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QUASI-PLURISUBHARMONIC ENVELOPES 2: BOUNDS ON

MONGE-AMPÈRE VOLUMES

VINCENT GUEDJ & CHINH H. LU

Abstract. In [GL21a] we have developed a new approach to L∞-a priori es-
timates for degenerate complex Monge-Ampère equations, when the reference
form is closed. This simplifying assumption was used to ensure the constancy
of the volumes of Monge-Ampère measures.

We study here the way these volumes stay away from zero and infinity when
the reference form is no longer closed. We establish a transcendental version
of the Grauert-Riemenschneider conjecture, partially answering conjectures of
Demailly-Păun [DP04] and Boucksom-Demailly-Păun-Peternell [BDPP13].

Our approach relies on a fine use of quasi-plurisubharmonic envelopes. The
results obtained here will be used in [GL21b] for solving degenerate complex
Monge-Ampère equations on compact Hermitian varieties.
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Introduction

The study of complex Monge-Ampère equations on compact Hermitian (non
Kähler) manifolds has gained considerable interest in the last decade, after Tosatti
andWeinkove established an appropriate version of Yau’s theorem in [TW10]. The
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smooth Gauduchon-Calabi-Yau conjecture has been further solved by Székelyhidi-
Tosatti-Weinkove [STW17], while the pluripotential theory has been partially
extended by Dinew, Ko!lodziej, and Nguyen [DK12, KN15, Din16, KN19].

As in Yau’s original proof [Yau78], the method of [TW10] consists in estab-
lishing a priori estimates along a continuity path, and the most delicate estimate
turns out again to be the a priori L∞-estimate. The fact that the reference form
is not closed introduces several new difficulties: there are many extra terms to
handle when using Stokes theorem, and it becomes non trivial to get uniform
bounds on the total Monge-Ampère volumes involved in the estimates.

In [GL21a] we have developed a new approach for establishing uniform a priori
estimates, restricting to the context of Kähler manifolds for simplicity. While
the pluripotential approach consists in measuring the Monge-Ampère capacity of
sublevel sets (ϕ < −t), we directly measure the volume of the latter, avoiding
delicate integration by parts. Our approach applies in the Hermitian setting, once
certain Monge-Ampère volumes are under control. Understanding the behavior
of these volumes is the main focus of this article, while [GL21b] is concerned with
the resolution of degenerate complex Monge-Ampère equations.

We letX denote a compact complex manifold of complex dimension n, equipped
with a Hermitian metric ωX . The first difficulty we face is to decide whether

v+(ωX) := sup

!"

X
(ωX + ddcϕ)n : ϕ ∈ PSH(X,ωX) ∩ L∞(X)

#

is finite. Here d = ∂ + ∂, dc = i(∂ − ∂), and PSH(X,ωX) is the set of ωX -
plurisubharmonic functions: these are functions u : X → R ∪ {−∞} which are
locally given as the sum of a smooth and a plurisubharmonic function, and such
that ωX + ddcu ≥ 0 is a positive current. The complex Monge-Ampère measure
(ωX + ddcu)n is well-defined by [BT82].

Building of works of Chiose [Chi16] and Guan-Li [GL10] we provide several
results which ensure that the condition v+(ωX) < +∞ is satisfied:

• for any compact complex manifold X of dimension n ≤ 2;
• for any threefold which admits a pluriclosed metric ddcω̃X = 0;
• as soon as there exists a metric ω̃X such that ddcω̃X = 0 and ddcω̃2

X = 0;
• as soon as X belongs to the Fujiki class C.

The Fujiki class is the class of compact complex manifolds that are bimeromor-
phically equivalent to Kähler manifolds.

We also need to bound the Monge-Ampère volumes from below. Given ω a
semi-positive form, we introduce several positivity properties:

• we say ω is non-collapsing if there is no bounded ω-plurisubharmonic
function u such that (ω + ddcu)n ≡ 0;

• ω satisfies condition (B) if there exists a constant B > 0 such that

−Bω2 ≤ ddcω ≤ Bω2 and −Bω3 ≤ dω ∧ dcω ≤ Bω3;

• we say ω is uniformly non-collapsing if

v−(ω) := inf

!"

X
(ω + ddcu)n : u ∈ PSH(X,ω) ∩ L∞(X)

#
> 0.

The non-collapsing condition is the minimal positivity condition one should
require. We show in Proposition 2.8 that it implies the domination principle, a
useful extension of the classical maximum principle. We provide a simple example
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showing that having positive volume
$
X ωn > 0 does not prevent from being

collapsing (see Example 3.5).
After providing a simplified proof of Ko!lodziej-Nguyen modified comparison

principle (see [KN15, Theorem 0.5] and Theorem 1.5), we show that condition
(B) implies non-collapsing. The former condition is e.g. satisfied by any form ω
which is the pull-back of a Hermitian form on a singular Hermitian variety.

When ω is closed, simple integration by parts reveal that v−(ω) =
$
X ωn

is positive as soon as ω is positive at some point. Bounding from below v−(ω)
is a much more delicate issue in general. We show in Proposition 3.4 that ω is
uniformly non-collapsing if one restricts to ω-psh functions that are uniformly
bounded by a fixed constant M :

v−M (ω) := inf

!"

X
(ω + ddcu)n : u ∈ PSH(X,ω) with −M ≤ u ≤ 0

#
> 0.

For non uniformly bounded functions we show the following:

Theorem A. The condition v+(ωX) < +∞ is independent of the choice of ωX ;
it is moreover invariant under bimeromorphic change of coordinates.

The condition v−(ωX) > 0 is also independent of the choice of ωX and invari-
ant under bimeromorphic change of coordinates.

In particular these conditions both hold true if X belongs to the Fujiki class.

We are not aware of a single example of a compact complex manifold such
that v+(ωX) = +∞ or v−(ωX) = 0. This is an important open problem.

The proof of Theorem A relies on a fine use of quasi-plurisubharmonic en-
velopes. These envelopes have been systematically studied in [GLZ19] in the
Kähler framework. Adapting and generalizing [GLZ19] to this Hermitian setting,
we prove in Section 2 the following:

Theorem B. Given a Lebesgue measurable function h : X → R, we define the
ω-plurisubharmonic envelope of h by Pω(h) := (sup{u ∈ PSH(X,ω) : u ≤ h})∗ ,
where the star means that we take the upper semi-continuous regularization. If h
is bounded below, quasi-lower-semi-continuous, and Pω(h) < +∞, then

• Pω(h) is a bounded ω-plurisubharmonic function;
• Pω(h) ≤ h in X \ P , where P is pluripolar;
• (ω + ddcPω(h))

n is concentrated on the contact set {Pω(h) = h}.

An influential conjecture of Grauert-Riemenschneider [GR70] asked whether
the existence of a semi-positive holomorphic line bundle L → X with c1(L)

n > 0
implies that X is Moishezon (i.e. bimeromorphically equivalent to a projective
manifold). This conjecture has been solved positively by Siu in [Siu84] (with
complements by [Siu85] and Demailly [Dem85]).

Demailly and Păun have proposed a transcendental version of this conjecture
(see [DP04, Conjecture 0.8]): given a nef class α ∈ H1,1

BC(X,R) with αn > 0,
they conjectured that α should contain a Kähler current, i.e. a positive closed
(1, 1)-current which dominates a Hermitian form. Recall that the Bott-Chern

cohomology group H1,1
BC(X,R) is the quotient of closed real smooth (1, 1)-forms,

by the image of C∞(X,R) under the ddc-operator.
This influential conjecture has been further reinforced by Boucksom-Demailly-

Păun-Peternell who proposed a weak transcendental form of Demailly’s holomor-
phic Morse inequalities [BDPP13, Conjecture 10.1]. This stronger conjecture has
been solved recently by Witt-Nyström when X is projective [WN19].
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Building on works of Chiose [Chi13], Xiao [Xiao15] and Popovici [Pop16] we
obtain the following answer to the qualitative part of these conjectures:

Theorem C. Let α,β ∈ H1,1
BC(X,C) be nef classes such that αn > nαn−1 · β.

The following properties are equivalent:

(1) α− β contains a Kähler current;
(2) v+(ωX) < +∞;
(3) X belongs to the Fujiki class.

A consequence of our analysis is that the conjectures of Demailly-Păun and
Boucksom-Demailly-Păun-Peternell can be extended to non closed forms, making
sense outside the Fujiki class. Progresses in the theory of complex Monge-Ampère
equations on compact hermitian manifolds have indeed shown that it is useful to
consider ddc-perturbations of non closed nef forms. It is therefore natural to try
and consider an extension of Theorem C. These are the contents of Theorem 4.6
(when β = 0) and Theorem 4.15 (when β ∕= 0).

Acknowledgements. We thank Daniele Angella for several useful discussions.
This work has benefited from State aid managed by the ANR under the ”PIA”
program bearing the reference ANR-11-LABX-0040 (research project HERMETIC).
The authors are also partially supported by the ANR project PARAPLUI.

1. Non collapsing forms

In the whole article we let X denote a compact complex manifold of complex
dimension n ≥ 1, and we fix ω a smooth semi-positive (1, 1)-form on X.

1.1. Positivity properties.

1.1.1. Monge-Ampère operators. A function is quasi-plurisubharmonic (quasi-psh
for short) if it is locally given as the sum of a smooth and a psh function.

Given an open set U ⊂ X, quasi-psh functions ϕ : U → R ∪ {−∞} satisfying
ωϕ := ω + ddcϕ ≥ 0 in the weak sense of currents are called ω-psh functions on
U . Constant functions are ω-psh functions since ω is semi-positive. A C2-smooth
function u ∈ C2(X) has bounded Hessian, hence εu is ω-psh on X if 0 < ε is
small enough and ω is positive (i.e. Hermitian).

Definition 1.1. We let PSH(X,ω) denote the set of all ω-plurisubharmonic
functions which are not identically −∞.

The set PSH(X,ω) is a closed subset of L1(X), for the L1-topology. We refer
the reader to [Dem, GZ, Din16] for basic properties of ω-psh functions.

The complex Monge-Ampère measure (ω+ddcu)n is well-defined for any ω-psh
function u which is bounded, as follows from Bedford-Taylor theory: if β = ddcρ
is a Kähler form that dominates ω in a local chart, the function u is β-psh hence
the positive currents (β + ddcu)j are well defined for 0 ≤ j ≤ n; one thus sets

(ω + ddcu)n :=

n%

j=0

&
n
j

'
(−1)n−j(β + ddcu)j ∧ (β − ω)n−j .

We refer to [DK12] for an adaptation of [BT82] to the Hermitian context.

The mixed Monge-Ampère measures (ω+ddcu)j ∧ (ω+ddcv)n−j are also well
defined for any 0 ≤ j ≤ n, and any bounded ω-psh functions u, v. We recall the
following classical inequality (see [GL21a, Lemma 1.3]):
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Lemma 1.2. Let ϕ,ψ be bounded ω-psh functions in U ⊂ X such that ϕ ≤ ψ.
Then

1{ψ=ϕ}(ω + ddcϕ)j ∧ (ω + ddcψ)n−j ≤ 1{ψ=ϕ}(ω + ddcψ)n,

for all 1 ≤ j ≤ n.

1.1.2. Condition (B) and non-collapsing. We always assume in this article that$
X ωn > 0. On a few occasions we will need to assume positivity properties that
are possibly slightly stronger:

Definition 1.3. We say ω satisfies condition (B) if there exists B ≥ 0 such that

−Bω2 ≤ ddcω ≤ Bω2 and −Bω3 ≤ dω ∧ dcω ≤ Bω3.

Here are three different contexts where this condition is satisfied:

• any Hermitian metric ω > 0 satisfies condition (B);
• if π : X → Y is a desingularization of a singular compact complex variety
Y and ωY is a Hermitian metric, then ω = π∗ωY satisfies condition (B);

• if ω is semi-positive and closed, then it satisfies condition (B).

Combining these one obtains further settings where condition (B) is satisfied.

Definition 1.4. We say ω is non-collapsing if for any bounded ω-psh function,
the complex Monge-Ampère measure (ω + ddcu)n has positive mass:

$
X ωn

u > 0.

We shall see in Corollary 1.6 below that condition (B) implies non-collapsing.

1.2. Comparison principle. The comparison principle plays a central role in
Kähler pluripotential theory. Its proof breaks down in the Hermitian setting, as it
heavily relies on the closedness of the reference form ω through the preservation
of Monge-Ampère masses. In that context the following ”modified comparison
principle” has been established by Ko!lodziej-Nguyen [KN15, Theorem 0.2]:

Theorem 1.5. Assume ω satisfies condition (B) and let u, v be bounded ω-psh
functions. For λ ∈ (0, 1) we set mλ = infX{u− (1− λ)v}. Then

&
1− 4B(n− 1)2s

λ3

'n "

{u<(1−λ)v+mλ+s}
ωn
(1−λ)v ≤

"

{u<(1−λ)v+mλ+s}
ωn
u .

for all 0 < s < λ3

32B(n−1)2
.

The proof by Ko!lodziej-Nguyen relies on the main result of [DK12], together
with extra fine estimates. We propose here a simplified proof.

Proof. Set φ := max(u, (1− λ)v +mλ + s), Uλ,s := {u < (1− λ)v +mλ + s}. For
0 ≤ k ≤ n we set Tk := ωk

u ∧ ωn−k
φ , and Tl = 0 if l < 0. Set a = Bsλ−3(n − 1)2.

We are going to prove by induction on k = 0, 1, ..., n− 1 that

(1.1) (1− 4a)

"

Uλ,s

Tk ≤
"

Uλ,s

Tk+1.

The conclusion follows since (ωφ)
n = (ω(1−λ)v)

n in the plurifine open set Uλ,s.

We first prove (1.1) for k = 0. Since u ≤ φ, Lemma 1.2 ensures that

1{u=φ}ω
n
φ ≥ 1{u=φ}ωu ∧ ωn−1

φ .

Observing that Uλ,s = {u < φ} we infer
"

X
ddc(φ− u) ∧ ωn−1

φ =

"

X
(ωn

φ − ωu ∧ ωn−1
φ ) ≥

"

Uλ,s

ωn
φ −

"

Uλ,s

ωu ∧ ωn−1
φ .
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A direct computation shows that

ddcωn−1
φ = (n− 1)ddcω ∧ ωn−2

φ + (n− 1)(n− 2)dω ∧ dcω ∧ ωn−3
φ

≤ (n− 1)Bω2 ∧ ωn−2
φ + (n− 1)(n− 2)Bω3 ∧ ωn−3

φ ,

since ω satisfies condition (B). As φ− u ≥ 0, it follows from Stokes theorem that
"

X
ddc(φ−u)∧ωn−1

φ ≤ (n−1)B

!"

X
(φ− u)ω2 ∧ ωn−2

φ + (n− 2)

"

X
(φ− u)ω3 ∧ ωn−3

φ

#
.

Observe that

• λω ≤ ω(1−λ)v hence ωj ∧ ωn−j
φ ≤ λ−j(ω(1−λ)v)

j ∧ ωn−j
φ ,

• (ω(1−λ)v)
j ∧ ωn−j

φ = ωn
φ in the plurifine open set Uλ,s,

• and 0 ≤ φ− u ≤ s and φ− u = 0 on X \ Uλ,s,

to conclude that
$
X(φ− u)ωj ∧ ωn−j

φ ≤ sλ−j
$
Uλ,s

ωn
φ , for j = 2, 3, hence

"

Uλ,s

ωn
φ −

"

Uλ,s

ωu ∧ ωn−1
φ ≤

"

X
ddc(φ− u) ∧ ωn−1

φ ≤ Bs(n− 1)2

λ3

"

Uλ,s

ωn
φ ,

since λ−2 ≤ λ−3. This yields (1.1) for k = 0.

We asume now that (1.1) holds for all j ≤ k − 1, and we check that it still
holds for k. Observe that

ddc
(
ωk
u ∧ ω

n−[k+1]
φ

)

= kddcω ∧ ωk−1
u ∧ ω

n−[k+1]
φ + (n− [k + 1])ddcω ∧ ωk

u ∧ ω
n−[k+2]
φ

+ 2k(n− [k + 1])dω ∧ dcω ∧ ωk−1
u ∧ ω

n−[k+2]
φ + k(k − 1)dω ∧ dcω ∧ ωk−2

u ∧ ω
n−[k+1]
φ

+ (n− [k + 1])[n− (k + 2)]dω ∧ dcω ∧ ωk
u ∧ ω

n−[k+3]
φ .

The same arguments as above therefore show that
"

Uλ,s

(Tk − Tk+1) ≤
"

X
(Tk − Tk+1) =

"

X
(φ− u)ddc(ωk

u ∧ ω
n−[k+1]
φ )

≤ Bs

λ3

"

Uλ,s

*
k(k − 1)Tk−2 + 2k[n− k]Tk−1 + (n− [k + 1])2Tk

+

≤ a

&
1

(1− 4a)2
+

1

1− 4a
+ 1

'"

Uλ,s

Tk ≤ 4a

"

Uλ,s

Tk,

where in the third inequality above we have used the induction hypothesis, while
the fourth inequality follows from the upper bound 4a < 1/8. From this we obtain
(1.1) for k, finishing the proof. □

Corollary 1.6. If ω satisfies condition (B) then ω is non-collapsing.

Proof. It follows from Theorem 1.5 that the domination principle holds (see [LPT,
Proposition 2.2]). The latter implies in particular that if u, v are ω-psh and
bounded, then e−v(ω+ddcv)n ≥ e−u(ω+ddcu)n =⇒ v ≤ u (see [LPT, Proposition
2.3]). There can thus be no bounded ω-psh function u such that (ω+ddcu)n = 0.
Otherwise the previous inequality applied with a constant function v = A yields
u ≥ A for any A, a contradiction. □
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2. Envelopes

We consider here envelopes of ω-psh functions, extending some results of
[GLZ19] that have been established for Kähler manifolds.

2.1. Basic properties.

Definition 2.1. A Borel set E ⊂ X is (locally) pluripolar if it is locally contained
in the −∞ locus of some psh function: for each x ∈ X, there exists an open
neighborhood U of x and u ∈ PSH(U) such that E ∩ U ⊂ {u = −∞}.

Definition 2.2. Given a Lebesgue measurable function h : X → R, we define
the ω-psh envelope of h by

Pω(h) := (sup{u ∈ PSH(X,ω) : u ≤ h quasi-everywhere in X})∗ ,

where the star means that we take the upper semi-continuous regularization,
while quasi-everywhere means outside a locally pluripolar set.

When ω is Hermitian and h is C1,1-smooth, then so is Pω(h) (see [Ber19, CZ19,
CM20]) and one can show that

(2.1) (ω + ddcPω(h))
n = 1{Pω(h)=h}(ω + ddch)n.

For less regular obstacle h we have the following:

Theorem 2.3. If h is bounded from below, quasi-l.s.c., and Pω(h) < +∞, then

• Pω(h) is a bounded ω-plurisubharmonic function;
• Pω(h) ≤ h in X \ P , where P is pluripolar;
• (ω + ddcPω(h))

n is concentrated on the contact set {Pω(h) = h}.

Recall that a function h is quasi-lower-semicontinuous (quasi-l.s.c.) if for any
ε > 0, there exists an open set G of capacity smaller than ε such that h is
continuous in X \ G. Quasi-psh functions are quasi-continuous (see [BT82]), as
well as differences of the latter.

Proof. The proof is an adaptation of [GLZ19, Proposition 2.2, Lemma 2.3, Propo-
sition 2.5], which deal with the case when ω is Kähler.

Since Pω(h) is bounded from above, up to replacing h with min(h,C) with
C > supX Pω(h) we can assume that h is bounded.

Step 1: h is smooth, ω is Hermitian. Building on Berman’s work [Ber19], it was
shown by Chu-Zhou in [CZ19] that the smooth solutions ϕβ to

(ω + ddcϕβ)
n = eβ(ϕβ−h)ωn

converge uniformly to Pω(h) along with uniform C1,1-estimates. As a consequence,
the measures (ω + ddcϕβ)

n converge weakly to (ω + ddcPω(h))
n. For each fixed

ε > 0, we have the inclusions of open sets {Pω(h) < h− 2ε} ⊂ {ϕβ < h− ε} for
β large enough, yielding

"

{Pω(h)<h−2ε}
(ω + ddcPω(h))

n ≤ lim inf
β→+∞

"

{Pω(h)<h−2ε}
(ω + ddcϕβ)

n

≤ lim inf
β→+∞

"

{Pω(h)<h−2ε}
e−βεωn = 0.
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Step 2: h is lower semi-continuous, ω is Hermitian. If h is continuous, we can ap-
proximate it uniformly by smooth functions hj . Letting uj := P (hj) the previous
step ensures that "

X
(hj − uj)(ω + ddcuj)

n = 0.

As hj → h uniformly we also have that uj → u := P (h) uniformly and the desired
property follows from Bedford-Taylor’s convergence theorem.

When h is merely lower semi-continuous, we let (hj) denote a sequence of
continuous functions which increase pointwise to h and set uj = P (hj). Then
uj ↗ u a.e. on X for some bounded function u ∈ PSH(X,ω). Since uj ≤ hj ≤ h
quasi-everywhere on X we infer u ≤ h quasi-everywhere on X, hence u ≤ P (h).
For each k < j, the second step ensures that

"

{u<hk}
(ω + ddcuj)

n ≤
"

{uj<hj}
(ω + ddcuj)

n = 0.

Since {u < hk} is open, letting j → +∞ and then k → +∞ we arrive at
"

{u<h}
(ω + ddcu)n = 0.

We also have that P (h) ≤ h quasi-everywhere on X, hence
"

{u<P (h)}
(ω + ddcu)n = 0,

and [LPT, Proposition 2.2] then ensures that u = P (h).

Step 3: h is quasi-l.s.c., ω is Hermitian. By [GLZ19, Lemma 2.4] we can find a
decreasing sequence (hj) of lsc functions such that hj ↘ h q.e. on X and hj → h
in capacity. Then uj := P (hj) ↘ u := P (h). By Step 2 we know that for all
j > k, "

{uk<h}
(ω + ddcuj)

n ≤
"

{uj<hj}
(ω + ddcuj)

n = 0.

Since {uk < h} is quasi-open and the functions uj are uniformly bounded, letting
j → +∞ we obtain "

{uk<h}
(ω + ddcu)n = 0.

Letting k → +∞ yields the desired result.

Step 4: the general case. We approximate ω ≥ 0 by the Hermitian forms ωj =
ω + j−1ωX > 0. Observe that j 0→ uj = Pωj (h) decreases to u = Pω(h) as j
increases to +∞. For 0 < k < j, the previous step ensures that

"

{uk<h}
(ω + j−jωX + ddcuj)

n = 0.

As the set {uk < h} is quasi-open and uj is uniformly bounded we can let
j → +∞ and use Bedford-Taylor’s convergence theorem to get

"

{uk<h}
(ω + ddcu)n = 0,

We finally let k → +∞ to conclude. □

For later use we extend the latter result to a setting where Pω(f) is not
necessarily globally bounded:
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Corollary 2.4. If f is quasi-lower-semicontinuous and Pω(f) is locally bounded
in a non-empty open set U ⊂ X then (ω + ddcPω(f))

n is a well-defined positive
Borel measure in U which vanishes in U ∩ {Pω(f) < f}.

Proof. Let (fj) be a sequence of l.s.c. functions decreasing to f quasi-everywhere.
Then uj := Pω(fj) is a bounded ω-psh function such that (ω + ddcuj)

n = 0
on {uj < fj}. Since uj decreases to u := Pω(f), Bedford-Taylor’s convergence
theorem ensures that ωn

uj
→ ωn

u in U .

Fix U ′ a relatively compact open set U ′ ⋐ U . For each k fixed the set {uk < f}
is quasi open and the functions uj , u are uniformly bounded in U ′, hence

lim inf
j→+∞

"

{uk<f}∩U ′
ωn
uj

≥
"

{uk<f}∩U ′
ωn
u ,

which implies, after letting k → +∞, that ωn
u vanishes in U ′∩{u < f}. We finally

let U ′ increase to U to conclude. □

We shall use later on the following :

Lemma 2.5. Let u, v be bounded ω-psh functions. Then

(1) (ω + ddcP (min(u, v)))n ≤ (ω + ddcu)n + (ω + ddcv)n;
(2) if (ω + ddcu)n = fdVX and (ω + ddcv)n = gdVX , then

(ω + ddcP (min(u, v)))n ≤ max(f, g)dVX ,

while

(ω + ddcmax(u, v)))n ≥ min(f, g)dVX .

Proof. We set w = P (min(u, v)). Since min(u, v) is quasi-continuous, it follows
from Theorem 2.3 that the Monge-Ampère measure ωn

w has support in

{P (min(u, v)) = min(u, v)} = {P (min(u, v)) = u < v} ∪ {P (min(u, v)) = v}.

Thus

(2.2) ωn
w ≤ 1{w=u<v}ω

n
w + 1{w=v}ω

n
w.

Since w = P (min(u, v)) ≤ u and w = P (min(u, v)) ≤ u, Lemma 1.2 yields

1{w=u}ω
n
w ≤ 1{w=u}ω

n
u ≤ ωn

u

as well as 1{w=v}ω
n
w ≤ ωn

v . Together with (2.2) we infer ωn
w ≤ ωn

u +ωn
v as claimed.

When (ω + ddcu)n = fdVX and (ω + ddcv)n = gdVX , we obtain

1{w=u<v}ω
n
w ≤ 1{w=u<v}fdVX ≤ 1{w=u<v}max(f, g)dVX

and 1{w=v}ω
n
w ≤ 1{w=v}gdVX ≤ 1{w=u<v}max(f, g)dVX , hence

ωn
w ≤

,
1{w=u<v} + 1{w=v}

-
max(f, g)dVX ≤ max(f, g)dVX .

The last item follows from

(ω + ddcmax(ϕ,ψ))n ≥ 1{u≤v}ω
n
u + 1{v>u}ω

n
v ≥ min(f, g)dVX .

□
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2.2. Locally vs globally pluripolar sets. A classical result of Josefson asserts
that a locally pluripolat set E in Cn is globally pluripolar, i.e. there exists a
psh function u ∈ PSH(Cn) such that E ⊂ {u = −∞}. This result has been
extended to compact Kähler manifolds in [GZ05], and to the Hermitian setting
in [Vu19]: if E ⊂ X is locally pluripolar and ωX is a Hermitian form, one can
find u ∈ PSH(X,ωX) such that E ⊂ {u = −∞}.

We further extend this result to the case of non-collapsing forms:

Lemma 2.6. If E is (locally) pluripolar and ω ≥ 0 is non-collapsing then E ⊂
{u = −∞} for some u ∈ PSH(X,ω).

The proof is a consequence of Theorem 2.3 and analogous results established
on Kähler manifolds.

Proof. As in [GZ05, Theorem 5.2] it is enough to check that V ∗
E,ω ≡ +∞, where

VE,ω(x) = sup{ϕ(x) : ϕ ∈ PSH(X,ω) and ϕ ≤ 0 quasi-everywhere on E}.
Here quasi-everywhere means outside a locally pluripolar set. If it is not the
case then V ∗

E,ω is a bounded ω-psh function on X. We can assume that E ⊂
U ⋐ V ⋐ V ′ is contained in a holomorphic chart V ′. By Josefson’s theorem (see
[GZ, Theorem 4.4]) we can find u ∈ L1

loc(V
′) a psh function in V ′ such that

E ⊂ {u = −∞}. Let uj be a sequence of smooth psh functions in a neighborhood
of V such that uj ↘ u. Fix N ∈ N and for j large enough we set

Kj,N := {x ∈ V : uj(x) ≤ −N}, ϕj,N := V ∗
Kj,N ,ω,

and note that ϕj,N ↘ ϕN ∈ PSH(X,ω) ∩ L∞(X) as j → +∞. We also have
that E ⊂ ∪j≥1Kj,N , hence 0 ≤ ϕN ≤ V ∗

E,ω. We can thus find jN so large that
ϕj,N ≤ supX V ∗

E,ω + 1 for all j ≥ jN .
Let ρ be a smooth psh function in V such that ddcρ ≥ ω. The Chern-Levine-

Nirenberg inequality (see [GZ, Theorem 3.14]) ensures that, for j ≥ jN ,
"

Kj,N

(ω + ddcϕj,N )n ≤
"

Kj,N

(ddc(ϕj,N + ρ))n

≤ 1

N

"

V
|ϕj,N |(ddc(ϕj,N + ρ))n

≤ C

N
,

for some uniform constant C > 0. The function which is zero on Kj,N and +∞
elsewhere is lower semi-continuous on X since Kj,N is compact. It thus follows
from Theorem 2.3 that"

X
(ω + ddcϕj,N )n =

"

Kj,N

(ω + ddcϕj,N )n ≤ C ′

N
.

Letting j → +∞ we obtain
$
X(ω+ddcϕN )n ≤ C ′/N . Now ϕN ↗ ϕ as N → +∞,

for some ϕ ∈ PSH(X,ω) which is bounded since 0 ≤ ϕN ≤ V ∗
E,ω. We thus obtain$

X(ω + ddcϕ)n = 0, yielding a contradiction since ω is non-collapsing and ϕ is
bounded. □

Since locally pluripolar sets are PSH(X,ω)-pluripolar, arguing as in the proof
of [GLZ19, Proposition 2.2], one finally obtains:

Corollary 2.7. Let f be a Borel function such that Pω(f) ∈ PSH(X,ω). Then

Pω(f) = (sup{u ∈ PSH(X,ω) : u ≤ f in X})∗ .
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2.3. Domination principle. We now establish the following generalization of
the domination principle:

Proposition 2.8. Assume ω is non-collapsing and fix c ∈ [0, 1). If u, v are
bounded ω-psh functions such that ωn

u ≤ cωn
v on {u < v}, then u ≥ v.

The usual domination principle corresponds to the case c = 0 (see [LPT,
Proposition 2.2]).

Proof. Fixing a > 0 arbitrarily small, we are going to prove that u ≥ v − a on
X. Assume by contradiction that E = {u < v − a} is not empty. Since u, v are
quasi-psh, the set E has positive Lebesgue measure. For b > 1 we set

ub := Pω(bu− (b− 1)v).

It follows from Theorem 2.3 that (ω + ddcub)
n is concentrated on the set

D := {ub = bu− (b− 1)v}.

Note also that b−1ub + (1− b−1)v ≤ u with equality on D. Therefore

1D(ω + ddc(b−1ub + (1− b−1)v))n ≤ 1Dω
n
u ,

as follows from Lemma 1.2, hence

1Db
−n(ω + ddcub)

n + 1D(1− b−1)n(ω + ddcv)n ≤ 1Dω
n
u .

We choose b so large that (1− b−1)n > c. Multiplying the above inequality by
1{u<v} and noting that ωn

u ≤ cωn
v on {u < v}, we obtain

1D∩{u<v}(ω + ddcub)
n = 0.

Since ub is bounded and ω is non-collapsing, we know that ωn
ub
(D) = ωn

ub
(X) > 0.

We infer that the set D ∩ {u ≥ v} is not empty, and on this set we have

ub = bu− (b− 1)v ≥ u ≥ −C,

since u is bounded. It thus follows that supX ub is uniformly bounded from below.
As b → +∞ the functions ub − supX ub converge to a function u∞ which is −∞
on E, but not identically −∞ hence it belongs to PSH(X,ω). This implies that
the set E has Lebesgue measure 0, a contradiction. □

Here is a direct consequence of the domination principle:

Corollary 2.9. Assume ω is non-collapsing and let u, v be bounded ω-psh func-
tions. Then for all ε > 0,

e−εv(ω + ddcv)n ≥ e−εu(ω + ddcu)n =⇒ v ≤ u.

Proof. Fix a > 0. On the set {u < v − a} we have ωn
u ≤ e−εaωn

v . Proposition 2.8
thus gives u ≥ v − a. This is true for all a > 0, hence u ≥ v. □

3. Bounds on Monge-Ampère masses

In the sequel we fix a Hermitian form ωX on X.



12 VINCENT GUEDJ & CHINH H. LU

3.1. Global bounds. Since the semi-positive (1, 1)-form ω is not necessarily
closed, the mass of the complex Monge-Ampère measures (ω + ddcu)n is (in
general) not constantly equal to Vω :=

$
X ωn > 0.

Definition 3.1. For 1 ≤ j ≤ n we consider

v−,j(ω) := inf

!"

X
(ω + ddcu)j ∧ ωn−j , u ∈ PSH(X,ω) ∩ L∞(X)

#

and

v+,j(ω) := sup

!"

X
(ω + ddcu)j ∧ ωn−j , u ∈ PSH(X,ω) ∩ L∞(X)

#
.

We set v−(ω) := v−,n(ω) and v+(ω) = v+,n(ω). When ω > 0 is Hermitian, the
supremum and infimum in the definition of v+,j(ω) and v−,j(ω) can be taken
over PSH(X,ω)∩C∞(X) as follows from Demailly’s approximation [Dem92] and
Bedford-Taylor’s convergence theorem [BT76, BT82].

It is an interesting open problem to determine when v−(ωX) is positive and/or
v+(ωX) is finite. These conditions may depend on the complex structure, but they
are independent of the choice of Hermitian metric.

3.1.1. Monotonicity and invariance properties.

Proposition 3.2. Let 0 ≤ ω1 ≤ ω2 be semi-positive (1, 1)-forms. Then

(3.1) v−(ω1) ≤ v−(ω2) and v+(ω1) ≤ v+(ω2).

Moreover
1) v+(ωX) < +∞ ⇐⇒ v+(ω

′
X) < +∞ for any other Hermitian metric ω′

X .

2) 0 < v−(ωX) ⇐⇒ 0 < v−(ω
′
X) for any other Hermitian metric ω′

X .

Proof. Since any ω1-psh function u is also ω2-psh, we obtain
"

X
(ω1 + ddcu)n ≤

"

X
(ω2 + ddcu)n ≤ v+(ω2).

which shows that v+(ω1) ≤ v+(ω2). We now bound v−(ω2) from below. Let v be
a bounded ω2-psh function and let u = Pω1(v) denote its ω1-psh envelope. Then
u is a bounded ω2-psh function and u ≤ v on X. Lemma 1.2 and Theorem 2.3
thus ensure that

(ω1 + ddcu)n ≤ 1{u=v}(ω2 + ddcu)n ≤ 1{u=v}(ω2 + ddcv)n.

We therefore obtain v−(ω1) ≤ v−(ω2). This proves (3.1).

Let now ω,ω′ be two Hermitian metrics (we simplify notations). Observe that
v±(Aω) = Anv±(ω) for all A > 0. Since A−1ω′ ≤ ω ≤ Aω for an appropriate
choice of the constant A > 1, items 1) and 2) follow from (3.1). □

We now establish bounds on the mixed Monge-Ampère quantities:

Proposition 3.3.

(1) One always has v+,1(ω) < +∞.
(2) If ω is Hermitian then 0 < v−,1(ω).
(3) If ddcωn−2 = 0 then v+,2(ω) < +∞.
(4) If ddcω = 0 and ddcω2 = 0 then v−,j(ω) = v+,j(ω) = Vω ∈ R∗

+.

(5) For all 0 ≤ ℓ ≤ j ≤ n one has v+,ℓ(ω) ≤ 2jv+,j(ω).
(6) v+,n−1(ω) < +∞ if and only if v+,n(ω) < +∞.
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A Hermitian metric such that ddc(ωn−2) = 0 is called Astheno-Kähler. These
metrics play an important role in the study of harmonic maps (see [JY93]). A
Hermitian metric satisfying ddcω = 0 is called SKT or pluriclosed in the literature.
When n = 3 the Astheno-Kähler and the pluriclosed condition coincide, and the
third item is due to Chiose [Chi16, Question 0.8]. Examples of compact complex
manifolds admitting a pluriclosed metric can be found in [FPS04, Ot20].

Condition (4) has been introduced by Guan-Li in [GL10]. It has been shown
by Chiose [Chi16] that it is equivalent to the invariance of Monge-Ampère masses:$
X(ω+ddcu)n =

$
X ωn for all smooth ω-psh functions if and only if ddcωj = 0 for

all j = 1, 2. Note that any compact complex surface admits a Gauduchon metric
ddcω = 0 [Gaud77], which also satisfies ddcω2 = 0 for bidegree reasons.

Proof. One can assume without loss of generality that ω ≤ ω̃, where ω̃ is a
Gauduchon metric. It follows that for any ϕ ∈ PSH(X,ω),

"

X
(ω + ddcϕ) ∧ ωn−1 ≤

"

X
(ω + ddcϕ) ∧ ω̃n−1 =

"

X
ω ∧ ω̃n−1,

hence v+,1(ω) ≤
$
X ω ∧ ω̃n−1 < +∞.

If ω is Hermitian one can similarly bound from below ω by a Gauduchon form
and conclude that v−,1(ω) > 0.

We claim that
$
X(ω + ddcϕ)2 ∧ ωn−2 ≤ M is uniformly bounded from above

when ϕ ∈ PSH(X,ω) ∩ L∞(X) is normalized and ddcωn−2 = 0. Indeed
"

X
(ω + ddcϕ)2 ∧ ωn−2 =

"

X
ωn + 2

"

X
ωn−1 ∧ ddcϕ+

"

X
ωn−2 ∧ (ddcϕ)2

=

"

X
ωn + 2

"

X
ϕddcωn−1 −

"

X
ϕddcωn−2 ∧ ddcϕ.

The latter integral vanishes since ddcωn−2 = 0. The second one is uniformly
bounded since the functions ϕ belong to a compact subset of L1(X). Altogether
this shows that v+,2(ω) < +∞ if ddc(ωn−2) = 0.

Since ddc(ω2) = 2dω ∧ dcω + 2ω ∧ ddcω, the Guan-Li condition is equivalent
to ddcω = 0 and dω ∧ dcω = 0. For u ∈ PSH(X,ω) ∩ C∞(X) we use the binomial
expansion of the Monge-Ampère measure (ω + ddcu)n to obtain
"

X
(ω+ddcu)n =

"

X
ωn+n

"

X
ωn−1∧ddcu+· · ·+n

"

X
ω∧(ddcu)n−1+

"

X
(ddcu)n.

Observe that ddc{du ∧ dcu ∧ (ddcu)n−2−j} = −(ddcu)n−j , while
$
X(ddcu)n = 0

by Stokes theorem, hence

ddc
,
ωj ∧ du ∧ dcu ∧ (ddcu)n−2−j

-
= −ωj ∧ (ddcu)n−j

+ jωj−1 ∧ ddcω ∧ du ∧ dcu ∧ (ddcu)n−2−j

+ j(j − 1)ωj−2 ∧ dω ∧ dcω ∧ du ∧ dcu ∧ (ddcu)n−2−j .

If ddcω = 0 and dω∧dcω = 0 we infer from Stokes theorem
$
X ωj∧(ddcu)n−j = 0,

hence
$
X(ω + ddcu)n =

$
X ωn for all u ∈ PSH(X,ω) ∩ C∞(X), showing that

v−(ω) = v+(ω) = Vω is both finite and positive. Expanding similarly the mixed
Monge-Ampère measure (ω + ddcu)j ∧ ωn−j one obtains 4).

Observe that for any ϕ ∈ PSH(X,ω) ∩ L∞ and 0 ≤ ℓ ≤ j ≤ n one has

(3.2)

"

X
(ω + ddcϕ)ℓ ∧ ωn−ℓ ≤

"

X
(2ω + ddcϕ)j ∧ ωn−j ≤ 2jv+,j(ω).
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In particular v+,n−1(ω) ≤ 2nv+,n(ω) hence v+,n(ω) < +∞ ⇒ v+,n−1(ω) < +∞.
We finally show conversely that v+,n−1(ω) < +∞ ⇒ v+,n(ω) < +∞ by proving

v+,n(ω) ≤ 22n−2v+,n−1(ω).

Observe indeed that

0 =

"

X
(ω + ddcϕ− ω)n

=

"

X
(ω + ddcϕ)n +

n%

k=1

(−1)k
&
n

k

'
(ω + ddcϕ)n−k ∧ ωk

≥
"

X
(ω + ddcϕ)n −

%

1≤2k+1≤n

&
n

2k + 1

'
(ω + ddcϕ)n−2k−1 ∧ ω2k+1.

Using (3.2) we thus get

v+,n(ω) ≤
%

1≤2k+1≤n

&
n

2k + 1

'
2n−1v+,n−1(ω) = 22n−2v+,n−1(ω).

□

3.1.2. Uniformly bounded functions. Restricting to uniformly bounded ω-psh func-
tions, it is natural to consider

v−M (ω) := inf

!"

X
(ω + ddcu)n : u ∈ PSH(X,ω) with −M ≤ u ≤ 0

#

where M ∈ R+, and

v+M (ω) := sup

!"

X
(ω + ddcu)n : u ∈ PSH(X,ω) with −M ≤ u ≤ 0

#
.

These quantities are always under control as we now explain:

Proposition 3.4. Assume ω is non-collapsing. For any M ∈ R+, one has

0 < v−M (ω) ≤ v+M (ω) < +∞.

Proof. The finiteness of v+M (ω) follows easily from integration by parts, it is e.g.
a simple consequence of [DK12, Theorem 3.5].

In order to show that v−M (ω) is positive we argue by contradiction. Assume

there exists uj ∈ PSH(X,ω) such that −M ≤ uj ≤ 0 and
$
X(ω + ddcuj)

n ≤ 2−j .
For j ∈ N fixed, the sequence

k 0→ vj,k := Pω(min(uj , uj+1, . . . , uj+k))

decreases towards a ω-psh function wj such that −M ≤ wj ≤ 0. It follows
therefore from Lemma 2.5 that
"

X
(ω + ddcwj)

n = lim
k→+∞

"

X
(ω + ddcvj,k)

n ≤
+∞%

ℓ=0

"

X
(ω + ddcvj+ℓ)

n ≤ 2−j+1.

Thus the sequence j 0→ wj increases to a bounded ω-psh function w such that
(ω + ddcw)n = 0, which yields a contradiction. □
Example 3.5. We provide here an example of a semi-positive form ω such that$
X ωn > 0 but ω is collapsing, in particular v−(ω) = 0. Let X = Y × Z where
Y, Z are two compact complex manifolds of dimension m ≥ 1, p ≥ 1 respectively,
and dimX = n = p+m. Fix a smooth function u on Y such that ωY + ddcu < 0
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is negative in a small open set U ⊂ Y . Let 0 ≤ ρ ≤ 1 be a cut-off function on Y
supported in U . The smooth (1, 1)-form ω defined by

ω = ρ ◦ π1(π∗
1ωY + π∗

2ωZ).

is semipositive on X and satisfies ω(y, z) = 0 for y /∈ U .
Set now φ := Pω(u ◦π1) and let C := {φ = u ◦π1} denote the contact set. The

Monge-Ampère measure (ω+ ddcφ)n is concentrated on C. Arguing as in [Ber09,
Proposition 3.1] one can show that C ⊂ {x ∈ X, ω + ddcu ◦ π1(x) ≥ 0}. Since
ω + ddc(u ◦ π1) < 0 is negative in U × Z, it follows that C ⊂ X \ (U × Z). Now
ω = 0 outside U × Z, hence

(ω + ddcφ)n ≤ 1C(dd
cu ◦ π1)n = 0,

because u ◦ π1 depends only on y. It thus follows that (ω + ddcφ)n = 0 on X.

3.2. Bimeromophic invariance.

Lemma 3.6. Let f : X → Y be a proper holomorphic map between compact
complex manifolds of dimension n, equipped with Hermitian forms ωX ,ωY . Then

• v+(ωX) < +∞ =⇒ v+(ωY ) < +∞;
• v−(ωY ) > 0 =⇒ v−(ωX) > 0 if f has connected fibers.

It follows from Zariski’s main theorem that f has connected fibers if it is
bimeromorphic.

Proof. Up to rescaling, we can assume that f∗ωY ≤ ωX . Fix ϕ ∈ PSH(Y,ωY ) ∩
L∞(Y ). Then ϕ ◦ f ∈ PSH(X,ωX) ∩ L∞(X) with
"

Y
(ωY + ddcϕ)n =

"

X
(f∗ωY + ddcϕ ◦ f)n ≤

"

X
(ωX + ddcϕ ◦ f)n ≤ v+(ωX),

thus v+(ωY ) ≤ v+(ωX) and the first assertion is proved.

Consider now ψ ∈ PSH(X,ωX)∩L∞(X) and set u = Pf∗ωY
(ψ). The function

u is f∗ωY , hence plurisubharmonic on the fibers of f . If the latter are connected
we obtain that u is constant on them, i.e. u = ϕ ◦ f for some function ϕ ∈
PSH(Y,ωY ) ∩ L∞(Y ). Since (f∗ωY + ddcu)n ≤ 1{u=ψ}(f

∗ωY + ddcψ)n, we infer

v−(ωY ) ≤
"

Y
(ωY + ddcϕ)n =

"

X
(f∗ωY + ddcu)n ≤

"

X
(ωX + ddcψ)n

so that v−(ωY ) ≤ v−(ωX), proving the second assertion. □
We conversely show that the properties v+(ωX) < +∞ and v−(ωX) > 0 are

invariant under blow ups and blow downs with smooth centers:

Theorem 3.7. Let X and Y be compact complex manifolds which are bimero-
morphically equivalent. Then

• v+(ωX) < +∞ if and only if v+(ωY ) < +∞;
• v−(ωX) > 0 if and only if v−(ωY ) > 0.

Proof. A celebrated result of Hironaka ensures that any bimeromorphic map be-
tween compact complex manifolds is a finite composition of blow ups and blow
downs with smooth centers. We can thus assume that f : X → Y is the blow up
of Y along a smooth center.

We fix ψ a quasi-plurisubharmonic function such that π∗ωY + ddcψ ≥ δωX .
The existence of ψ follows from a classical argument in complex geometry (see
[BL70], [FT09, Proposition 3.2]). By Demailly’s approximation theorem we can
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further assume that ψ has analytic singularities. Up to scaling we can assume
without loss of generality that δ = 1, and we set Ω = {x ∈ X : ψ(x) > −∞}.

We already know by Lemma 3.6 that v+(ωX) < +∞ =⇒ v+(ωY ) < +∞.
Assume conversely that v+(ωY ) < +∞. For any ϕ ∈ PSH(X,ωX) ∩ L∞(X),

"

X
(ωX + ddcϕ)n ≤

"

Ω
(π∗ωY + ddc(ψ + ϕ))n

≤ lim inf
j→+∞

"

π(Ω)
(π∗ωY + ddc(max[ψ + ϕ,−j]))n.

The function uj = max[ψ + ϕ,−j] is π∗ωY -psh and bounded in Ω. It is constant
on the fibers of π, hence uj = vj ◦ π with vj ∈ PSH(π(Ω),ωY ) ∩ L∞(Ω). As vj is
bounded, it extends trivially through the analytic set π(∂Ω) as a bounded ωY -psh
function. Thus"

π(Ω)
(π∗ωY + ddcuj)

n =

"

Y
(ωY + ddcvj)

n ≤ v+(ωY )

yields v+(ωX) ≤ v+(ωY ) < +∞.

We now assume that v−(ωX) > 0. Pick v ∈ PSH(Y,ωY ) ∩ L∞(Y ) and set
u = PωX (v ◦ π − ψ). Observe that u ∈ PSH(X,ωX) ∩ L∞(X) and recall that
(ωX + ddcu)n is concentrated on the contact set C = {u + ψ = v ◦ π} (see
Theorem 2.3). Since u + ψ and v ◦ π are both π∗ωY -psh, locally bounded in Ω,
with u+ ψ ≤ v ◦ π, it follows from Lemma 1.2 that

1C(π
∗ωY + ddc(u+ ψ))n ≤ 1C(π

∗ωY + ddcv ◦ π)n ≤ (π∗ωY + ddcv ◦ π)n.
Now π∗ωY + ddc(u+ ψ) ≥ ωX + ddcu and (ωX + ddcu)n is concentrated on C so

1C(π
∗ωY + ddc(u+ ψ))n ≥ (ωX + ddcu)n.

We infer

v−(ωX) ≤
"

X
(ωX + ddcu)n ≤

"

C
(π∗ωY + ddc(u+ ψ))n

≤
"

X
(π∗ωY + ddcv ◦ π)n =

"

Y
(ωY + ddcv)n,

showing that v−(ωY ) ≥ v−(ωX) > 0. The reverse implication v−(ωY ) > 0 =⇒
v−(ωX) > 0 follows from Lemma 3.6. □

Recall that a compact complex manifold X belongs to the Fujiki class C if
there exists a holomorphic bimeromophic map π : Y → X, where Y is compact
Kähler. Since v+(ωX) = v−(ωX) =

$
X ωn

X ∈ R∗
+ when ωX is a Kähler form, we

obtain the following:

Corollary 3.8. If X belongs to the Fujiki class C then

0 < v−(ωX) ≤ v+(ωX) < +∞.

4. Weak transcendental Morse inequalities

4.1. Nef and big forms. Recall that the Bott-Chern cohomology groupH1,1
BC(X,R)

is the quotient of closed real smooth (1, 1)-forms, by the image of C∞(X,R) under
the ddc-operator. This is a finite dimensional vector space as X is compact.

Nefness and bigness are fundamental positivity properties of holomorphic line
bundles in complex algebraic geometry (see [Laz]). Their transcendental counter-
parts have been defined and studied by Demailly (see [Dem]):
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Definition 4.1.

• A cohomology class α ∈ H1,1
BC(X,R) is nef if for any ε > 0, one can find

a smooth closed real (1, 1)-form θε ∈ α such that θε ≥ −εωX .
• A Hermitian current on X is a positive current T of bidegree (1, 1) which
dominates a Hermitian form, i.e. there exists δ > 0 such that T ≥ δωX .

• A cohomology class α ∈ H1,1
BC(X,R) is big if it can be represented by a

closed Hermitian current (a Kähler current).

It follows from an approximation result of Demailly [Dem92] that one can
weakly approximate a Hermitian current by Hermitian currents with analytic
singularities. In particular a big cohomology class can be represented by a Kähler
current with analytic singularities.

By analogy with the above setting, we propose the following definitions:

Definition 4.2. Let ω be a smooth real (1, 1) form on X.

• We say that ω is nef if for any ε > 0 there exists a smooth quasi-
plurisubharmonic function ϕε such that ω + ddcϕε ≥ −εωX .

• We say that ω is big if there exists a ω-psh function ρ with analytic
singularities such that ω + ddcρ dominates a Hermitian form.

Note that PSH(X,ω) is non empty in both cases: indeed ρ ∈ PSH(X,ω)
in the latter case, while one can extract ϕεj → ϕ ∈ PSH(X,ω) in the former,
normalizing the potentials ϕεj by imposing supX ϕεj = 0.

WhenX is a compact Kähler manifold and α ∈ H1,1
BC(X,R) is nef with αn > 0,

a celebrated result of Demailly-Păun [DP04, Theorem 0.5] ensures the existence
of a Kähler current representing α. This result is the key step in establishing a
transcendental Nakai-Moishezon criterion (see [DP04, Main theorem]).

We study in the sequel a possible extension of this result to the Hermitian
setting. We thus need to extend the definition of v− to nef forms:

Definition 4.3. If ω is a nef (1, 1)-form, we set

v̂−(ω) := inf
ε>0

v−(ω + εωX).

Although the form ω + εωX needs not be semi-positive, one can find by def-
inition a semi-positive form ω + εωX + ddcϕε cohomologous to ω + εωX , and it
is understood here that v−(ω + εωX) := v−(ω + εωX + ddcϕε). By (3.1), the
definition of v̂−(ω) is independent of the choice of the Hermitian form ωX .

It is natural to expect that this definition is consistent with the previous one
when ω is semi-positive, and that v̂−(ω) = αn when ω is a closed form representing

a nef class α ∈ H1,1
BC(X,R):

Lemma 4.4. If ω is semi-positive then v̂−(ω) = v−(ω). If v+(ωX) < +∞ and ω

is a closed form representing a nef class in H1,1
BC(X,R), then v̂−(ω) = αn.

When X is Kähler, it is classical that any nef class α ∈ H1,1
BC(X,R) satisfies

αn ≥ 0. This inequality is no longer obvious on an arbitrary hermitian manifold
(we thank J.-P.Demailly for emphasizing this issue) but, as a consequence of the
above lemma, it remains true when v+(ωX) < +∞.

Proof. Assume first that ω is semi-positive and set ωε := ω + εωX , for ε ∈ (0, 1).
Proposition 3.2 ensures that v−(ω) ≤ v−(ωε), hence v−(ω) ≤ v̂−(ω). On the other
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hand, for any u ∈ PSH(X,ω) ∩ L∞(X) we have
"

X
(ω + ddcu)n =

"

X
(ωε + ddcu− εωX)n

≥
"

X
(ωε + ddcu)n − Cε

≥ v̂−(ω)− Cε,

where C is a constant depending on u, but it is harmless as we will let ε → 0
while keeping u fixed. Doing so we obtain

$
X(ω + ddcu)n ≥ v̂−(ω), and taking

infimum over such u we obtain v−(ω) ≥ v̂−(ω), proving the first statement.

Assume now that ω is closed and {ω} ∈ H1,1
BC(X,R) is nef. We can also assume

that −ωX ≤ ω ≤ ωX . We pick ϕ ∈ PSH(X,ω + εωX) ∩C∞(X) and observe that
PSH(X,ω + εωX) ⊂ PSH(X, 2ωX) for 0 < ε ≤ 1, hence

"

X
(ω + εωX + ddcϕ)n =

"

X
(ω + ddcϕ)n +

n%

j=1

&
n
j

'
εj

"

X
ωj
X ∧ (ω + ddcϕ)n−j .

Writing ω+ ddcϕ = (2ωX + ddcϕ)− (2ωX −ω), expanding (ω+ ddcϕ)n−j accord-

ingly and using 0 ≤ 2ωX − ω ≤ 3ωX , we obtain that
...
$
X ωj

X ∧ (ω + ddcϕ)n−j
... is

bounded from above by a finite sum of terms
$
X ωℓ

X ∧ (ωX + ddcϕ)n−ℓ, each of
which is bounded from above by 3nv+(ωX). Since

$
X(ω + ddcϕ)n = αn, we end

up with

αn − Cεv+(ωX) ≤
"

X
(ω + εωX + ddcϕ)n ≤ αn + Cεv+(ωX),

using that εj ≤ ε for all 1 ≤ j ≤ n. We infer v̂−(ω) = αn. □

4.2. Demailly-Păun conjecture.

4.2.1. Hermitian currents. The following is a natural generalization of [DP04,
Conjecture 0.8]:

Question 4.5. Let X be a compact complex manifold. Let ω be a nef (1, 1)-
form such that v̂−(ω) > 0. Does there exist a ω-psh function ϕ with analytic
singularities such that the current ω + ddcϕ dominates a Hermitian form ?

We provide a partial answer to Question 4.5 following some ideas of Chiose
[Chi13]:

Theorem 4.6. Let ω be a nef (1, 1)-form.

• If v̂−(ω) > 0 and v+(ωX) < +∞ then ω is big.
• Conversely if ω is big and v−(ωX) > 0 then v̂−(ω) > 0.

Proof. We assume without loss of generality that ω ≤ ωX/2.
We first assume that v̂−(ω) > 0, v+(ωX) < +∞, and we prove that ω is

big. An application of Hahn-Banach theorem as in [Lam99, Lemma 3.3] shows
that the existence of a Hermitian current ω + ddcψ ≥ δωX is equivalent to the
inequalities "

X
ω ∧ θn−1 ≥ δ

"

X
ωX ∧ θn−1,
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for all Gauduchon metrics θ. Assume by contradiction that there exists a sequence
of Gauduchon metrics θj such that

"

X
ω ∧ θn−1

j ≤ 1

j

"

X
ωX ∧ θn−1

j .

We can normalize the latter so that
$
X ωX ∧ θn−1

j = 1.

Set ωj = ω+ 1
jωX and note that ωj ≤ ωX for j ≥ 2. Since ω is nef, one can find

ψj ∈ C∞(X,R) such that ωj+ddcψj is a Hermitian form, hence the main result of
[TW10] ensures that there exist constants Cj > 0 and ϕj ∈ PSH(X,ωj)∩ C∞(X)
such that supX ϕj = 0 and

(ωj + ddcϕj)
n = CjωX ∧ θn−1

j .

It follows from Proposition 3.2 that

Cj =

"

X
(ωj + ddcϕj)

n ≥ v−(ωj) ≥ v̂−(ω) > 0,

while by assumption
$
X(ωj + ddcϕj)

n−1 ∧ ωX ≤ M := v+,n−1(ωX) is bounded
from above.

We set αj := ωj + ddcϕj and consider

E := {x ∈ X, ωX ∧ αn−1
j ≥ 2MωX ∧ θn−1

j }.

This set has small ωX ∧ θn−1
j measure since

"

E
ωX ∧ θn−1

j ≤ 1

2M

"

E
ωX ∧ αn−1

j ≤ 1

2
,

thus
$
X\E ωX ∧ θn−1

j ≥ 1
2 , thanks to the normalization

$
X ωX ∧ θn−1

j = 1.

We can compare ωX and αj in X \ E since

ωX ∧ αn−1
j ≤ 2MωX ∧ θn−1

j =
2M

Cj
αn
j ≤ 2M

v̂−(ω)
αn
j .

Thus αj ≥ v̂−(ω)
2nM ωX in X \ E and we infer
"

X\E
αj ∧ θn−1

j ≥ v̂−(ω)

2nM

"

X\E
ωX ∧ θn−1

j ≥ v̂−(ω)

4nM
> 0,

which contradicts"

X
αj ∧ θn−1

j =

"

X
ω ∧ θn−1

j +
1

j

"

X
ωX ∧ θn−1

j +

"

X
ddcϕj ∧ θn−1

j

≤ 2

j

"

X
ωX ∧ θn−1

j =
2

j
→ 0,

where
$
X ddcϕj ∧ θn−1

j = 0 follows from the Gauduchon property of θj .

We next assume that ω is big, v−(ωX) > 0, and we prove that v̂−(ω) > 0
by an argument similar to that of Theorem 3.7. Fix a ω-psh function ψ with
analytic singularities such that ω + ddcψ ≥ δωX for some δ > 0. We can assume
that δ = 1 and supX ψ = 0. We prove that v−(ω + εωX) ≥ v−(ωX) for all
ε > 0. Fix ε > 0, u ∈ PSH(X,ω + εωX) ∩ L∞(X), and set v = PωX (u− ψ). The
open set G = {ψ > −1} is not empty hence it is non-pluripolar. On G we have
u ≤ u− ψ ≤ u+ 1 ≤ supX u+ 1. It follows that v is a bounded ωX -psh function
and (ωX +ddcv)n is supported on the contact set C = {v = u−ψ} ⊂ {ψ > −∞}.
Since v + ψ ≤ u with equality on {ψ > −∞} ∩ C, Lemma 1.2 ensures that

1{ψ>−∞}∩C(ω + εωX + ddc(v + ψ))n ≤ 1{ψ>−∞}∩C(ω + εωX + ddcu)n.
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Using ω + ddcψ ≥ ωX and the fact that (ωX + ddcv)n(ψ = −∞) = 0 since v is
bounded, we thus arrive at

"

X
(ωX + ddcv)n ≤

"

X
(ω + εωX + ddcu)n.

We thus get v−(ω + εωX) ≥ v−(ωX) > 0, for all ε > 0, hence v̂−(ω) > 0. □

This result provides in particular the following answer to Question 4.5:

Corollary 4.7. The answer to Question 4.5 is positive if

• either n = 2 (X is any compact surface);
• or n = 3 and X admits a pluriclosed metric;
• or n is arbitrary and X belongs to the Fujiki class;
• orelse n is arbitrary and X admits a Guan-Li metric.

Let us stress that the 2-dimensional setting is due to Buchdahl [Buch99] and
Lamari [Lam99]. The three dimensional case follows from Proposition 3.3.

4.2.2. Transcendental Grauert-Riemenschneider conjecture. Let L → X be a
semi-positive holomorphic line bundle with c1(L)

n > 0. An influential conjec-
ture of Grauert-Riemenschneider [GR70] asked whether the existence of such a
line bundle implies that X is Moishezon (i.e. bimeromorphically equivalent to a
projective manifold).

This conjecture has been solved positively by Siu in [Siu84] (see also [Dem85]).
Demailly and Păun have proposed a transcendental version of this conjecture:

Conjecture 4.8. [DP04, Conjecture 0.8] Let X be a compact complex manifold

of dimension n. Assume that X posseses a nef class α ∈ H1,1
BC(X,R) such that

αn > 0. Then X belongs to the Fujiki class.

As a direct consequence of Theorem 4.6, Lemma 4.4, and Corollary 3.8, we
obtain the following answer to the transcendental Grauert-Riemenschneider con-
jecture:

Theorem 4.9. Let X be a compact n-dimensional complex manifold. Let α ∈
H1,1

BC(X,R) be a nef class such that αn > 0. The following are equivalent:

• α contains a Kähler current
• v+(ωX) < +∞.

Since a Kähler current with analytic singularities can be desingularized after
finitely many blow-ups producing a Kähler form, we obtain:

Corollary 4.10. Let α ∈ H1,1
BC(X,R) be a nef class such that αn > 0. Then X

belongs to the Fujiki class if and only if v+(ωX) < +∞.

4.3. Transcendental holomorphic Morse inequalities. The following con-
jecture has been proposed by Boucksom-Demailly-Păun-Peternell, as a transcen-
dental counterpart to the holomorphic Morse inequalities for integral classes due
to Demailly:

Conjecture 4.11. [BDPP13, Conjecture 10.1.ii] Let X be a compact n-dimensional

complex manifold. Let α,β ∈ H1,1
BC(X,C) be nef classes such that αn > nαn−1 ·β.

Then α− β contains a Kähler current and Vol(α− β) ≥ αn − nαn−1 · β.
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Note that this contains [DP04, Conjecture 0.8] as a particular case (β = 0).
This conjecture has recently been established by Witt Nyström [WN19] when X
is projective. Building on works of Xiao [Xiao15] and Popovici [Pop16] we propose
the following characterization which answers the qualitative part:

Theorem 4.12. Let α,β ∈ H1,1
BC(X,C) be nef classes such that αn > nαn−1 · β.

The following are equivalent:

• α− β contains a Kähler current;
• v+(ωX) < +∞.

Proof. If α−β contains a Kähler current, then X belongs to the Fujiki class and
we have already observed that v+(ωX) < +∞ (see Corollary 3.8).

We now assume that v+(ωX) < +∞. Let ω and ω′ be smooth closed real (1, 1)-
forms representing α and β respectively. We can assume without los of generality
that ω ≤ ωX

2 and ω′ ≤ ωX
2 . For each ε > 0 we fix smooth functions ϕε ∈

PSH(X,ω + εωX) and ψε ∈ PSH(X,ω′ + εωX) such that ωε := ω + εωX + ddcϕε

and ω′
ε = ω′ + εωX + ddcψε are hermitian forms.

Assume by contradiction that α − β does not contain any Kähler current. It
follows from Hahn-Banach theorem as in [Lam99, Lemma 3.3] that there exist
Gauduchon metrics ηε such that

(4.1)

"

X
(ωε − ω′

ε) ∧ ηn−1
ε ≤ ε

"

X
ω′
ε ∧ ηn−1

ε .

We normalize ηε so that
$
X ω′

ε ∧ ηn−1
ε = 1.

Using [TW10] we can find unique constants cε > 0 and normalized functions
uε ∈ PSH(X,ωε) ∩ C∞(X) such that

(ωε + ddcuε)
n = cεω

′
ε ∧ ηn−1

ε , sup
X

uε = 0.

Our normalization for ηε yields cε =
$
X(ωε+ddcuε)

n. Applying Lemma 4.13 below

with θ1 = ωε + ddcuε, θ2 = cεω
′
ε and θ3 = ηε, and recalling that θn1 = θ2 ∧ θn−1

3

with
$
X θn1 =

$
X θ2 ∧ θn−1

3 = cε, we obtain
&"

X
(ωε + ddcuε) ∧ ηn−1

ε

'&"

X
(ωε + ddcuε)

n−1 ∧ ω′
ε

'
≥ cε

n
.

Now
$
X(ωε + ddcuε) ∧ ηn−1

ε =
$
X ωε ∧ ηn−1

ε because ηε is a Gauduchon metric,

while (4.1) yields
$
X ωε ∧ ηn−1

ε ≤ (1 + ε)
$
X ω′

ε ∧ ηn−1
ε = (1 + ε), hence

(1 + ε)

"

X
(ωε + ddcuε)

n−1 ∧ ω′
ε ≥

1

n

"

X
(ωε + ddcuε)

n.

We finally claim that, as ε → 0,
"

X
(ωε + ddcuε)

n → αn and

"

X
(ωε + ddcuε)

n−1 ∧ ω′
ε → αn−1 · β,

which yields the contradiction nαn−1 · β ≥ αn.

We first explain why
$
X(ωε + ddcuε)

n → αn. Stokes theorem yields

αn =

"

X
(ω + ddc(uε + ϕε))

n =

"

X
(ω + εωX + ddc(uε + ϕε)− εωX)n

=

"

X
(ωε + ddcuε)

n +

n−1%

j=0

&
n
j

'
εn−j(−1)n−j

"

X
(ωε + ddcuε)

j ∧ ωn−j
X .
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Since ω ≤ ωX
2 , the function vε = uε + ϕε is ωX -psh for 0 < ε ≤ 1

2 , hence

0 ≤
"

X
(ωε + ddcuε)

j ∧ ωn−j
X ≤

"

X
(ωX + ddcvε)

j ∧ ωn−j
X ≤ 2nv+(ωX),

as follows from Proposition 3.3. We infer

....α
n −

"

X
(ωε + ddcuε)

n

.... ≤
n−1%

j=0

&
n
j

'
εn−j2nv+(ωX) ≤ 4nε v+(ωX).

The conclusion thus follows by letting ε → 0.
We similarly can check that

....α
n−1 · β −

"

X
(ωε + ddcuε)

n−1 ∧ ω′
ε

.... ≤ 2 · 6nε v+(ωX).

Using Stokes theorem again we indeed obtain that

αn−1 · β =

"

X
(ω + ddcϕε + ddcuε)

n−1 ∧ (ω′ + ddcψε)

=

"

X
(ωε + ddcuε − εωX)n−1 ∧ (ω′

ε − εωX)

=

"

X
(ωε + ddcuε)

n−1 ∧ ω′
ε +O(ε).

Each term
$
X(ωX + ddcvε)

ℓ ∧ (ωX + ddcψε)
p ∧ωq

X , with ℓ+ p+ q = n, is bounded

from above by 3nv+(ωX), as one can check by observing that the function vε+ψε

3
is ωX -psh with

"

X
(ωX + ddcvε)

ℓ ∧ (ωX + ddcψε)
p ∧ ωq

X ≤ 3n
"

X

&
ωX + ddc

vε + ψε

3

'n

.

□

We have used in the previous proof the following observation of Popovici:

Lemma 4.13. Let θ1, θ2, θ3 be hermitian forms on X. Then

&"

X
θ1 ∧ θn−1

3

'&"

X
θn−1
1 ∧ θ2

'
≥ 1

n

/

0
"

X

1
θ2 ∧ θn−1

3

θn1
θn1

2

3
2

.

In particular if θn1 = θ2 ∧ θn−1
3 , then

&"

X
θ1 ∧ θn−1

3

'&"

X
θn−1
1 ∧ θ2

'
≥ 1

n

&"

X
θn1

'2

.

We provide the proof as a courtesy to the reader.

Proof. It follows from Cauchy-Schwarz inequality that

&"

X
θ1 ∧ θn−1

3

'&"

X
θn−1
1 ∧ θ2

'
≥

/

0
"

X

1
θ1 ∧ θn−1

3

θn1

θn−1
1 ∧ θ2

θn1
θn1

2

3
2

.

The elementary pointwise estimate

Trθ3(θ1)Trθ1(θ2) ≥ Trθ3(θ2).
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is [Pop16, Lemma 3.1]. Multiplying by
θn3
θn1

it can be reformulated as

(4.2)
θ1 ∧ θn−1

3

θn1
· θ2 ∧ θn−1

1

θn1
≥ 1

n

θ2 ∧ θn−1
3

θn1
.

The first inequality follows. Moreover when θn1 = θ2 ∧ θn−1
3 , we infer

"

X

1
θ2 ∧ θn−1

3

θn1
θn1 =

"

X
θn1 .

□

Motivated by possible extensions of the conjectures of Demailly-Păun and
Boucksom-Demailly-Păun-Peternell, we introduce the following:

Definition 4.14. Given ω1, . . . ,ωn hermitian forms we consider

v−(ω1, . . . ,ωn) := inf

!"

X
(ω1 + ddcϕ1) ∧ · · · ∧ (ωn + ddcϕn), ϕj ∈ P(ωj)

#
,

and

v+(ω1, . . . ,ωn) := sup

!"

X
(ω1 + ddcϕ1) ∧ · · · ∧ (ωn + ddcϕn), ϕj ∈ P(ωj)

#
,

where P(ωj) := PSH(X,ωj) ∩ L∞(X). If the ωj ’s are merely nef we set

v̂−(ω1, . . . ,ωn) := inf
ε>0

v−(ω1 + εωX , . . . ,ωn + εωX).

and

v̂+(ω1, . . . ,ωn) := inf
ε>0

v+(ω1 + εωX , . . . ,ωn + εωX).

A straightforward generalization of Theorem 4.12 along the lines of Theorem
4.6 is the following:

Theorem 4.15. Let X be a compact n-dimensional complex manifold such that
v+(ωX) < +∞. Let ω,ω′ be nef (1, 1)-forms. If v̂−(ω) > nv̂+(ω, . . . ,ω,ω

′) then
the form ω − ω′ is big.

We leave the technical details to the reader.
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[DP04] J.P. Demailly, M. Păun, Numerical characterization of the Kähler cone of a compact
Kähler manifold. Ann. of Math. (2) 159 (2004), no. 3, 1247–1274.

[Din16] S. Dinew, Pluripotential theory on compact Hermitian manifolds, Ann. Fac. Sci.
Toulouse Math. (6) 25 (2016), no. 1, 91–139.

[DK12] S. Dinew, S. Ko!lodziej, Pluripotential estimates on compact Hermitian manifolds. Ad-
vances in geometric analysis, 69-86, Adv. Lect. Math. (ALM), 21, Int. Press, 2012.

[FPS04] A. Fino, M. Parton, S. Salamon, Families of strong KT structures in six dimensions,
Comment. Math. Helv. 79 (2004), no. 2, 317–340.

[FT09] A. Fino and A. Tomassini, Blow-ups and resolutions of strong Kähler with torsion met-
rics, Adv. Math. 221 (2009), no. 3, 914–935.
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[STW17] G. Székelyhidi, V. Tosatti, B. Weinkove, Gauduchon metrics with prescribed volume

form, Acta Math. 219 (2017), no. 1, 181–211.



QUASI-PLURISUBHARMONIC ENVELOPES 2 25

[TW10] V. Tosatti, B. Weinkove, The complex Monge-Ampère equation on compact Hermitian
manifolds. J. Amer. Math. Soc. 23 (2010), no. 4, 1187–1195.

[Vu19] D.-V. Vu, Locally pluripolar sets are pluripolar, Int. J. Math. 30 (2019), no. 13, 1950029.
[WN19] D.Witt Nyström, Duality between the pseudoeffective and the movable cone on a pro-

jective manifold. Appendix by S.Boucksom. J. Amer. Math. Soc. 32 (2019), no. 3, 675–689.
[Xiao15] J.Xiao, Weak transcendental holomorphic Morse inequalities on compact Kähler man-

ifolds. Ann. Inst. Fourier (Grenoble) 65 (2015), no. 3, 1367–1379.
[Yau78] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-

Ampère equation. I. Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.

Institut de Mathématiques de Toulouse, Université de Toulouse, 118 route de
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