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we have developed a new approach to L ∞ -a priori estimates for degenerate complex Monge-Ampère equations, when the reference form is closed. This simplifying assumption was used to ensure the constancy of the volumes of Monge-Ampère measures.

We study here the way these volumes stay away from zero and infinity when the reference form is no longer closed. We establish a transcendental version of the Grauert-Riemenschneider conjecture, partially answering conjectures of Demailly-Pȃun [DP04] and Boucksom-Demailly-Pȃun-Peternell [BDPP13].

Our approach relies on a fine use of quasi-plurisubharmonic envelopes. The results obtained here will be used in [GL21b] for solving degenerate complex Monge-Ampère equations on compact Hermitian varieties.

Introduction

The study of complex Monge-Ampère equations on compact Hermitian (non Kähler) manifolds has gained considerable interest in the last decade, after Tosatti and Weinkove established an appropriate version of Yau's theorem in [START_REF] Tosatti | The complex Monge-Ampère equation on compact Hermitian manifolds[END_REF]. The smooth Gauduchon-Calabi-Yau conjecture has been further solved by Székelyhidi-Tosatti-Weinkove [START_REF] Székelyhidi | Gauduchon metrics with prescribed volume form[END_REF], while the pluripotential theory has been partially extended by Dinew, Ko! lodziej, and Nguyen [DK12, [START_REF] Ko! Lodziej | Weak solutions to the complex Monge-Ampère equation on compact Hermitian manifolds[END_REF][START_REF] Dinew | Pluripotential theory on compact Hermitian manifolds[END_REF][START_REF] Ko! Lodziej | Stability and regularity of solutions of the Monge-Ampre equation on Hermitian manifolds[END_REF].

As in Yau's original proof [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF], the method of [START_REF] Tosatti | The complex Monge-Ampère equation on compact Hermitian manifolds[END_REF] consists in establishing a priori estimates along a continuity path, and the most delicate estimate turns out again to be the a priori L ∞ -estimate. The fact that the reference form is not closed introduces several new difficulties: there are many extra terms to handle when using Stokes theorem, and it becomes non trivial to get uniform bounds on the total Monge-Ampère volumes involved in the estimates.

In [START_REF] Guedj | Quasi-plurisubharmonic envelopes 1: uniform estimates on Kähler manifolds[END_REF] we have developed a new approach for establishing uniform a priori estimates, restricting to the context of Kähler manifolds for simplicity. While the pluripotential approach consists in measuring the Monge-Ampère capacity of sublevel sets (ϕ < -t), we directly measure the volume of the latter, avoiding delicate integration by parts. Our approach applies in the Hermitian setting, once certain Monge-Ampère volumes are under control. Understanding the behavior of these volumes is the main focus of this article, while [START_REF] Guedj | Quasi-plurisubharmonic envelopes 3: Solving Monge-Ampère equations on hermitian manifolds[END_REF] is concerned with the resolution of degenerate complex Monge-Ampère equations.

We let X denote a compact complex manifold of complex dimension n, equipped with a Hermitian metric ω X . The first difficulty we face is to decide whether

v + (ω X ) := sup !" X (ω X + dd c ϕ) n : ϕ ∈ PSH(X, ω X ) ∩ L ∞ (X) # is finite. Here d = ∂ + ∂, d c = i(∂ -∂),
and PSH(X, ω X ) is the set of ω Xplurisubharmonic functions: these are functions u : X → R ∪ {-∞} which are locally given as the sum of a smooth and a plurisubharmonic function, and such that ω X + dd c u ≥ 0 is a positive current. The complex Monge-Ampère measure (ω X + dd c u) n is well-defined by [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF].

Building of works of Chiose [START_REF] Chiose | On the invariance of the total Monge-Ampère volume of Hermitian metrics[END_REF] and Guan-Li [START_REF] Guan | Complex Monge-Ampère equations and totally real submanifolds[END_REF] we provide several results which ensure that the condition v + (ω X ) < +∞ is satisfied:

• for any compact complex manifold X of dimension n ≤ 2; • for any threefold which admits a pluriclosed metric dd c ωX = 0; • as soon as there exists a metric ωX such that dd c ωX = 0 and dd c ω2 X = 0; • as soon as X belongs to the Fujiki class C.

The Fujiki class is the class of compact complex manifolds that are bimeromorphically equivalent to Kähler manifolds.

We also need to bound the Monge-Ampère volumes from below. Given ω a semi-positive form, we introduce several positivity properties:

• we say ω is non-collapsing if there is no bounded ω-plurisubharmonic function u such that (ω + dd c u) n ≡ 0; • ω satisfies condition (B) if there exists a constant B > 0 such that -Bω 2 ≤ dd c ω ≤ Bω 2 and -Bω 3 ≤ dω ∧ d c ω ≤ Bω 3 ;

• we say ω is uniformly non-collapsing if

v -(ω) := inf !" X (ω + dd c u) n : u ∈ PSH(X, ω) ∩ L ∞ (X) # > 0.
The non-collapsing condition is the minimal positivity condition one should require. We show in Proposition 2.8 that it implies the domination principle, a useful extension of the classical maximum principle. We provide a simple example showing that having positive volume $ X ω n > 0 does not prevent from being collapsing (see Example 3.5).

After providing a simplified proof of Ko! lodziej-Nguyen modified comparison principle (see [KN15, Theorem 0.5] and Theorem 1.5), we show that condition (B) implies non-collapsing. The former condition is e.g. satisfied by any form ω which is the pull-back of a Hermitian form on a singular Hermitian variety.

When ω is closed, simple integration by parts reveal that v -(ω) = $ X ω n is positive as soon as ω is positive at some point. Bounding from below v -(ω) is a much more delicate issue in general. We show in Proposition 3.4 that ω is uniformly non-collapsing if one restricts to ω-psh functions that are uniformly bounded by a fixed constant M :

v - M (ω) := inf !" X (ω + dd c u) n : u ∈ PSH(X, ω) with -M ≤ u ≤ 0 # > 0.
For non uniformly bounded functions we show the following:

Theorem A. The condition v + (ω X ) < +∞ is independent of the choice of ω X ;
it is moreover invariant under bimeromorphic change of coordinates.

The condition v -(ω X ) > 0 is also independent of the choice of ω X and invariant under bimeromorphic change of coordinates.

In particular these conditions both hold true if X belongs to the Fujiki class.

We are not aware of a single example of a compact complex manifold such that

v + (ω X ) = +∞ or v -(ω X ) = 0. This is an important open problem.
The proof of Theorem A relies on a fine use of quasi-plurisubharmonic envelopes. These envelopes have been systematically studied in [START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF] in the Kähler framework. Adapting and generalizing [START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF] to this Hermitian setting, we prove in Section 2 the following: Theorem B. Given a Lebesgue measurable function h : X → R, we define the ω-plurisubharmonic envelope of h by P ω (h) := (sup{u ∈ PSH(X, ω) : u ≤ h}) * , where the star means that we take the upper semi-continuous regularization. If h is bounded below, quasi-lower-semi-continuous, and P ω (h) < +∞, then

• P ω (h) is a bounded ω-plurisubharmonic function;

• P ω (h) ≤ h in X \ P , where P is pluripolar;

• (ω + dd c P ω (h)) n is concentrated on the contact set {P ω (h) = h}.
An influential conjecture of Grauert-Riemenschneider [GR70] asked whether the existence of a semi-positive holomorphic line bundle L → X with c 1 (L) n > 0 implies that X is Moishezon (i.e. bimeromorphically equivalent to a projective manifold). This conjecture has been solved positively by Siu in [START_REF] Siu | A vanishing theorem for semipositive line bundles over non-Kähler manifolds[END_REF] (with complements by [START_REF] Siu | Some recent results in complex manifold theory related to vanishing theorems for the semipositive case[END_REF] and Demailly [START_REF] Demailly | Une preuve simple de la conjecture de Grauert-Riemenschneider[END_REF]).

Demailly and Pȃun have proposed a transcendental version of this conjecture (see [DP04, Conjecture 0.8]): given a nef class α ∈ H 1,1 BC (X, R) with α n > 0, they conjectured that α should contain a Kähler current, i.e. a positive closed (1, 1)-current which dominates a Hermitian form. Recall that the Bott-Chern cohomology group H 1,1 BC (X, R) is the quotient of closed real smooth (1, 1)-forms, by the image of C ∞ (X, R) under the dd c -operator.

This influential conjecture has been further reinforced by Boucksom-Demailly-Pȃun-Peternell who proposed a weak transcendental form of Demailly's holomorphic Morse inequalities [BDPP13, Conjecture 10.1]. This stronger conjecture has been solved recently by Witt-Nyström when X is projective [START_REF] Nyström | Duality between the pseudoeffective and the movable cone on a projective manifold[END_REF].

Building on works of Chiose [START_REF] Chiose | The Kähler rank of compact complex manifolds[END_REF], Xiao [START_REF] Xiao | Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds[END_REF] and Popovici [START_REF] Popovici | Sufficient bigness criterion for differences of two nef classes[END_REF] we obtain the following answer to the qualitative part of these conjectures:

Theorem C. Let α, β ∈ H 1,1
BC (X, C) be nef classes such that α n > nα n-1 • β. The following properties are equivalent:

(1) α -β contains a Kähler current;

(2) v + (ω X ) < +∞;

(3) X belongs to the Fujiki class.

A consequence of our analysis is that the conjectures of Demailly-Pȃun and Boucksom-Demailly-Pȃun-Peternell can be extended to non closed forms, making sense outside the Fujiki class. Progresses in the theory of complex Monge-Ampère equations on compact hermitian manifolds have indeed shown that it is useful to consider dd c -perturbations of non closed nef forms. It is therefore natural to try and consider an extension of Theorem C. These are the contents of Theorem 4.6 (when β = 0) and Theorem 4.15 (when β ∕ = 0).

Non collapsing forms

In the whole article we let X denote a compact complex manifold of complex dimension n ≥ 1, and we fix ω a smooth semi-positive (1, 1)-form on X.

Positivity properties.

1.1.1. Monge-Ampère operators. A function is quasi-plurisubharmonic (quasi-psh for short) if it is locally given as the sum of a smooth and a psh function.

Given an open set U ⊂ X, quasi-psh functions ϕ : U → R ∪ {-∞} satisfying ω ϕ := ω + dd c ϕ ≥ 0 in the weak sense of currents are called ω-psh functions on U . Constant functions are ω-psh functions since ω is semi-positive. A C 2 -smooth function u ∈ C 2 (X) has bounded Hessian, hence εu is ω-psh on X if 0 < ε is small enough and ω is positive (i.e. Hermitian).

Definition 1.1. We let PSH(X, ω) denote the set of all ω-plurisubharmonic functions which are not identically -∞.

The set PSH(X, ω) is a closed subset of L 1 (X), for the L 1 -topology. We refer the reader to [START_REF] Demailly | Analytic methods in algebraic geometry[END_REF][START_REF] Guedj | Degenerate complex Monge-Ampère equations[END_REF][START_REF] Dinew | Pluripotential theory on compact Hermitian manifolds[END_REF] for basic properties of ω-psh functions.

The complex Monge-Ampère measure (ω+dd c u) n is well-defined for any ω-psh function u which is bounded, as follows from Bedford-Taylor theory: if β = dd c ρ is a Kähler form that dominates ω in a local chart, the function u is β-psh hence the positive currents (β + dd c u) j are well defined for 0 ≤ j ≤ n; one thus sets

(ω + dd c u) n := n % j=0 & n j ' (-1) n-j (β + dd c u) j ∧ (β -ω) n-j .
We refer to [START_REF] Dinew | Pluripotential estimates on compact Hermitian manifolds[END_REF] for an adaptation of [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF] to the Hermitian context. The mixed Monge-Ampère measures (ω + dd c u) j ∧ (ω + dd c v) n-j are also well defined for any 0 ≤ j ≤ n, and any bounded ω-psh functions u, v. We recall the following classical inequality (see [GL21a, Lemma 1.3]): Lemma 1.2. Let ϕ, ψ be bounded ω-psh functions in U ⊂ X such that ϕ ≤ ψ. Then 1 {ψ=ϕ} (ω + dd c ϕ) j ∧ (ω + dd c ψ) n-j ≤ 1 {ψ=ϕ} (ω + dd c ψ) n , for all 1 ≤ j ≤ n.

1.1.2. Condition (B) and non-collapsing. We always assume in this article that $ X ω n > 0. On a few occasions we will need to assume positivity properties that are possibly slightly stronger: Definition 1.3. We say ω satisfies condition (B) if there exists B ≥ 0 such that

-Bω 2 ≤ dd c ω ≤ Bω 2 and -Bω 3 ≤ dω ∧ d c ω ≤ Bω 3 .
Here are three different contexts where this condition is satisfied:

• any Hermitian metric ω > 0 satisfies condition (B);

• if π : X → Y is a desingularization of a singular compact complex variety Y and ω Y is a Hermitian metric, then ω = π * ω Y satisfies condition (B); • if ω is semi-positive and closed, then it satisfies condition (B). Combining these one obtains further settings where condition (B) is satisfied.

Definition 1.4. We say ω is non-collapsing if for any bounded ω-psh function, the complex Monge-Ampère measure (ω + dd c u) n has positive mass: $ X ω n u > 0. We shall see in Corollary 1.6 below that condition (B) implies non-collapsing. 1.2. Comparison principle. The comparison principle plays a central role in Kähler pluripotential theory. Its proof breaks down in the Hermitian setting, as it heavily relies on the closedness of the reference form ω through the preservation of Monge-Ampère masses. In that context the following "modified comparison principle" has been established by Ko! lodziej-Nguyen [KN15, Theorem 0.2]: Theorem 1.5. Assume ω satisfies condition (B) and let u, v be bounded ω-psh functions. For λ ∈ (0, 1) we set

m λ = inf X {u -(1 -λ)v}. Then & 1 - 4B(n -1) 2 s λ 3 ' n " {u<(1-λ)v+m λ +s} ω n (1-λ)v ≤ " {u<(1-λ)v+m λ +s} ω n u .
for all 0 < s < λ 3 32B(n-1) 2 . The proof by Ko! lodziej-Nguyen relies on the main result of [START_REF] Dinew | Pluripotential estimates on compact Hermitian manifolds[END_REF], together with extra fine estimates. We propose here a simplified proof.

Proof. Set φ := max(u, (1 -λ)v + m λ + s), U λ,s := {u < (1 -λ)v + m λ + s}. For 0 ≤ k ≤ n we set T k := ω k u ∧ ω n-k φ
, and T l = 0 if l < 0. Set a = Bsλ -3 (n -1) 2 . We are going to prove by induction on k = 0, 1, ..., n -1 that

(1.1) (1 -4a) " U λ,s T k ≤ " U λ,s T k+1 .
The conclusion follows since (ω φ ) n = (ω (1-λ)v ) n in the plurifine open set U λ,s . We first prove (1.1) for k = 0. Since u ≤ φ, Lemma 1.2 ensures that

1 {u=φ} ω n φ ≥ 1 {u=φ} ω u ∧ ω n-1 φ . Observing that U λ,s = {u < φ} we infer " X dd c (φ -u) ∧ ω n-1 φ = " X (ω n φ -ω u ∧ ω n-1 φ ) ≥ " U λ,s ω n φ - " U λ,s ω u ∧ ω n-1 φ .
A direct computation shows that

dd c ω n-1 φ = (n -1)dd c ω ∧ ω n-2 φ + (n -1)(n -2)dω ∧ d c ω ∧ ω n-3 φ ≤ (n -1)Bω 2 ∧ ω n-2 φ + (n -1)(n -2)Bω 3 ∧ ω n-3 φ ,
since ω satisfies condition (B). As φ -u ≥ 0, it follows from Stokes theorem that "

X dd c (φ-u)∧ω n-1 φ ≤ (n-1)B !" X (φ -u)ω 2 ∧ ω n-2 φ + (n -2) " X (φ -u)ω 3 ∧ ω n-3 φ # .
Observe that

• λω ≤ ω (1-λ)v hence ω j ∧ ω n-j φ ≤ λ -j (ω (1-λ)v ) j ∧ ω n-j φ , • (ω (1-λ)v ) j ∧ ω n-j φ = ω n φ in the plurifine open set U λ,s , • and 0 ≤ φ -u ≤ s and φ -u = 0 on X \ U λ,s , to conclude that $ X (φ -u)ω j ∧ ω n-j φ ≤ sλ -j $ U λ,s ω n φ , for j = 2, 3, hence " U λ,s ω n φ - " U λ,s ω u ∧ ω n-1 φ ≤ " X dd c (φ -u) ∧ ω n-1 φ ≤ Bs(n -1) 2 λ 3 " U λ,s ω n φ , since λ -2 ≤ λ -3 . This yields (1.1) for k = 0.
We asume now that (1.1) holds for all j ≤ k -1, and we check that it still holds for k. Observe that

dd c ( ω k u ∧ ω n-[k+1] φ ) = kdd c ω ∧ ω k-1 u ∧ ω n-[k+1] φ + (n -[k + 1])dd c ω ∧ ω k u ∧ ω n-[k+2] φ + 2k(n -[k + 1])dω ∧ d c ω ∧ ω k-1 u ∧ ω n-[k+2] φ + k(k -1)dω ∧ d c ω ∧ ω k-2 u ∧ ω n-[k+1] φ + (n -[k + 1])[n -(k + 2)]dω ∧ d c ω ∧ ω k u ∧ ω n-[k+3] φ .
The same arguments as above therefore show that "

U λ,s (T k -T k+1 ) ≤ " X (T k -T k+1 ) = " X (φ -u)dd c (ω k u ∧ ω n-[k+1] φ ) ≤ Bs λ 3 " U λ,s * k(k -1)T k-2 + 2k[n -k]T k-1 + (n -[k + 1]) 2 T k + ≤ a & 1 (1 -4a) 2 + 1 1 -4a + 1 ' " U λ,s T k ≤ 4a " U λ,s T k ,
where in the third inequality above we have used the induction hypothesis, while the fourth inequality follows from the upper bound 4a < 1/8. From this we obtain (1.1) for k, finishing the proof. □ Corollary 1.6. If ω satisfies condition (B) then ω is non-collapsing.

Proof. It follows from Theorem 1.5 that the domination principle holds (see [LPT, Proposition 2.2]). The latter implies in particular that if u, v are ω-psh and bounded, then

e -v (ω+dd c v) n ≥ e -u (ω+dd c u) n =⇒ v ≤ u (see [LPT, Proposition 2.

3]

). There can thus be no bounded ω-psh function u such that (ω + dd c u) n = 0. Otherwise the previous inequality applied with a constant function v = A yields u ≥ A for any A, a contradiction. □

Envelopes

We consider here envelopes of ω-psh functions, extending some results of [GLZ19] that have been established for Kähler manifolds.

2.1. Basic properties. Definition 2.1. A Borel set E ⊂ X is (locally) pluripolar if it is locally contained in the -∞ locus of some psh function: for each x ∈ X, there exists an open neighborhood U of x and u ∈ PSH(U ) such that E ∩ U ⊂ {u = -∞}.

Definition 2.2. Given a Lebesgue measurable function h : X → R, we define the ω-psh envelope of h by

P ω (h) := (sup{u ∈ PSH(X, ω) : u ≤ h quasi-everywhere in X}) * ,
where the star means that we take the upper semi-continuous regularization, while quasi-everywhere means outside a locally pluripolar set.

When ω is Hermitian and

h is C 1,1 -smooth, then so is P ω (h) (see [Ber19, CZ19, CM20]) and one can show that (2.1) (ω + dd c P ω (h)) n = 1 {Pω(h)=h} (ω + dd c h) n .
For less regular obstacle h we have the following:

Theorem 2.3. If h is bounded from below, quasi-l.s.c., and P ω (h) < +∞, then

• P ω (h) is a bounded ω-plurisubharmonic function; • P ω (h) ≤ h in X \ P , where P is pluripolar; • (ω + dd c P ω (h)) n is concentrated on the contact set {P ω (h) = h}.
Recall that a function h is quasi-lower-semicontinuous (quasi-l.s.c.) if for any ε > 0, there exists an open set G of capacity smaller than ε such that h is continuous in X \ G. Quasi-psh functions are quasi-continuous (see [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF]), as well as differences of the latter.

Proof. The proof is an adaptation of [GLZ19, Proposition 2.2, Lemma 2.3, Proposition 2.5], which deal with the case when ω is Kähler.

Since P ω (h) is bounded from above, up to replacing h with min(h, C) with C > sup X P ω (h) we can assume that h is bounded.

Step 1: h is smooth, ω is Hermitian. Building on Berman's work [START_REF] Berman | From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit[END_REF], it was shown by Chu-Zhou in [START_REF] Chu | Optimal regularity of plurisubharmonic envelopes on compact Hermitian manifolds[END_REF] that the smooth solutions ϕ β to (ω + dd c ϕ β ) n = e β(ϕ β -h) ω n converge uniformly to P ω (h) along with uniform C 1,1 -estimates. As a consequence, the measures (ω + dd c ϕ β ) n converge weakly to (ω + dd c P ω (h)) n . For each fixed ε > 0, we have the inclusions of open sets

{P ω (h) < h -2ε} ⊂ {ϕ β < h -ε} for β large enough, yielding " {Pω(h)<h-2ε} (ω + dd c P ω (h)) n ≤ lim inf β→+∞ " {Pω(h)<h-2ε} (ω + dd c ϕ β ) n ≤ lim inf β→+∞ " {Pω(h)<h-2ε}
e -βε ω n = 0.

Step 2: h is lower semi-continuous, ω is Hermitian. If h is continuous, we can approximate it uniformly by smooth functions h j . Letting u j := P (h j ) the previous step ensures that "

X (h j -u j )(ω + dd c u j ) n = 0.
As h j → h uniformly we also have that u j → u := P (h) uniformly and the desired property follows from Bedford-Taylor's convergence theorem. When h is merely lower semi-continuous, we let (h j ) denote a sequence of continuous functions which increase pointwise to h and set u j = P (h j ). Then u j ↗ u a.e. on X for some bounded function u ∈ PSH(X, ω). Since u j ≤ h j ≤ h quasi-everywhere on X we infer u ≤ h quasi-everywhere on X, hence u ≤ P (h). For each k < j, the second step ensures that "

{u<h k } (ω + dd c u j ) n ≤ " {u j <h j } (ω + dd c u j ) n = 0. Since {u < h k } is open, letting j → +∞ and then k → +∞ we arrive at " {u<h} (ω + dd c u) n = 0.
We also have that P (h) ≤ h quasi-everywhere on X, hence "

{u<P (h)} (ω + dd c u) n = 0,
and [LPT, Proposition 2.2] then ensures that u = P (h).

Step 3: h is quasi-l.s.c., ω is Hermitian. By [GLZ19, Lemma 2.4] we can find a decreasing sequence (h j ) of lsc functions such that h j ↘ h q.e. on X and h j → h in capacity. Then u j := P (h j ) ↘ u := P (h). By Step 2 we know that for all j > k, "

{u k <h} (ω + dd c u j ) n ≤ " {u j <h j } (ω + dd c u j ) n = 0.
Since {u k < h} is quasi-open and the functions u j are uniformly bounded, letting j → +∞ we obtain "

{u k <h} (ω + dd c u) n = 0.
Letting k → +∞ yields the desired result.

Step 4: the general case. We approximate ω ≥ 0 by the Hermitian forms ω j = ω + j -1 ω X > 0. Observe that j 0 → u j = P ω j (h) decreases to u = P ω (h) as j increases to +∞. For 0 < k < j, the previous step ensures that "

{u k <h} (ω + j -j ω X + dd c u j ) n = 0.
As the set {u k < h} is quasi-open and u j is uniformly bounded we can let j → +∞ and use Bedford-Taylor's convergence theorem to get "

{u k <h} (ω + dd c u) n = 0,
We finally let k → +∞ to conclude. □

For later use we extend the latter result to a setting where P ω (f ) is not necessarily globally bounded:

Corollary 2.4. If f is quasi-lower-semicontinuous and P ω (f ) is locally bounded in a non-empty open set U ⊂ X then (ω + dd c P ω (f )) n is a well-defined positive Borel measure in U which vanishes in U ∩ {P ω (f ) < f }.
Proof. Let (f j ) be a sequence of l.s.c. functions decreasing to f quasi-everywhere. Then u j := P ω (f j ) is a bounded ω-psh function such that (ω + dd c u j ) n = 0 on {u j < f j }. Since u j decreases to u := P ω (f ), Bedford-Taylor's convergence theorem ensures that

ω n u j → ω n u in U . Fix U ′ a relatively compact open set U ′ ⋐ U . For each k fixed the set {u k < f } is quasi open and the functions u j , u are uniformly bounded in U ′ , hence lim inf j→+∞ " {u k <f }∩U ′ ω n u j ≥ " {u k <f }∩U ′ ω n u ,
which implies, after letting k → +∞, that ω n u vanishes in U ′ ∩{u < f }. We finally let U ′ increase to U to conclude. □

We shall use later on the following :

Lemma 2.5. Let u, v be bounded ω-psh functions. Then

(1) (ω + dd c P (min(u, v))) n ≤ (ω + dd c u) n + (ω + dd c v) n ; (2) if (ω + dd c u) n = f dV X and (ω + dd c v) n = gdV X , then (ω + dd c P (min(u, v))) n ≤ max(f, g)dV X , while (ω + dd c max(u, v))) n ≥ min(f, g)dV X .
Proof. We set w = P (min(u, v)). Since min(u, v) is quasi-continuous, it follows from Theorem 2.3 that the Monge-Ampère measure ω n w has support in

{P (min(u, v)) = min(u, v)} = {P (min(u, v)) = u < v} ∪ {P (min(u, v)) = v}. Thus (2.2) ω n w ≤ 1 {w=u<v} ω n w + 1 {w=v} ω n w .
Since w = P (min(u, v)) ≤ u and w = P (min(u, v)) ≤ u, Lemma 1.2 yields

1 {w=u} ω n w ≤ 1 {w=u} ω n u ≤ ω n u as well as 1 {w=v} ω n w ≤ ω n v . Together with (2.2) we infer ω n w ≤ ω n u + ω n v as claimed. When (ω + dd c u) n = f dV X and (ω + dd c v) n = gdV X , we obtain 1 {w=u<v} ω n w ≤ 1 {w=u<v} f dV X ≤ 1 {w=u<v} max(f, g)dV X
and

1 {w=v} ω n w ≤ 1 {w=v} gdV X ≤ 1 {w=u<v} max(f, g)dV X , hence ω n w ≤ , 1 {w=u<v} + 1 {w=v} - max(f, g)dV X ≤ max(f, g)dV X .
The last item follows from

(ω + dd c max(ϕ, ψ)) n ≥ 1 {u≤v} ω n u + 1 {v>u} ω n v ≥ min(f, g)dV X . □ 2.2.
Locally vs globally pluripolar sets. A classical result of Josefson asserts that a locally pluripolat set E in C n is globally pluripolar, i.e. there exists a psh function u ∈ PSH(C n ) such that E ⊂ {u = -∞}. This result has been extended to compact Kähler manifolds in [START_REF] Guedj | Intrinsic capacities on compact Kähler manifolds[END_REF], and to the Hermitian setting in [START_REF] Vu | Locally pluripolar sets are pluripolar[END_REF]: if E ⊂ X is locally pluripolar and ω X is a Hermitian form, one can find u ∈ PSH(X, ω X ) such that E ⊂ {u = -∞}.

We further extend this result to the case of non-collapsing forms:

Lemma 2.6. If E is (locally) pluripolar and ω ≥ 0 is non-collapsing then E ⊂ {u = -∞} for some u ∈ PSH(X, ω).

The proof is a consequence of Theorem 2.3 and analogous results established on Kähler manifolds.

Proof. As in [GZ05, Theorem 5.2] it is enough to check that V * E,ω ≡ +∞, where V E,ω (x) = sup{ϕ(x) : ϕ ∈ PSH(X, ω) and ϕ ≤ 0 quasi-everywhere on E}.

Here quasi-everywhere means outside a locally pluripolar set. If it is not the case then V * E,ω is a bounded ω-psh function on X. We can assume that E ⊂ U ⋐ V ⋐ V ′ is contained in a holomorphic chart V ′ . By Josefson's theorem (see [START_REF] Guedj | Degenerate complex Monge-Ampère equations[END_REF]Theorem 4.4]) we can find u ∈ L 1 loc (V ′ ) a psh function in V ′ such that E ⊂ {u = -∞}. Let u j be a sequence of smooth psh functions in a neighborhood of V such that u j ↘ u. Fix N ∈ N and for j large enough we set

K j,N := {x ∈ V : u j (x) ≤ -N }, ϕ j,N := V * K j,N
,ω , and note that ϕ j,N ↘ ϕ N ∈ PSH(X, ω) ∩ L ∞ (X) as j → +∞. We also have that E ⊂ ∪ j≥1 K j,N , hence 0 ≤ ϕ N ≤ V * E,ω . We can thus find j N so large that ϕ j,N ≤ sup X V * E,ω + 1 for all j ≥ j N . Let ρ be a smooth psh function in V such that dd c ρ ≥ ω. The Chern-Levine-Nirenberg inequality (see [GZ, Theorem 3.14]) ensures that, for j ≥ j N , "

K j,N (ω + dd c ϕ j,N ) n ≤ " K j,N (dd c (ϕ j,N + ρ)) n ≤ 1 N " V |ϕ j,N |(dd c (ϕ j,N + ρ)) n ≤ C N ,
for some uniform constant C > 0. The function which is zero on K j,N and +∞ elsewhere is lower semi-continuous on X since K j,N is compact. It thus follows from Theorem 2.3 that "

X (ω + dd c ϕ j,N ) n = " K j,N (ω + dd c ϕ j,N ) n ≤ C ′ N .
Letting j → +∞ we obtain

$ X (ω + dd c ϕ N ) n ≤ C ′ /N . Now ϕ N ↗ ϕ as N → +∞, for some ϕ ∈ PSH(X, ω) which is bounded since 0 ≤ ϕ N ≤ V * E,ω .
We thus obtain $ X (ω + dd c ϕ) n = 0, yielding a contradiction since ω is non-collapsing and ϕ is bounded. □

Since locally pluripolar sets are PSH(X, ω)-pluripolar, arguing as in the proof of [GLZ19, Proposition 2.2], one finally obtains: Corollary 2.7. Let f be a Borel function such that P ω (f ) ∈ PSH(X, ω). Then

P ω (f ) = (sup{u ∈ PSH(X, ω) : u ≤ f in X}) * .
2.3. Domination principle. We now establish the following generalization of the domination principle: Proposition 2.8. Assume ω is non-collapsing and fix c ∈ [0, 1). If u, v are bounded ω-psh functions such that ω n u ≤ cω n v on {u < v}, then u ≥ v.

The usual domination principle corresponds to the case c = 0 (see [LPT, Proposition 2.2]).

Proof. Fixing a > 0 arbitrarily small, we are going to prove that u ≥ v -a on X. Assume by contradiction that E = {u < v -a} is not empty. Since u, v are quasi-psh, the set E has positive Lebesgue measure. For b > 1 we set

u b := P ω (bu -(b -1)v).
It follows from Theorem 2.3 that (ω + dd c u b ) n is concentrated on the set

D := {u b = bu -(b -1)v}. Note also that b -1 u b + (1 -b -1 )v ≤ u with equality on D. Therefore 1 D (ω + dd c (b -1 u b + (1 -b -1 )v)) n ≤ 1 D ω n u ,
as follows from Lemma 1.2, hence

1 D b -n (ω + dd c u b ) n + 1 D (1 -b -1 ) n (ω + dd c v) n ≤ 1 D ω n u .
We choose b so large that (1 -b -1 ) n > c. Multiplying the above inequality by 1 {u<v} and noting that ω n u ≤ cω n v on {u < v}, we obtain

1 D∩{u<v} (ω + dd c u b ) n = 0.
Since u b is bounded and ω is non-collapsing, we know that ω n u b (D) = ω n u b (X) > 0. We infer that the set D ∩ {u ≥ v} is not empty, and on this set we have

u b = bu -(b -1)v ≥ u ≥ -C,
since u is bounded. It thus follows that sup X u b is uniformly bounded from below. As b → +∞ the functions u b -sup X u b converge to a function u ∞ which is -∞ on E, but not identically -∞ hence it belongs to PSH(X, ω). This implies that the set E has Lebesgue measure 0, a contradiction. □

Here is a direct consequence of the domination principle:

Corollary 2.9. Assume ω is non-collapsing and let u, v be bounded ω-psh functions. Then for all ε > 0,

e -εv (ω + dd c v) n ≥ e -εu (ω + dd c u) n =⇒ v ≤ u.
Proof. Fix a > 0. On the set {u < v -a} we have ω n u ≤ e -εa ω n v . Proposition 2.8 thus gives u ≥ v -a. This is true for all a > 0, hence u ≥ v. □

Bounds on Monge-Ampère masses

In the sequel we fix a Hermitian form ω X on X.

3.1. Global bounds. Since the semi-positive (1, 1)-form ω is not necessarily closed, the mass of the complex Monge-Ampère measures (ω + dd c u) n is (in general) not constantly equal to V

ω := $ X ω n > 0. Definition 3.1. For 1 ≤ j ≤ n we consider v -,j (ω) := inf !" X (ω + dd c u) j ∧ ω n-j , u ∈ PSH(X, ω) ∩ L ∞ (X) # and v +,j (ω) := sup !" X (ω + dd c u) j ∧ ω n-j , u ∈ PSH(X, ω) ∩ L ∞ (X) # .
We set v -(ω) := v -,n (ω) and v + (ω) = v +,n (ω). When ω > 0 is Hermitian, the supremum and infimum in the definition of v +,j (ω) and v -,j (ω) can be taken over PSH(X, ω) ∩ C ∞ (X) as follows from Demailly's approximation [START_REF] Demailly | Regularization of closed positive currents and interSection theory[END_REF] and Bedford-Taylor's convergence theorem [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF][START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF].

It is an interesting open problem to determine when v -(ω X ) is positive and/or v + (ω X ) is finite. These conditions may depend on the complex structure, but they are independent of the choice of Hermitian metric.

Monotonicity and invariance properties.

Proposition 3.2. Let 0 ≤ ω 1 ≤ ω 2 be semi-positive (1, 1)-forms. Then

(3.1) v -(ω 1 ) ≤ v -(ω 2 ) and v + (ω 1 ) ≤ v + (ω 2 ). Moreover 1) v + (ω X ) < +∞ ⇐⇒ v + (ω ′ X ) < +∞ for any other Hermitian metric ω ′ X . 2) 0 < v -(ω X ) ⇐⇒ 0 < v -(ω ′ X )
for any other Hermitian metric ω ′ X . Proof. Since any ω 1 -psh function u is also ω 2 -psh, we obtain "

X (ω 1 + dd c u) n ≤ " X (ω 2 + dd c u) n ≤ v + (ω 2 ).
which shows that v + (ω 1 ) ≤ v + (ω 2 ). We now bound v -(ω 2 ) from below. Let v be a bounded ω 2 -psh function and let u = P ω 1 (v) denote its ω 1 -psh envelope. Then u is a bounded ω 2 -psh function and u ≤ v on X. Lemma 1.2 and Theorem 2.3 thus ensure that

(ω 1 + dd c u) n ≤ 1 {u=v} (ω 2 + dd c u) n ≤ 1 {u=v} (ω 2 + dd c v) n .
We therefore obtain v -(ω 1 ) ≤ v -(ω 2 ). This proves (3.1). Let now ω, ω ′ be two Hermitian metrics (we simplify notations). Observe that v ± (Aω) = A n v ± (ω) for all A > 0. Since A -1 ω ′ ≤ ω ≤ Aω for an appropriate choice of the constant A > 1, items 1) and 2) follow from (3.1).

□

We now establish bounds on the mixed Monge-Ampère quantities:

Proposition 3.3.

(1) One always has v +,1 (ω) < +∞.

(2) If ω is Hermitian then 0 < v -,1 (ω).

(3) If dd c ω n-2 = 0 then v +,2 (ω) < +∞.

(4) If dd c ω = 0 and dd c ω 2 = 0 then v -,j (ω

) = v +,j (ω) = V ω ∈ R * + . (5) For all 0 ≤ ℓ ≤ j ≤ n one has v +,ℓ (ω) ≤ 2 j v +,j (ω). (6) v +,n-1 (ω) < +∞ if and only if v +,n (ω) < +∞.
A Hermitian metric such that dd c (ω n-2 ) = 0 is called Astheno-Kähler. These metrics play an important role in the study of harmonic maps (see [START_REF] Jost | A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry[END_REF]). A Hermitian metric satisfying dd c ω = 0 is called SKT or pluriclosed in the literature. When n = 3 the Astheno-Kähler and the pluriclosed condition coincide, and the third item is due to Chiose [Chi16, Question 0.8]. Examples of compact complex manifolds admitting a pluriclosed metric can be found in [START_REF] Fino | Families of strong KT structures in six dimensions[END_REF][START_REF] Otiman | Special Hermitian metrics on Oeljeklaus-Toma manifolds[END_REF].

Condition (4) has been introduced by Guan-Li in [START_REF] Guan | Complex Monge-Ampère equations and totally real submanifolds[END_REF]. It has been shown by Chiose [Chi16] that it is equivalent to the invariance of Monge-Ampère masses: $ X (ω +dd c u) n = $ X ω n for all smooth ω-psh functions if and only if dd c ω j = 0 for all j = 1, 2. Note that any compact complex surface admits a Gauduchon metric dd c ω = 0 [START_REF] Gauduchon | Le théorème de l'excentricité nulle[END_REF], which also satisfies dd c ω 2 = 0 for bidegree reasons.

Proof. One can assume without loss of generality that ω ≤ ω, where ω is a Gauduchon metric. It follows that for any ϕ ∈ PSH(X, ω), "

X (ω + dd c ϕ) ∧ ω n-1 ≤ " X (ω + dd c ϕ) ∧ ωn-1 = " X ω ∧ ωn-1 , hence v +,1 (ω) ≤ $ X ω ∧ ωn-1 < +∞.
If ω is Hermitian one can similarly bound from below ω by a Gauduchon form and conclude that v -,1 (ω) > 0.

We claim that

$ X (ω + dd c ϕ) 2 ∧ ω n-2 ≤ M is uniformly bounded from above when ϕ ∈ PSH(X, ω) ∩ L ∞ (X) is normalized and dd c ω n-2 = 0. Indeed " X (ω + dd c ϕ) 2 ∧ ω n-2 = " X ω n + 2 " X ω n-1 ∧ dd c ϕ + " X ω n-2 ∧ (dd c ϕ) 2 = " X ω n + 2 " X ϕdd c ω n-1 - " X ϕdd c ω n-2 ∧ dd c ϕ.
The latter integral vanishes since dd c ω n-2 = 0. The second one is uniformly bounded since the functions ϕ belong to a compact subset of L 1 (X). Altogether this shows that v +,2 (ω) < +∞ if dd c (ω n-2 ) = 0. Since dd c (ω 2 ) = 2dω ∧ d c ω + 2ω ∧ dd c ω, the Guan-Li condition is equivalent to dd c ω = 0 and dω ∧ d c ω = 0. For u ∈ PSH(X, ω) ∩ C ∞ (X) we use the binomial expansion of the Monge-Ampère measure (ω + dd c u) n to obtain "

X (ω +dd c u) n = " X ω n +n " X ω n-1 ∧dd c u+• • •+n " X ω ∧(dd c u) n-1 + " X (dd c u) n . Observe that dd c {du ∧ d c u ∧ (dd c u) n-2-j } = -(dd c u) n-j , while $ X (dd c u) n = 0 by Stokes theorem, hence dd c , ω j ∧ du ∧ d c u ∧ (dd c u) n-2-j - = -ω j ∧ (dd c u) n-j + jω j-1 ∧ dd c ω ∧ du ∧ d c u ∧ (dd c u) n-2-j + j(j -1)ω j-2 ∧ dω ∧ d c ω ∧ du ∧ d c u ∧ (dd c u) n-2-j .
If dd c ω = 0 and dω ∧d c ω = 0 we infer from Stokes theorem

$ X ω j ∧(dd c u) n-j = 0, hence $ X (ω + dd c u) n = $ X ω n for all u ∈ PSH(X, ω) ∩ C ∞ (X), showing that v -(ω) = v + (ω) = V ω
is both finite and positive. Expanding similarly the mixed Monge-Ampère measure (ω + dd c u) j ∧ ω n-j one obtains 4).

Observe that for any ϕ ∈ PSH(X, ω) ∩ L ∞ and 0 ≤ ℓ ≤ j ≤ n one has

(3.2) " X (ω + dd c ϕ) ℓ ∧ ω n-ℓ ≤ " X (2ω + dd c ϕ) j ∧ ω n-j ≤ 2 j v +,j (ω). In particular v +,n-1 (ω) ≤ 2 n v +,n (ω) hence v +,n (ω) < +∞ ⇒ v +,n-1 (ω) < +∞.
We finally show conversely that v +,n-1 (ω) < +∞ ⇒ v +,n (ω) < +∞ by proving

v +,n (ω) ≤ 2 2n-2 v +,n-1 (ω). Observe indeed that 0 = " X (ω + dd c ϕ -ω) n = " X (ω + dd c ϕ) n + n % k=1 (-1) k & n k ' (ω + dd c ϕ) n-k ∧ ω k ≥ " X (ω + dd c ϕ) n - % 1≤2k+1≤n & n 2k + 1 ' (ω + dd c ϕ) n-2k-1 ∧ ω 2k+1 .
Using (3.2) we thus get

v +,n (ω) ≤ % 1≤2k+1≤n & n 2k + 1 ' 2 n-1 v +,n-1 (ω) = 2 2n-2 v +,n-1 (ω). □ 3.1.2.
Uniformly bounded functions. Restricting to uniformly bounded ω-psh functions, it is natural to consider

v - M (ω) := inf !" X (ω + dd c u) n : u ∈ PSH(X, ω) with -M ≤ u ≤ 0 #
where M ∈ R + , and

v + M (ω) := sup !" X (ω + dd c u) n : u ∈ PSH(X, ω) with -M ≤ u ≤ 0 # .
These quantities are always under control as we now explain:

Proposition 3.4. Assume ω is non-collapsing. For any M ∈ R + , one has

0 < v - M (ω) ≤ v + M (ω) < +∞.
Proof. The finiteness of v + M (ω) follows easily from integration by parts, it is e.g. a simple consequence of [DK12, Theorem 3.5].

In order to show that v - M (ω) is positive we argue by contradiction. Assume there exists u j ∈ PSH(X, ω) such that -M ≤ u j ≤ 0 and $ X (ω + dd c u j ) n ≤ 2 -j . For j ∈ N fixed, the sequence k 0 → v j,k := P ω (min(u j , u j+1 , . . . , u j+k )) decreases towards a ω-psh function w j such that -M ≤ w j ≤ 0. It follows therefore from Lemma 2.5 that "

X (ω + dd c w j ) n = lim k→+∞ " X (ω + dd c v j,k ) n ≤ +∞ % ℓ=0 " X (ω + dd c v j+ℓ ) n ≤ 2 -j+1 .
Thus the sequence j 0 → w j increases to a bounded ω-psh function w such that (ω + dd c w) n = 0, which yields a contradiction. □ Example 3.5. We provide here an example of a semi-positive form ω such that

$ X ω n > 0 but ω is collapsing, in particular v -(ω) = 0. Let X = Y × Z where Y, Z are two compact complex manifolds of dimension m ≥ 1, p ≥ 1 respectively, and dimX = n = p + m. Fix a smooth function u on Y such that ω Y + dd c u < 0 is negative in a small open set U ⊂ Y . Let 0 ≤ ρ ≤ 1 be a cut-off function on Y supported in U . The smooth (1, 1)-form ω defined by ω = ρ • π 1 (π * 1 ω Y + π * 2 ω Z )
. is semipositive on X and satisfies ω(y, z) = 0 for y / ∈ U . Set now φ := P ω (u • π 1 ) and let

C := {φ = u • π 1 } denote the contact set. The Monge-Ampère measure (ω + dd c φ) n is concentrated on C. Arguing as in [Ber09, Proposition 3.1] one can show that C ⊂ {x ∈ X, ω + dd c u • π 1 (x) ≥ 0}. Since ω + dd c (u • π 1 ) < 0 is negative in U × Z, it follows that C ⊂ X \ (U × Z). Now ω = 0 outside U × Z, hence (ω + dd c φ) n ≤ 1 C (dd c u • π 1 ) n = 0,
because u • π 1 depends only on y. It thus follows that (ω + dd c φ) n = 0 on X.

Bimeromophic invariance.

Lemma 3.6. Let f : X → Y be a proper holomorphic map between compact complex manifolds of dimension n, equipped with Hermitian forms ω X , ω Y . Then

• v + (ω X ) < +∞ =⇒ v + (ω Y ) < +∞; • v -(ω Y ) > 0 =⇒ v -(ω X ) > 0 if f has connected fibers.
It follows from Zariski's main theorem that f has connected fibers if it is bimeromorphic.

Proof. Up to rescaling, we can assume that

f * ω Y ≤ ω X . Fix ϕ ∈ PSH(Y, ω Y ) ∩ L ∞ (Y ). Then ϕ • f ∈ PSH(X, ω X ) ∩ L ∞ (X) with " Y (ω Y + dd c ϕ) n = " X (f * ω Y + dd c ϕ • f ) n ≤ " X (ω X + dd c ϕ • f ) n ≤ v + (ω X ), thus v + (ω Y ) ≤ v + (ω X )
and the first assertion is proved. Consider now ψ ∈ PSH(X, ω X ) ∩ L ∞ (X) and set u = P f * ω Y (ψ). The function u is f * ω Y , hence plurisubharmonic on the fibers of f . If the latter are connected we obtain that u is constant on them, i.e.

u = ϕ • f for some function ϕ ∈ PSH(Y, ω Y ) ∩ L ∞ (Y ). Since (f * ω Y + dd c u) n ≤ 1 {u=ψ} (f * ω Y + dd c ψ) n , we infer v -(ω Y ) ≤ " Y (ω Y + dd c ϕ) n = " X (f * ω Y + dd c u) n ≤ " X (ω X + dd c ψ) n so that v -(ω Y ) ≤ v -(ω X ), proving the second assertion. □
We conversely show that the properties v + (ω X ) < +∞ and v -(ω X ) > 0 are invariant under blow ups and blow downs with smooth centers: Theorem 3.7. Let X and Y be compact complex manifolds which are bimeromorphically equivalent. Then

• v + (ω X ) < +∞ if and only if v + (ω Y ) < +∞; • v -(ω X ) > 0 if and only if v -(ω Y ) > 0.
Proof. A celebrated result of Hironaka ensures that any bimeromorphic map between compact complex manifolds is a finite composition of blow ups and blow downs with smooth centers. We can thus assume that f : X → Y is the blow up of Y along a smooth center. We fix ψ a quasi-plurisubharmonic function such that π * ω Y + dd c ψ ≥ δω X . The existence of ψ follows from a classical argument in complex geometry (see [START_REF] Berger | Variétés Kähleriennes compactes[END_REF], [FT09, Proposition 3.2]). By Demailly's approximation theorem we can further assume that ψ has analytic singularities. Up to scaling we can assume without loss of generality that δ = 1, and we set Ω = {x ∈ X : ψ(x) > -∞}.

We already know by Lemma 3.

6 that v + (ω X ) < +∞ =⇒ v + (ω Y ) < +∞. Assume conversely that v + (ω Y ) < +∞. For any ϕ ∈ PSH(X, ω X ) ∩ L ∞ (X), " X (ω X + dd c ϕ) n ≤ " Ω (π * ω Y + dd c (ψ + ϕ)) n ≤ lim inf j→+∞ " π(Ω) (π * ω Y + dd c (max[ψ + ϕ, -j])) n .
The function

u j = max[ψ + ϕ, -j] is π * ω Y -psh and bounded in Ω. It is constant on the fibers of π, hence u j = v j • π with v j ∈ PSH(π(Ω), ω Y ) ∩ L ∞ (Ω)
. As v j is bounded, it extends trivially through the analytic set π(∂Ω) as a bounded ω Y -psh function. Thus "

π(Ω) (π * ω Y + dd c u j ) n = " Y (ω Y + dd c v j ) n ≤ v + (ω Y ) yields v + (ω X ) ≤ v + (ω Y ) < +∞. We now assume that v -(ω X ) > 0. Pick v ∈ PSH(Y, ω Y ) ∩ L ∞ (Y ) and set u = P ω X (v • π -ψ). Observe that u ∈ PSH(X, ω X ) ∩ L ∞ (X) and recall that (ω X + dd c u) n is concentrated on the contact set C = {u + ψ = v • π} (see Theorem 2.3). Since u + ψ and v • π are both π * ω Y -psh, locally bounded in Ω, with u + ψ ≤ v • π, it follows from Lemma 1.2 that 1 C (π * ω Y + dd c (u + ψ)) n ≤ 1 C (π * ω Y + dd c v • π) n ≤ (π * ω Y + dd c v • π) n . Now π * ω Y + dd c (u + ψ) ≥ ω X + dd c u and (ω X + dd c u) n is concentrated on C so 1 C (π * ω Y + dd c (u + ψ)) n ≥ (ω X + dd c u) n . We infer v -(ω X ) ≤ " X (ω X + dd c u) n ≤ " C (π * ω Y + dd c (u + ψ)) n ≤ " X (π * ω Y + dd c v • π) n = " Y (ω Y + dd c v) n , showing that v -(ω Y ) ≥ v -(ω X ) > 0. The reverse implication v -(ω Y ) > 0 =⇒ v -(ω X ) > 0 follows from Lemma 3.6. □
Recall that a compact complex manifold X belongs to the Fujiki class C if there exists a holomorphic bimeromophic map π : Y → X, where Y is compact Kähler

. Since v + (ω X ) = v -(ω X ) = $ X ω n X ∈ R *
+ when ω X is a Kähler form, we obtain the following:

Corollary 3.8. If X belongs to the Fujiki class C then 0 < v -(ω X ) ≤ v + (ω X ) < +∞.

Weak transcendental Morse inequalities

4.1. Nef and big forms. Recall that the Bott-Chern cohomology group H 1,1 BC (X, R) is the quotient of closed real smooth (1, 1)-forms, by the image of C ∞ (X, R) under the dd c -operator. This is a finite dimensional vector space as X is compact.

Nefness and bigness are fundamental positivity properties of holomorphic line bundles in complex algebraic geometry (see [Laz]). Their transcendental counterparts have been defined and studied by Demailly (see [Dem]): Definition 4.1.

• A cohomology class α ∈ H 1,1 BC (X, R) is nef if for any ε > 0, one can find a smooth closed real (1, 1)-form θ ε ∈ α such that θ ε ≥ -εω X .

• A Hermitian current on X is a positive current T of bidegree (1, 1) which dominates a Hermitian form, i.e. there exists δ > 0 such that T ≥ δω X .

• A cohomology class α ∈ H 1,1 BC (X, R
) is big if it can be represented by a closed Hermitian current (a Kähler current).

It follows from an approximation result of Demailly [START_REF] Demailly | Regularization of closed positive currents and interSection theory[END_REF] that one can weakly approximate a Hermitian current by Hermitian currents with analytic singularities. In particular a big cohomology class can be represented by a Kähler current with analytic singularities.

By analogy with the above setting, we propose the following definitions: Definition 4.2. Let ω be a smooth real (1, 1) form on X.

• We say that ω is nef if for any ε > 0 there exists a smooth quasiplurisubharmonic function ϕ ε such that ω + dd c ϕ ε ≥ -εω X . • We say that ω is big if there exists a ω-psh function ρ with analytic singularities such that ω + dd c ρ dominates a Hermitian form.

Note that PSH(X, ω) is non empty in both cases: indeed ρ ∈ PSH(X, ω) in the latter case, while one can extract ϕ ε j → ϕ ∈ PSH(X, ω) in the former, normalizing the potentials ϕ ε j by imposing sup X ϕ ε j = 0.

When X is a compact Kähler manifold and α ∈ H 1,1 BC (X, R) is nef with α n > 0, a celebrated result of Demailly-Pȃun [DP04, Theorem 0.5] ensures the existence of a Kähler current representing α. This result is the key step in establishing a transcendental Nakai-Moishezon criterion (see [START_REF] Demailly | Numerical characterization of the Kähler cone of a compact Kähler manifold[END_REF]Main theorem]).

We study in the sequel a possible extension of this result to the Hermitian setting. We thus need to extend the definition of v -to nef forms:

Definition 4.3. If ω is a nef (1, 1)-form, we set v-(ω) := inf ε>0 v -(ω + εω X ).
Although the form ω + εω X needs not be semi-positive, one can find by definition a semi-positive form ω + εω X + dd c ϕ ε cohomologous to ω + εω X , and it is understood here that v -(ω + εω X ) := v -(ω + εω X + dd c ϕ ε ). By (3.1), the definition of v-(ω) is independent of the choice of the Hermitian form ω X .

It is natural to expect that this definition is consistent with the previous one when ω is semi-positive, and that v-

(ω) = α n when ω is a closed form representing a nef class α ∈ H 1,1 BC (X, R): Lemma 4.4. If ω is semi-positive then v-(ω) = v -(ω). If v + (ω X ) < +∞ and ω is a closed form representing a nef class in H 1,1 BC (X, R), then v-(ω) = α n .
When X is Kähler, it is classical that any nef class α ∈ H 1,1 BC (X, R) satisfies α n ≥ 0. This inequality is no longer obvious on an arbitrary hermitian manifold (we thank J.-P.Demailly for emphasizing this issue) but, as a consequence of the above lemma, it remains true when v + (ω X ) < +∞.

Proof. Assume first that ω is semi-positive and set ω ε := ω + εω X , for ε ∈ (0, 1). Proposition 3.2 ensures that v -(ω) ≤ v -(ω ε ), hence v -(ω) ≤ v-(ω). On the other for all Gauduchon metrics θ. Assume by contradiction that there exists a sequence of Gauduchon metrics θ j such that "

X ω ∧ θ n-1 j ≤ 1 j " X ω X ∧ θ n-1 j .
We can normalize the latter so that $ X ω X ∧ θ n-1 j = 1. Set ω j = ω + 1 j ω X and note that ω j ≤ ω X for j ≥ 2. Since ω is nef, one can find ψ j ∈ C ∞ (X, R) such that ω j +dd c ψ j is a Hermitian form, hence the main result of [START_REF] Tosatti | The complex Monge-Ampère equation on compact Hermitian manifolds[END_REF] ensures that there exist constants C j > 0 and ϕ j ∈ PSH(X, ω j ) ∩ C ∞ (X) such that sup X ϕ j = 0 and

(ω j + dd c ϕ j ) n = C j ω X ∧ θ n-1 j . It follows from Proposition 3.2 that C j = " X (ω j + dd c ϕ j ) n ≥ v -(ω j ) ≥ v-(ω) > 0, while by assumption $ X (ω j + dd c ϕ j ) n-1 ∧ ω X ≤ M := v +,n-1 (ω X ) is bounded from above.
We set α j := ω j + dd c ϕ j and consider

E := {x ∈ X, ω X ∧ α n-1 j ≥ 2M ω X ∧ θ n-1 j }. This set has small ω X ∧ θ n-1 j measure since " E ω X ∧ θ n-1 j ≤ 1 2M " E ω X ∧ α n-1 j ≤ 1 2 , thus $ X\E ω X ∧ θ n-1 j ≥ 1 2 , thanks to the normalization $ X ω X ∧ θ n-1 j = 1. We can compare ω X and α j in X \ E since ω X ∧ α n-1 j ≤ 2M ω X ∧ θ n-1 j = 2M C j α n j ≤ 2M v-(ω) α n j . Thus α j ≥ v-(ω) 2nM ω X in X \ E and we infer " X\E α j ∧ θ n-1 j ≥ v-(ω) 2nM " X\E ω X ∧ θ n-1 j ≥ v-(ω) 4nM > 0, which contradicts " X α j ∧ θ n-1 j = " X ω ∧ θ n-1 j + 1 j " X ω X ∧ θ n-1 j + " X dd c ϕ j ∧ θ n-1 j ≤ 2 j " X ω X ∧ θ n-1 j = 2 j → 0,
where $ X dd c ϕ j ∧ θ n-1 j = 0 follows from the Gauduchon property of θ j . We next assume that ω is big, v -(ω X ) > 0, and we prove that v-(ω) > 0 by an argument similar to that of Theorem 3.7. Fix a ω-psh function ψ with analytic singularities such that ω + dd c ψ ≥ δω X for some δ > 0. We can assume that δ = 1 and sup X ψ = 0. We prove that v

-(ω + εω X ) ≥ v -(ω X ) for all ε > 0. Fix ε > 0, u ∈ PSH(X, ω + εω X ) ∩ L ∞ (X), and set v = P ω X (u -ψ). The open set G = {ψ > -1} is not empty hence it is non-pluripolar. On G we have u ≤ u -ψ ≤ u + 1 ≤ sup X u + 1. It follows that v is a bounded ω X -psh function and (ω X + dd c v) n is supported on the contact set C = {v = u -ψ} ⊂ {ψ > -∞}. Since v + ψ ≤ u with equality on {ψ > -∞} ∩ C, Lemma 1.2 ensures that 1 {ψ>-∞}∩C (ω + εω X + dd c (v + ψ)) n ≤ 1 {ψ>-∞}∩C (ω + εω X + dd c u) n .
Using ω + dd c ψ ≥ ω X and the fact that (ω X + dd c v) n (ψ = -∞) = 0 since v is bounded, we thus arrive at "

X (ω X + dd c v) n ≤ " X (ω + εω X + dd c u) n . We thus get v -(ω + εω X ) ≥ v -(ω X ) > 0, for all ε > 0, hence v-(ω) > 0. □
This result provides in particular the following answer to Question 4.5:

Corollary 4.7. The answer to Question 4.5 is positive if

• either n = 2 (X is any compact surface);

• or n = 3 and X admits a pluriclosed metric;

• or n is arbitrary and X belongs to the Fujiki class;

• orelse n is arbitrary and X admits a Guan-Li metric.

Let us stress that the 2-dimensional setting is due to Buchdahl [Buch99] and Lamari [START_REF] Lamari | Courants kähléeriens et surfaces compactes[END_REF]. The three dimensional case follows from Proposition 3.3. 4.2.2. Transcendental Grauert-Riemenschneider conjecture. Let L → X be a semi-positive holomorphic line bundle with c 1 (L) n > 0. An influential conjecture of Grauert-Riemenschneider [GR70] asked whether the existence of such a line bundle implies that X is Moishezon (i.e. bimeromorphically equivalent to a projective manifold).

This conjecture has been solved positively by Siu in [START_REF] Siu | A vanishing theorem for semipositive line bundles over non-Kähler manifolds[END_REF] (see also [START_REF] Demailly | Une preuve simple de la conjecture de Grauert-Riemenschneider[END_REF]). Demailly and Pȃun have proposed a transcendental version of this conjecture: Conjecture 4.8. [DP04, Conjecture 0.8] Let X be a compact complex manifold of dimension n. Assume that X posseses a nef class α ∈ H 1,1 BC (X, R) such that α n > 0. Then X belongs to the Fujiki class.

As a direct consequence of Theorem 4.6, Lemma 4.4, and Corollary 3.8, we obtain the following answer to the transcendental Grauert-Riemenschneider conjecture: Theorem 4.9. Let X be a compact n-dimensional complex manifold. Let α ∈ H 1,1 BC (X, R) be a nef class such that α n > 0. The following are equivalent:

• α contains a Kähler current • v + (ω X ) < +∞.

Since a Kähler current with analytic singularities can be desingularized after finitely many blow-ups producing a Kähler form, we obtain: Corollary 4.10. Let α ∈ H 1,1 BC (X, R) be a nef class such that α n > 0. Then X belongs to the Fujiki class if and only if v + (ω X ) < +∞. Since ω ≤ ω X 2 , the function

v ε = u ε + ϕ ε is ω X -psh for 0 < ε ≤ 1 2 , hence 0 ≤ " X (ω ε + dd c u ε ) j ∧ ω n-j X ≤ " X (ω X + dd c v ε ) j ∧ ω n-j X ≤ 2 n v + (ω X ),
as follows from Proposition 3.3. We infer . . . . α n -"

X (ω ε + dd c u ε ) n . . . . ≤ n-1 % j=0 & n j ' ε n-j 2 n v + (ω X ) ≤ 4 n ε v + (ω X ).
The conclusion thus follows by letting ε → 0. We similarly can check that . . . . α n-1 • β -

" X (ω ε + dd c u ε ) n-1 ∧ ω ′ ε . . . . ≤ 2 • 6 n ε v + (ω X ).
Using Stokes theorem again we indeed obtain that

α n-1 • β = " X (ω + dd c ϕ ε + dd c u ε ) n-1 ∧ (ω ′ + dd c ψ ε ) = " X (ω ε + dd c u ε -εω X ) n-1 ∧ (ω ′ ε -εω X ) = " X (ω ε + dd c u ε ) n-1 ∧ ω ′ ε + O(ε).
Each term $ X (ω X + dd c v ε ) ℓ ∧ (ω X + dd c ψ ε ) p ∧ ω q X , with ℓ + p + q = n, is bounded from above by 3 n v + (ω X ), as one can check by observing that the function vε+ψε 3 is ω X -psh with " A straightforward generalization of Theorem 4.12 along the lines of Theorem 4.6 is the following: Theorem 4.15. Let X be a compact n-dimensional complex manifold such that v + (ω X ) < +∞. Let ω, ω ′ be nef (1, 1)-forms. If v-(ω) > nv + (ω, . . . , ω, ω ′ ) then the form ω -ω ′ is big.

X (ω X + dd c v ε ) ℓ ∧ (ω X + dd c ψ ε ) p ∧ ω q X ≤ 3 n " X & ω X + dd c v ε + ψ ε 3 ' n .
We leave the technical details to the reader.

4. 3 .

 3 Transcendental holomorphic Morse inequalities. The following conjecture has been proposed by Boucksom-Demailly-Pȃun-Peternell, as a transcendental counterpart to the holomorphic Morse inequalities for integral classes due to Demailly: Conjecture 4.11. [BDPP13, Conjecture 10.1.ii] Let X be a compact n-dimensional complex manifold. Let α, β ∈ H 1,1 BC (X, C) be nef classes such that α n > nα n-1 • β. Then α -β contains a Kähler current and Vol(α -β) ≥ α n -nα n-1 • β.

is [ Pop16 ,

 Pop16 Lemma 3.1]. Multiplying by θ n Motivated by possible extensions of the conjectures of Demailly-Pȃun and Boucksom-Demailly-Pȃun-Peternell, we introduce the following: Definition 4.14. Given ω 1 , . . . , ω n hermitian forms we considerv -(ω 1 , . . . , ω n ) := inf !" X (ω 1 + dd c ϕ 1 ) ∧ • • • ∧ (ω n + dd c ϕ n ), ϕ j ∈ P(ω j ) # ,andv + (ω 1 , . . . , ω n ) := sup !" X (ω 1 + dd c ϕ 1 ) ∧ • • • ∧ (ω n + dd c ϕ n ), ϕ j ∈ P(ω j ) # ,whereP(ω j ) := PSH(X, ω j ) ∩ L ∞ (X). If the ω j 's are merely nef we set v-(ω 1 , . . . , ω n ) := inf ε>0 v -(ω 1 + εω X , . . . , ω n + εω X ).and v+ (ω 1 , . . . , ω n ) := inf ε>0 v + (ω 1 + εω X , . . . , ω n + εω X ).
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hand, for any u ∈ PSH(X, ω) ∩ L ∞ (X) we have "

where C is a constant depending on u, but it is harmless as we will let ε → 0 while keeping u fixed. Doing so we obtain $ X (ω + dd c u) n ≥ v-(ω), and taking infimum over such u we obtain v -(ω) ≥ v-(ω), proving the first statement.

Assume now that ω is closed and

Writing ω + dd c ϕ = (2ω X + dd c ϕ) -(2ω X -ω), expanding (ω + dd c ϕ) n-j accordingly and using 0 ≤ 2ω X -ω ≤ 3ω X , we obtain that

, each of which is bounded from above by 3 n v + (ω X ). Since $ X (ω + dd c ϕ) n = α n , we end up with

using that ε j ≤ ε for all 1 ≤ j ≤ n. We infer v-(ω) = α n . □ 4.2. Demailly-Pȃun conjecture.

Hermitian currents.

The following is a natural generalization of [DP04, Conjecture 0.8]:

Question 4.5. Let X be a compact complex manifold. Let ω be a nef (1, 1)form such that v-(ω) > 0. Does there exist a ω-psh function ϕ with analytic singularities such that the current ω + dd c ϕ dominates a Hermitian form ?

We provide a partial answer to Question 4.5 following some ideas of Chiose [Chi13]: Theorem 4.6. Let ω be a nef (1, 1)-form.

Proof. We assume without loss of generality that ω ≤ ω X /2.

We first assume that v-(ω) > 0, v + (ω X ) < +∞, and we prove that ω is big. An application of Hahn-Banach theorem as in [Lam99, Lemma 3.3] shows that the existence of a Hermitian current ω + dd c ψ ≥ δω X is equivalent to the inequalities "

Note that this contains [DP04, Conjecture 0.8] as a particular case (β = 0). This conjecture has recently been established by Witt Nyström [START_REF] Nyström | Duality between the pseudoeffective and the movable cone on a projective manifold[END_REF] when X is projective. Building on works of Xiao [START_REF] Xiao | Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds[END_REF] and Popovici [START_REF] Popovici | Sufficient bigness criterion for differences of two nef classes[END_REF] we propose the following characterization which answers the qualitative part: Theorem 4.12. Let α, β ∈ H 1,1 BC (X, C) be nef classes such that α n > nα n-1 • β. The following are equivalent:

• α -β contains a Kähler current;

• v + (ω X ) < +∞.

Proof. If α -β contains a Kähler current, then X belongs to the Fujiki class and we have already observed that v + (ω X ) < +∞ (see Corollary 3.8).

We now assume that v + (ω X ) < +∞. Let ω and ω ′ be smooth closed real (1, 1)forms representing α and β respectively. We can assume without los of generality that ω ≤ ω X 2 and ω ′ ≤ ω X 2 . For each ε > 0 we fix smooth functions ϕ ε ∈ PSH(X, ω + εω X ) and ψ ε ∈ PSH(X, ω ′ + εω X ) such that ω ε := ω + εω X + dd c ϕ ε and ω ′ ε = ω ′ + εω X + dd c ψ ε are hermitian forms. Assume by contradiction that α -β does not contain any Kähler current. It follows from Hahn-Banach theorem as in [Lam99, Lemma 3.3] that there exist Gauduchon metrics η ε such that (4.1)

Our normalization for η ε yields c ε = $ X (ω ε +dd c u ε ) n . Applying Lemma 4.13 below with θ 1 = ω ε + dd c u ε , θ 2 = c ε ω ′ ε and θ 3 = η ε , and recalling that

We finally claim that, as ε → 0, "

which yields the contradiction nα n-1 • β ≥ α n . We first explain why $ X (ω ε + dd c u ε ) n → α n . Stokes theorem yields

' ε n-j (-1) n-j " X (ω ε + dd c u ε ) j ∧ ω n-j X .