + 1)θ + ρ +1 -4 sin θ -4( + 1) sin ( + 1)θ + 4 sin θ + ρ 2 +1 8 sin θ + 2( + 1) sin ( + 1)θ -8 sin θ + ρ 2 +2 -2 sin θ + ρ 3 +1 -4 sin θ , by a quantity which can be seen to be positive. However, we have to treat the special case = 1 separately, namely for all 0 < ρ 1 4 and for all 0 < θ π 4 , we first check that: g 1,ρ (θ) = sin θ + 4ρ sin 2θ + ρ 2 -8 sin 2θ + ρ 3 we are conducted to ask ourselves whether:

g ,ρ (θ) θ -1 6 ( θ) 3 + 2 ρ ( + 1) ( + 1)θ -1 6 (( + 1)θ) 3 + ρ +1 -4θ -4( + 1) ( + 1)θ + 4 θ -1 6 ( θ) 3

+ ρ 2 +1 8 θ -1 6 θ 3 + 2 ( + 1) ( + 1)θ -1 6 (( + 1)θ) 3 -8 θ + ρ 2 +2 -2 θ + ρ 3 +1 -4 θ ? > 0 (∀ 0 < θ π 4 ).

To have a better view, let us set: 

t := θ,

Lemma 9 . 1 .

 91 One has:

2 - 1 - 2 e 2 ( 2 ( 2 - 1 - 2 e 2 ( 2 .n log n 2 .e -n log 2 e n log 1+ 6 √ n log n 25 n 2 √ n log n n e -n log 2+ 6 √ n log n 25 n 2 < 1

 212222122226221 12 e -log a(n) elog a(n)) 2 .Coming back to:CMR CMR T -CMR R CMR T -2 e 12 e -log a(n) e -12 e -log a(n) 1 + e log a(n))This minorant is 1 for all n N large enough.Proof of Theorem 1.1. Choose -think integer value -:r := √ Proposition 3.1 concludes for X n-1 ⊂ P n of degree at least: when n NGG

? 2 ρ 1 -2 ρ 2 1 + 1 - 2 ρ + ρ 2 - 2 ρρ 3 +1-4 ρ 2 +1 + 8 ρ 3 +1 cos θ -4 ρ 4 +1-Only 4 = 2 • 2 ? 2 ρ 1 -2 ρ 2 1 - 4 +

 21112223244222114 cos ( + 1)θ cos (-θ)sin ( + 1)θ sin (-θ) = cos ( + 1 -) θ , we obtain:0 cos θ +1 cos ( + 1)θ + 4 ρ 2 +1 cos θ + ρ 2 +2 + 2 ρ +1 -4 ρ 2 +1 -ρ 2 +2 1 -2 ρ cos θ + ρ 2 .Now, organize the expansion of lines 2 and 3 in a convenient synoptic way:-2 ρ +1 cos ( + 1)θ + 4 ρ 2 +1 cos θ + ρ 2 +2 • + 4 ρ 2 +1 cos ( + 1)θ -8 ρ 3 +1 cos θ -2 ρ 3 +2 -2 ρ 3 +1 cos ( + 1)θ + 4 ρ 4 +1 cos θ + ρ 4 +2 • + 2 ρ +1 -4 ρ 2 +1 cos θ + 2terms annihilate by pairs, and the question is reduced to determine whether there is nonnegativity:0 cos θ + 2 ρ +1 1cos ( + 1)θ + ρ 2 +1 4 cos θ + 4 cos ( + 1)θ -4 cos θρ 3 +1 -8 cos θ -2 cos ( + 1)θ + 8 cos θ + 2 + ρ 3 +2 2 cos θ -2 + ρ 4 +1 4 cos θ -4 =: f ,ρ (θ),for a certain family f ,ρ 0 ρ 1/4 1 of 2π-periodic functions. Since this is trivially satisfied when ρ = 0, we shall from now on assume that:

25 2 2 1 - 1 -

 11 ρ , it would suffice to have, with certain new minorinzing functions:cos θ + 2 ρ 1cos ( + 1)θ + ρ +1 4 cos θ + 4 cos ( + 1)θ -4 cos θ -4 + ρ 2 +1 -8 cos θ -2 cos ( + 1)θ + 8 cos θ + 2 + ρ 2 +2 2 cos θ -2 + ρ 3 +1 4 cos θ -4 .For instance, again with the choice ρ := 0.25, the graphs on the unit circle of the functions θ -→ g ,ρ (θ)(-π θ π)show up, respectively, for the three choices = 2, 5, 10, as:Since these functions g ,ρ are even, it suffices to establish their nonnegativity on [0, π]. Let us begin with examining their behavior in a right half-neighborhood of 0. Starting from: 0 = g ,ρ (0), a positivity of the first derivatives of the g ,ρ would be welcome, at least on a small interval like ]0, π 4 . Lemma 11.2. For all real 0 < ρ 0.25 and for every integer 1, one has:g ,ρ (θ) > 0 (∀ 0 < θ π 4 ).

4 6 sin θ 1 • + 8 ρ 1 √ 2 -1 4 2 16 •+ ρ 3 8 √ 2 -ρ 4 6 ρ sin θ • 8 √ 2 + 0 2 8 √ 2 -1 4 3 6 = 2 .

 4611216826828262 sin 2θ + ρ 4 -6 sin θ= sin θ 1 + 8ρ cos θ -ρ 2 16 cos θ + ρ 3 8 cos θ -ρ 4 ρ sin θ • 5, 563 • • • > 0.So we may assume If we use the classical inequalities valid for ϕ ∈ [0, π]:

  π)

	n-1 2	1 e 1 12	1 +	31 360 n 2 +	5287 181 440 n 4 + O	1 n 6 .

Terminology 2.2. Call the coefficient of t n 1 • • • t n n in f 0 (t):

  Now, come back to the polynomiald n I 0 + d n-1 I 1 + • • • + I n of Proposition 3.1. Thanks to Fujiwara:

					bounded
	by:			
	max roots	2 max 1 p n	p |c p | |c 0 |	.
	max roots	2 max 1 p n	p |I p | I 0
	[I0 I0 is assumed]	2 max 1 p n	p |I p | I 0
	= 2 max 1 p n	p |I p | I p	•	I p I 0
	[Seen above]			

  ρ 2 1 -2 ρ cos θ -ρ +1 cos ( + 1)θ 2 + 2 ρ sin θ + ρ +1 sin ( + 1)θ 2 -1 -4 ρ + 4 ρ 2 -2 ρ +1 + 4 ρ 2 +1 + ρ 2 +2 1 -ρ cos θ 2 + ρ sin θ 2 ,the perturbing terms being still underlined, that is to say:0 ? 1 -2 ρ + ρ 2 1 -4 ρ cos θ + 4 ρ 2 cos 2 θ + 4 ρ 2 sin 2 θ -2 ρ +1 cos ( + 1)θ + 4 ρ 2 +1 cos θ cos ( + 1)θ + ρ 2 +2 cos 2 ( + 1)θ + 4 ρ 2 +1 sin θ sin ( + 1)θ + ρ 2 +2 sin 2 ( + 1)θ -1 -4 ρ + 4 ρ 2 -2 ρ +1 + 4 ρ 2 +1 + ρ 2 +2 1 -2 ρ cos θ + ρ 2 cos 2 θ + ρ 2 sin 2 θ .

Proof of Theorem 1.2. Thanks to [START_REF] Riedl | Applications of a grassmannian technique in hypersurfaces[END_REF], Proposition 3.1 concludes for X n-1 ⊂ P n of degree at least: 

attain, on the circle z ∈ C : |z| = ρ , their maximum modulus at the real point z = ρ:

and with the choice ρ := 0.25, the graphs on the unit circle of the two quotient functions:

show up, respectively, for the three choices k = 2, 5, 10 and the three choices = 2, 5, 10, as:

Proof. Treat at first the G k ρ e iθ with θ ∈ R, by squaring:

that is to say:

or equivalently, after crossing/clearing the fractions:

Visibly, 5 • 2 = 10 underlined terms annihilate by pairs:

and by luck, the obtained expression factorizes under a form which shows well that it takes only nonnegative values because 0 ρ 0.25:

Secondly, for the functions H (z) 1 , no such pleasant factorization is available. One can then view these H (z) as 'perturbations' of the G (z), with the addition of -z +1 at the denominator. More precisely, starting from the desired inequality of which we take the squared modulus:

In order to minorize this by an even simpler quantity, we can use, since 2:

and also -t 2 -1, so that:

and we even once more minorize this intermediate minorant by neglecting the term underlined and summing the expressions in brackets:

We conclude by a factorization and by a final computer check, still for all 2:

In summary, we have established for all 1 the positivity on a starting interval:

and our next goal is to establish the positivity of this minoring function g ,ρ on the remaining (large) subinterval of [0, π]:

We first finish the case = 1.

Lemma 11.3. For all 0 < ρ 0.25, the function

Proof. Indeed:

From now one, when we work on π 4 , π], we can therefore assume that: 2.

Lemma 11.4. For all 0 < ρ < 0.25 and every integer 2, there is on π 4 , π] a minoration:

Again with the choice ρ := 0.25, the graphs on the unit circle of the functions

show up, respectively, for the three choices = 2, 5, 10, as:

Proof. Indeed, we minorize simply the reminders:

and to even simplify the second line by replacing it by -18 ρ +1 as announced, we assert that:

-16 ρ +1 -20 ρ 2 +1 -4 ρ 2 +2 -8 ρ 3 +1 -18 ρ +1 , simply since:

It therefore remains to treat all the cases 2. We start by looking at the subintervals 0 < h ,ρ (θ)

Proof. Since:

it comes:

and since 1cos ( + 1)θ 0 anyway, we can minorize:

We can now finish the case = 2. It remains to show positivity of h 2,ρ (θ) on 7π 8 , π]. Since 21π 8 3 θ 3 π, or equivalently 5π 8 3 θ -π π, we can minorize:

It still remains to treat all the cases 3.

Lemma 11.6. For every real 0 ρ 0.25 and every integer 3, the function:

takes only positive values in the interval 7π 4 , π]: h ,ρ (θ) > 0

At a point θ ∈ 7π 4 , π , if we have either:

then there is nothing to prove. We claim that the opposite inequalities cannot hold.

Assertion 11.7. For every 3, there is no θ ∈ 7π 4 , π] at which: