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In�nite stable Boltzmann planar maps are subdi�usive

Nicolas Curien♠ & Cyril Marzouk♦

23rd October 2019

Abstract

The in�nite discrete stable Boltzmann maps are generalisations of the well-known Uniform
In�nite Planar Quadrangulation in the case where large degree faces are allowed. We show that
the simple random walk on these random lattices is always subdi�usive with exponent less than
1/3. Our method is based on stationarity and geometric estimates obtained via the peeling process
which are of own interest.

1 Introduction

Since the introduction of the Uniform In�nite Planar Triangulation (UIPT) by Angel & Schramm, the
study of random in�nite planar maps has been a proli�c activity. Generalisations of the UIPT with
random “stable” faces have been introduced following the work of Le Gall & Miermont but even basic
properties of these lattices remain unknown. In particular, the behaviour of the simple random walk on
in�nite random planar maps has attracted a lot of attention in recent years, see the beautiful lecture
notes of Nachmias on the subject [21]. In this paper, we revisit the subdi�usivity properties of the UIPQ
(also called anomalous di�usion) and more generally bipartite critical stable Boltzmann planar maps and
we show a universal upper bound on the subdi�usivity exponent of 1/3.

In�nite discrete stable maps. As usual in the �eld, we will only consider rooted (i.e. equipped with
a distinguished oriented edge) bipartite (i.e. whose faces have even degree) planar maps. The second
condition should only be technical. Given a sequence q = (qk )k>1 of non-negative numbers, with qk > 0
for some k > 2, we consider a random Boltzmann map M whose law is prescribed by the following
formula: for any �nite bipartite planar map m,

P (M = m) = 1
Wq

∏
f ∈Faces(m)

qdeg(f )/2,

whereWq is a normalising constant; obviously, we restrict our attention to admissible weight sequences
q, for which Wq < ∞ so the above display is well-de�ned. We shall consider further critical weight
sequences of type a ∈ (3/2; 5/2], see [7, Chapter V] and Section 3.1 below for details. Under the criticality
assumption one can de�ne a random in�nite bipartite map M∞ with one end as the local limit in
distribution ofM conditioned to have a large size [2, 22]. Furthermore, q is of type a ∈ (3/2; 5/2) if the
degree of the face fr adjacent to the right of the root edge, hereafter called the root face, inM∞ satis�es
P(deg(fr) > n) ∼ C · n−a+3/2 for some C ∈ (0,∞) and deg(fr) has �nite mean if a = 5/2. In particular,
when a ∈ (3/2; 5/2) the mapM∞ possesses large faces; also the case a = 5/2 includes the UIPQ.
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Let dgr denote the graph distance inM∞. Conditional onM∞, let us sample a simple random walk
started from the origin ρ of the root edge and let X0,X1, . . . be the vertices visited by this walk. Our
main result shows that for any a ∈ ( 32 ,

5
2 ] the walk is always subdi�usive with exponent at most 1/3:

Theorem 1. Let q be a critical weight sequence of type a ∈ ( 32 ,
5
2 ]. Under the annealed law of the map

together with the random walk, we have

sup06k6n dgr(X0,Xk )
n1/3 logn

(P)
−−−−→
n→∞

0.

One can also consider a walk X †0 ,X
†
1 , . . . on the dual mapM†∞ (which walks on the faces ofM∞).

We proved in [9, Corollary 3] that for a ∈ (2, 52 ], the so-called “dilute regime”, we have

lim
R→∞

P
(
X †i ∈ Ball(M

†
∞,R) for all i 6 R

a−1
a−2 log−1 R

)
= 1, (1)

where Ball(M†∞,R) is the hull of the ball of radius R inM† obtained by keeping all faces at dual graph
distance at most R from the root face as well as the �nite regions they enclose (recall that M∞ is
one-ended). Note that a−2

a−1 6
1
3 so if one could replace the hull of balls by the balls — which we believe

is true when a > 2 — this would imply a subdi�usive behaviour for the walk on the dual map in this
regime. Our proof of Theorem 1 can probably be adapted to this walk and would yield a similar result
to (1) (still with hulls of balls) but with a smaller exponent 2a−7/2

a−2 .
In the case a < 2, the so-called “dense regime”, the walk on the dual displaces very slowly: let us

denote by d†gr the graph distance onM†∞, then

Theorem 2. Let q be a critical weight sequence of type a ∈ ( 32 , 2). There exists a constant δ > 0 such that

under the annealed law of the map together with the random walk, we have

P

(
sup

06k6n
d†gr(X †0 ,X

†
k ) 6 δ log

2 n

)
−−−−→
n→∞

1.

Remark 1. One can consider critical weight sequences such that the law of the degree of the root face
belongs to the domain of attraction of an (a−3/2)-stable law in the broad sense, allowing corrections with
slowly varying functions. All the results of this paper generalise verbatim, except that the polylogarithms
are replaced by other slowly varying functions. Although this only requires mild modi�cations in the
proofs, appealing to basic properties of such functions, we refrained to include it in order to lighten the
exposition. In another direction, we wonder whether Theorem 1 can be extended to all critical in�nite
Boltzmann maps of the plane, without stable tail behaviour for the weight sequence.

Known results. Subdi�usive behaviour, or anomalous di�usion for random walks has been pop-
ularised by De Gennes [13] under the name “the ant in the labyrinth”. This triggered a lot of work
around random walk on (critical) percolation clusters and the Alexander-Orbach conjecture, see [18]
and the references therein. In the context of random planar maps, the �rst result on subdi�usivity of
the simple random walk on random planar maps was obtained in [1] which considers the UIPQ (which
isM∞ when qk =

1
12 I{k=2}, which falls in the case a = 5

2 ): Relying on the peeling process to study the
pioneer points of the walk, they show an upper bound of 1/3 on the subdi�usive exponent, i.e. that
supk6n dgr(X0,Xk ) 6 n1/3+o(1) with high probability.

Very recently, we adapted this approach to the present context of in�nite stable maps [9, Corollary 2]
and showed an upper bound of 1

2a−2 for the subdi�usive exponent in the case of weight sequence of
type a ∈ (2, 52 ]. This should be compared with the work of Lee [19, Theorem 1.9] which considers more
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generally unimodular random planar graphs with d > 3 volume growth exponent; informally1, since
d = 2a − 1 here [9, Proposition 2], Theorem 1.9 in [19] reads E[dgr(X0,Xn)] 6 n

1
2a−2+o(1) for a ∈ (2, 52 ].

The bound (1) on the dual map is also obtained via the pioneer points approach.
Let us mention that the bound on the subdi�usivity exponent from the pioneer points one can be

slightly sharpened, see [8] for Boltzmann maps with bounded face degrees, but the argument can be
generalised with more e�ort. Nonetheless this improvement does not yield the exact exponent; in the
case of the (type II) UIPT, using a Liouville Quantum Gravity approach, Gwynne & Miller [16] and then
Gwynne & Hutchcroft [15] obtained the exact (lower and upper bound respectively) exponent 1/4 which
was conjectured in [1].

3/2 5/2

1/2

2

Pioneer points onM∞: 1
2a−2 .

via the cut-points.

Lower bound for subdi�usivity on
M∞ in terms of volume growth: 1

2a .

Lower bound for subdi�usivity on
M
†
∞ in terms of volume growth for

a transient graph: a−2
a−1/2 .

1

1/3 1/3

1/4

1/5

parameter a

subdi�usivity and
pioneer points ex-
ponents

via horocycles.

Pionneer points
onM†∞: a−2

a−1 ∧ 0.

Di�usive behaviour.

Upper bound for subdi�usivity onM∞:

dense regime dilute regime

Figure 1: A schematic representation of the bounds on the subdi�usivity exponents for
the random walk onM∞ in blue (top) and the one onM†∞ in red (bo�om); the two thick
horizontal lines are the main results of this paper.

What is the true subdi�usivity exponent? Let us recapitulate on Figure 1 the bounds we expect for
the subdi�usivity exponent sa relying on properties of the random latticesM∞, some of them being still
speculative. Recall that the volume growth of balls of radius r inM∞ is of order r 2a−1 for a ∈ (3/2; 5/2],
see [9] and of order r

a−1/2
a−2 in the dual mapM†∞ in the dilute phase a ∈ (2; 5/2], see [6].

Theorem 1 provides an upper bound for sa 6 1/3 valid on the primal lattice, in all regimes (thick
blue horizontal line on Figure 1). On the other hand, a general result in terms of volume growth suggests

1Actually, as pointed out in [19], Theorem 1.9 there does not apply directly to random maps and one uses the more involved
Theorem 1.15.
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(see [1, Remark p527] with the obstacles mentioned in [19]) that sa > 1/(2a). When a = 5/2 we expect
s5/2 = 1/4 is a broad generality (see Gwynne–Miller and Gwynne–Hutchcroft for the UIPT).

In the case of the dual map, in the dilute regime a > 2, recall that we believe that (1) remains valid
with balls instead of their hull (dotted thick red line); for a lower bound, if these lattices were transient
(which is still an open problem) then the preceding lower bound in terms of the volume growth could
be sharpened to a−2

a−1/2 . This lower bound should be exact at a = 5/2.

Organisation In Section 2 we �rst present the global strategy of the proof Theorem 1 based on
stationarity of the map seen from the random walk and �ashing the walk on good subset; then in
Section 3 we recall the peeling of planar maps which will be a crucial tool. In Section 4 we focus on the
dense regime a < 2: using the cut points we �rst prove Theorem 2 as well as Theorem 1 in this range of
values of a. Finally Section 5 is devoted to the proof of Theorem 1 for all values of a.

Acknowledgments We acknowledge support from the Fondation Mathématique Jacques Hadamard,
the grants ERC-2016-STG 716083 “CombiTop” and ERC 740943 “GeoBrown”, as well as the grant
ANR-14-CE25-0014 “ANR GRAAL”.

2 Strategy of the proof

2.1 Subdi�usivity from di�usivity on a sparse subgraph

The proof of Theorem 1 relies on a simple idea (formalised in the following general result) which gives
an upper bound on the displacement of a random walk on a random graph by “�ashing it” on a certain
subgraph. Let us denote by G a random connected (multi-)graph, either �nite or in�nite, but locally
�nite in this case, with a distinguished origin vertex ρ, and consider a simple random walk (Xn)n>0 on
G started at X0 = ρ. Denote by BR the ball of radius R around the origin ρ (for the graph distance) in G.

Lemma 1. Let (βR)R>1 and (γR)R>1 be two positive sequences and d > 1. Suppose that for any integer

R > 1, we are given a subset of vertices GR of the graph G such that:

(i) (Polynomial growth) with high probability as R →∞, the ball BR+1 has less than R
d
vertices;

(ii) (Geometric Separation) With high probability as R →∞, a simple random walk on G started from

ρ goes through at least βR di�erent vertices of GR before exiting BR ;

(iii) (Density) For every n > 1, we have that P(Xn ∈ GR) 6 γ−1R .

Then with high probability as R →∞, the random walker Xi belongs to BR for every i 6 γRβ
2
R log

−7/4 R.

The idea of �ashing a random walk on a certain subset to deduce subdi�usivity was already used by
Kesten [17] (see also [12]) where he considered the backbone of the critical in�nite incipient percolation
cluster on Z2.

Proof. We shall consider the walk �ashed on GR , i.e. the sequence (Yi )i>1 of successive vertices of GR
visited by the walk. The subset GR can be equipped with a connected graph structure induced by G as
follows: two vertices of GR are linked by an edge if there exists a path in G going from one to the other
without visiting any other vertex of GR . By decomposing the probability that Y moves from a vertex to
another over all possible corresponding paths for X , it is straightforward to show that Y is a (possibly
stopped) reversible Markov chain with respect to degG(·), the degree of the vertices in the original graph

G. The Varopoulos–Carne bound (see e.g. Lyons & Peres [20, Theorem 13.4]) then shows that for n > 1
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and two vertices y and y ′ in GR at distance d in GR , the probability that the �ashed walk Y goes from y

to y ′ in exactly n steps is at most

2
( degG(y)
degG(y ′)

)1/2
exp

(
−d

2

2n

)
.

Recall from Assumption (ii) that the random walker X needs to move for a distance at least βR within
the graph GR in order to escape from BR . Let us denote by σR the �rst instant at which the walk X has
made β2R log

−3/2 R steps in the subset GR . Summing over all possible starting and ending points inside
GR ∩ BR and crudely bounding the degrees by the volume, we deduce that the probability to move
distance βR across GR before time σR is bounded above by

2Rd/2+d+d exp
(
−12 log

3/2 R

)
−−−−→
R→∞

0,

on the event where (i) and (ii) are satis�ed. On the other hand, by (iii) and Markov’s inequality

P
(
σR 6 γRβ

2
R log

−7/4 R
)
= P

©«
∑

k6γR β 2
R log−7/4 R

I{Xk ∈GR } > β
2
R log

−3/2 R
ª®®¬

6 β−2R log3/2 R
∑

k6γR β 2
R log−7/4 R

P (Xk ∈ GR)

6 C log−1/4 R −−−−→
R→∞

0.

We deduce that with high probability as R → ∞, the random walk X was not able to move across
distance βR in GR within the �rst γRβ2R log

−7/4 R steps. A fortiori it could not have escaped BR by (ii). �

The proof of Theorem 1 reduces to �nding such GR which are big enough so βR is large, but not too
big so γR is also large. Indeed, a caricature consists in taking GR to be the entire ball of radius R, then
βR = R but γR = 1 which shows that the walk is at most di�usive; another extreme consists in taking
GR to be the union of the boundaries of the balls of radius R and R/2 which lie at distance 1 in GR , but
now γR is quite large and this again would yield a di�usive upper bound in our case.

2.2 Heuristic for GR

Let us give a heuristic of the proof of our main result. A natural guess for GR which is thinner than
the entire ball but which still necessitate about R (�ashed) steps to traverse is the set of vertices which
separates BR/2 from in�nity (see Figure 2 left). The main drawback is that estimating P(Xn ∈ GR) is
a di�cult task. This is due to the fact that this set strongly depends on ρ. We shall rather construct
our random subsets GR in a stationary way, i.e. such that P(Xn ∈ GR) = P(ρ ∈ GR) for all n. Since the
random graphM∞ is itself a stationary random graph [7, Proposition 7.9], it su�ces to construct GR in
a way that does not depend on the origin ρ ofM∞. To do this, we shall use “distances from in�nity” or
horodistances rather than distances to ρ. This horodistance is de�ned by

`(u) = lim
z→∞

dgr(z,u) − dgr(z, ρ) ∈ Z, (2)

where z →∞ means that z escapes from any �nite set in the map. We then de�ne the set GR as those
vertices u such that at least R2a−1 (the typical volume of a ball of radius R) di�erent vertices “under u”, i.e.
may be joined to u by a path visiting only vertices with horodistance non-greater than `(u) (see Figure 2
right). Since the de�nition of GR does not depend on the origin of the map, it is stationary in the sense

5
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Figure 2: A natural try for GR on the le� (not stationary) and its stationary version
using horodistances. The problem is that horodistances are not proved to exist inM∞ in
general...

that P(Xn ∈ GR) is constant in n. In the notation of Lemma 1 we expect both βR ≈ R and γR ≈ R (see the
related Proposition 5) which yields an upper bound of 1/3 on the subdi�usivity exponent by Lemma 1.
Actually since horodistances (2) are not yet proved to exist in general Boltzmann maps (see [11, 10]
for the case of the UIPQ and UIPT) we shall use a trick and emulate them on �nite maps: we replace
horodistances by the distances to an extra large boundary, far away from the root edge, see Section 5.

The geometry of M∞ undergoes a phase transition at a = 2, and the dense phase a < 2 is very
di�erent from the dilute phase a > 2 (see e.g. [6]); in particular, when a < 2, the map possesses cut edges:
large faces touch themselves and disconnect the origin from in�nity. In this phase a < 2 (Section 4.2),
we actually give another version of a stationary set GR as the set of all (vertices adjacent to) edges
which separate from in�nity a part of the map with volume at least R2a−1, see Figure 3. We shall
control the number of such cut edges in Proposition 2 and this will imply with the preceding notation
that βR ≈ R4−2a . We also evaluate the density of GR in Proposition 1 yielding γR ≈ R4a−5. This gives
γRβ

2
R ≈ R3 and proves the same upper bound of 1/3 on the subdi�usivity exponent. Although this

yields the same bound on the subdi�usivity exponent we included this derivation because of the simpler
nature of the argument and since the geometric estimates involved are interesting in their own; for
example, we recover the recurrence of the walk in this regime, with an explicit lower bound on the
e�ective resistance between the origin and the boundary of the ball of radius R, see Remark 3.

Note that Lemma 1 does not apply to the dual mapM†∞ in the dense regime a < 2 since the latter
has exponential growth [6]. In this case, another control on the cut points (Lemma 2) will easily entail
Theorem 2.

3 Peeling ofM∞

In this section we recall the background of the peeling process on Boltzmann maps and refer to [7] for
details. We also recall the de�nition of critical weight sequences of type a as well as the probability
measure ν which drives the peeling process of Boltzmann maps.

6
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Figure 3: Illustration of the cut points in the dense case. We shall prove that roughly
R4−2a cut points separate the origin from infinity in the ball of radius R. Combining a
di�usivity estimate for the random walk flashed on these cut points and the density
R5−4a of these cut points yields an upper bound of 1/3 on the di�usivity exponent.

3.1 Weight sequences of type a ∈ (3/2; 5/2]

As soon as the weight sequence q is �xed and admissible, we denote by W (`) the total q-weight of
all �nite maps with a root face of degree 2`. Under those assumptions, a very general enumeration
result, see [7, Lemma 3.13] gives a “strong ratio limit” theorem, in the sense that the ratioW (`+1)/W (`)
converges to some explicit constant cq > 1 when ` → ∞. These numbers, together with the weight
sequence q enable us to de�ne a probability distribution ν (see [7, Lemma 5.2]) by

ν (k) =
{
qk+1c

k
q for k > 0

2W (−1−k )ckq for k 6 −1. (3)

The criticality condition on q is then equivalent to the fact that a ν-random walk oscillates (see [4]
and [7, Theorem 5.4]). The renewal function h↑ of this walk is then universal (it does not depend on q
once it is critical) and is equal to

h↑(k) = 2k · 2−2k
(
2k
k

)
for k > 1. (4)

Furthermore, the weight sequence is of type a ∈ (3/2; 5/2) if and only if, as k →∞,

ν (−k) ∼ pq · k−a and ν ([k,∞)) ∼
pq

a − 1 cos(aπ ) · k
−a+1, (5)

where pq is some constant which depends on our weight sequence q. Also q is of type a = 5/2 if
ν (−k) ∼ pq · k−5/2 and ν ([k,∞)) = o(k−3/2) as k →∞. We refer to [7, Chapter V] for details.

3.2 Filled-in peeling ofM∞

In this section, we brie�y recall the �lled-in peeling process ofM∞ and refer the reader to [7] for details.
This will be our key tool in order to prove the intermediate results mentioned above.

We shall use the root transformation, see [7, Figure 3.2], to see any bipartite planar map as a map
with a root face of degree 2 after splitting the root edge. A submap e with a unique hole of a given
map m is a map with a distinguished face with a simple boundary (called its hole), such that m can

7



be recovered by gluing a proper map with (general) boundary inside the hole of e. A �lled-in peeling
process ofM∞ is a sequence of submaps e0 ⊂ e1 ⊂ · · · ⊂ M∞ constructed recursively started from e0
being simply the 2-gon containing the root edge in the following way. At each step n, we select an edge
A(en) (the peel edge) on the boundary of the hole of en and aim at revealing its “hidden” side; two cases
may appear, as illustrated in Figure 4. We denote by ` the half-perimeter of the hole of en .

• Either the peel edge is incident to a new face inM∞ of degree 2k , then en+1 is obtained from en by
gluing this face on the peel edge without performing any other identi�cation. This event is called
event of type Ck and appear with probability

P (Ck ) =
h↑(` + k − 1)

h↑(`)
ν (k − 1).

• Or the peel edge is incident to another face of en in the mapM∞, in which case we perform the
identi�cation of the two boundary edges of en . When doing so, the hole of en of perimeter, say
2`, is split into two holes of perimeter 2`1 and 2`2 with `1 + `2 = ` − 1. SinceM∞ is one-ended
almost surely, only one of these holes contains an in�nite region inM∞. We then �ll-in the �nite
hole with the corresponding map insideM∞ to obtain en+1. We speak of event of type G∗, `1 or
G`2,∗ depending whether the �nite hole is on the left or on the right of the peel edge and they
happen with probability

P
(
G∗,k

)
= P

(
Gk,∗

)
=

1
2
h↑(k)
h↑(`)

ν (k − `).

Figure 4: Illustration of the filled-in peeling process. In the le�-most Figure we have
explored a certain region en ⊂ M∞ corresponding to the faces in pink glued by the edges
in gray. Depending on the edge to peel at the next step we may end-up either with an
event of type C2 (top figures), or an event of type G3,∗ (bo�om figures).

Let us stress that the choice of the peel edge at each step is given by a peeling algorithm A which
may depend on another source of randomness as long as it is independent of the unrevealed part. In the
next subsection, we shall describe a particular algorithm designed to reveal the hull of the balls one
after the other. Another property that we shall use is the spatial Markov property which says that for
any time n, the map �lling-in the hole of en is independent of en and is distributed asM(`)∞ the in�nite
Boltzmann map of the plane with a root face of degree 2`.

8



3.3 Applications: Peeling by layers

As a direct consequence of the peeling ofM∞ we can compute the degree of the root face. Recall that in
the above presentation, we used the root transformation [7, Figure 3.2] to see any bipartite planar map
as a map with a root face of degree 2 after splitting the root edge. After gluing back the two sides of this
2-gon together, the law of the degree of the root face ofM∞ is given by the perimeter of the �rst face
we reveal during the peeling process i.e.

P (deg(fr) = 2k) = h↑(k)
h↑(1)

ν (k − 1), for k > 1. (6)

Let us describe two peeling algorithms we will use later.

3.3.1 Peeling by layers on the dual

The peeling by layers on the dual, algorithm Adual, is designed to reveal the hull of the dual balls centred
at the root face one after the other. First, as in any peeling, set e0 to be a 2-gon which serves as the root
face. The algorithm Adual will then “turn around” the boundary and peel at edges adjacent to a face
whose dual graph distance to the root face is minimal. If θr is the �rst time at which no edge is adjacent
to a face at dual distance r from the root face then the piece revealed is equal to the hull of the ball2 of
radius r inM†∞. See Figure 5 for an illustration and [7, Chapter 13.2] for details.

Figure 5: (from [7]) The le� Figure shows a portion of an infinite planar map with faces
labelled according to (dual) graph distance to the root face. The submap on the right
depicts a possible state of the peeling by layers. The next edge to peel is indicated in
orange.

3.4 Peeling by layers on the primal

We shall also need the following algorithm Ametric, illustrated in Figure 6, which discovers one after
the other the hull of the balls of the original map centred at the origin ρ of the root edge. This is done
as above by turning around the boundary of the explored maps and always peeling at edge Ametric(e)
whose right end point minimises the distance (for the primal graph distance inside e) to the origin vertex
of the map (if there are several choices, we break the ties deterministically). The main di�erence with
Adual is that the distances of the vertices along the boundary of ei to the origin may di�er in ei and in
M∞. However, it is easy to check that they agree for those vertices at minimal graph distance from the
origin.

2We mean here the map obtained by keeping only the faces that are at dual distance less than or equal to r from the root
face and cutting along all the edges which are adjacent on both sides to faces at dual distance r from fr.
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Figure 6: Illustration of the algorithm Ametric. The labelling represents distances of the
vertices to the origin. On the right a current state ei of the exploration. Notice that the
vertices on the boundary with minimal distances to the origin have the same labels in ei
and in the underlying map. We always peel at an edge whose right end point minimises
this distance (inside ei ).

Applying the above algorithm to discover the 1-neighbourhood of the origin in the map, it is easy to
prove that the vertex degree of the origin inM∞ has an exponential tail (compared with (6) in the dual
map), that is

P (deg(ρ) > k) 6 e−ck , k > 0, (7)

for some constant c > 0 (depending on the critical weight sequence q). See [7, Lemma 15.7], also [2,
Section 4.1] or [22, Theorem 7.1] for a proof based on a Schae�er-type construction.

4 Subdi�usivity via cut points in the dense phase

We focus in this section on the dense regime a ∈ ( 32 , 2) which is simpler than the dilute regime a ∈ (2, 52 )
because of the existence of cut points for these lattices: A cut edge inM∞ is an edge whose removal
disconnects the maps into two parts; if the origin belongs to the �nite one, then the cut edge has to be
traversed by any in�nite path starting from the origin. In the case ofM†∞ we should consider the cut
faces, which are faces ofM∞ whose removal disconnects the root face from∞ for the dual graphM†∞.

4.1 The dual map

Let us start with the dual mapM†∞ for which our proof of Theorem 2 is quite simple. The main technical
ingredient is the following lemma which is based on results of [6, Section 5]. Recall that fr denotes the
root face of the map.

Lemma 2. Fix a ∈ ( 32 , 2). There exist ca ∈ (0,∞), η ∈ (0, 1) and R0 > 1 such that for all R > R0 and all

k > 1, inM∞ we have

P
(
there is no cut face of degree > ecaR at dual distance 6 kR from fr

)
6 ηk .

Proof. Let us perform the peeling by layer on the dual ofM∞, i.e. with the algorithm Adual; recall that
for every k > 1, we denote by θk the least time i > 1 such that the peeling process at time i has entirely
revealed the hull of radius k in the dual map. Results of [6, Section 5] show that the perimeter of the
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(hulls of the) balls inM†∞ grow exponentially fast. In particular, there exists ca > 0 such that for R large
enough, the perimeter at time θR−3 is larger than eRca with probability at least 1/2. On this event, in the
discussion closing Section 5.2.1 in [6], it is further shown that with a probability uniformly bounded
below, there exists a cut face in the hull of radius R for the dual graph distance (i.e. in the within the
next three turns of the peeling algorithm) with degree at least eRca . In a few words, if one continues the
peeling exploration after θR−3, then there is a probability bounded below that within the next turn we
discover a large face of degree proportional to the perimeter, and further that this face will create a cut
face when two edges of this face are identi�ed in a G∗,∗ event in a way that separates the origin from∞.
This discussion shows the case k = 1 of the proposition.

To get the full statement we just use the spatial Markov property: after time θR if `R is the half-
perimeter of the hole, then the remaining random map to explored is distributed asM(`R )∞ . The arguments
in [6, Section 5] show that above discussion holds forM(`)∞ instead ofM∞: for R large enough we have

P
(
inM(`)∞ there is no cut face of degree > ecaR at dual distance 6 R from fr

)
6 η,

where η < 1 does not depend on `. The statement of the proposition then follows by exploring up to
distances R, 2R, 3R, . . . ,kR and combining the Markov property with the above display. �

With this lemma at hand, let us prove Theorem 2 on the random walk on M†∞; the argument is
depicted in Figure 7.

Proof of Theorem 2. Fix ε > 0. Our goal is to see that with probability at least 1 − ε , within the �rst eR

steps of the walk onM†∞ we do not escape from the dual ball of radius δR2 for some δ > 0. Let us �rst
look at the degrees of faces (i.e. vertices ofM†∞) we encounter during this journey: For anym > 1,

P

(
sup

06i<eR
deg(X †i ) > m

)
6 eR · P

(
deg(X †0 ) > m

)
6 eR · Cst ·m3/2−a ,

where the �rst inequality follows from a union bound and the stationarity of the walk, whilst the second
follows from (6) and (5) and the fact that h↑(k) 6 2

√
k for every k > 1. Takingm = e

2
a−3/2R we deduce

that with high probability, the walk does not visit any face of degree larger thanm with high probability
during the �rst eR steps. In Lemma 2 we put R ≡ 2

(a−3/2)ca R and take k = k0 large enough so that ηk0 6 ε ,
we deduce that for R large enough we have

P

(
there is a cut face of degree > m at dual distance 6 2k0

(a − 3/2)ca
R from fr

)
> 1 − ε .

Combining these two �ndings we already deduce that with high probability, the walk cannot visit such
a cut face in the �rst eR steps and is thus con�ned in the hull of the ball of radius 2k0

(a−3/2)ca R with high
probability. However, the dual distances it could reach within this hull could a priori be large. To control
them, we choose δ > 0 so that e2ηδ < 1 and put k = δR in Lemma 2 to deduce that

P
(
there is no cut face of degree > m at dual distance 6 δR2 from fr

)
6 e−2R .

By the union bound and stationarity, we deduce that with high probability, during the �rst eR steps of
the walk, we are always able to �nd a cut face of degree > m within distance δR2 of the current state.
Since we know that we can �nd such a face a distance 2k0

(a−3/2)ca R from the origin, this implies that the
walk cannot have reached distance more than δR2+ 2k0

(a−3/2)ca R from the origin, with high probability. �

Remark 2. Theorem 2 shows a log2 n upper bound for the displacement of the walk onM†∞ up to time
n in the dense regime a < 2. Since balls exhibit an exponential volume growth [6] we believe that this
displacement grows in fact like some constant times logn.
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∞ρ

d†gr ≈ R

d†gr ≈ R2 deg ≈ eR

Figure 7: Illustration of the proof of Theorem 2. Vertices of degree larger that e
2

a−3/2R are
in red and we know that the walk cannot step on them within the first eR steps with
high probability. Besides, with high probability, one of these vertices is a cut face at
distance ≈ R from the root face, and for any time 0 6 i < eR we can find such a cut face
at distance less than ≈ R2 from the current state at time i . We deduce that we cannot
escape further away than ≈ R2 from the origin.

4.2 Estimates on cut edges on the primal map

Let us next focus on the primal map, still in the dense regime a < 2. Recall thatM∞ has polynomial
volume growth [9, Proposition 2]; we shall prove Theorem 1 by relying on Lemma 1. An edge e ofM∞ is
called an R-cut edge if it separates from in�nity a part of the map of volume (e.g. the number of edges,
but it could be the number of vertices or faces) at least R2a−1. As alluded after Lemma 1, we shall consider
the set CR made of all the extremities of R-cut edges, the set GR in Lemma 1 shall be taken as CcR for
some well chosen c . The next result bounds the density of R-cut edges in the map.

Lemma 3. There exist two constants 0 < c < C < ∞ such that for every R > 1,

cR5−4a 6 P (the root edge is an R-cut edge) 6 CR5−4a .

Proof. Let us denote by P > 0 the half-perimeter and by V > 0 the volume of the �nite map separated
from in�nity by the root edge (this map could be reduced to the vertex map). We �rst claim that for
k > 1 we have

c1k
3/2−2a 6 P (P = k) 6 c2k

3/2−2a (8)

for some c1, c2 > 0. Indeed, P = k if the following occurs when peelingM∞: We start with e0 being a
digon obtained by opening up the root edge and we peel both sides one after the other; �rst we discover
a large face, with degree, say, 2` > 2k + 2, and then, at the second step, the peel edge gets identi�ed
with another edge on this large face, and swallows a part of length 2k containing the �nite part of the
map. From the transition probabilities of the peeling recalled in Section 3, this occurs with probability∑

`>k+1
ν (` − 1)h

↑(`)
h↑(1)

· 12ν (−k − 1)
h↑(` − k − 1)

h↑(`)
=

1
2
ν (−k − 1)
h↑(1)

∑
`>k+1

ν (` − 1)h↑(` − k − 1).

Recall that kaν (−k), as well as ka−1ν ([k,∞)) and k−1/2h↑(k) all converge to positive and �nite limits, so
the preceding display is bounded above by some constant times

k−a
∑
`>k

ν (`)
√
` = k−a

∑
K>0

2K+1k∑
`=2Kk

ν (`)
√
`

6 k−a
∑
K>0

ν ([2Kk,∞))
√
2K+1k

6 Ck3/2−2a
∑
K>0
(2K+1)3/2−a ,
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for some C > 0, and a similar lower bound holds. The last series converges since a > 3/2.
Now recall from the spatial Markov property that once such an identi�cation is made, the map which

�lls-in the �nite hole in the peeling is independent and has the law of a �nite Boltzmann mapM(k ) with
perimeter 2k ; according to [7, Proposition 10.4] (see also [6, Proposition 3.4] for the number of vertices
as notion of volume) admits the following scaling limit: k−(a−1/2) |M(k ) | converges in distribution to a
non degenerate random variable of support R+ as k →∞. We deduce that

P
(
V > R2a−1) > c · P

(
P > R2) >

(8)
c ′R5−4a

for some constants c, c ′ > 0. For the upper bound we also need to consider the case P < R2. Propos-
ition 10.4 in [7] (or Proposition 3.4 in [6]) also proves that k−(a−1/2)E[|M(k ) |] converges to some non
degenerate constant as k →∞ so we deduce from Markov’s inequality that

P
(
V > R2a−1) 6 P (

P > R2) + E [
Pa−1/2I{P6R2 }

]
R−(2a−1) 6

(8)
CR5−4a

for some C > 0. �

Recall that we are interested in the set CR made of all the extremities of R-cut edges. By stationarity,
the probability that Xn belongs to CR does not depend on n and is equal to the probability that the origin
ρ of the root edge belongs to CR . The next result provides Assumption (iii) of Lemma 1.

Proposition 1 (Density of CR ). There exist two constants 0 < c1 < c2 < ∞ such that for every R > 2,

c1R
5−4a 6 P (ρ ∈ CR) 6 c2R

5−4a logR.

Proof. Since ρ belongs to CR if and only if one of its incident edges is an R-cut edge, then the lower
bound directly follows from Lemma 3. For an upper bound, �rst notice that the mapM∞ is invariant
under re-rooting around ρ in the sense that if one replaces the root edge by any other edge incident to
ρ, and oriented from ρ, this new map has the same law asM∞. Therefore the bounds in Lemma 3 are
valid for all the edges incident to ρ. By splitting according to the degree of ρ, a union bound yields for
every K > 0,

P (ρ ∈ CR) 6 P (deg(ρ) > K logR) + K logR · P (the root edge is an R-cut edge)
6 e−cK logR + K logR ·CR5−4a ,

where the second inequality follows from (7) and Lemma 3. We conclude by choosing K large enough
so that the last line is smaller than some constant times R5−4a logR. �

It remains to consider Assumption (ii) of Lemma 1. In this simple setting, the graph induced on the
set CR simply consists in a discrete one-dimensional chain, and we aim at controlling its length in the
ball of radius R. We shall need the following lemma. For ` > 1, letM(`)∞ be an in�nite Boltzmann map
with a boundary of length 2` and let us denote by N` the number of cut edges which belong to the root
face and which separate the origin ρ of the root edge from∞.

Lemma 4. There exists δ ,κ > 0 such that for every ` > 1, inM(`)∞ , we have

P
(
N` > κ`

2−a ) > δ .
Proof. Let us label the edges on the boundary ofM(`)∞ from 1 to 2` in clockwise order, starting from the
root edge. Note that when peeling one of these edges, it can be identi�ed with another one only if their
label have di�erent parity. The cut edges counted by N` are given by those pairs 1 6 i < j 6 2` with
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di�erent parity such that the edge i is peeled and gets identi�ed with j during an event G·, · and so that
the in�nite part is separated from the origin. From the exact transition probabilities recalled in Section 3
this happens with probability

P
(
G∗,(j−i−1)/2

)
=

1
2
h↑((j − i − 1)/2)

h↑(`)
ν

(
j − i − 1

2 − `
)
.

Summing over all possible pairs and splitting according to the parity of i , recalling that ν (−k) ∼ pqk−a

and h↑(k) ∼ c ′
√
k for some c ′ > 0 we easily �nd that

E [N`] ∼ c1`2−a ,

for some c1 > 0 as ` →∞.
Let us next turn to the second moment of N` . Now we need to consider pairs of identi�ed pairs

of edges; note that the identi�cations must be planar in the sense that for 1 6 i < j < k < l 6 2`,
one cannot identify i with k and j with l . Moreover, if we want both these identi�cations to create cut
edges which separate the origin from in�nity, then one can only identify i with l and j with k ; this
necessitates that i and l have di�erent parity, and also j and k . In this case, the probability to identify i

with l and j with k equals the probability of the event G∗,(l−i−1)/2 starting with a half-perimeter `, times
the probability of the event G∗,(k−j−1)/2 starting with perimeter l − i − 1, that is explicitly

1
2
h↑((l − i − 1)/2)

h↑(`)
ν

(
l − i − 1

2 − `
)
· 12

h↑((k − j − 1)/2)
h↑(l − i − 1)/2

ν

(
k − j − 1

2 − l − i − 1
2

)
=

1
4
h↑((k − j − 1)/2)

h↑(`)
ν

(
l − i − 1

2 − `
)
ν

(
k − j − 1

2 − l − i − 1
2

)
.

With the same reasoning, we obtain that E[N 2
`
] ∼ c2`

4−2a for some c2 > 0. Appealing to the Paley–
Zygmund inequality, we conclude that for every ` large enough, we have

P
(
N` >

c1
2 `

2−a
)
>

c21
8c2
,

and the proof is complete. �

We may now provide Assumption (ii) of Lemma 1.

Proposition 2. Let a ∈ ( 32 , 2). For every ε > 0, there exists K > 1 such that for every integer R large

enough, with probability at least 1 − ε , there exist at least R4−2a
cut edges within distance KR from the

origin inM∞ which separate from in�nity a portion of the map with volume at least R2a−1
.

Note that on the event in the proposition, there are at least R4−2a vertices in CR inside the ball of
radius KR.

Proof. InM∞, let us perform the peeling (en)n>0 with algorithm Adual (although the statement of the
proposition deals with primal distances) and recall that we denote by θk the �rst time at which no
edge is adjacent to a face at dual distance k , that is the time it takes to complete k turns for the peeling
by layers on the dual map. Let us write Pk for the half-perimeter of the hole of eθk . The results of
Section 5.2.1 in [6] show that there exists c > 0 so that for any k > 1, conditionally on the past before θk ,
the following scenario happens with probability at least c > 0:

• during the next turn, i.e. between time θk and θk+1, we discover a large face f of degree > 4Pk ,
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• during the second turn, i.e. between time θk+1 and θk+2, two edges of f get identi�ed and create a
cut edge separating the origin from in�nity and so that the remaining hole has half-perimeter at
least Pk .

By the Markov property applied when discovering such cut edge and by Lemma 4, with probability at
least δ > 0, this face will further create κ(Pk )2−a additional cut edges during the completion of the turn,
i.e. before time θk+2. Whence for any ε > 0 we can �nd M > 0 so that with probability at least 1 − ε we
discover κ (infk6i6k+M Pi )2−a cut edges within time θk and θk+M . Furthermore inf i>k Pi > εPk with
probability of order 1 −

√
ε by the proof of Proposition A.11 in [7]. Let us sum up this discussion: For

any ε > 0 there exists M,δ > 0 so that independently of the past before θk , there is a probability at least
1 − ε that we discover δ (Pk )2−a edges during the next M turns of the algorithm i.e. before θk+M . Let us
wait for the perimeter process to reach values of order r 2 and volume at least r 2a−1, which takes time of
order r 2(a−1) by [6, Theorem 3.6], up to further adding M + 1 turns of the peeling by layers, which takes
time of order r 2(a−1), we have discovered our desired r 4−2a di�erent r -cut edges before Kr 2(a−1) peeling
steps (with algorithm Adual) with probability 1 − ε for some large constant K > 0.

We now invoke [9] which shows that any Markovian exploration is “roundish” and grows roughly
like metric balls for the primal metric inM∞. In particular, by [9, Theorem 1], there exists A > 0 such
that for any r large enough and for any peeling algorithm, eKr 2(a−1) is contained in the primal ball of
radius Ar with probability at least 1 − ε . The statement of the proposition follows from this remark
combined with the conclusion of the preceding paragraph. �

Remark 3. Using (7) and the work of Gurel-Gurevich & Nachmias [14] it follows that, in the whole
range 3

2 < a 6 5
2 , the random walk onM∞ is recurrent, see e.g. [2, 22]. In the range 3

2 < a < 2 this also
follows from the preceding proposition since the e�ective resistance between the root and the boundary
∂Ball(M∞,KR) grows at least as R4−2a (up to a logR factor for the vertex degrees).

Let us end this section with the proof of Theorem 1 in the dense phase, appealing Lemma 1.

Proof of Theorem 1 when a < 2. First, the mapM∞ has polynomial growth, of order R2a−1 [9, Proposi-
tion 2], whence Condition (i) of Lemma 1 is satis�ed with any d > 2a−1. Next recall that we have de�ned
Cr as the set of all the extremities of those cut edges which separate from in�nity a part of the map with
volume at least r 2a−1. According to Proposition 1 there exists C > 0 such that P(Xn ∈ Cr ) 6 Cr 5−4a log r
for all n > 0 and r > 2. Fix ε > 0; according to Proposition 2 and the remark just after, there exists K > 1
such that for every r large enough, with probability at least 1 − ε/2 there are at least r 4−2a vertices in Cr

inside the ball of radius Kr , and of course each of them must visited before exiting this ball.
Then Lemma 1 applied with R = dKre and GR = Cr shows that for every R large enough, with

probability at least 1 − ε , the random walker Xi stays within distance R from the origin for every
i 6 (Cr 5−4a log r )−1(r 4−2a)2 log−7/4 R 6 C ′R3 log−11/4 R for some C ′ > 0. �

5 Subdi�usivity via horocycles in the dilute phase

We presented informally in Section 2.2 a strategy which holds for alla ∈ ( 32 ,
5
2 ] based on the representation

ofM∞ “from in�nity”. As alluded there, in order to avoid the precise construction of this object, only
available for the UIPQ/T [11, 10] we rely on another approximation ofM∞ by �nite maps which is due
to Budd [5], which we next present.

5.1 Boltzmann maps with an edge as target

In this section we shall consider �nite maps with a root face with degree 2` and another marked face f1
with degree 2. One can adapt in a straightforward way the Boltzmann law to this case and de�neM(`)1
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such a random map with free volume, see [7, Section 4.2] for details. Using the zipping operation (see
Figure 3.2 in [7]) those maps will also be seen as maps with a distinguished (non-oriented) edge which
we will denote by a and ®a after orienting it in a uniformly random fashion amongst the two possibilities.

We de�ne �lled-in peeling processes (en)n>0 of such maps (starting from the root face of degree 2`)
in the very same way as in Section 3, see [5] or [7, Chapter 5] for details. The only di�erence here is
that, at each step, once the peel edge on the boundary of the hole of en , is selected, there are now three
possibilities:

• Either the peel edge is incident to a new face inM(`)1 , di�erent from the distinguished face f1, and
then en+1 is obtained from en by gluing this face on the peel edge without performing any other
identi�cation;

• Or the peel edge is incident to another face of en in the mapM(`)1 , in which case we �rst perform
the identi�cation of the two boundary edges of en and then �ll-in the hole which does not contain
the face f1;

• Or the peel edge is incident to the distinguished face f1 inM(`)1 , then we �rst add this face and
then we �ll-in the remaining hole and we stop.

As in Section 3, one can write down the probability of each of these events; an important feature is that
if Pn denotes the half-perimeter of the hole of en for every n > 0, then the process (Pn)n>0 is a version
of the ν-random walk started from ` and conditioned to �rst enter Z60 at the point −1 and killed there,
where the law ν is de�ned in (3). This conditioning is de�ned as a Doob h-transform with the harmonic
function h↓1 where for p > 1 we have

h↓p (k) =
k

k + p
· 2−2(k+p)

(
2k
k

) (
2p
p

)
for k > 0 and h↓p (−p) = 1. (9)

As in Section 3 one can derive precious information about the latticeM(`)1 by choosing carefully the
peeling algorithm. As an example, the proof of [7, Lemma 15.7] extends easily and shows the analogue
of (7) about the degree of the vertex ρ®a from which ®a emanates:

P (deg(ρ®a) > k) 6 e−ck , k > 0 (10)

with a constant c > 0 which does not depend on `.
We shall observe the map from ®a and denote by ®M(`)1 the map obtained by forgetting the root edge

on the boundary of degree 2` and re-rooting the map at ®a. The reason why we introduce these random
maps is the following result due to Budd [5, Theorem 2]. See also [7, Theorem 7.1].

Proposition 3 ([5]). We have
®M(`)1 → M∞ in distribution for the local topology as ` →∞.

We shall use this result in the following context, as depicted in Figure 8. Since ®a will play the role
of the root edge inM(`)1 , we shall use the root face of perimeter 2` inM(`)1 as playing the role of “the
point at in�nity” in the heuristic discussion in Section 2.2. The conjectural horodistances will simply
be replaced by distances to the large boundary ∂M(`)1 . For our application we shall thus consider the
oriented edges ( ®En : n > 0) visited by a random walk started from ®E0 = ®a in ®M(`)1 . Since by the zipping
operation distinguishing a 2-gon is the same as distinguishing an edge, it is straightforward that ®M(`)1 is
stationary with respect to the random walk i.e. that for every n > 0, the map obtained from ®M(`)1 by
distinguishing ®En instead of ®a has the same law as ®M(`)1 .
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Figure 8: Emulating the conjectural horodistances inM∞ by distances from a large root
face in ®M(`)1 .

5.2 Finding a good set

We will now de�ne a stationary set of “good edges” in M(`)1 by using an exploration with algorithm
Ametric recalled in Section 3.3. We start with the construction in the deterministic setting.

Fix any �nite map m(`) with a boundary face of degree 2`. We shall measure the distance in m(`) to
the boundary ∂m(`) of degree 2`. Adapting the algorithm Ametric of Section 3.3 we shall always peel
an edge whose right hand point minimises the distance to ∂m(`). Contrary to the previous cases, we
shall not considered the �lled-in version of this exploration, and continue our process in each hole thus
created: inside each of these holes we peel an edge whose right-hand point minimises the distances
(amongst all vertices of that holes) to ∂m(`). We shall freeze the exploration inside a hole as soon as
the remaining volume (number of edges) of the map which should �ll it in drops below R2a−1. Notice
that this exploration is not “Markovian” since it uses the knowledge of the undiscovered part, but we
shall only use it to de�ne our set of good edges. When the exploration is �nished, we get a submap
e ⊂ m(`) with holes, and each of these holes hides a map of volume smaller than R2a−1. The set of all
edges explored during this process is the set of R-good edges.

As in the proof of Lemma 1, let us consider in m(`) the graph HR (for horodistances) spanned by the
vertices incident to R-good edges and where two vertices are linked by an edge if there exists a path in
m(`) going from one to the other without visiting any other vertex of HR . For x ∈ Vertices(m(`)) let us
also write

H (x) = dgr(x , ∂m(`)), (11)

the distance from x to the boundary. See Figure 9 Right.

Proposition 4. If x ,y are two adjacent vertices in HR then |H (x) − H (y)| 6 1. In words, the graph

distances in HR are larger than the di�erences of the distances to the boundary of the map.

This shows that HR does not create “shortcuts” in the sense that if a path in the map goes from a
vertex x ∈ HR to another vertex y ∈ HR such that H (y) = H (x) − k , then the path �ashed on HR goes
from x to y in at least k steps. In view of applying Lemma 1 with GR = HcR for some c > 0, this will
provide Assumption (ii) with βR of order R.

17



Infinite model time model

④ dis'q÷ a
n

,
i

"""÷gi÷o.÷÷¥÷i÷i÷÷o:* .⇒

'w

÷¥± .
÷i÷÷÷÷÷÷÷÷÷÷÷.

ii:÷÷÷÷÷÷÷±÷÷ .

Figure 9: Illustration of the construction of R-good edges in a map with a boundary
as those edges which, when discovered using the filled-in peeling algorithm Ametric,
possess at least R2a−1 edges below them, i.e. in the remaining hole to be filled-in.

Proof. Let us examine the situation after the branching peeling exploration with algorithm Ametric frozen
when the volume of the map of a given hole drops below R2a−1. The submap e obtained may have several
holes, which are simple faces which cannot share any edge but may share vertices with ∂m(`). Label the
vertices of e with respect to their graph distance within e to the boundary ∂m(`). The key is to notice
that by the properties of algorithm Ametric, each hole of e has the following property: For each hole h of
e there exists an integer a > 0 such that the vertices which are adjacent to another vertex of e \ h carry
either label a or a + 1. See Figure 10. The vertices of label a or a + 1 inside a given hole are called exit

vertices in the following lines.

hole h

e

distance a

distance a + 1

distance a + 2

distance a + 3

distance a + 4

Figure 10: Typical status of the distances to the boundary of the map along a given hole.
Notice that only the vertices with label a or a + 1 –the exit vertices– can be linked to a
di�erent part of e.

This property is easy to prove by induction using the de�nition of algorithm Ametric and the peeling
transitions. Also if x ∈ e is a inner vertex (i.e. not on a hole) or a vertex of a hole with label a or a + 1 as
above, then the graph distance from x to ∂m(`), coincide inside e and within the larger map m(`). Let us
now consider a walk insidem(`) and let us �ash it on HR . It should be clear from the above that although
the transitions for the �ashed walk may be arbitrary inside a given hole, the only way to “escape” from
a hole and walk inside HR is to go through an exit vertex. Whence, by the above property, between a
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time where the walk enters a hole (or a inner vertex of e) and the time it exits it, its label (distance to the
boundary) cannot vary by more than 1 in absolute value. This prove our proposition. �

5.3 Stationarity and density ofHR

We now study the properties of the graph HR in the case when m(`) is the random map ®M(`)1 . First of
all, recall that ®M(`)1 is stationary, i.e. invariant under the simple random walk started from X0 = ρ®a the
origin of the oriented edge ®a ofM(`)1 so the probability that Xn belongs to HR does not depend on n. Let
us study the density of HR (Assumption (iii) of Lemma 1) using the �lled-in peeling process underM(`)1 :

Proposition 5. There exist two constants c,C > 0 such that, uniformly for ` > 1 and R > 1, insideM(`)1
we have

P (a is R-good) 6 cR−1 and P (ρ®a ∈ HR) 6 CR−1 logR.

Proof of Proposition 5. The second claim follows from the �rst one as in Proposition 1, appealing to (10)
instead of (7). We thus focus on the edge a. To see whether a is R-good we shall open it and explore the
mapM(`)1 from the boundary towards the distinguished 2-gon using a �lled-in version (en)n>0 of the
peeling exploration described in the last section. At the last exploration step at time τ , we must reveal a
2-gon corresponding to the edge a. By de�nition a is R-good if the remaining hole is �lled-in with a
map with at least R2a−1 edges (note that this does not depend on the orientation of ®a).

This implies that at every preceding time n < τ , the unrevealed map which �ts in the hole of en must
have volume at least R2a−1. By the strong Markov property, if n is a stopping time and the perimeter of
the hole of en is, say 2p > 2, then the map that �lls-in the hole is independent of the exploration and has
the lawM(p)1 . According to [7, Theorem 3.12] the volume of such a map has the following law:

P(|M(p)1 | = n) = P
(
ζ−p−1 = n

)
, for every n > 1,

where ζ−p−1 is the hitting time of −p − 1 of a random walk with step distribution µ(· + 1) on Z>−1 where
µ is de�ned just before [7, Theorem 3.12]. In our case, µ is centred and belongs to the strict domain
of attraction of a stable law with index a − 1/2 (see Proposition 5.9 in [7]), then an application of the
cyclic lemma and the local limit theorem shows that ζ = ζ−1 belongs to the strict domain of attraction
of a stable law with index (a − 1/2)−1 < 1 in the sense that there exists a constant ca > 0 such that
P(ζ > x) ∼ cax

−1/(a−1/2) as x → ∞. Then a one big jump principle states that there exists a constant
C > 0 such that for all n,p > 1 we have

P
(
ζ−p > n

)
6 C · p · n−1/(a−1/2),

see e.g. [3, Theorem 2.2.1] with r = 1.
Let us denote by P (`) the half-perimeter process of the hole during this exploration (hence P (`) starts

from ` and evolves as an h↓1-transform of the ν-random walk). By stopping the peeling at the �rst time
this half-perimeter enters an interval of the form [2k , 2k+1], we obtain that

P(a is R-good) 6 P
(
min
k<τ

P (`)k > R2
)
+

∑
k<log2(R2)

P

(
min
k<τ

P (`)k > 2k
)

sup
j ∈[2k ,2k+1]

P(|M(j)1 | > R2a−1).

The tail probability of mink<τ P (`)k is bounded in Lemma 5 below and that of the volume of |M(j)1 | has
just been discussed; we obtain that for some C > 0,

P(a is R-good) 6 2
R
+

∑
k<log2(R2)

2
2k/2

sup
`∈[2k ,2k+1]

C · ` · (R2a−1)−1/(a−1/2)

6
2
R
+ 4C

∑
k<log2(R2)

2k/2R−2,
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which indeed is bounded by some constant times R−1. �

In the course of the proof, we used the following lemma.

Lemma 5. For every integers ` > m > 1, we have that

P

(
min
k<τ

P (`)k > m

)
6

2
√
m
.

Proof. Let (Sk )k>0 be a random walk with i.i.d. increments of law ν which, under P(m0) starts fromm0.
By de�nition of the h-transform, we have that

P

(
min
k<τ

P (`)k > m

)
=
h↓1(−1)
h↓1(`)

· P(`)
(
min
k<τ

Sk > m and τ−1 = τ < ∞
)

=
1

h↓1(`)
· P(`−m+1)

(
min
k<τ

Sk > 1 and τ−m = τ < ∞
)

=
1

h↓1(`)
· h↓m(` −m + 1),

where the last line follows from [7, Proposition 5.3] and we recall the functions h↓p from (9); recall also
h↑ from (4). We may re-write this as

P

(
min
k<τ

P (`)k > m

)
=
h↑(` −m + 1)

h↑(`)
· h
↑(m)
h↑(1)

· 1
m
.

Using that h↑ is increasing, the �rst ratio is bounded by 1, the claim then follows from the easy bounds√
k 6 h↑(k) 6 2

√
k for every k > 1. �

5.4 Proof of Theorem 1 in the dilute case

Let us end this paper with the proof of Theorem 1 in all regimes 3/2 < a 6 5/2; we illustrate the
argument in Figure 11.

Proof of Theorem 1. Let us write BR for the ball of radius R inM∞ and by B̃
(`)
R the ball of radius R around

ρ®a in ®M(`)1 . Fix ε > 0. We aim at showing that, onM∞, with probability at least 1 − ε , for some large
K > 1, when R is large enough, after R3 log−11/4 R steps, the random walk has not escaped from BKR

with probability at least 1 − ε . The constant K will be chosen below but notice already that for every
K ,R > 1, by Proposition 3, we can chose ` ≡ `(K · R) and couple the realisations ofM∞ andM(`)1 in
such a way that BKR coincides with B̃

(`)
KR with probability at least 1 − ε/10. Of course on this event,

we can further suppose that the random walkers in both graphs coincide up to their �rst exit time of
those balls. This coupling enables us to transfert properties fromM∞ toM(`)1 and to use the random
stationary set HR in the latter.

In particular, by [9, Proposition 2] we know thatM∞ has polynomial growth of order R2a−1 and so
we can chose K > C > 1 so that for all R su�ciently large, the volume (in terms of number of edges)
of the balls satis�es |BCR | > R2a−1 and |BKR | 6 R10 with probability 1 − ε/10. Similarly, up to further
increasing K , the results of [9] show that at the �rst exit time of BKR , the trace of the random walk has
already separated B2CR from from∞ with probability at least 1 − ε/10. By the above coupling, we can
chose ` large enough so that the above properties holds in ®M(`)1 with probability at least 1 − 3ε/10.

Let us now work in ®M(`)1 . When the above conditions are satis�ed, we know that when exiting
B̃
(`)
KC the random walk has entirely surrounded B̃

(`)
2CR , and so it must have visited a vertex x with
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H (x) 6 H (ρ ®a) − 2CR. Since |BCR | > R2a−1, by Proposition 4 this implies that the random walker must
have travelled for a distance at least CR through HR before exiting B̃

(`)
KC . Using the above volume

estimates together with Proposition 5, Lemma 1 shows that with probability at least 1 − ε/10, when R is
large, this has necessitated at least R3 log−11/4 R steps of the random walk. Using the coupling between
BKR and B̃

(`)
KR we deduce that with probability at least 1 − ε , after R3 log−11/4 R steps, the random walk

has not yet escaped from BKR . �

Infinite model time model
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,
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Figure 11: Illustration of the proof of Theorem 1. When exiting the ball of radius KR,
with high probabiliy, the random walk trace must have separated the ball of radius 2CR
from infinity. If |BCR | > R2a−1 this means that the walker must have travelled for a
distance at least CR inside HR .
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