Degrees d > (y/nlogn)" and d > (niogn)”
in the Conjectures of Green-Griffiths and of Kobayashi'

Joél MERKER? and The-Anh Ta?2

Département de Mathématiques d’'Orsay
Université Paris-Sud, France

ABSTRACT. Once first answers in any dimension to the Green-Griffiths and Kobayashi conjectures

for generic algebraic hypersurfaces X"~' C P"(C) have been reached, the principal goal is to

decrease (to improve) the degree bounds, knowing that the ‘celestial” horizon lies near d > 2n.
For Green-Griffiths algebraic degeneracy of entire holomorphic curves, we obtain:

d> (Valogn)",
and for Kobayashi-hyperbolicity (constancy of entire curves), we obtain:
d > (nlogn)".
The latter improves d > n>" obtained by Merker in arxiv.org/1807/11309/.

Admitting a certain technical conjecture Ip > Io, the method employed (Diverio-Merker-
Rousseau, Bérczi, Darondeau) conducts to constant power n, namely to:

d> 2% and, respectively, to: d > 4%

In Spring 2021, a forthcoming prepublication based on intensive computer explorations will
present several subconjectures supporting the belief that /o > Io, a conjecture which will be estab-
lished up to dimension n = 50.

Dedicated to Professor Nguyen Tu Cuong on the occasion of his 70" birthday

1. Introduction

The goal is to establish that generic algebraic hypersurfaces of the projective space
satisfy the Green-Griffiths conjecture, as well as their complements, with improvements on
lower degree bounds.

Theorem 1.1. For a generic hypersurface X"~' C P"(C) of degree:
d > (\/ﬁlogn)n (V1> Nag),

(1) there exists a proper subvariety Y C P" of codimension > 2 such that all nonconstant
entire holomorphic curves f: C — P"\X have image f(C) C Y in fact contained in Y;

(2) there exists a proper subvariety W C X of codimension > 2 such that all nonconstant
entire holomorphic curves f: C — X have image f(C) C W in fact contained in W.
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This lower degree bound:
d > des(n) == (Vnlogn)"

improves d > (571)2 n"™ of [6] and improves d > 277 of [9]. In the demonstrations, we will
treat mainly the details of the complement case (1), since the computations in the compact
case (2) are essentially similar, thanks to Darondeau’s works [4, 5, 6].

By [15], any solution to the Green-Griffiths conjecture in all dimensions 7 for hypersur-
faces of degrees d > dsc(n) implies a solution to the Kobayashi conjecture in all dimen-
sions n for hypersurfaces of degrees:

d > dg(n) := dgs(2n).

Rounding off a small technical improvement of Theorem 1.1 in order to present only an
elegant degree bound, we obtain as a corollary the following

Theorem 1.2. For a generic hypersurface X"~1 C P"(C) of degree:
d > (nlog n)n (Vn>Ng)

(@)) P”\X”fl is Kobayashi-hyperbolically imbedded in P";
(2) X"~ ! is Kobayashi-hyperbolic.

An inspection of the end of Section 10 shows that the dimensions N and N at which
these statements begin to hold true can be made effective.

Theorem 1.2 improves the degree bound d > n*" obtained in [13]. For standard pre-
sentations of the research field, and for up-to-date history, including degree bound compar-
isons, the reader is referred to the introductions of the articles [13, 15, 3,7, 11,8,2, 6,5, 4,
16, 1, 9], listed in chronological order of prepublication.

Under the technical assumption (or conjecture):

]02%7

the explanation of which the reader will find in Section 2, and which is equivalent to Prob-
lem 4.3, we obtain better results.

Theorem 1.3. If [, > Iy holds true, then for a generic hypersurface X"~* C P"(C) of
degree:
d> 2" (Vn>10),
the two conclusions (1) and (2) of Theorem 1.1 hold true.
Similarly, we also obtain as corollary the

Theorem 1.4. Under the same technical assumption 1y > E), the conclusions (1) and (2) of
Theorem 1.2 hold true in degree:
d > 4°" (Vn >20).
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Institute in Hungary, for suggesting them to submit this piece of work. We warmly thank
an anonymous referee for fine corrections.
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2. Preliminary: Link with Darondeau’s Work

This section continues [6], and goes slightly beyond. The jet order x = n will be chosen
equal to the dimension n, because some reflections on the concerned estimates convince
that any choice of x > n cannot improve the degree bound anyway.

Letn > 1 be an integer. Let ¢y, ..., 1, be formal variables. Introduce:

ti—t; t—2t;
Cltr,....tn) = [ =+ I —%——
1<i<i<n tj — 2tl 9<i<j<n tj — 2t1 + ti+1

As explained in [6], this rational expression possesses an iterated Laurent series at the origin

as:
k kn
Cty= Y, Chw it
kiseoiskn €2
ki4-+kn=0
for certain coefficients Cy, . ,; soon, this object C'(t1, ta, . . ., t,) will be re-interpreted as
a standard converging power series C'(wy, ..., w,) in terms of alternative new variables
(ws, . .., w,), hence it is not necessary to recall what an iterated Laurent series is.
For certain integer weights a4, ..., a, € N*, introduce also an expression which comes

from an application of the so-called holomorphic Morse inequalities:
7’L2
fo(t) = (&1t1 +-+ antn)
It expands:

folt) = Z L" (al tl)ml e (an tn)m"’

My ..my =

n

It is well known that the binomial (*") is the unique largest one among all the (*") with
0 < ¢ < 2n. In fact, an application of Stirling’s asymptotic formula:

| 5 (n)n 14 1 . 1 139 571 +O( 1 )
n! ~ m™n | — — - —
n— 0o e 12n  288n2 51840n% 2488320 nt ’

shows that asymptotically as n — oc:
<2n) N 22 [1—i+ 1 N 5 2 +O(i>]
n NZED 8n  128n% ~ 1024n3  32768n* nd
Similarly, the central multinomial coefficient:

M, n = (n2)‘ = (n2)!7
" n! - nl (nh)»

happens to be the unique largest one, as states the next observation (see also Lemma 5.1).

Lemma 2.1. For all integers mq,...,m, > 0 with m;y + --- + m, = n? and
(my,...,my) # (n,...,n), the corresponding multinomial coefficients are smaller than
the central one:
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Proof. This amounts to verify that:
n! n! n! 2
my! m;! my,!
The m; = n are neutral, for 2 = 1. By assumption, at least one m; # n.
n:
e When m; < n, simplify:

n!

il n(n—1)-(m;+1).

e When m; > n, simplify:
n! 1

m;!  (n+2)(n+1)---my

After these simplifications:

n! [l (=0)(n—1)---(m;+1)
11 = .

m;! [Lnsn(+1)(n+2)---m;

1<i<n

Since mq + -+ + m, = n?, the number of factors in the numerator is the same as that
in the denominator, and since each factor upstairs is < n, while each factor downstairs is
> n + 1, the result is indeed < 1. ]

A further application of Stirling’s formula shows that, asymptotically as n — oo:

(n?)! n2_niq 1 1 31 5287 1
@ ey L L 8L vo( L]
n!---n! (27)" 7 etz 360n2  181440n* nb
Terminology 2.2. Call the coefficient of ¢} - - - £ in fy(¢):
Iy = [t 17] (fo())
I ) L
— m al P an
the central monomial.
Since aq, ..., a, € N*, this is a large integer. The notation TO is borrowed from [6].

In fact, Appendices 1 and 2 of [6] provided almost all the details to verify that the choice
of weights:
a; = r" " (1<i<n),
for some constant  independent of n, shall offer a degree bound in the Green-Griffiths
conjecture of the form:

d > constant”.

which would improve the current d = n™ obtained in [6, 13].
For a certain nefness condition required to apply the holomorphic Morse inequalities, it
is necessary to have at least:

r = 3.

It is also allowed to take r larger, for instance:

r=29 or r =12 or r = 20,
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but one should try not to choose r increasing with n, like for instance r» = \/ﬁ since the
final degree bound would otherwise be (explanations will appear later):

d 2 (v/n)" > constant”.

In [6], the choice was 7 := n, and this conducted to d = n".
With a fixed (bounded) constant » > 3, the final degree bound for Green-Griffiths will
be close to:

d Z (r(1+e(r))" = constant”,
as we will verify in details later. The only remaining substantial piece of work to be done
is to solve the following

Problem 2.3. With the choice of weights:

1 e n—2 - -
ap =170, Qg =TS, . , QAp_1 =T, Gy =1,

to show that the coefficient of the monomial t} - - -t in the product C'(t) - fo(t), namely:

Iy = [t} ] <C’(t1,...,tn)-fo(tl,...,tn)>

is at least equal to the central monomial:

? ~

Iy > Iy
2
(n )' rnin(n;l)
(n!)m
In fact, several computer experiments convince that instead of %1 > 1, a better inequality
0
seems to hold:

@ pe (constantr)n,

Iy
for some constant, > 1 which depends on 7, and is closer and closer to 1 when 7 increases.
So experimentally, I, > I, is more than true. The goal is to set up a proof.

We start in Section 3 by verifying that a proof of % > 1 implies a degree bound for
Green-Griffiths of the announced form d > constant™; Othis task was already almost com-
pletely performed by Darondeau in [6].

__ Then in subsequent sections, we study the product C(ty,...,t,) and we establish [y >
1.

3. End of Proof of Theorem 1.3

It essentially suffices to read Appendices 1 and 2 of [6], with in mind that Darondeau’s
(simplifying) choice:

should be replaced with the choice:

where r > 3 is a fixed constant. Later, we will see that the choice » = 3 might expose
to some computational difficulties, while as soon that » > 9, a serendipitous positivity
property occurs. In any case, the estimates of the mentioned Appendix 2 were prepared in
advance to work for any choice of r = 3,9, 12, 20, log n, \/n, n, while they were applied
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in [6] to r = n by lack of a solution to Problem 2.3. Before solving this problem in the
next sections, let us admit temporarily that it has a positive answer for a certain fixed:

9 < r <20 (hypothesis throughout).
End of proof of Theorem 1.3. In the notations of [6], the lower degree bound:
d > dgg(n)
is determined by the largest root of a certain polynomial equation:
d"Ip+d" 'L+ +d" P+ + 1, = 0,

with 7y > 0. Of course, I is the same as in Problem 2.3, hence we assume temporarily not
only that it is positive, but also that it is quite large:
Iy
I

We refer to [6] for a presentation of the other coefficients I,,.

> 1.

Proposition 3.1. The polynomial in the degree d of a hypersurface X" C P"~(C):
d"Iy+d" 'L+ +d" P+ d L+ 1,
takes positive values for all degrees:
d > 250" (r+3)".
=: dgs(n,r).
In fact, a glance at the end of the proof below shows a slightly better, though more

complicated:

73

d = (20n* +4n) - ‘ - 3)".
ao(n.7) 1= (207" +4n) (r—1)?(r +3) (r+3)
Theorem 1.3 terminates by checking on a computer that:
3
25" > (20m2 + 4n) - . (r+3)" n>
( n- + n) (r — 1)3 (r—|—3) (7"+ ) (Vn>20),
for any choice of 9 < r < 20. ]

Proof of Proposition 3.1. In [6], the pole order of so-called slanted vector fields c, :=
n(n + 2) is used. But the article [S] improves it to:

Cp = 0n — 2.

c+2
2
c—|—2_5n+1
2 2

Then with ¢ := ¢, + 1, the quantity appears several times in [6], so we may read:

Next, with:

set:
pla) == lay+2ay+ -+ nay,



3. End of Proof of Theorem 1.3 7

and for all 1 < p < n, set:

~ n?)! »
I, = én'))" at---apy (2nu(a)) Z —_— —

a; a;
N , 1<i1 < <ip<n 1 v

recognize Ip

Importantly, Lemma A.6 on page 1919 of Appendix 2 shows that:

L 5 1 2 h 2 h 1 1
15l i.‘3,<mw,M>.m(_,_“?_) Geem
I, 2 a; p, ay (n

It is not necessary to dwell into details about the middle quantity | B|, since Lemma A.7 on
page 1920 shows that for any choice of weights a4, ..., a,:

B (Qn,u(a)h | 2n,u(a)h) < (2—n>”+1

PRI

a; an, 2n—1
< 2 (Vn >4 - exercise).
Consequently, we get:
I 1 1
@ < (57’L+1)|C|<—,,—> (1<p<n).
[p 3] Qp,

Next, page 1914 uses the control:

1 1 ~r1 1
ycy<—,...,—) < c(-,...,-),
aq Qp, aq Qp,
by the ‘majorant’ series:

Y L tj—t@ tJ_Qt’

1<i<jsn 7 2<i<j<n

Replacing the formal variables by the inverses of the weights, we get:

~1 11 a;/a; —1 a;/a; — 2
CENEELNN | Qe )

a;la; —2—a;/a; 1
1<i<j<n 2<i<j<n i/ 4y i/ i1

Since a; = ™" for 1 < i < n, this rewrites as:

~7 1 11 ri=t -1 ri=t -2
C(—,...,—,—) = —_ T
rn—1 r’1 H ri=t —9 H ri—i — 9 _ %

1<i<j<n 2<i<j<n
it —1 I N
(Extracti = 1 I Lo e ==
L 192 11 ritt—2 pii—2-1
2<j<n 2<i<j<n b ———0 r
riml 1 ri—itl _
[Simplify] = 1] ——= I —
Lot AL il 2y ]
2€j<n 2<i<j<n
rk—1 rt —r n—¢
[Rename indices] = H H —_— .
rk —2 rt—2r—1
1<k<n—1 2<l<n—1

Using inequalities valid as soon as r > 4 hence for r > 9:

1 2

il Vk>1)
rk—9 = pk ’
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and using the classical inequality log (1 + ¢) < ¢ valid for —1 < & < oo, let us show that
the first product is bounded by a universal constant, and even by a constant which decreases
as 7 increases:

I1(+2)

(
xp(i.og( )

1

/N
—
+
<
bl
I =
[\]
N—
VAN

—
A
bl

N
3
—_
bl
—

I
o)

k=
2 1
[log (1 +¢) <¢] < exp| — —k
r r
k=0
=
= ex
P r—1
<149
r’
because:
( 2 > " 2 +1 22 1 ok
exp| —— ) = — —
- r—1 2l (r—1)2 K (r—1)
k>3
2 2 1 1
[Qk— 2 for k > 3] <1+ + + 2 I

r—1 r—2
2
=1
+r—2
3
Vr > 6] <14+ -
r

The second product is bounded by a constant power n — 2:
¢

rt—r n—¢ r+1 n—¢
r=r _ 1 —)
H (7’[—27”—1> H <+7’f—2r—1

2<b<n—1 2<0<n—1

H <1+ 7’—|—1 ) n—2
~ rt —2r—1
et r+1 -2
S [
(H(+r£—2r—1 )

(=2

/N
N
[N}
I\
~
N\
3

Let us estimate this constant, which depends on 7:

[e.o]

o= 1 (5

(=2
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Lemma 3.2. For all v > 6, one has:

r+1 2
1+ — < 14— Ve>2).
+7""5—27‘—1 +r‘3—1 =2
Proof. This amounts to:
A A
dr4+2 < r“ —r < rr—r"- (Vr=6,V0>2).
The first inequality 0 < 1% — 57 — 2 s true since %ﬁ =5.37--- <6. U

Hence we can majorize still assuming r > 9 throughout:

~ 2
=2 "
- 2
= exp (Z log (1 + m))
=0 "
2 = 1
flog(1+¢)<1] < exp (; Z ﬁ)
=0
(1)
= ex
&P r—1
3
[Seen above] <1+ -
r
In summary, we have shown that:
I 3 3\ "2
Ll (Br+1)-(142)- (1+2) (¥n>2).
I, r r
Next, we estimate, still with a; = r" " fori =1,...,n:

ula) =1-a3+2-a3+---+(n—1a,1+na,
=1t 22 (n—1)rt
=+ [+t 00
— "t (=1 — =2t =100
rt—1
r—1
nrtt—(n+1)rm+1
D

= (n+1)

the result in this last line being obtained simply by differentiating with respect to r the
classical:
it 1

r—1

o A SRR o e et B
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A reduction to the same denominator contracts:

r"t —(n+1)r+n
(r—1)2

n+1

pla) =

r
(r—1)?
r n

—(T’— 1)2 .

N

Next, consider generally a polynomial of degree n > 1 with complex coefficients ¢, €
C:

o+ 2 e 2t F oo (co #0).

Theorem 3.3. [Fujiwara] The moduli of all roots of coz"™ + ¢, 2" ! + - - - + ¢, are bounded
by:

max |roots| < 2 max M. O
1<p<n \[ ¢y

Now, come back to the polynomial d" Iy +d" ! I, +- - - + I,, of Proposition 3.1. Thanks
to Fujiwara:

m P ’[P|
ax ‘roots‘ < 2 max —
1<p<n || I
- ||
[Io > Io is assumed] < 2 max —
t<p<n \[ [
L| 1,
= 2 max { @ 4
I<psn I, I
» 3\n—1 jp
[Seen above] < 2 max (5n + 1) <1 + —) - =
1<p<n r I
P 3 n-1 P j;)
< 2 max {/ (5n+1) <1—|——> - max {22
1<psn r 1<psn ]0
3yn-1 I
= 2(5n+1) (1+—) - max (] £ -
r 1<psn [0

Next, coming back to the definition of I , it remains to estimate the p-th roots of the
quotients:

(At

1 1
= @au@) Y el
1<y < <ip<n iy

-~

_ 1 1
= o
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which incorporate the p-th symmetric functions o, of the weight inverses --. We start by
extracting the p-th root of (2n p(a )) easily:

I 1 1
max {| = = 2npu(a)- max </0p<—,...,—>

1<p<n IO 1<p<sn ay (079
r n 1 1
[Seen above] < 2n——r"- max /o, —,...,— ).
(r—1) 1<p<n aq an

Lemma 3.4. One has:

(/ 1 1 1 1
max (foy (L D) = o(E D)
1<p<n aq Ay, aq Qp

Proof. For positive real numbers by, ..., b, > 0, the renormalized symmetric functions:

1
sp(bl,...,bn) ::m Z biy -+ by,

P/ 1K1 < <ip<n
1

= mgp (bl,...,bp),
p

satisfy the classical Mac Laurin inequality:

S1 2 Sz = /S3 = e = {/Sn-

A modified version, useful to us, is:

Assertion 3.5. A similar, less fine, inequality, holds before renormalization:

> \2/;2 > “““““ 2 p/O-p > P+1/0‘p+1 2 ...... 2 ’Vlo-n.

Proof. For 1 < — 1, we would deduce from Mac Laurin what we want:

known 0p+1 ?
— S/o'p > p+1/0-p+1) ,
p+1

provided it would be true that:
()

™ (pil)

We claim that such numerical inequalities hold true. Indeed, from the two visible minora-
tions:

D)
2 1 (Vi<p<n-1).

nn—1)--(n-p+1) > (n— p)
(p+1)" > 1-2-...-p,

it comes:
nn—1)---(n—p+1) -
1-2-...-p ~ (p+1)p
whence we obtain what we wanted:
nn—1)--(n—p+1)7"" N nin—=1)---(n—p+1) (n—p)1"
1-2-...-p - 1-2 '
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Lastly, with b; := i e, by = ai we get:

1 1 1 1
O'1<—,...,—> > O'p<—,...,—> (V1<p<n),
aq Qp, aq Qp,

which forces the maximum to be attained precisely when p = 1.

So we obtain:

I, r 1 1
max {/ = < 2n—r”-01<—,...,—>.
1<p<n \| T, (r—1)2 a Qn,
and it only remains to estimate:
1 1 1 1 1
Ul<_7 ) 7_> < _1+ +-+1
aq Ap_1 Ay rm r
o T
S or—1

3yn-1 I
max’roots| < (10n+2) <1+ —) - max {] =2
r 1<p<n || ],
3\n-1 r 1 1
< (10n+2 <1 —) 2 n (——)
(10n + 2) + n(r—l)Qr (o "
(r+3)"! r r
< (10 2 2 "
(10m +2) 1 r—12 r_1
2 rs
= (20 4n) - . 3
( n’ +dn) (r—1)3(r+3) (T+ )
< 2507 (r+3)" O
4. From Coordinates (¢, s, ...,t,) to Coordinates (ws, ..., w,)

The goal of this section is to transform both the product C'(¢) and the n?-power fo(t)
into more tractable expressions, by introducing the formal variables:

tl . tg . tn—l
= —, W3 = —, ...... . Wy, = .
to

Wy
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To enhance intuition, start by expanding the writing of the factors of two types in the
considered double big product:
to—t1 t3—1 tn — 1
ty — 2t t3 — 2t  t,— 24
ty — o tn — 12
ts — 2ty t, — 219

C(tl,...,tn) -

tn - tn—l

ty — 2tn_1
t3—2t2 tn_2t2

ty —2to + 1, t, — 2ty + 1,

ty— 2t
tn - Qtn—l + tn—2'

To pass to the new variables, compute first for instance:

t2_t1 . 1_% . 1-11)2
ty =2t 1—-28 " 1-2w,’
t t1 t
t3—t1 _ 1_i _ 1_é§ _ 1—UJ2U}3
t3—2t1 1—2% 1—2%% 1-211)211]37
t5—2t2 _ 1_2%%% _ 1—2w3w4w5
t5—2t2+t1 1—2t—2t—3t—4—|—t—1t—2t—3t—4 1—2w3w4w5—|—w2w3w4w5'

ts tg ts to t3 t4 ts

Generally, with as above:

w; = (2<i<n),

we can transform all the factors of first type, for indices 2 < 7 < j < n — mind the shift
i — i — 1 from the original definition of C'(t):

ti— ti— ti_
U R
2,) : tj—2ti_1 1_27521 1_2152_:17?;_;1

1—’11)111)]

Similarly, for 3 < ¢ < j < n, again with the shift s — 7 — 1:

ti— ti— ti_1

r L t;— 2t _ =2 tjl B 1=2 til'..th
Z?J(t) = r_ 2t + L - 1-9 ti1 + ti_o 1 ) ti—1 tji—1 ti—oti—1 tj_1
J b tj tj T Ty Tty

1—=2w; - w

1 —2w,~---wj+wi_1wi---wj
=: F, j(w).
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Consequently:
1—wy 1—wows 1 —wows---w,
Cl(ty,ta, ..., t,) = Clws,...,wy,) =

(t2, 82, . o) (12 wn) 1—=2wy 1 —2wows 1 —2wows -+ wy,
1—ws; 1—ws---w,
1—2w; 1—-2ws---w,
1—w,
1—-2w,

1—2ws 1—2ws:--w,
1 — 2wz + waws 1—2ws- - w, +waws---w,

1-2w,

1 — 2w, + w,_ 1w,

This can be abbreviated as:

Cw) = ] 2 ] 12w,

2<isicn 1—2w;---wj s<isin I =2w;- - wj +wi—qw; - - wj
_ / /
= 11 = 11 7
2<i<j<n 3<i<j<n
As is visible — and as was already visible before in variables (¢, . .., t,) —, the terms

1—2w; - - - w; that appear in the denominators of the F; ; cancel out with the same terms ap-

pearing in the numerators of the F ., though only for 3 < ¢ < j < n. These simplifications

l?j ’
conduct to the shorter representation:

ol ) 1 —w, I — wow3 1 —wows- - w,
W,y ..., Wy) := ————— = —————————— e
2 1— 2w, 1 — 2wows I = 2wows -+ - w,
1—w3 1—w3wn
1 —2ws + wows 1 —=2ws- - w, +wws---w,
1—w,

1 — 2w, +w,_qw,’
which can be re-abbreviated as:

C(U}g, e ,wn) = E2<w2) E3<'U)2,U)3) cee En(’wz, ws, ... ,wn)

F373(w2, w3) te F3,n(w27 Ws, ... 7wn)

Fn,n<wn—1a wn)7
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that is to say:

Clws,...,wa) = [ 1—wy---w 1 - 1—wi---@j

2Si<n 1—=2wy---wj s<icicn & 2w; Wy + Wi w; w;
Vv
=: E]' = Fi,j

Next, let us re-express in the w; variables:

fo(t) = <a1t1 + -+ an72tn72 + Clnfltnfl + antn)
2

n
— t tn—2 tn—1 t n

2

n tTL
Tl2 n2
= <r”’1w2 Wy A TPW Wy, T W, ++ 1) (tn)" .
To yet transform t:f at the end, observe that:
1 1

e N Y 1 e (e R G-

n 1
n—2"n—1 n2-n
tn

2
n
ZS’I'L

A P R

ey -

whence:
2
— n
h (r"wy - wy + -+ PPwp W, T w, + 1) 1
oll) = 5 )
2 “on 2 nyn .. 4n
wywg™ eew, Tw t7 n—1tn

Consequently, in Problem 2.3, the coefficient [, of the monomial £7 - - - £ in the product
C(t) - fo(t) identifies with the constant term, namely the coefficient of w3 ---w? = 1, in
the product:

2

— n
(r" 1w2---wn—|—--~+7"2wn,1wn+rwn+l) 1 —ws 1 — wows 1 —wows---wy,
— — e
w§w§"~-w;’_12"wﬁ n 1—2ws 1 —2wows 1 —2wows - wy
1— w3 1—ws---wy,
1 —2ws + wows 1—2ws---wy, +wows---wy
1—w,

1— 2w, + W1 Wy

It is now appropriate to expand the n? power in the numerator above plainly as:

! ' ‘ 2 i n—1 in n?)!
a2 W w7 ) oy

21'7,2'@3' A7

i14-+in=n2

Next, we would like to point out that C'(ws, . . . , w,,) is a product of rational expressions
which expand all in converging power series at the origin. More precisely, using the trivial
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expansion:
11—z T
E = =1
@) =15, =W isa,
=1+) 2714,
i=1
together with the expansion of Lemma 6.1 — with the convention that (4:11) =0 =
—1 )
( ¢ ) e
l—y y—ry
F(z,y) = =

1-2y+zy ! 1—2y—|—xy
1+Zy Z 1) k[Qélk(£k1)+2€ k(- 11)}
0<k<t
and re-expressing:
(41) C’(wg,...,wn) = H E(wgwj) H F(wi_l, wi---wj),
2<j<n 3<i<jsn

and lastly, multiplying all the obtained converging power series, one can in principle receive
an expansion:

Clwy,...,w,) = Z Z Cligoo o (w2)*2 -+ (wy,) 7,

ko=0 kn=0

which is holomorphic in a neighborhood of the origin. However, it is very delicate to reach
closed explicit expressions for these integer Taylor coefficients Cy, i, , a difficulty which
lies at the very core of Problem 2.3.

In summary, the quantity I, we want to determine, in order to show that it satisfies

Iy > I, is the coefficient of the constant term w3 - -+ w? in a product consisting of 2 rows:

Z o Z Clogn (W2)F2 - ()P -

ko=0 kn=0

! —— Z ()" (rwy)™ (r’wn,— 1wn)i3 e (g - -wn)in

(wy)™ - - - (wy) W i1liglis! -

Clearly, the second row becomes, after reorganization, a Laurent series of the form:

Z o Z Ttgtn (W2)2 -+ (wy,).

—n<ly —(n2-n)<ly
But because in the first row one always has ks,...,k, > 0, all Laurent monomials
(ws)® - -+ (w,)" in the second row for which ¢; > 1 for some 1 < i < n do not con-

tribute to the determination of the desired constant term w3 ---w?. So the summation in

the second row can be truncated to:

SRR SRR RS

—n<l<0 —(n?2—n)<l, <0

iy
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A supplementary change of indices followed by a reorganization conducts to an appropriate
reformulation of what is /: the following statement will then constitute the very starting

point of our further explorations.

Proposition 4.2. One has:

where:
2)|
(n°)!

Alwg,ywa) = D | | | | 3
e (n— k) (n+ ko —ks)l---(n+ kno — kn_1)!(n+ kn_y — k) (n + kyp)!
0<ks<n+ka
0<kn—1<n+kn >
0<kn <n+kn—1

Tnn(nz—l) 1
ket (wy)R2 - (wy )R
and where C(ws, . .., wy,) is as before.
Proof. We therefore rewrite:
1 i1 i2 2 i3 n—2 in—1 n—1 in
5 T n Z (1) (rwn) (FPwp—1wy) " -+ (r"Pws - wp_qwy) " (P  waws - wp—qwy,)
wgwgn e e wn_l " i >0
i1+---+in:n2
(n?)!
iligligl - gl

= D> > D N ettt (w2)2(w5) " () (),

—n<ly —2n<l3 —(n—2)n<ly—1 —(n—1)n<ly

so that the correspondence between exponents is:

—n < by = i, —n,
—2n < 63 = in+in_1—2n,
—n=2)n < by =in+in1+--+i3—(n—2)n,
—(n=Dn < by, =ip+in1+-Fig+ia—(n—1)n.

Performing the harmless truncations /5 < 0, ..., £, < 0 leads then to the inequalities:

0<i4, <n,
gin—i_in—ngna
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so that it suffices to consider, before multiplying by C'(ws, . .., w,), the truncated series:
4 2. 1
‘_ iy 2M—in_1—in (n—2)n—in—in_1——i3 (n—1)n—in—in_1——iz—iz
i14+ipn=n2 Wq Wsg Wp—1 Wn
1120,...,in2>0
0<in<n

O0<intin—1<2n

0<in+in—1++izg+ia<(n—1)n

2
i 234+ (n—2)in_1+(n—1)in (n?)!
AR AR LRI R k.

o

To reach the expression shown by the proposition, introduce the new nonnegative integer
indices:

ko := n—1i, (k2 >0),
ks == 2n — 1,1 — ip (k3 >0),
........................... ()7
kno1 = (n—2)n—iz3— -+ —ip_1 — iy (kn—1>0),
kn = (n—1)n—iyg—izg— - —ip1— iy (kn > 0).

To finish, three explanations are needed.
Firstly, one has the inequalities:

because i,, > 0 and because:
k?3 = n—in_l—i—n—in = n—in_1+k’2 < TL+]€2
——
74'71—120
Similarly:
0 < ks =3n—tdp9—ipq1—1lp =n—lpo+ks < n+ks,

and so on up to:

Secondly, since:
kotks+- - +ko_1+k, = n (1424 - +(n—2)+(n—1))—is—2iz— - -—(n—2) in_1—(n—1) iy,
the exponent of  becomes:
iy 4 2ig 4 (0= 2) iy + (0= 1) iy = n 2k kg — e — Ky — .
Thirdly and lastly, the factorials become:
in! = (n— ko),
In_1! = (n+n — iy — k3)! = (n+k2 - kg)!,
ol = (= kot (n—1)n—ig—- —iy)! = (n+ky1 — kn)!,
il = (nn—(+ky1—ky) = —(n+ks—ks) — (n—ka)) = (n+kn)l.
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These three explanations yield the expression of A(ws,...,w,) stated by the proposition.
U

Next, because only the quotient §—° must be studied in order to reach the minoration
. 0
Iy = I, we can divide everything in advance by the central monomial:

~ - <n2>' rnn(nzfl) ‘

Equivalently, we factor:

(n2)| Tnn(n271) )

A:

n! n! n! n!
ngz;@ (n—ka)! (n+ky—ks)!  (n4kpsg—kn1)! (n+ kp_1 — ka)l(n+ k)
0<ks<n+k2

ngnf 1 <n+kn72
0<kn <ntkp—1

1 1

" katkat otk 1+kn ka2, k3 kn—1 ’
r Wo wWsg™ - - Wy 1 Wy

we keep the same name A after eliminating the factor TO on the first line, and we reformulate
our goal as a more precise

Problem 4.3. For some specific choice of a fixed constant r > 3, to show that for any
n > 2, the coefficient of the constant monomial w9 - - - w? in the product C'(w) - A(w) is at
least equal to 1, namely:

1 < [wg---wg} (C’(wg,...,wn)-A(wg,...,wn)>,

where:
1—wy 1 — wows 1 —wows---w,
C W) = ——— 2%
(w2, wn) 1 — 2w, I —2wows 1 —2wows - - w,
1—w3 1—w3...wn
1 = 2ws3 + waws 1—2ws- - wy, + waws - - wy,
1 —w,
1_2wn+wn71wn,
and where:
n! n! n! n!
Alwa, ..., wy,) = .
( 2, ) ) ()<k2:<n (n—]{:g)' <n+k2 —I{Z3)! (n—i—kn_2 —k‘n_l)! (n+kn—1 —/{;n)'<n—|—]§n)|
ngggn-i-kz

0<kp—1<n+kn—2
0<kn <n+kn—1

1 1

© ko tkstotkn_1+k o
rketkst-tkn 1+nwl2€2w§3__‘wn1
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Of course, under the hypothesis that the power series expansion of C'(w) is known:

C’(U)g, o 7wn) = Z T Z Okg,...,kn (w2)k2 e (wn)kn7
ko=0 k=0

the coefficient in question writes up as the sum:

n! n! n! n!
CA" | = )
nt 2. (n—ko)! (n+ky—ks)! (N4 kng —kn1)! (04 Ekpoy — k)0 + ky)!

0<ka<n
0<ks<n+-k2

ngn—l <n+kn—2
0<kn <ntkn_1

! C
./]"k2+k3+"'+kn71+kn ka,k3,...kn—1,kn>

which should satisfy:
CA" | > 1 (Vn>2).

5. Approximations of multinomial quotients M/;}

yhvn

Let us attribute a name to the quotients of multinomial coefficients which have appeared
above:

n! n! n! n!

M - :
Faksy o=tk T (0 — ko) (n+ Ky — k) (n+ ko1 — k) (n+k,)!
(n?)!
(n—kg)! (7‘L+k2—k3)! (n+kn—1—kn)! (7‘L+kn)!
(n?)! ’
n!n!---nln!

When ky = k3 =---=k,_1 = k, = 0, this is just:

&0,...,0,0 = 1
Lemma 5.1. For all indices (ko, ks, ..., kn_1,kn) # (0,0,...,0,0) in the domain:

0 < kQ < n,
0 < ]{?3 < n -+ ]{32,
< kn—l < n+ kn—27
< kn < n—+ kn—la
there are strict inequalities:
(0<) Kok kn 1 ke < L
with equality = 1 only when ky = ks = --- =k, 1 =k, = 0.

Proof. Coming back to the old (nonnegative) indices:
in =n-—- k?v
in—1 = n+ ko — ks,
g = n+kn-1— kn,
il =n-+ kn;
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which satisfy i1 + 4o+ -+ 9,1 + i, =nn = n? and are not all equal to n — otherwise
all £\, = 0 —, we have to explain the inequalities:

n! n! nl nl 2
1. 192! Ip—1+ lp-

After a reordering, we can assume that:

FEN, .. s e Ny Gl =Ty .. , iy =M,

for a certain integer 1 < k < n. Since the factors Z—: = 1 have no effect, we are led to ask

whether:
n! n! nl 2

11! 7! 1!
Observing that:
iyt i, = RN,
let us distinguish two cases about these 7, for every 1 < A\ < k:
< n or iy > n.
When i), < n, we simplify:

|
L= (1) (ix+1),
(3%

and when i) > n, we simplify:

n! 1

ix! i (ix—1)---(n+1)

so that:
n! n! n! [[,cnn(n—=1) - (ix+1)
ill ’L)\' Z,{' sz\>n iA(i)\— 1)(n+1) .
Now, we observe that in this fraction the number of integer factors at numerator place is
equal to the number of integer factors at denominateur place, because the equality above:

RN = Z ’L')\ZZZ')\—FZZ')\

1<k <n A>n
can be rewritten as:
E (n—z}\) = E (iA—n).
i\<n i\>n

But each integer factor at denominator place is larger than all integer factors at numerator
place, so the fraction must be < 1. U

Visibly, in the quantity under study:

n! n! n! n!

M} =
k2,k3, . kn—1,kn (n _ /{22)! (n + ko — /{:3)! (n + kg — kn)! (n + kn)!’
there are two types of quotients:
n! n!

n — : n :
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We can simplify, factorize, and rewrite the first type quotients as:

n! :n(n—l)---(n—k:+1):nk<1_9)<1_1>_”<1_k—1)

(n—k)! 1 n n n

TG

0<ig<k—1

and the second type quotients as:
n! B 1 1
(n+0!  (n+0)---(n+1)  (1+5) - (1+1)n

= nt H (1—1—%)_1.

1<g<e

In order to estimate the proximity to 1 of these products, let us take their logarithms:

og ] (1—%):Iog(l—%)+|og<1_%>+u_+log<1_k;1>

0<i<k—1

and:

< 0.

Certainly, we have already seen implicitly in the proof of the previous Lemma 5.1 that
all the logarithms of these products are < 0. But we are now searching for a minoration of
these coefficients:

My, 1. = what?

For a reason that will become transparent just after a preliminary lemma, we will soon
restrict ourselves to suppose that:

ko+ks+ -+ ko1 +k, < V.
Lemma 5.2. Forall 0 < 6 < 3/5:
Iog(1—5) > —§— 6%,

and for all € > 0:
—log (1+5) > —c.

Proof. The first inequality — which is in fact true for 0 < 0 < 0,683 as can be seen with
the help of a computer —:

is equivalent to:
6 2 8 ot 6
2 73T Ts T
In this inequality under questioning, let us insert a computable infinite sum:

2 ) 2 2
1> 26(14+64+6%+) > S64+-82+28+---
2 (1+640"+--+) SO+ 70+ 4,
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in order to come to an elementary minoration:

12 2512 3-35 > 26
Z -0 —— <~ — = .
3 1-9
The second inequality log (1 + ¢) < ¢ is well known. U
Now, let us suppose that:
k < +/n,
whence as soon as n > 4:
k—1 - 1 o 1 - 3
n n o 2 5
Then:
k—1 . k—1 k=1 .o
i 1 ?
log (1 — —) = — - — —
n n n
=0 1=0 =0
(k=1 Ek (E-1)Ek(2k-1)
N 2n 6n?

k> k k3 N k> k
2n  2n  3n?  2n?  6n%

The three terms here underlined have a positive contribution and we can even neglect
the second of them:

k+/€2 k>k<1 1>>0
on  2n2 6n2 '

Therefore, we obtain a useful minoration:

! i R 2Rk
S TA N
— 2n  3n? 2n 3nn
k2 k?
[ <1] > - -2
" 2n  3n
k2
> -
n

Next, for the quotients of second type which are present in the various My ., the
minoration work is easier:

RICIC R

j=1 j=1

L 2 B 14

N 2n  2n
2 62
(€< =z ——.
n

Without forgetting the powers n* and n~*, these estimates can now be summarized as
the following
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Lemma 5.3. Forall 0 < k < 3n:

5
ne n
(n—k)! =
and for all 0 < £:
n! 2
— > nte W, U
(n+0)! =
Importantly, we point out that there is a uniform minoration:
n! e _m?
(n+m)!
valid for all integers m € Z, positive or negative, in the range:
— % n < m < oo.

Notice that the exponential factor is always < 1.
Next, thanks to all this, we will assume from now on that the range of the integers
ko, ..., k, is restricted to:

0 < k2+k3++kn—1+kn < T\
c(n)

for some function ¢(n) — oo that will be chosen later — think for instance c¢(n) :=

n—oo

log log log n. In particular, this implies that:

nggggn, ‘kg—k3|<%<§n, ......

Vn 3
knfl_k‘n| < m < 5n,

so that the lemma applies to minorize:

A B n! n! n! n!
Foks eofn=thn T (n — ko)l (n+ kg — k3)! (n+ kn—1 — k)l (n+ky)!
k3 (ko —kg)? (kn—1—kn)?
ky —-2 —kothks ,—f2—ka)" —kn_1tkn —-mLlTR k-
> n? e nn P e e n e n n_"" e

— o (B3 (ka—ks)? ot (ko1 —hn) 24k

— e [2k3—2 koka+2 K3+ 4+2k2_ —2kn_1kn+2k2]

6_% [2 (k2+k3+~~-+kn—1+kn)2]

WV

1 n
e 2w

WV

2

e «m? —5 1.

n—oo

We thus have proved the key

Proposition 5.4. For any choice of function ¢(n) == oo, the quantities:

A n! n! n! n!
Foksoknotbn = B (n4 kg — ks)! (n+ ko1 — ko)l (n+ k)]

enjoy the inequalities:

2
-2 n
e c(n) < Mk‘g,kg,...,knfhkn < 17
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when their indices range in the set:

{(k27k3a"'7k:n—17kn) € N": 0 < kQ < n,
0 g k3 < n+k27
0 < kn—l < n+kn—27
0 < kn < n+kn—17
n
k2+k3+~-+kn1+kn<£}. O
c(n
6. Majorant power series C (ws, ..., w,) and its diagonalization C(z, . .., )
Now, come back to:
-y
Flz,y) = ————
1-2y+uzy
and observe that forall 3 <7< n —1:
1 — xi—l )
‘ - = F =1
1_2$z71_|_$z (.CC,I’ )
Its expansion:
y—xy
F =1+ —
SR 3
=1 k=0

will be (easily) computed soon. With F(z,y), introduce also — notice the single sign
change in the denominator:

=~ 11—y yt+aoy
I - Ty gL _YTry
(z.9) 1-2y—=zy +1—2y—xy
SEE WO
(=1 k=0

a new function which will act as a majorant series, in the sense that:
|Fr| < Fre (VE>0,¥6>0).

Such inequalities are made transparent from the following clear explicit expressions, in
which just a factor (—1)* drops.

Lemma 6.1. With the convention that (6:11) =0= (421), the power series expansions are:

Fley) = 14304 30 (<)faf 200 () + 27 (1)),

(=1 0<k<t

Py =1+ 3 a2 () 2ok ()]

(=1 0<k<t
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Proof. Expand:

F(z,y) = 1+

e S E e (1)

=0 o<m<h

[The series converge e.g. for |z, |y| < } since in the denominator 1 — 21 — -5 > 0, but
we will not need precise information about the domain of convergence.] Two double sums
must be reorganized. In the first one, replace h = ¢ — 1 and m = k:

f; Yt Z —1)m g™ hmm ( ) Z Y Z (1) g 21k (62 1)’

o<m<h 0<k<e—1

and observe that the last sum can be extended to the range 0 < k& < ¢, thanks to the
convention. In the second one, replace h = ¢ — land m = k — 1:

S e (1) < -3y 3 e ()

h=0 o<m<h 1<kl

and observe that the term £ = 0 in the sum can be included, thanks to the convention.
Adding these two expressions yield the stated power expansion of F'(x,y).
Next, for what concerns:

yt+ary

F(z,y) = 1+m

= 1—|—(y—|—xy) iyh(Q—i-x)h

h=0
= h—m h
=1ty 2yt 5 a2
0<m<h
exactly the same transformations work, except that the (—1)™ factor has disappeared. [
Next, our goal is to introduce a majorant power series C (wa, ..., w,) for the power se-

ries C'(wy, . . ., w,). As anticipated above, it is now clear by means of the triangle inequality
that:
(6.2) |Fk£| < Fiy,

forall £ > 0 and all ¢ > 0. In terms of F'(x,y) and of the already seen power series:

1—=z =
E(z) = =Y Epa*
(@)= 155 Z ke
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having positive coefficients £y = 1 and E), = 28! for k > 1, recall from (4.1) that:

C’(wg,...,wn) =: H E<w2---wi)

2<i<n

H F(wu Wit1 * - 'wj)-

2<i<j<n
Hence we may introduce similarly:

a(wQ,...,wn) = H E(w2-~wi)

2<i<n

H ﬁ(w“ wi+1~--wj).

2<i<j<n

The expansions of the factors of the first product show as:

Cluws,.ywn) = [ (gE’f(w““)k)

2<i<n
H (Z Fk,é(wi) (wz’+1"'wj))
2<i<j<n N k=0 (=0
kz kn
=: Z Clagyootin (w2) 7+ (wy,)™,
kg ,kn >0

and similarly:

Since all £}, > 0 and all ﬁk,é > 0, we have all ékzk > 0 as well — however, many
Cho,...kn, are < —1.
Thanks to (6.2) and to the triangle inequality in expansions, we obtain:

(6.3) 1Cliarooin] < Chigyotons
for all ko, . .., k, > 0, which means that Cisa majorant power series for C'. Notice that:
Cryykn € Z and Chorbn € N.

Now, passing to the diagonal:

{w2 == w, = x},
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we deduce for every £ € N, again by means of the triangle inequality:

Gl =1 2 O,
ko thn=h
< Z ’OkQ, ,k:n|
kgt +hkn=h
[(6.3)] < > Cuwn = G
kottkn=h

In fact, these integers C}, > 0 express as coefficients of the diagonal majorant series:

h
C"Nz) = Cla, ..., 1)

11—zt R
= Il 7= I 7o

2<i<n 2<i<j<n
— Z é\kQ,...,kn :L'kQ e I*k”
k27---7kn>0
(o] (o)
(X Gw)t =Y b
h=0 ™ ko+-thkn=h h=0
Let us therefore state these observations as a
Lemma 6.4. The 1-variable products / series:
n—1 i n—1 ; . 0o
1— 2ot 1 —zi! n—i
C" Yz) = —_— ( , ) = crtgh
( ) | 1— 27t H 1_2$z—1+$z Z h ’
i=1 =2 h=0
n—1 ; n—1 ; 00
~ 1— 2 1 — it n—1 ~
n—1 L o n—i _.h
¢ (e) = 1—2xiH<1—2xi—1—xi> _Z neot
i=1 =2 h=0
have coefficients satisfying the inequalities:
jont < Cp! whz0. O
7. Positivity of diagonal sums coefficients C}'~*
Now, study the power series C'(ws, . . ., w,,) along the diagonal:
{w2 = =w, = x},
that is to say, introduce as in Lemma 6.4:
() l—z 1—2% 1-2a? 1—am!
x = — ittt i ettt s e e e e -
1—-2x 1—-2221—-223 1—2gn1

11—z -2 1— 22 n=3 1 —gn2 !
1—2x+ 22 1—222+ 23 1 —2am 24 gn-1 )~

Furthermore, on the second line, the first fraction to the power ()" trivially simplifies

as:
l1—=x 1

(1—-2)2 1-—2’
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whence:
l—x 1—2%2 1-—23 1—gn !

oy = 2ot L= dman A
@) =T T 12 1_2gn1

1 \"7?/ 1-22 \"° 1— g2 !
(1—x> (1—2m2+x3) ...... (1—2x"‘2+x”—1> '

Let us focus on the second line, which we now call:

P l(z) = L\ -2 n_g L L—an 1
' l—x 1— 2224 23 1— 272 4 gn-1
=: Z Pl

h=0

We believe that all the coefficients of the full product C"~1(x) are positive, but a restricted
statement will be enough for our purposes.

Lemma 7.1. For all indices h in the range:
0 < h < [Vn]

one has:
1

Ptz

opt > 2t

Proof. First, we make the following transformation for each term in the product P"~!(z):

1— ZL’k n—k—1 1 — l’k n—k—1
<1—2xk+xk‘+1> :(l—xk—(:vk—xk“))
1 n—k—1

1 n—k—1
14az+-+ak—1

Using the expansion and factorization (valid for |T'| < 1):

1 o
e a— T) T2 — (1 T) (1 T2 4 T* 4 T )
— ( +7) S n YT LT 4TS 4

1=

and substituting 7" = # (with |x| so small that |T'| < 1forany 1 < k < n — 2)
gives us:

1 1 iL'k 00 l’k %
Z =1+ k— Z( k7>
1 - —2 L+x+-+aht — \1+x+ -+ okt

1+a4--+ak—1
1tz 42t i( a* >2i
S \l4a+-tab )\ =\t aht) )
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We then put together these expansions of terms in the product P"~!(z) to obtain:
n—2

n—2
P”_l(m):<1+x> (1+x2+x4+x6+--~>

14+ x4+ 22\"° x2 \2 x? \4 n=3
(LY (Y (2
1+2x 1+2x 1+

Tha4-4ar g\ & xk 2i\ " RL

( I+x+--+ah! ) (;<1~I—x+---~l—xk1>)
Lo+ a3 a2\ "2 2 !

. 1+ ( )RS

l+x4-- 4 an3 l+x4-+an3
Notice that the product of the first terms in all lines admits simplification as follows:
O N I o N S e

1+ R L+ an3

:(1+I)(1+:E—|—x2)-~-(1+x—i—---+xk)~--(1+x—|—---—|—xn_2),

while the other terms can be expanded using

<ZT%>m= <1+T2+T4+---+T2j+--->m

=0
0 J

Jj=

1 1\,
1+<T)T2+<m; )T4+---+(m+j )T%r---.

The expansion of ) now becomes

Pz <1+:c)( +a:+a:) (1—|—x+-~—|—xk>
L s
<n13>(1ix> +(n;2)<1ix> +)

l+az+--+ ”*2>

xn—? 2 xn—Q 4
<+ ) A S prr———— )

Since we are only interested in the coefficients P;:’l with0 < h < [/n], we will ig-

nore the terms (ﬁ) "with k-2i > n,ie. withi > 3 The first | \/n] coefficients
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in the power series expansion of P"~!(z) are the same as those of

<1+x>(1+$+$2>...(1+$+...+$k)...(1+x+...+xn—2>
.(1+ (”;2)x2+ (";1>x4+...+ (n—ﬁgj ‘1);52@)
(- ()G ()

. n—k—1+[¥ -1 ok 2 7|

'(1+<n—L\/TEJ—1)< 27 >z)

Now it is clear that in order to show the positivity of Pﬁ_l forall0 < h < |y/n],it
suffices to prove that the product

24 2| V7 | N
<1+SE) <1—|—x—|—gj2> 6...(1+x+..._‘_$L§J*1>

is divisible by
<1+x><1+x+$2>...<1+x+...+xk)...<1+x+...+x”—2)’

and at the same time that the quotient also has nonnegative coefficients.
Note that for any 7 > 0, one has

T+a+- 2l = (1+x+~~+x’“*1><1+x’“+x2’“+~~+x’“j>,

that is 1 + 2 + -+ + 2*~1 is divisible by 1 + 2 + -+ + 2% *k~1 with quotient having
nonnegative coefficients.

Now, we divide the set of indices {1, 2., ([v/n))?* - 1} into | y/n| disjoint sets:

{lvali+1 Wali+2... Wali+ lval |
forj = 0,1,...,|yv/n| — 1. Then, for each index k, the number of integers of the form
kj +k — 1in the interval {L\/ﬁﬂf +1, VnJk+2,..., [Vn]k+ L\/ﬁj} is at least 7L

2147
Since 2| 4] < L, the polynomial (1 -+ 4 -+ + 2#71) s divisible by
Nl |
H <1—|—x—|—~-+xl>,
i=LValkt1

with quotient having nonnegative coefficients. Taking in account all the values of k£ =

1,2,..., L\/Tﬁj — 1, and making the product of all the L‘/TEJ — 1 terms gives us the desired
divisibility.
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At this point, notice further that the set {1, 2,...,[v/n] }, corresponding to k& = 0,

has not been used in obtaining the above divisibility. Thus, the first |/n] coefficients of
P~ 1(x) are those of the product between

<1+:1:><1—|—$—{—x2>---<1+$+..._|_$L\/EJ>

and a power series having constant coefficient 1 and the first | \/n| coefficients nonnegative.
This clearly implies the positivity of P;'~' forall0 < h < [/n].
For the first | /1] coefficients in the power series expansion of C"~!(z), it is enough to

consider the product
11—z
Pn—l

since all the remaining terms in the product C™"~!(x) have power series expansions with
nonnegative coefficients and constant coefficient 1. Now using the expansion

1—=x >
:1 22‘712‘
1—2x +; .

we get

h
Crt=prt 4y 2tpl
i=1
Since we have already showed that P,?’l > 1forall0 < h < L\/ﬁj , it follows that

h
Crlz1+) 27 =2
i=1
forall 0 < h < |/n]. This finishes our proof of the lemma. O

8. Cauchy inequalities

Next, we will set up a useful (and trivial) version of the Cauchy inequalities for power
series having nonnegative coefficients. We start by determining the radius of convergence
R > 0 of C""!(x) and the one R > 0 of C"~!(z), the two products of Lemma 6.4.

Lemma 8.1. The smallest moduli of poles of the two rational functions C"~'(x) and
C"(z) are:

~

R::%:0.5 and R = \/5—1%0.414---.

Proof. The moduli of the roots of the denominator of the first product [[, ., 1 757
appearing in C"!(x) are %, \/%5, %ﬁ’ e, %ﬁ,
then in the disc {x eC: |z| < %}, we assert that all denominators in the second product
constituting C’”_l(x) are nowhere vanishing. Indeed, as already observed above, taking
account of the simplification for i = 2:

1— 2%t 1

1—222 1422 1—g

and the smallest among them is % But

Y
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this second product writes as:

1

1 n— * n—i
<1—;1:> H<1—2xll+xl> '

=3

Then the root 1 is certainly > %, while the subsequent denominators for 3 < 7 < n are

nonvanishing when |z| < % because:

> 12~ — [af
120y ()
>1-2(0)"-(4)° =2 >0

2 8

|1 — 2z 4 gt

2

On the other hand, while the first product constituting o1 (x) is exactly the same, such
a simplification in the second product does not occur, and in fact, in:

n—1 .
* n—2 % n—i
<1—2x—a:2> 1_! (1—2:1:2'—1—301') ’

the same minoration for 3 < 7 < n — 1 applies:

1—22"" =2 = 1=2[z)"" = |2]" > &,

whereas the positive root V2 —10f1 -2z — 22 = 0 is smaller than %, and the other root
—1 — +/2 has (much) larger modulus. ]

Let therefore 0 < p < v/2—1 be any radius in these convergence discs. A trivial version
of the Cauchy inequalities for power series having nonnegative coefficients is as follows.
Using the notation of Section 6, from:

NE
5

" p) =

il
o

it comes for any h € N fixed, since all terms are >
C"(p) > 6*;; o

Soon, we will take p = p(n) —5 0, in fact:

n—oo

1
P-—%

Observation 8.2. Forany 0 < p < v/2 — 1 and every h € N:

(later).

~

1 ~
Section 11 provides an exploration of the way moduli of the elementary constituents
L= and 5t le vary with drastic oscillations on circles {|z| = p}.
Thanks to these basic Cauchy inequalities, we can now start to control the growth of

C1(p).
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9. Estimations of C'(1) and of C/(1)

At first, we reorganize Cn-1 (x) from Lemma 6.4, writing its second product up to i = n
included instead of i = n — 1, using (x)"" = 1:

o g 1 — ! n—i
" \(x) = I ( —)
=11y g [— 201 —gi
1 n—1

I
3
|
[S—y
|
o =
8
S
—~
—_
|
8
'S
~—
—=
—~
—_
|
8
TA
—
~—
S
|
RS
—=
—~
—
[\)
8
i
| =
8
IS
~—
3
|
=

(<
\ .
[~

=1 =1 =2 =2
z:k: z:k z:?—l—l z:‘7c+1
n—1 n—1 n—1 n—1
1 1 n—k—1 1
= (12" [ (1-2")
1—2zF (1 — 2k — ghtlyn—k-1
k=1 k=1 k=1 k=1
n—1 n—1 n—1
= (1—2%)
1 — 2k (1_2xk_xk+1)nk 1
k=1 k=1 k=1

with r = r(n) — oo, always with 0 < < /2 — 1. In fact, to fix ideas, we shall assume

n—o0

at least r > 10.

Lemma 9.1. One has:

Proof. Take logarithm:

3
|

00l() =S (-

k=1

.

—Iog(l ﬁ) (n—2)|og<1—r—12>—(n—3)log( ——2— )
S e (- 2) v mm (- 5 —oknee(1- 2 L)L

Now, employ the majorations valuable for 0 < ¢ < 0.5:

o (1= 2) s a0 (1~ 1) ~tn ks (1= 2 - 1)
)

(n—1 Iog(l—%)—(n—2)log<1—2—l>—

r
1
3

Iog(1—5) < =0
—log(l—¢) < e+¢?
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to get using the assumption r > 10:

090 (1) < °

+4+( 1)
r o r? " r 272 r
—_———
%
I S ) LI LN R (2+1>+<2 1)2 +
rz ot r2 2t rz o3 rz 3
—— ~ —
R < Ra
n—1
2 4 1 2 1 2 1 \2
* {r—ﬁm*(”—’f)“g(l—rk)“"—k—”{(rﬁ—rkﬂ)*(rﬁ—rkﬂ)1}

n—1 1 ok n—1 1
(1—2%) (1 — 22k — ghtlyn—k-1’

we obtain by simply changing the last sign — to the sign + in the denominator of the third

product:

n—1 1 n—1 N n—1 1
Clx) = 1—2")" .
(x) 194k ( z ) (1 — 22k + ght1)n—k-1
k=1 k=1 k=1
Lemma 9.2. One has:
C) s
x €
c(3)
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since the terms for £ = n — 1 drop. Take logarithm and use the above majorations:

cily & 2 1 2 1
'”c@)::Z;@‘k‘wPW<“‘Q%‘EEJ>‘W<L‘QI+EE>H
2 1 2 1
ol (2 ) (- ()
(n ){og roor? o9 7‘+7’2
2 1 2 1
+=3) oo (1= (5= 15)) —ree (1= (5 +53)) | +
n—2
2 1 2 1
2 (k1) ['°9 (1= (5 7)) oo (1 - (rﬁ—rkﬂ))}
k=3 N ~
<0
2 1 172 1N\2 /2 1 2 1\2
<o-n[-C-B-3C- R ()
(n ){ r, 7"2) 2 \r r? +_7"o+7"2 * 7“+7"2 +
—_—— ~———
<0 gr%
+( 3) (2 1) 1(2 1>2+(2+1>+<2+1>2 L
n_ [— —_—— — PR— —_—— — — — — —
o230 2 \2 p3) 0 \p2 g3 r2 3
20 20 5
2 - kE—1 2 2 L
[e +&° < 2¢] + (n_ - ) 0+ (ﬁ_'_m) ’
k=3 —
<%
and notice, importantly, that the %-terms disappear, so that at the end:
() 4 1
Iogc(l) < (n—2) [r2]+(n—3) [ﬁ}+6nzr—k
r k=3
1 1 1
< 1ln— — U
nr2+6n7"2r—1
Lastly, making the choice:
r = v/na(n),

with a function a(n) — oo tending slowly to infinity — think a(n)
n—oo

:= loglogn — and
satisfying at least a(n) < n° for any € > 0, we want to minorize:

CR. = C(}) = C(521-).

Lemma 9.3. One has:
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Proof. Take logarithm:

w00 () = 3 (- wa(1-) 0 1ea 1 5) - 0 (1 (- )

k=1

= —Iog(l—%)—l—(n—l)log(l—%)—(n—2)log(1—(§—i>>—

r2

—Iog(l—%)+(n—2)log(1—%>—(n—3)|og(1—(%—%)>+
S (- 2) s (1= L) s (1- (2 )}

k=3
use the minorations:

WV
S |-
o'
|
3
+
—_
+
[\
3
|
Ml
+

> (n-1) F_i}
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10. Final minorations

As explained at the end of Section 4, with a suitable choice of 7, the goal is to show:

? 1
1 < g M,
~ Ck27k37---7kn717k‘n ka,k3,....kn—1,kn rk2+k3+“‘+kn—1+k’n
0<ka<n
0<ks<n+ko

ngnfl <n+kn72
0< kn, <n+kn— 1

=: CMR.
Abbreviate this domain range as:

= { (ko ks, k) €N 0 < Ky <,
0 < ks <

Observe that:
{k2+k3+"‘+kn71+kn < n} C Aj,

hence a fortiori with a function ¢(n) — oo tending slowly to infinity to be chosen later:

n—oo
{k2+k3+"'+kn—l+kn < %} C A4l
Introduce:
1
CMR, = Z Charoen My, JrS———
NG

k‘2+"'+k‘n§m

the letter ‘T’ standing for ‘Truncated’, with the Remainder:

1
CMR — CMR, = E Chrgron My 1, p——
(kg,.-.) kn)ed]
k2+~»+kn>1+T\/$
=: CMR;.
Along with these quantities, introduce also:
n Z 1
C'M‘RT = Ck/'Q:---akn Mk27---7kn ’[”k2+“'+kn (20)’
k2+'“+kn<T\/z
Cly,... kin 20
CMR_ = E (— Ck k ) Mk k ; (=0)
T PARE LY ) 25009 fn /rk'2+"'+k'n ’
Ryt hn < X0
Choyerislin <O

two nonnegative quantities which decompose:

CMR, = CMR; — CMR;.
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In addition, without the multinomial-quotient coefficients, introduce:

1

CR := E Chapooen 1 e
(k2 n ) €D
CR C 1 !
gtk < 2
CR C 1 L
R = g Kapokn L
(Kg,....kn )€ A
hytertn 314 Y0
and similarly also:
CR/ C !
T Z k2,....kn ' fr’k2+”'+kn (2 0)7
kgt < Yo
Ckg,erorkin 20
CR, E C 1 —1
T = (_ kg,.‘.,kn) T Tkz-i—"“i‘kn (=0).
kgt hn < X0
Chyyeroskon, <O

and we now endeavor to find a condition guaranteeing that the remainder ‘CMRR‘ be small
in absolute value.

To this aim, choose in the Cauchy inequalities p := —

apply Lemma 9.1:

6(\/%7) < el? eﬁ,
so that Observation 8.2 gives:
~ 1 12 _/n
Ch, < e‘e (Vh>0)
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Now, majorize the remainder:

1
‘CMRR‘ - § : Ck27---7kn Mk%---»kn /rk2+“'+kn
(kgy..kn)e A
k2+~~~+kn>l+ﬁ
1

N
(]

1. ——
rhatetkn

k2+‘“+kn21+%

Z 1
< }Ck%---ykn‘ rk2+"‘+k’n
koot 214 205
Z ~ 1
< Ck27"'7kn T’k2+"'+k”

kgt > 14 Y2

c(n)

oo
1 ~
- : : r_h E Ck:27---7kn
142
[e.9]

14 VP ko+-+kn=h

(n)

1 ~
= Z T_h Ch7
=1+

c(n)

and hence, thanks to what precedes:

= 1 1 -
‘CMRR| < Z /r._h W(?lQ G\f
h=1+ Y2 NG

c(n)

= 1

12 n
= e2eVm E 7
he 14 /7 (\/ﬁ a(n) \/ﬁ>

c(n)

__loga(n)
< 2612 e—loga(n) e\/ﬁ [1 c(n) :|

In order to insure that the right-hand side is small, since e~loga(n) 5 () it suffices to
n—oo

choose:
¢(n) == loga(n) — oo,

n—oo
to obtain:
’CMRR’ < 2e2elogam)

n—oo
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Lemma 10.1. With ¢(n) = log a(n), it holds:

MR < Y @ !

k2,....kn rhattkn

ke thn 214 0

< 2612 e—loga(n). N

Further, it is now necessary to estimate the size of the first terms CMR, and to show
that they are large. It will be useful that:

v _ o(v/n) (n — 00).

log a(n)
Introduce the quantities:
CR. = Y Cup—o = O ()
oo T ka,..., kn Tk;2+...+kn - r/)?
k2o kn >0
CR! E C L
0o T k2,....kn kot tkn
ko,..., kn =0
Choyeviskn >0
CR. = 3 (=Ci )
oot 25--5hn T‘k2+"'+kn’
koyeeeykn =0
Cko,....kn <0
CRo = S Coyt o = O1(Y)
oo k‘g ..... /Cn fr-k?2+‘“+k3n - r)o
k27~--7kn>0

for which it is clear that:
CR. +CR, < CR..

By Lemma 9.2:

and next:
CRY + CR < CR.. < e®”CR., = e#(CR;—CR;O),

from which it comes:

o0

CR- (1+ea<1n7>2> < (e#—QCR*

=2

whence:

(102) CR < }(e™7 —1)CRL.
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Next, we want to minorize CMR in order to show it is large:

CMR, = CMR! — CMR:

1
- E : Ck’g,...,k‘n Mka"‘akn rk2+...+]€n -

1
- § : (_ Ckm-n,kn) Mk27'“1k7b I

V

— 2y 1
- an) —
[Proposition 5.4] E Chigookin € —

1
[Lemma 5.1] - Z ( - Ck‘z,...,kn) -1 m

2
= ¢ «? CR} — CR;,
but we yet need to compare these to the quantities CRfO. Hence we estimate:

1
k2,....kn rhattkn

|CR!, - CR}| = CR!, —CR} = >

k2+‘“+kn>1+%
Cko,....kn >0

& 1
Z k2,....kn rk2+“‘+kn

kgt 214 20

N

< 2612 e—loga(n)

and more simply:

—CR, > —CR_,
since: )
0 < CR_-CR; = Z (= Chyoen) pwm——
k2+‘“+kn>1+c<\/§)
Cko,....kn <0
Thanks to all this:

2
CMR, > e <2 CR! —CR;
> o [CR%, — 262 s — CR
hence applying the minoration (10.2) for — CR__:

CMR, > "7 [CR; —2e'? e_'°g“(”)} - (ea(n>2 - 1) CR],

J/

1
2
_ 2 17 _ 2
— CR [e (log a ()2 _% (ea(m? _ 1)} —2e? e~ 108 a(n) o™ loga(n))?

VvV
— 1 — 0 — 0
n—oo n—oo n—oo
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Since trivially:

CR: = CR.. +CR_,

> CR.,
it comes:
T _ 1 (7 12— -2
CMR, > CR [e Goga(m)? — 1 (gatn? — 1)} — 2e?eoBa(M) ¢ Togatm)?

whence using Lemma 9.3:

17 _ 2
(ea(n)2 _ 1)] — 9 e!2 pmlogaln) " Tloga(n))?

1 -2
CMRT > e2aln) [6 (loga(n))? —

1
2
Coming back to:

CMR > CMR, — |CMR,|
> CMRT -2 612 e_IOga(n) e (|<>ga2(n)>2 ,

we obtain finally:

1 /1 2 17 _ 2
CMR > e?a |e (zam)? — 1 (gat? — 1)] — 212 g logan) <1 +e <Ioga<n>>2).

This minorant is > 1 for all n > N large enough.

Proof of Theorem 1.1. Choose — think integer value —:

|
r = n ogn.

Proposition 3.1 concludes for X"~ C P" of degree at least:

log n

doo(n) = <\/‘T+3) 25 n?
6 n
| — 25n°
<\/_ ogn> 2n ( \/_Iogn) "
(\/_Iogn —ntog2 niog (14 7280) 95 2
<\/_Iogn) €7n|0g2+|0é/,; 25n

<1 when n 2 Ngg

v

since it 1s visible that this majorant becomes < 1 when n is large enough, say for all
n > Ngg, Where Ngg can be made effective. O
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Proof of Theorem 1.2. Thanks to [15], Proposition 3.1 concludes for X"~! C P" of degree
at least:

di(n) = (m w +3>2n 25 (21n)

— (ﬂmg log (2 n))% (1 + \/ﬁlo;ﬁ@n))zn 100 n?

(loglog (2n)) S 32 2n 2
) (logn)" N (1+ v/n log log (Qn)) 100

n 32
(TL log n) 2nloglog log (2n)—n log log n—n log 2+2n log (1+m) 100 n2

nlo

LLE ¥ log log log (2 n)—n log log n—n log 2+|og\|/o;?2\{) 100 ’I’L N

n log n)

<1when n > Ng

11. Some inequalities on circles {|z| = p}

Proposition 11.1. For every radius 0 < p < }L, the functions:

1— 2k
Gr(z) = T_2F (k>1),
1—2¢

1 — 220 — 417

Hy(z) = (e>1)

attain, on the circle {Z eC:|z| = p}, their maximum modulus at the real point z = p:

—a . Vk
max |————| = -
zl=p |1 — 22K 1—2pF ( )

1— 2t B 1—pf
IT\a=); 1 =226 — 2041 1 —2pf — pttt (V£=1),

and with the choice p = 0.25, the graphs on the unit circle of the two quotient functions:

|Gr(pe™)| n
Gr(p) ¢ o Hy(p)

show up, respectively, for the three choices k = 2,5, 10 and the three choices { = 2,5, 10,
as:

(—m<0<m)

|

ol
w

J—‘H
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ISE
NIE]
2|

Proof. Treat at first the G, (p ew) with € R, by squaring:
‘1_pkeik0‘2 ; (1_pk)2
’1—2pkeik9|2 = (1—2pk)2

(VO eR),

that is to say:

(1—pkcosk9)2+(—pksink9)2 ; 1—2pF 4 p*
(1—2p’“cosk9)2+(—2pksink9)2 S 1 —dpk 44 p2%

or equivalently, after crossing/clearing the fractions:

9

0 < (1—2pk+p2k) (1—4pkcosk0+4p2’“)—(1—4p’“+4p2k) (I—Zpkcoskﬁ—l—p%)
= lo—4pkcosk0+4L2ko

— 2" +8p™ coskf —8p**
+ 0 — 49" cos kb + 4p"_
- lo-l—2pkcosl<:0—p_2kO
+ 4 p" — 8 p** cos ko + 4 p*
— ﬁo + 8 p** cos k# —%O.

Visibly, 5 - 2 = 10 underlined terms annihilate by pairs:
0 < 2% — 2 p*cos kO — 4 p3F + 4 p3* cos k6
= 2/F [1 — cos kb — 2 p*F + 2p2kcosk9],

and by luck, the obtained expression factorizes under a form which shows well that it takes
only nonnegative values because 0 < p < 0.25:

0 y%s 2 o (1 — 2p2k) (1 — cos kQ) (Vk>1,VOER).

Secondly, for the functions (H g(z)) 41+ Do such pleasant factorization is available. One

can then view these H,(z) as ‘perturbations’ of the G(z), with the addition of — 21 at
the denominator. More precisely, starting from the desired inequality of which we take the
squared modulus:

’1 —pt ei€9‘2 ; (1- pe)2
|1 —2pteitd — pthl 61‘((—%—1)9’2 h (1—2pf _ﬁ)w
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the ‘perturbing terms’ being underlined, after crossing/clearing the denominators, we are
led to establish an inequality which is a ‘perturbation’ of the one just done above:

9

0 < (1- 2" + p%) [(1 —2pcos — p“cos (¢ + 1)0)2 + (2 pfsinlh + p"lsin (0 + 1)6)2]

— (1 —4pt+4p* —2p T a4 p%H) [(1 — plcos E@)Q + (pg sin 60)2} ,

the perturbing terms being still underlined, that is to say:

0 < (1 —2p" + p%) [1 — 4 pfcos 0 + 4 p** cos®00 + 4 p** sin®(0
— 2p" cos (¢ + 1)0 + 4 p** cos lh cos (£ + 1)0 + p*2cos? (£ + 1)

+ 4 p* L sin @ sin (0 + 1)0 + p* 2 sin(¢ + 1)9}

— (1 —4ptAp*t —2p T a4 p%“?) [1 — 2 p cos 10 + p* cos®lO + p** sin2€0] .

Without redoing the calculation concerning the (principal, not underlined) terms, and using:
cos (£ + 1)0 cos (—(6) — sin ({ + 1)fsin (—(0) = cos (({+ 1 —()F),
we obtain:
0 < 2 (1—2p*) (1 — cos(8)
+(1—2p"+ p*) [ —2pcos (€ +1)0 4+ 4 p** cos 6 + p%Lz}
+ (295 — 4 pPH = pP) [1 —2pfcoslh + p%] .

Now, organize the expansion of lines 2 and 3 in a convenient synoptic way:

—2p"* cos (0 +1)0+4p* M cos®  + p* T2

+4p*lcos(0+1)0 —8p*Tlcosh —2p3H+2
— 2p** " cos (€ +1)0 + 4 p* ' cos b + p* T2
pyCs — 4 p**1 cos il 42 3
_ 42 +8 ¥+ cos 16 _ 4 ptH
_ +2p3+2 cos 9 _ 2

o o

Only 4 = 2 - 2 terms annihilate by pairs, and the question is reduced to determine whether
there is nonnegativity:

0 < 2y (1- 2% (1 - cos (6) + 2 pttt (1 —cos (¢ + 1))
+ p*H 4 cosh + 4cos (+1)0 —4coslf — 4}

+ p3tt = 8cosf — 2cos (£ + 1)9+8cos€9+2}

+ 32 _2 cos (0 — 2] 4 plttt [4 cos ) — 4]
= ff,p(e)v
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for a certain family (fe,p)?ifw of 2m-periodic functions. Since this is trivially satisfied
when p = 0, we shall from now on assume that:
0 <p< i = 0.25 (assumption).
For the first term of f, ,, since we have:
1 < 2(1-2-025) < 2(1-2p%) (ve>1),
after division by p’, it would suffice to have, with certain new minorinzing functions:
Gep S ﬁ Jeps

the nonnegativity:
0 % Ge,p(0)
= 1—coslf+2p(1—cos(l+1)§)
+ p'tt [40039 +4cos ({+1)0 — 4dcos (0 — 4}
+ p*t! [— 8cosf —2cos (¢ +1)8 + 8cos (f + 2}
+ p*t? [2 cos () — 2] + p3rt [4 cos ) — 4} .

For instance, again with the choice p := 0.25, the graphs on the unit circle of the
functions

0 — go,(0) (—m <O <)

show up, respectively, for the three choices ¢ = 2, 5, 10, as:

2.5

o - - L - - - ; u -t 3n m m 0 n n 3n n
4 2 T4 4 2 a4 4 2 T4 4 2 4 2 2 % i 2 1

Since these functions g, , are even, it suffices to establish their nonnegativity on [0, 7|.
Let us begin with examining their behavior in a right half-neighborhood of 0. Starting from:

0= g&p(o)v
a positivity of the first derivatives of the g, , would be welcome, at least on a small interval
like ]0, 1.

Lemma 11.2. For all real 0 < p < 0.25 and for every integer { > 1, one has:
9,00) >0 (F0<0< ™).

Proof. Observe that this is true even when p = 0, since the function g,0(f) = 1 — cos (¢

has derivarive ¢sin 6 > 0 on ]0, 4%} Anyway, we assume 0 < p < 0.25.
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QOur aim is to minorize this derivative:
90,(0) = £sinlf +2p (L4 1)sin ({4 1)0

+ it [ —4sin® — AL+ 1)sin (0 +1)0 + 4€sin€6’}
+ it [SSin 6+ 200+ 1)sin (£ + 1) — 8¢ sinee]
+ p?t? [ — 20sin 59] + p*t [ — 4 sin 9} ,

by a quantity which can be seen to be positive However, we have to treat the special case
¢ = 1 separately, namely for all 0 < p < % 7 and for all 0 < 6 < 7, we first check that:

91,00) = sin@ 4 4psin 20 + p* [— 8sin 26| + p’ [4sin29} +p* [~ 6sind]
= sin9{1+8pcos€—p2160039+p380039—p46}

WV

sin@{lo—l—Sp\/ii =16 +p 5 —p 6}

> psinQ-{%+02%—4%6}
= psinf 5,563 -
> 0.

So we may assume ¢ > 2. If we use the classical inequalities valid for ¢ € [0, 7|:
sinap}ap—égp?’ and —sinp = —,
we are conducted to ask ourselves whether:
90,(0) = €(00 = 5(00)*) +2p (£ +1) ((£+1)0 — (£ +1)6)°)
[ = 40— 40+ 1) (1) + 4 (10 — L(10)?)]
+ 2ttt [8 (0= 16%) +2(0+1) ((+1)0 — L((L+ 1)0)*) — sm]
+ P [ = 2000) + p* T [ — 40]
; 0 (VO<O< L),
To have a better view, let us set:
t =10, whence 0<t< <1,
and let us simplify this minorant by writing (£ 4 1)§ = == (6
Gho(0) > 0t (1= 18) +2p(0+ 1) B (1 - 1(51)* )
+p [— S—Al+1) e+ a0t (1 - %R)}
P BE (-4 () 4200+ D5 (- 35 ) - 8t
4 [ 201] 4 B [— %t]

?
> 0 (V0<O<E).
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In order to minorize this by an even simpler quantity, we can use, since ¢ > 2:

_ (“71)2 > - (%)2 and also — > 1,

so that:

preceding minorant > (t3+2p(0+1) L¢3

+ pttt [—2t—4(€+1)%t+4€t%}

+ ! [8-0+2(£+1)1t§—8£t}

+p2f+2 |:—2£t:| +p3£+1 |:—2t:| > 0’

and we even once more minorize this intermediate minorant by neglecting the term under-
lined and summing the expressions in brackets:

go,(0) = (t3+0
(+1 16
+ [—St—i-gft}
20+1 | 5 27
+p*" [Zt—qet}

We conclude by a factorization and by a final computer check, still for all £ > 2:
g, ,(0) > t{%g_pé-i-l [8+ 18 4] — 2+ [3 4 204] — p*+2 [24] — P! [2}}
> t{30— 025" [8 100 - 0,251 [§ 4 2 4] - 0.25%42 [24] — 0,25 [2]}
> t-1,442--- . O
In summary, we have established for all ¢ > 1 the positivity on a starting interval:
0 < go,(0) (Voelo, ),

and our next goal is to establish the positivity of this minoring function g, , on the remaining
(large) subinterval of [0, 7]:

0 < gup(0) (Y OE (S m]).

We first finish the case ¢ = 1.

™

Lemma 11.3. For all 0 < p < 0.25, the function g, ,(6) is positive on | =, ).
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Proof. Indeed:

g1,(0) = 1 —cosf +2p (1 — cos 26)
+ p? [4cos29—4]
+p° [ — 2cos 26 + 2]
+ p [6cos€—6}
= (1 —Cos@) [1—6pﬂ + (1—00329) [2p(1—2p+p2)]

> (1- \/Li) [1—6-0.25"] + nonnegative
= 0.286---
> 0. U

From now one, when we work on [Z_ev 7|, we can therefore assume that:
{ > 2.

Lemma 11.4. For all 0 < p < 0.25 and every integer { > 2, there is on [ﬁ, 7| a minora-
tion:

0 < hé,p(e) < gé,p(e) < pieff,p(g)a

with the new:
he,p(0) == 1 —coslf+2p (1 —cos ({+1)0) — 18 p"*1.
Again with the choice p := 0.25, the graphs on the unit circle of the functions
6 — hy,(0) (—r<0<m)

show up, respectively, for the three choices ¢ = 2, 5, 10, as:

=2

3n n o m n m 3n 3t n =
4 2 4 4 2 4 4 7T -
]

ol
N
s

=)

lw
4_‘:

Proof. Indeed, we minorize simply the reminders:

gep(0) = 1—coslf+2p(1—cos(l+1)f)
_ pﬁ-‘rl |:4+4+4+4] _p2£+1 |:8+2+8+2] _p2€+2 |:2+2] _p3é+1 |:4_|_4i|’

and to even simplify the second line by replacing it by —18 p*!

that:

as announced, we assert

~16 pf-‘rl —920 p2f+1 . 4p24+2 . 8p3€+1 2 o 18p€+17
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simply since:
P (1=10p" = 2p —4p) > p(1-10-0.25" —2-0.25° — 4.0.25%)
> p1(0.328--+)
> 0. g
It therefore remains to treat all the cases ¢ > 2. We start by looking at the subintervals
& %) < a7l
Lemma 11.5. For every real 0 < p < 0.25 and every integer { >
0 < hep(0) vV 0e(x, ).

Proof. Since:

it comes:

1—cosld) > 1— —,
V2

and since 1 — cos (¢ 4+ 1)0 > 0 anyway, we can minorize:

hep(0) = 1 —coslh+0— 18 p"*!
1 241
> 1L - 18-0.25
= 0.01164--- . Il

We can now finish the case ¢ = 2. It remains to show positivity of hy ,(6) on [ZF, 7.

Since =~ 21” < 36 < 3, or equivalently *F 5t < 360 — m < m, we can minorize:
hoy(0) = 1 —cos20 4 2p (1 — cos 3¢) — 18 p
> 0+2p[(1—cosE)—9-0.25%
= 2p-0.820---
> 0.

It still remains to treat all the cases ¢ > 3.

Lemma 11.6. For every real 0 < p < 0.25 and every integer { > 3, the function:
hep(0) == 1—coslf +2p(1—cos(f+1)f) — 18 p"*!

takes only positive values in the interval [ o

he,(0) > 0 v I <o<m).
Proof. Using 1 — cos ¢ = 2sin*Z, let us rewrite:
hep(0) = 2sin® £ 4 4 psin® D0 18 pitt,

At a point § € [ if we have elther:

)
2sin® £ — 18 "' > 0 or 4 psin® (ZH) —18p > 0,

then there is nothlng to prove. We claim that the opposite mequahtles cannot hold.

Assertion 11.7. For every { > 3, there is no 0 € [T, 7] at which:

200 o g t+] 2 (+1)0 ¢

- 9
sin" > < 9p and sin" ~—"— < Sp.
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T

Proof. Suppose nevertheless that such a 6 € [ a7

unique representatives —5 < «, 3 < § of:

7| exists. Modulo 7, there exist two

%—pﬂ':a and W—Qﬂ':ﬁ,
with certain unique integers p, ¢ € Z, whence:
sin‘a = sin? &2 M < 9p£+1 and sin?3 = sin® e+1)0 < gpg.
Lemma 11.8. For all 0 < || < 3, one has the classical inequality % < siny] < |y O
Consequently, using p'/? < 0.25Y/2 = 1, it comes:
|sma|<3pzi\ and @g |sinﬁ|<\%p§ g\%%“
that is to say:
la| < 34 and 18] < 3\/_2e
From a chain of estimations:
312 > [B—a| = |5+ (q—p)7|
> 3% +(a—p)7|
> min |5 —rl
1% <& =
we obtain the inequality:
3L > I,
which is visibly false for large ¢, and which begins to be false when ¢ > 3:
312 Z 0905+ > 0916 = T
This contradiction proves the assertion. U
The proof of Lemma 11.6 is complete. U
The proof of Proposition 11.1 is complete. U
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