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QUASI-PLURISUBHARMONIC ENVELOPES 1: UNIFORM

ESTIMATES ON KÄHLER MANIFOLDS

VINCENT GUEDJ & CHINH H. LU

Abstract. We develop a new approach to L∞-a priori estimates for degen-
erate complex Monge-Ampère equations on complex manifolds. It only relies
on compactness and envelopes properties of quasi-plurisubharmonic functions.
Our method allows one to obtain new and efficient proofs of several funda-
mental results in Kähler geometry as we explain in this article.

In a sequel we shall explain how this approach also applies to the hermitian
setting producing new relative a priori bounds, as well as existence results.
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Introduction

Complex Monge-Ampère equations have been one of the most powerful tools
in Kähler geometry since Yau’s solution to the Calabi conjecture [Yau78]. A
notable application is the construction of Kähler-Einstein metrics: given (X,ω) a
compact Kähler manifold of complex dimension n and µ an appropriate volume
form normalized by µ(X) =

!
X ωn, one seeks for a solution ϕ : X → R to

(ω + ddcϕ)n = e−λϕµ,

where d = ∂+∂, dc = i(∂−∂) and λ ∈ R is a constant whose sign depends on that
of c1(X). The metric ωϕ := ω + ddcϕ is then Kähler-Einstein as Ric(ωϕ) = λωϕ.
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When λ ≤ 0, Yau [Yau78] (see also [Aub78] when λ < 0) showed the existence
of a unique (normalized) solution ϕ by establishing a priori estimates along a
continuity method, the most delicate one being the uniform a priori estimate
that he established by using Moser iteration process.

In recent years degenerate complex Monge-Ampère equations have been in-
tensively studied by many authors. In relation to the Minimal Model Program,
they led to the construction of singular Kähler-Einstein metrics (see [EGZ09,
GZ, BBEGZ] and the references therein). The main analytical input came here
from pluripotential theory which allowed Kolodziej [Kol98] to establish uniform
a priori estimates when µ = fdVX has density in Lp for some p > 1.

Using different methods (Gromov-Hausdorff techniques), the case λ > 0 (Yau-
Tian-Donaldson conjecture) has been settled by Chen-Donaldson-Sun [CDS15,
Don18]. Again establishing a uniform a priori estimate in this context turned
out to be the most delicate issue, a key step being obtained by Donaldson-Sun
[DS14] through a refinement of Hörmander L2-techniques. An alternative pluripo-
tential variational approach has been developed by Berman-Boucksom-Jonsson
in [BBJ21], based on finite energy classes studied in [GZ07] and variational tools
obtained in [BBGZ13]. This approach has been pushed one step further by Li-
Tian-Wang who have settled the case of singular Fano varieties [LTW20].

The main goal of this article is to provide yet another approach for establishing
such uniform a priori estimates. While the pluripotential approach consists in
measuring the Monge-Ampère capacity of sublevel sets (ϕ < −t), we directly
measure the volume of the latter, avoiding delicate integration by parts. Our
approach thus extends with minor modifications to the hermitian (non Kähler)
setting, providing several new results that will be discussed in a companion paper
[GL21]: the hermitian setting introduces several technicalities and new challenges
that might affect the clarity of exposition and could scare the Kähler reader away.

In the whole article we let thus X denote a compact Kähler manifold of
complex dimension n. We fix ω a closed semi-positive (1, 1)-form which is big, i.e.

V :=

"

X
ωn > 0.

We let PSH(X,ω) denote the set of ω-plurisubharmonic functions: these are func-
tions u : X → R ∪ {−∞} which are locally given as the sum of a smooth and a
plurisubharmonic function, and such that ω + ddcu ≥ 0 is a positive current.

Our first main result is a brand new proof of the following a priori estimate :

Theorem A. Let ω be semi-positive and big. Let µ be a probability measure such
that PSH(X,ω) ⊂ Lm(µ) for some m > n. Any bounded solution ϕ ∈ PSH(X,ω)
to V −1(ω + ddcϕ)n = µ satisfies a uniform a priori bound

OscX(ϕ) ≤ Tµ

for some uniform constant Tµ = T (Am(µ)) which depends on an upper bound on

Am(µ) := sup

#"

X
(−ψ)mdµ, ψ ∈ PSH(X,ω) with sup

X
ψ = 0

$
.

Hölder inequality shows that this result covers the case when µ = fdVX is
absolutely continuous with respect to Lebesgue measure, with density f belonging
to Lp, p > 1, or to an appropriate Orlicz class, as we explain in Section 2.2.

A crucial particular case of this estimate is due to Kolodziej [Kol98]. Other
important special cases have been previously obtained in [EGZ09, EGZ08, DP10].



QUASI-PLURISUBHARMONIC ENVELOPES 1 3

Our new method covers all these settings at once, it also permits to recover the
main estimates of [BEGZ10] (big cohomology classes) and [DnGG20] (collapsing
families) as we explain in Sections 3.1 and 3.2. A slight refinement of our technique
allows one to establish an important stability estimate (see Theorem 2.4).

There are several geometric situations when one can not expect the Monge-
Ampère potential ϕ to be globally bounded. We next consider the equation

V −1(ω + ddcϕ)n = fdVX ,

where the density f ∈ L1(X) does not belong to any good Orlicz class. Since the
measure µ = fdVX is non pluripolar, there exists a unique finite energy solution
ϕ (see [GZ], [Din09]). It is crucial to understand its locally bounded locus.

As ω is a semi-positive and big (1, 1) form, we can find ρ an ω-psh function
with analytic singularities such that ω + ddcρ ≥ δωX is a Kähler current (see
[DP04, Theorem 0.5]). For ψ quasi-psh and c > 0, we set

Ec(ψ) := {x ∈ X, ν(ψ, x) ≥ c},
where ν(ψ, x) denotes the Lelong number of ψ at x. A celebrated theorem of Siu
ensures that for any c > 0, the set Ec(ψ) is a closed analytic subset of X.

Our second main result provides the following a priori estimate, which extends
a result of DiNezza-Lu [DnL17]:

Theorem B. Assume f = ge−ψ, where 0 ≤ g ∈ Lp(dVX), p > 1, and ψ is a
quasi-psh function. Then there exists a unique ϕ ∈ E(X,ω) such that

• α(ψ + ρ)− β ≤ ϕ ≤ 0 with supX ϕ = 0;
• ϕ is locally bounded in the open set Ω := X \ {ρ = −∞} ∪ E 1

q
(ψ);

• V −1(ω + ddcϕ)n = fdVX in Ω,

where α,β > 0 depend on an upper bound for ||g||Lp and 1
p + 1

q = 1.

Again the proof we provide is direct, and can be extended to the hermitian
setting (see [GL21]). We finally show in Section 4 how the same arguments can
be applied to efficiently solve the Dirichlet problem in pseudoconvex domains.

Comparison with other works. Yau’s proof of his famous L∞-a priori estimate
[Yau78] goes through a Moser iteration process. Although Yau could deal with
some singularities, the method does not apply when the right hand side is too
degenerate (see however [Cao85, Tos10] for further applications of Yau’s method).

An important generalization of Yau’s estimate has been provided by Kolodziej
[Kol98] using pluripotential techniques. These have been further generalized in
[EGZ09, EGZ08, DP10, BEGZ10] in order to deal with less positive or collapsing
families of cohomology classes on Kähler manifolds. As this approach relies on
delicate integration by parts, it is difficult to extend to the hermitian setting.

Blocki has provided a different approach in [Blo05] based on the Alexandroff-
Bakelman-Pucci maximum principle and a local stability estimate due to Cheng-
Yau (L2-case) and Kolodziej (Lp-case). This has been pushed further by Szekele-
hydi in [Szek18]. It requires the reference form ω to be strictly positive.

A PDE proof of the L∞-estimate has been very recently provided by Guo-
Phong-Tong [GPT21] using an auxiliary Monge-Ampère equation, inspired by the
recent breakthrough by Chen-Cheng on constant scalar curvature metrics [CC21].

Our approach consists in showing that the sublevel set (ϕ < −t) becomes
the empty set in finite time by directly measuring its µ-size. It only uses weak
compactness of normalized ω-plurisubharmonic functions and basic properties of
quasi-psh envelopes, allowing us to deal with semi-positive forms.
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1. Quasi-plurisubharmonic envelopes

In the whole article we let X denote a compact Kähler manifold of complex
dimension n ≥ 1. We fix ω a smooth closed real (1, 1)-form on X.

1.1. Monge-Ampère operators.

1.1.1. Quasi-plurisubharmonic functions. A function is quasi-plurisubharmonic if
it is locally given as the sum of a smooth and a psh function. Quasi-psh functions
ϕ : X → R ∪ {−∞} satisfying ωϕ := ω + ddcϕ ≥ 0 in the weak sense of currents
are called ω-plurisubharmonic (ω-psh for short).

Definition 1.1. We let PSH(X,ω) denote the set of all ω-plurisubharmonic
functions which are not identically −∞.

Constant functions are ω-psh functions if (and only if) ω is semi-positive. A
C2-smooth function u has bounded Hessian, hence εu is ω-psh if 0 < ε is small
enough and ω is positive. It is useful to consider as well the case when ω is not
necessarily positive, in order to study big cohomology classes (see section 3.1).

Definition 1.2. A semi-positive closed (1, 1)-form ω is big if Vω :=
!
X ωn > 0.

The set PSH(X,ω) is a closed subset of L1(X), for the L1-topology. Sub-
sets of ω-psh functions enjoy strong compactness and integrability properties, we
mention notably the following: for any fixed r ≥ 1,

• PSH(X,ω) ⊂ Lr(X); the induced Lr-topologies are equivalent;
• PSHA(X,ω) := {u ∈ PSH(X,ω), −A ≤ supX u ≤ 0} is compact in Lr.

We refer the reader to [Dem, GZ] for further basic properties of ω-psh functions.

1.1.2. Monge-Ampère measure. The complex Monge-Ampère measure

(ω + ddcu)n = ωn
u

is well-defined for any ω-psh function u which is bounded, as follows from Bedford-
Taylor theory (see [BT82] for the local theory, and [GZ] for the compact Kähler
context). It also makes sense in the ample locus of a big cohomology class
[BEGZ10], as we shall briefly discuss in section 3.1.

The mixed Monge-Ampère measures (ω+ddcu)j ∧ (ω+ddcv)n−j are also well
defined for any 0 ≤ j ≤ n, and any bounded ω-psh functions u, v. We note for
later use the following classical inequality:

Lemma 1.3. Let ϕ,ψ be bounded ω-psh functions such that ϕ ≤ ψ, then

1{ψ=ϕ}(ω + ddcϕ)j ∧ (ω + ddcψ)n−j ≤ 1{ψ=ϕ}(ω + ddcψ)n,

for all 1 ≤ j ≤ n.

Proof. To simplify notations we just treat the case j = n. It follows from Bedford-
Taylor theory [BT82] that for any bounded ω-psh functions ϕ,ψ,

1{ψ≤ϕ}ω
n
ϕ + 1{ψ>ϕ}ω

n
ψ ≤ (ω + ddcmax(ϕ,ψ))n

When ϕ ≤ ψ we infer 1{ψ=ϕ}ω
n
ϕ ≤ 1{ψ=ϕ}ω

n
ψ. □

We shall also need the following (see [GZ, Proposition 10.11]):
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Proposition 1.4. [Domination principle] If u, v are bounded ω-psh functions
such that u ≥ v a.e. with respect to ωn

u . Then u ≥ v.

1.2. Envelopes. Upper envelopes of (pluri)subharmonic functions are classical
objects in Potential Theory. They were considered by Bedford and Taylor to
solve the Dirichlet problem for the complex Monge-Ampère equation in strictly
pseudo-convex domains [BT76]. We consider here envelopes of ω-psh functions.

1.2.1. Basic properties.

Definition 1.5. Given a Lebesgue measurable function h : X → R, we define
the ω-psh envelope of h by

Pω(h) := (sup{u ∈ PSH(X,ω);u ≤ h in X})∗ ,
where the star means that we take the upper semi-continuous regularization.

The following is a combination of [GLZ19, Propositions 2.2 and 2.5, Lemma 2.3]:

Proposition 1.6. If h is bounded from below and quasi-continuous, then

• Pω(h) is a bounded ω-plurisubharmonic function;
• Pω(h) ≤ h in X \ P , where P is pluripolar;
• (ω + ddcPω(h))

n is concentrated on the contact {Pω(h) = h}.

Recall that a function h is quasi-continuous if for any ε > 0, there exists
an open set G of capacity smaller than ε such that h is continuous in X \ G.
Quasi-psh functions are quasi-continuous (see [BT82]), as well as differences of
the latter: we shall use this fact during the proof of Theorem 3.3.

When h is C1,1-smooth, so is Pω(h) [Ber19, CZ19] and one can further has

(1.1) (ω + ddcPω(h))
n = 1{Pω(h)=h}(ω + ddch)n.

1.2.2. A key lemma. The following is a key technical tool to our new approach:

Lemma 1.7. Fix χ : R− → R− a concave increasing function such that χ′(0) ≥ 1.
Let ϕ,φ be bounded ω-psh functions with ϕ ≤ φ. If ψ = φ+ χ ◦ (ϕ− φ) then

(ω + ddcPω(ψ))
n ≤ 1{Pω(ψ)=ψ}(χ

′ ◦ (ϕ− φ))n(ω + ddcϕ)n.

Proof. Using that χ′′ ≤ 0 and χ′ ≥ 1, we observe that

ω + ddcψ = ωφ + χ′ ◦ (ϕ− φ)(ωϕ − ωφ) + χ′′ ◦ (ϕ− φ)d(ϕ− φ) ∧ dc(ϕ− φ)

≤ χ′ ◦ (ϕ− φ)ωϕ + [1− χ′ ◦ (ϕ− φ)]ωφ ≤ χ′ ◦ (ϕ− φ)ωϕ.

When ϕ,φ and χ are C1,1-smooth, we can invoke (1.1) to conclude that

(ω + ddcPω(ψ))
n = 1{Pω(ψ)=ψ}ω

n
ψ ≤ 1{Pω(ψ)=ψ}(χ

′ ◦ (ϕ− φ))nωn
ϕ.

The last inequality follows from ω + ddcψ ≤ χ′ ◦ (ϕ − φ)ωϕ and the fact that ψ
is ω-psh on {Pω(ψ) = ψ}, where these inequalities can be interpreted pointwise.

When these functions are less regular we take a different route. We set τ =
χ−1 : R− → R−. This is a convex increasing function such that τ ′ = (χ′◦τ)−1 ≤ 1.
Set ρ = Pω(ψ)− φ. The function v = φ+ τ ◦ (Pω(ψ)− φ) is ω-psh with

ω + ddcv = ωφ + τ ′′ ◦ ρ dρ ∧ dcρ+ τ ′ ◦ ρ ddc(Pω(ψ)− φ)

≥ [1− τ ′ ◦ ρ]ωφ + τ ′ ◦ ρ (ω + ddcPω(ψ))

≥ τ ′ ◦ ρ (ω + ddcPω(ψ)).

Thus ωn
Pω(ψ)

≤ 1{Pω(ψ)=ψ}(τ
′ ◦ (Pω(ψ)− φ))−nωn

v . On {Pω(ψ) = ψ} we get

τ ′ ◦ (Pω(ψ)− φ) = τ ′ ◦ (ψ − φ) = [χ′ ◦ (ϕ− φ)]−1.
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Now v ≤ φ+τ ◦ (ψ−φ) = ϕ on X, with equality on the contact set {Pω(ψ) = ψ}.
It follows therefore from Lemma 1.3 that ωn

v ≤ ωn
ϕ on {Pω(ψ) = ψ}. □

2. Global L∞ bounds

In this section we prove Theorem A, as well as a stability estimate.

2.1. Measures which integrate quasi-plurisubharmonic functions.

Theorem 2.1. Let ω be semi-positive and big. Let µ be a probability measure such
that PSH(X,ω) ⊂ Lm(µ) for some m > n. Any solution ϕ ∈ PSH(X,ω)∩L∞(X)
to V −1(ω + ddcϕ)n = µ satisfies

OscX(ϕ) ≤ Tµ

for some uniform constant Tµ = T (Am(µ)) which depends on an upper bound on

Am(µ) := sup

%&"

X
(−ψ)mdµ

' 1
m

, ψ ∈ PSH(X,ω) with sup
X

ψ = 0

(
.

Let us stress that this result is not new: it can be derived from the celebrated a
priori estimate of Kolodziej [Kol98], together with its extensions [EGZ09, EGZ08,
DP10]. We provide here an elementary proof that does not use the theory of
Monge-Ampère capacities, and merely relies on the compactness properties of
sup-normalized ω-psh functions and Lemma 1.7.

Proof. Shifting by an additive constant, we normalize ϕ by supX ϕ = 0. Set

Tmax := sup{t > 0 : µ(ϕ < −t) > 0}.

Our goal is to establish a precise bound on Tmax. By definition, −Tmax ≤ ϕ almost
everywhere with respect to µ, hence everywhere by the domination principle
(Proposition 1.4), providing the desired a priori bound OscX(ϕ) ≤ Tmax.

We let χ : R− → R− denote a concave increasing function such that χ(0) = 0
and χ′(0) = 1. We set ψ = χ ◦ ϕ, u = Pω(ψ) and observe that

ω + ddcψ = χ′ ◦ ϕωϕ + [1− χ′ ◦ ϕ]ω + χ′′ ◦ ϕ dϕ ∧ dcϕ ≤ χ′ ◦ ϕωϕ.

It follows from Lemma 1.7 that

MA(u) :=
1

V
(ω + ddcu)n ≤ 1{u=ψ}(χ

′ ◦ ϕ)nµ.

Controlling the energy of u. We fix ε > 0 so that n < n+ 3ε = m. The concavity
of χ and the normalization χ(0) = 0 yields |χ(t)| ≤ |t|χ′(t). Since u = χ ◦ ϕ on
the contact set {Pω(ψ) = ψ}, Hölder inequality yields

"

X
(−u)εMA(u) ≤

"

X
(−χ ◦ ϕ)ε(χ′ ◦ ϕ)ndµ ≤

"

X
(−ϕ)ε(χ′ ◦ ϕ)n+εdµ

≤
&"

X
(−ϕ)n+2εdµ

' ε
n+2ε

&"

X
(χ′ ◦ ϕ)n+2εdµ

' n+ε
n+2ε

= Am(µ)ε
&"

X
(χ′ ◦ ϕ)n+2εdµ

' n+ε
n+2ε

using that ϕ belongs to the set of ω-psh functions v normalized by supX v = 0
which is compact in Ln+2ε(µ), and observing that An+2ε(µ) ≤ Am(µ).
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Controlling the norms ||u||Lm . We are going to choose below the weight χ in such
a way that

!
X(χ′ ◦ ϕ)n+2εdµ = B ≤ 2 is a finite constant under control. This

provides a uniform lower bound on supX u as we now explain: indeed

0 ≤ (− sup
X

u)ε = (− sup
X

u)ε
"

X
MA(u) ≤

"

X
(−u)εMA(u) ≤ 2Am(µ)ε

yields −2
1
εAm(µ) ≤ supX u ≤ 0. We infer that u belongs to a compact set of

ω-psh functions, hence its norm ||u||Lm(µ) is under control with

||u||Lm(µ) ≤ Am(µ) + 2
1
εAm(µ) ≤ [1 + 2

1
ε ]Am(µ).

Since u ≤ χ ◦ ϕ ≤ 0 we infer ||χ ◦ ϕ||Lm ≤ ||u||Lm . Chebyshev inequality thus
yields

(2.1) µ(ϕ < −t) ≤ Ã

|χ|m(−t)
, where Ã = [1 + 2

1
ε ]Am(µ).

Choice of χ. Lebesgue’s formula ensures that if g : R+ → R+ is an increasing
function such that g(0) = 1, then

"

X
g ◦ (−ϕ)dµ = µ(X) +

" Tmax

0
g′(t)µ(ϕ < −t)dt.

Fix 0 < T0 < Tmax. Setting g(t) = [χ′(−t)]n+2ε we define χ by imposing χ(0) = 0,
χ′(0) = 1, and

g′(t) =

)
**+

**,

1

(1 + t)2µ(ϕ < −t)
, if t ≤ T0

1
(1+t)2

if t > T0

.

This choice guarantees that χ : R− → R− is concave increasing with χ′ ≥ 1, and
"

X
(χ′ ◦ ϕ)n+2εdµ ≤ µ(X) +

" +∞

0

dt

(1 + t)2
= 2.

Conclusion. We set h(t) = −χ(−t) and work with the positive counterpart of χ.

Note that h(0) = 0 and h′(t) = [g(t)]
1

n+2ε is positive increasing, hence h is convex.

Observe also that g(t) ≥ g(0) = 1 hence h′(t) = [g(t)]
1

n+2ε ≥ 1 yields

(2.2) h(1) =

" 1

0
h′(s)ds ≥ 1.

Together with (2.1) our choice of χ yields, for all t ∈ [0, T0],

1

(1 + t)2g′(t)
= µ(ϕ < −t) ≤ Ã

hm(t)
.

For t ∈ [0, T0], this reads

hm(t) ≤ Ã(1 + t)2g′(t) = (n+ 2ε)Ã(1 + t)2h′′(t)(h′)n+2ε−1(t).

Multiplying by h′, integrating between 0 and t, we infer that for all t ∈ [0, T0],

hm+1(t)

m+ 1
≤ (n+ 2ε)Ã

" t

0
(1 + s)2h′′(s)(h′)n+2ε(s)

≤ (n+ 2ε)Ã(t+ 1)2

n+ 2ε+ 1

-
(h′)n+2ε+1(t)− 1

.

≤ Ã(1 + t)2(h′)n+2ε+1(t).
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Recall that m = n+ 3ε so that α := m+ 1 > β := n+ 2ε+ 1 > 2. The previous
inequality then reads

(1 + t)
− 2

β ≤ Ch′(t)h(t)−
α
β ,

for some uniform constant C depending on n,m, Ã. Since α > β > 2 and h(1) ≥ 1,
integrating the above inequality between 1 and T0 we obtain T0 ≤ C ′, for some
uniform constant C ′ depending on C,α,β. Since T0 was chosen arbitrarily in
(0, Tmax) the result follows. □

2.2. Absolutely continuous measures. Assume µ = fdVX is absolutely con-
tinuous with respect to a volume form dVX , with density 0 ≤ f ∈ Lp(dVX) for
some p > 1. Since PSH(X,ω) ⊂ Lr(dVX) for any 1 ≤ r < +∞, we obtain

"

X
|u|mdµ ≤ ||f ||Lp(dVX) ·

&"

X
|u|qmdVX

'1/q

,

for all u ∈ PSH(X,ω), where 1/p + 1/q = 1, so that PSH(X,ω) ⊂ Lm(dµ) for
all m ≥ 1. Thus Theorem 2.1 applies to this type of measures, providing a new
proof of the celebrated a priori estimate of Kolodziej [Kol98] (see also [EGZ09]).

As in [Kol98] our technique also covers the case of more general densities as we
briefly indicate. Let w : R+ → R+ be a convex increasing weight. A measurable
function f belongs to the Orlicz class Lw(dVX) if there exists α > 0 such that

"

X
w(α|f |)dVX < +∞.

The Luxembourg norm of f is defined as

||f ||w := inf{r > 0,

"

X
w(|f |/r)dVX ≤ 1};

it turns Lw(dVX) into a Banach space.
If w∗ denotes the conjugate convex weight of w (its Legendre transform),

Hölder-Young inequality ensures that for all measurable functions f, g,
"

X
|fg|dVX ≤ 2||f ||w||g||w∗ .

We refer the reader to [RR] for more information on Orlicz classes.

Theorem 2.1 thus allows to reprove [Kol98, Theorem 2.5.2]:

Corollary 2.2. Let µ = fdVX be a probability measure. Let w : R+ → R+ be a
convex increasing weight that grows at infinity at least like t(log t)m with m > n.
If f belongs to the Orlicz class Lw then any solution ϕ ∈ PSH(X,ω)∩L∞(X) to
V −1(ω + ddcϕ)n = µ satisfies

OscX(ϕ) ≤ Tµ

for some uniform constant Tµ ∈ R+.

Proof. While this was not required for the case of Lp densities, we need here to
invoke Skoda’s uniform integrability result (see [GZ, Theorem 8.11]): there exists
α > 0 and C = C(α,M) > 0 such that

sup

#"

X
e2α|u|dVX , u ∈ PSH(X,ω) and −M ≤ sup

X
u ≤ 0

$
≤ C.

The reader will check that, as s → +∞, the conjugate weight w∗(s) grows like

w∗(s) ∼ s1−
1
m exp(s

1
m ) ≤ exp(2s

1
m ).
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It follows therefore from Young inequality that any ω-psh function u satisfies

αm

"

X
|u|mdµ ≤

"

X
w ◦ fdVX +

"

X
exp(2α|u|)dVX < +∞.

Thus PSH(X,ω) ⊂ Lm(µ) and the conclusion follows from Theorem 2.1. □

One can slightly improve the assumption on the density as in [Kol98, Theorem
2.5.2], we leave the technical details to the interested reader.

Remark 2.3. It follows from the Chern-Levine-Nirenberg inequality that if µ =
(ω + ddcϕ)n is the Monge-Ampère measure of a bounded ω-psh function, then
PSH(X,ω) ⊂ L1(µ). If n = 1 this condition is equivalent to µ having bounded
potential (see [DnGL20, Lemma 3.2]). Note however that when n ≥ 2,

• the condition PSH(X,ω) ⊂ Ln(µ), µ = (ω + ddcϕ)n, is not sufficient to
guarantee that the ω-psh function ϕ is bounded ;

• one cannot improve the C-L-N inequality: there are examples of Monge-
Ampère measures with bounded potential and PSH(X,ω) ∕⊂ L1+ε(µ).

2.3. Stability estimate. We now establish the following stability estimate, which
can be seen as a refinement of [GZ12, Proposition 5.2].

Theorem 2.4. Let ω, µ be as in Theorem 2.1. Let ϕ ∈ PSH(X,ω) ∩ L∞(X) be
such that supX ϕ = 0 and V −1(ω + ddcϕ)n = µ. Then

sup
X

(φ− ϕ)+ ≤ T

&"

X
(φ− ϕ)+dµ

'τ

,

for any φ ∈ PSH(X,ω) ∩ L∞(X), where τ = τ(n,m) > 0 and

T = T (µ, ‖φ‖L∞)

is a uniform constant which depends on an upper bound on ||φ||L∞ and

Am(µ) := sup

%&"

X
(−ψ)mdµ

' 1
m

, ψ ∈ PSH(X,ω) with sup
X

ψ = 0

(
.

Proof. Replacing φ by max(ϕ,φ), we can assume that ϕ ≤ φ. Define

Tmax := sup{t > 0 : µ(ϕ < φ− t) > 0}.

It follows from Theorem 2.1 that Tmax is uniformly controlled by µ and ||φ||L∞ .
We let χ : R− → R− denote a concave increasing function such that χ(0) = 0

and χ′(0) = 1. We set ψ = φ+ χ ◦ (ϕ− φ), u = P (ψ) and observe that

ω + ddcψ = ωφ + χ′ ◦ (ϕ− φ)(ωϕ − ωφ) + χ′′ ◦ (ϕ− φ)d(ϕ− φ) ∧ dc(ϕ− φ)

≤ χ′ ◦ (ϕ− φ)ωϕ.

It follows from Lemma 1.7 that

MA(u) :=
Vω

(ω + ddcu)n
≤ 1{u=ψ}(χ

′ ◦ (ϕ− φ))nµ.

Controlling the energy of u. We fix 0 < a < b < c < 2c < ε so small that

q :=
(ε− a)(n+ b)

b− a
< m = n+ ε.
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The concavity of χ and the normalization χ(0) = 0 yields |χ(t)| ≤ |t|χ′(t). Since
u = φ + χ ◦ (ϕ − φ) on the support of (ω + ddcu)n and PSH(X,ω) ⊂ Ln+2c(µ),
Hölder inequality yields

0 ≤
"

X
(−u+ φ)cMA(u) ≤

"

X
(−χ ◦ (ϕ− φ))c(χ′ ◦ (ϕ− φ))ndµ

≤
"

X
(−ϕ+ φ)c(χ′ ◦ (ϕ− φ))n+cdµ

≤
&"

X
(−ϕ+ φ)n+2cdµ

' c
n+2c

&"

X
(χ′ ◦ (ϕ− φ))n+2cdµ

' n+c
n+2c

≤ Am(µ)c
&"

X
(χ′ ◦ (ϕ− φ))n+2cdµ

' n+c
n+2c

.

Controlling the norms ||u||Lm . We choose χ below s.t.
!
X(χ′ ◦(ϕ−φ))n+2cdµ ≤ B

is under control. This provides a uniform lower bound on supX u. Indeed our
normalizations yield χ(t) ≤ t hence u ≤ φ+ χ(ϕ− φ) ≤ ϕ ≤ 0, while

0 ≤ (− sup
X

(u− φ))c ≤
"

X
(−u+ φ)cMA(u) ≤ Am(µ)cB

n+c
n+2c

yields a lower bound on supX(u − φ). Now u = u − φ + φ ≥ u − φ + infX φ, so

supX u ≥ supX(u− φ) + infX φ ≥ −Am(µ)B
n+c

c(n+2c) + infX φ.
Thus u belongs to a compact set of ω-psh functions: its norm ||u||Lq(µ) is under

control for any q ≤ m. Since u− φ ≤ χ ◦ (ϕ− φ) ≤ 0, Hölder inequality yields
"

X
|χ ◦ (ϕ− φ)|mdµ ≤

"

X
|χ ◦ (ϕ− φ)|n+a(φ− u)ε−adµ

≤
&"

X
|χ ◦ (ϕ− φ)|n+bdµ

'n+a
n+b

&"

X
(φ− u)qdµ

' b−a
n+b

≤ C ′
µ

&"

X
|(φ− ϕ)χ′ ◦ (ϕ− φ)|n+bdµ

'n+a
n+b

≤ C ′
µ

&"

X
(φ− ϕ)

(n+c)(n+b)
c−b dµ

' (c−b)(n+a)
(n+c)(n+b)

&"

X
|χ′ ◦ (ϕ− φ)|n+cdµ

'n+a
n+c

≤ C1B
n+a
n+c

&"

X
(φ− ϕ)dµ

'γ

=: Ã,(2.3)

where γ =
(c− b)(n+ a)

(n+ c)(n+ b)
, and C1 depends on Cµ, ||ϕ||L∞ and ||φ||L∞ .

It follows therefore from Chebyshev inequality that

(2.4) µ(ϕ < φ− t) ≤ Ã

|χ|m(−t)
.

Choice of χ. Fix T0 ∈ (0, Tmax). We set g(t) = [χ′(−t)]n+2c and define χ by
imposing χ(0) = 0, χ′(0) = 1, and

g′(t) =

)
**+

**,

1

µ(ϕ < φ− t)
, if t ≤ T0

1 if t > T0

.
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This choice guarantees that
"

X
(χ′ ◦ (ϕ− φ))n+2cdµ ≤ µ(X) +

" Tmax

0
dt = 1 + Tmax.

It follows from Theorem 2.1 that Tmax ≤ Tµ is uniformly bounded from above,
hence B := 1+Tµ is under control. Together with (2.3) and (2.4) we thus obtain

(2.5) µ(ϕ < φ− t) ≤ C2δ

|χ|m(−t)
,

where δ :=
-!

X(φ− ϕ)dµ
.γ
.

Conclusion. Set h(t) = −χ(−t). It follows from (2.5) that for all t ∈ [0, T0],

1

g′(t)
= µ(ϕ < φ− t) ≤ C2δ

hm(t)
,

hence

hm(t) ≤ C2δg
′(t) = (n+ 2c)C2δh

′′(t)(h′)n+2c−1(t).

Multiplying by h′, integrating between 0 and t, we infer that for all t ∈ [0, T0],

hm+1(t) ≤ (m+ 1)(n+ 2c)C2δ

" t

0
h′′(s)(h′)n+2c(s)ds

≤ C3δ
-
(h′)n+2c+1(t)− 1

.
,

which yields

(2.6) 1 ≤ C3δ(h
′)n+2c+1(t)

hm+1(t) + C3δ
.

Recall that we have set m = n+ ε so that

α := m+ 1 = n+ ε+ 1 > β := n+ 2c+ 1.

Raising both sides of (2.6) to power 1/β we obtain

1 ≤ C4δ
1
β h′(t)

(h(t)α + C3δ)1/β
.

We integrate between 0 and T0 and make the change of variables x = h(t)δ−1/α to

conclude T0 ≤ C5δ
1/α ≤ C5

-!
X(φ− ϕ)+dµ

.τ
, with τ = γ/α. Letting T0 → Tmax

we obtain the desired estimate. □

3. Refinements and extensions

We explain now how minor modifications of the proof of Theorem 2.1 provide
other important uniform estimates in various contexts of Kähler geometry.

3.1. Big cohomology classes. Let θ be a smooth closed (1, 1)-form that rep-
resents a big cohomology class α. We set

Vθ(x) := sup{v(x), v ∈ PSH(X, θ) with v ≤ 0}.

The latter is a θ-psh function with minimal singularities, i.e. any other θ-psh
function ϕ satisfies ϕ ≤ Vθ +C for some constant C. It is locally bounded in the
ample locus Amp(α), a Zariski open subset of X where the cohomology class α
behaves like a Kähler class.



12 VINCENT GUEDJ & CHINH H. LU

The Monge-Ampère measure (θ + ddcϕ)n of a θ-psh function with minimal
singularities is well defined in Amp(α), and one can show that it has finite mass
independent from ϕ and equal to

Vα = Vol(α) =

"

Amp(α)
(θ + ddcVθ)

n > 0,

the volume of the class α.
We refer the reader to [BEGZ10] for more details on these notions and focus

here on slightly extending [BEGZ10, Theorem B] by our new approach:

Theorem 3.1. Let µ be a probability measure on X. If PSH(X, θ) ⊂ Lm(µ) for
some m > n, then there exists a unique ϕ ∈ PSH(X, θ) with minimal singularities
such that V −1

α (θ + ddcϕ)n = µ and supX ϕ = 0. Moreover

||ϕ− Vθ||L∞(X) ≤ Tµ

for some uniform constant Tµ.

Proof. It follows from [BEGZ10, Theorem A] that there exists a unique finite
energy solution ϕ. The key point for us here is to establish the a priori estimate.
Note that ϕ ≤ Vθ since supX ϕ = 0 Our goal is to show that Vθ − Tmax ≤ ϕ,
obtaining a uniform upper bound on Tmax.

A difficulty lies in the fact that θ is not a positive form. We consider the
positive current ω = θ + ddcVθ and set ϕ̃ = ϕ− Vθ ≤ 0. Observe that

θϕ := θ + ddcϕ = ω + ddcϕ̃ =: ωϕ̃ ≥ 0.

Our plan is thus to show that the ”ω-psh” function ϕ̃ is bounded.
As in the proof of Theorem 2.1 we let χ : R− → R− denote a concave increasing

function such that χ(0) = 0 and χ′(0) = 1. We set ψ = Vθ + χ ◦ ϕ̃ and consider

u = Pθ(ψ) = Pθ(Vθ + χ ◦ (ϕ− Vθ)).

Observe that

θ + ddcψ = χ′ ◦ ϕ̃ θϕ + [1− χ′ ◦ ϕ̃]ω + χ′′ ◦ ϕ̃ dϕ̃ ∧ dcϕ̃

≤ χ′ ◦ (ϕ− Vθ) (θ + ddcϕ).

The envelopes in the context of big cohomology classes enjoy similar proper-
ties as those reviewed in Section 1.2. In particular the complex Monge-Ampère
measure (θ + ddcPθ(ψ))

n is concentrated on the contact set {Pθ(ψ) = ψ} (see
[GLZ19, Theorem 2.7]) and the big-version of Lemma 1.7 holds, showing that

V −1
α (θ + ddcu)n ≤ 1{Pθ(ψ)=ψ}(χ

′ ◦ (ϕ− Vθ))
nµ.

The rest of the proof is identical to that of Theorem 2.1. □

3.2. Degenerating families. Families of Kähler-Einstein varieties have been
intensively studied in the past decade, requiring one to analyze the associated
family of complex Monge-Ampère equations. We refer the reader to [Tos09, Tos10,
ST12, GTZ13, DnGG20, Li20] for detailed examples and geometrical motivations.

The most delicate situation is when the volume of the fiber collapses. Theorem
2.1 yields a uniform bound in this case, providing an alternative proof and an
extension of the main results of [EGZ08, DP10]:

Corollary 3.2. Let ωt be a family of semi-positive and big forms on X, and
assume there is a fixed form Θ such that 0 ≤ ωt ≤ Θ. We let Vt :=

!
X ωn

t > 0
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denote the volume of (X,ωt). Let µ be a probability measure. If PSH(X,Θ) ⊂
Lm(µ) for some m > n, then any solution ϕt ∈ PSH(X,ωt) ∩ L∞(X) to

1

Vt
(ωt + ddcϕt)

n = µ

satisfies OscX(ϕt) ≤ Tµ for some uniform constant Tµ.

The point here is that the estimate is uniform in t although the volumes Vt

may degenerate to zero (volume collapsing).

Proof. Theorem 2.1 provides a uniform bound OscX(ϕt) ≤ T (Am(ωt, µ)), where

Am(ωt, µ) := sup

#"

X
(−ψ)mdµ, ψ ∈ PSH(X,ωt) with sup

X
ψ = 0

$
.

Since PSH(X,ωt) ⊂ PSH(X,Θ) and PSH(X,Θ) ⊂ Lm(µ), we obtain thatAm(ωt, µ) ≤
Am(Θ, µ) < +∞. The uniform upper bound follows. □

This uniform estimate shows in particular that in many geometrical contexts,
a uniform control on the Ln+ε-norm of the Monge-Ampère potentials ϕt suffices
to obtain a L∞-control of the latter.

One can obtain similarly uniform estimates when the underlying complex
structure is also changing: let X be an irreducible and reduced complex Kähler
space, and let π : X → D denote a proper, surjective holomorphic map such
that each fiber Xt = π−1(t) is an n-dimensional, reduced, irreducible, compact
Kähler space, for any t ∈ D. Given ω a Kähler form on X and ωt := ω|Xt

, one
can consider the complex Monge-Ampère equations

1

V
(ωt + ddcϕt)

n = µt,

where

• the volume V =
!
Xt

ωn
t turns out to be independent of t, and

• µt is a family of probability measures on each fiberXt (e.g. the normalized
Calabi-Yau measures of a degenerating family of Calabi-Yau manifolds).

In many concrete geometrical situations (see e.g. [GTZ13, DnGG20, Li20]), one
can check that Am(ωt, µt) ≤ A is uniformly bounded from above for some m > n

(often any m > 1). If one can further uniformly compare supXt
ϕt and

!
Xt

ϕt
ωn
t
V ,

then Theorem 2.1 then applies and provides a uniform L∞-estimate. It is thus
sometimes not necessary to establish a uniform Skoda integrability theorem in
families (compare with [DnGG20, Li20b]).

3.3. Relative a priori L∞-bounds. Fix ω a semi-positive and big (1, 1) form,
and ρ an ω-psh function with analytic singularities such that ω + ddcρ ≥ δωX is
a Kähler current which is smooth in the ample locus Amp(ω). We normalize ρ so
that supX ρ = 0 and set V =

!
X ωn > 0.

We consider in this section the degenerate complex Monge-Ampère equation

(3.1) V −1(ω + ddcϕ)n = µ = fdVX ,

where µ is a probability measure whose density f ∈ L1(X) does not belong to
any good Orlicz class (see section 2.2). Since µ does not charge pluripolar sets,
there exists a unique ”finite energy solution” ϕ ∈ E(X,ω) (see [GZ]), but one
cannot expect anylonger that ϕ is globally bounded on X.

Given ψ a quasi-plurisubharmonic function on X and c > 0, we set

Ec(ψ) := {x ∈ X, ν(ψ, x) ≥ c},
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where ν(ψ, x) denotes the Lelong number of ψ at x. A celebrated theorem of Siu
ensures that for any c > 0, the set Ec(ψ) is a closed analytic subset of X.

Theorem 3.3. Assume f = ge−ψ, where 0 ≤ g ∈ Lp(dVX), p > 1, and ψ is a
quasi-psh function. Then there exists a unique ϕ ∈ E(X,ω) such that

• α(ψ + ρ)− β ≤ ϕ ≤ 0 with supX ϕ = 0;
• ϕ is locally bounded in the Zariski open set Ω := Amp(ω) \ E 1

q
(ψ);

• V −1(ω + ddcϕ)n = fdVX in Ω,

where α,β > 0 depend on an upper bound for ||g||Lp and 1
p + 1

q = 1.

When f ≤ e−ψ for some quasi-psh function ψ, it has been shown by DiNezza-
Lu [DnL17, Theorem 2] that the normalized solution ϕ to (3.1) is locally bounded
in the complement of the set {ψ = −∞}. The proof of DiNezza-Lu is a generaliza-
tion of the method of Ko%lodziej [Kol98] that makes use of a theory of generalized
Monge-Ampère capacities further developed in [DnL15]. We slightly extend this
result here and propose a brand new proof using envelopes and Theorem 2.1.

Proof. Reduction to analytic singularities.We let q denote the conjugate exponent
of p, set r = 2p

p+1 , and note that 1 < r < p. If the Lelong numbers of ψ are all less

than 1
q , it follows from Hölder inequality that f ∈ Lr(dVX), since

"

X
f rdVX =

"

X
gre−rψdVX ≤

&"

X
gpdVX

' r
p

·
&"

X
e
− pr

p−r
ψ
dVX

' p−r
p

,

where the last integral is finite by Skoda’s integrability theorem [GZ, Theorem
8.11] if pr

p−rν(ψ, x) < 2 for all x ∈ X, which is equivalent to ν(ψ, x) < 1
q .

It is thus natural to expect that the solution ϕ will be locally bounded in
the complement of the closed analytic set Eq−1(ψ). It follows from Demailly’s
equisingular approximation technique (see [Dem15]) that there exists a sequence
(ψm) of quasi-psh functions on X such that

• ψm ≥ ψ and ψm → ψ (pointwise and in L1);
• ψm has analytic singularities concentrated along Em−1(ψ);
• ddcψm ≥ −KωX , for some uniform constant K > 0;
•
!
X e2m(ψm−ψ)dVX < +∞ for all m.

We choose m = [q], set gm := geψm−ψ, and observe that

"

X
grm ≤

&"

X
e2m(ψm−ψ)dVX

' 1
2m

·
&"

X
g

2mr
2m−r
m dVX

' 2m−r
2m

≤
&"

X
e2m(ψm−ψ)dVX

' 1
2m

·
&"

X
gpmdVX

' 2m−r
2m

< +∞

if we choose r−1 = p−1 + (2m)−1 < 1 so that 2mr
2m−r = p. By replacing ψ by

ψ[q] ≥ ψ and g by gm ∈ Lr in the sequel, we can thus assume that

• ψ has analytic singularities and is smooth in X \ Eq−1(ψ);

• the functions ψ̃ := aψ + ρ is ω-psh, with a := δ/K.

Uniform integrability of ϕ. It is a standard measure theoretic fact that the density
f belongs to an Orlicz class Lw for some convex increasing weight w : R+ → R+

such that w(t)/t → +∞ as t → +∞. Set χ1(t) := −(w∗)−1(−t), where w∗ denotes
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the Legendre transform of w. Thus χ1 : R− → R− is a convex increasing weight
such that χ1(−∞) = −∞ and

"

X
(−χ1 ◦ ϕ)(ω + ddcϕ)n ≤

"

X
w ◦ fdVX +

"

X
(−ϕ)dVX ≤ C0,

as follows from the additive version of Hölder-Young inequality and the compact-
ness of sup-normalized ω-psh functions.

It follows that ϕ belongs to a compact subset of the finite energy class Eχ1(X,ω),
hence for all λ ∈ R,

(3.2)

"

X
exp(−λϕ)dVX ≤ Cλ,

for some Cλ independent of ϕ (see [GZ07, GZ] for more information).

The envelope construction. Let u = P (2ϕ − ψ̃) denote the greatest ω-psh func-

tion that lies below 2ϕ − ψ̃. Since h = 2ϕ − ψ̃ is bounded from below and
quasi-continuous, it follows from Proposition 1.6 that the measure (ω+ ddcu)n is

supported on the contact set C = {u = 2ϕ− ψ̃}. Thus

(ω + ddcu)n ≤ 1C(ω + ddc(2ϕ− ψ̃))n ≤ 1C(2ω + ddc(2ϕ))n.

Since v ≤ w on X, it follows from Lemma 1.3 that

(3.3) 1{v=w}(2ω + ddcv)n ≤ 1{v=w}(2ω + ddcw)n,

where

• v = u+ ψ̃ is 2ω-psh and u+ ψ̃ ≤ 2ϕ = w on X;
• {u+ ψ̃ = 2ϕ} coincides with the contact set C.

Therefore, it follows from (3.3) that

1C(2ω + ddc(u+ ψ̃))n ≤ 1C(2ω + ddc(2ϕ))n

≤ 1C2
ncge−ψdVX

≤ 1C2
ncgeu/ae−2ϕ/adVX ≤ c1ge

−2ϕ/adVX ,

using that supX u ≤ c2 is uniformly bounded from above, as we explain below.
It follows from Hölder inequality and (3.2) that the measure ge−2ϕ/adVX satis-

fies the assumption of Theorem 2.1. We infer that u ≥ −M is uniformly bounded
below, hence

2ϕ = (2ϕ− ψ̃) + ψ̃ ≥ u+ ψ̃ ≥ δ

K
ψ + ρ−M.

The desired a priori estimate follows with β = M/2 and α = max(1, δ/2K).

Bounding supX u from above. We can assume without loss of generality that

supX ψ̃ = 0. Consider G = {ψ̃ > −1}; this is a non empty plurifine open set.

Observe that for all x ∈ G, u(x) ≤ (2ϕ− ψ̃)(x) ≤ 1, hence

u(x)− 1 ≤ VG,ω(x) := sup{w(x), w ∈ PSH(X,ω) with w ≤ 0 on G}.

It follows from [GZ, Theorem 9.17.1] that supX VG,ω = C is finite since G is
non-pluripolar, thus supX u ≤ c2 = 1 + supX VG,ω = 1 + C. □
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4. The local context

4.1. Cegrell classes. We fix Ω ⊂ Cn a bounded hyperconvex domain, i.e. there
exists a continuous plurisubharmonic function ρ : Ω → [−1, 0) whose sublevel
sets {ρ < −c} ⋐ Ω are relatively compact for all c > 0.

Let T (Ω) denote the set of bounded plurisubharmonic functions u in Ω such
that limz→ζ u(z) = 0, for every ζ ∈ ∂Ω, and

!
Ω(dd

cu)n < +∞. Cegrell [Ceg98,
Ceg04] has studied the complex Monge-Ampère operator (ddc·)n and introduced
different classes of plurisubharmonic functions on which the latter is well defined:

• DMA(Ω) is the set of psh functions u such that for all z0 ∈ Ω, there
exists a neighborhood Vz0 of z0 and uj ∈ T (Ω) a decreasing sequence
which converges to u in Vz0 and satisfies supj

!
Ω(dd

cuj)
n < +∞.

• a function u belongs to F(Ω) iff there exists uj ∈ T (Ω) a sequence de-
creasing towards u in all of Ω, which satisfies supj

!
Ω(dd

cuj)
n < +∞;

• a function u belongs to Ep(Ω) if there exists a sequence of functions uj ∈
T (Ω) decreasing towards u in Ω with supj

!
Ω(−uj)

p(ddcuj)
n < +∞.

• a function u belongs to Fp(Ω) if there exists a sequence of functions uj ∈
T (Ω) decreasing towards u in Ω with supj

!
Ω[1+ (−uj)

p](ddcuj)
n < +∞.

Given u ∈ Ep(Ω) we define the weighted energy of u by

Ep(u) :=

"

Ω
(−u)p(ddcu)n < +∞.

The operator (ddc·)n is well defined on these sets, and continuous under decreasing
limits. If u ∈ Ep(Ω) for some p > 0 then (ddcu)n vanishes on all pluripolar sets
[BGZ09, Theorem 2.1]. If u ∈ Ep(Ω) and

!
Ω(dd

cu)n < +∞ then u ∈ Fp(Ω). Also,
note that

T (Ω) ⊂ Fp(Ω) ⊂ F(Ω) ⊂ DMA(Ω) and T (Ω) ⊂ Ep(Ω) ⊂ DMA(Ω).

Cegrell has characterized the range of the complex Monge-Ampère operator
acting on the classes Ep(Ω):

Theorem 4.1. [Ceg98, Theorem 5.1] Let µ be a probability measure in Ω. There
exists a function u ∈ Fp(Ω) such that (ddcu)n = µ if and only if Fp(Ω) ⊂ Lp(Ω).

A simplified variational proof of this result has been provided in [ACC12].

4.2. Dirichlet problem. We have the following local analogue of Theorem 2.1:

Theorem 4.2. Assume µ is a probability measure in Ω and F(Ω) ⊂ Lm(µ), for
some m > n. Then there exists a unique bounded function u ∈ F(Ω) such that
(ddcu)n = µ. The upper bound on supΩ |u| only depends on Am(µ),m, n, where

Am(µ) := sup

#"

Ω
(−u)mdµ : u ∈ T (Ω) with

"

Ω
(ddcu)n ≤ 1

$
.

Proof. We first explain why the integrability condition F(Ω) ⊂ Lm(Ω, µ) is equiv-
alent to the finiteness of Am. Indeed, if Am is not finite then there exists a
sequence (uj) in T (Ω) such that

!
Ω(dd

cuj)
n ≤ 1 but

!
Ω |uj |mdµ ≥ 4jm. Let

u :=
/+∞

j=1 2
−juj . Then, by [Ceg04, Corollary 5.6], we have u ∈ F(Ω), but

"

Ω
(−u)mdµ ≥ 2−jm

"

Ω
(−uj)

mdµ ≥ 2jm → +∞.
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It follows from Theorem 4.1 that there exists ϕ ∈ F(Ω) such that (ddcϕ)n = µ.
We assume for the moment that u ∈ T is bounded and we establish a uniform
bound for ϕ. Set

Tmax := sup{t > 0 : µ(ϕ < −t) > 0}.
Our goal is to establish a precise bound on Tmax. By definition, −Tmax ≤ ϕ
almost everywhere with respect to µ, hence (ddcmax(ϕ,−Tmax))

n ≥ (ddcϕ)n and
the domination principle, [GZ, Corollary 3.31], gives ϕ ≥ −Tmax, providing the
desired a priori bound |ϕ| ≤ Tmax.

We let χ : R− → R− denote a concave increasing function such that χ(0) = 0
and χ′(0) = 1. We set ψ = χ ◦ϕ, u = P (ψ) ∈ T (Ω) the largest psh function in Ω
which lies below ψ, and observe that

ddcψ = χ′ ◦ ϕωϕ + χ′′ ◦ ϕdϕ ∧ dcϕ ≤ χ′ ◦ ϕddcϕ.
Since ψ ≥ χ′(−Tmax)ϕ and the latter is in T (Ω) we deduce that u ≥ χ′(−Tmax)ϕ
and u ∈ T (Ω).

Although the function ψ is not psh, this provides a bound from above on the
positivity of ddcψ which allows to control the Monge-Ampère of its envelope, see
[DnGL20, Lemma 4.1 and Lemma 4.2],

(ddcu)n ≤ 1{u=ψ}(dd
cψ)n ≤ (χ′ ◦ ϕ)nµ.

The above inequalities hold for smooth functions and the general case of bounded
psh functions can be obtained as in the proof of Lemma 1.7.

We thus get a uniform control on the Monge-Ampère mass of u:
"

Ω
(ddcu)n ≤

"

Ω
(χ′ ◦ ϕ)ndµ.

We are going to choose below the weight χ in such a way that
!
Ω(χ

′ ◦ ϕ)ndµ =
B ≤ 2 is a finite constant under control. This provides a uniform upper bound
on ||u||Lm(µ). Using Chebyshev inequality we thus obtain

(4.1) µ(ϕ < −t) ≤
!
Ω |χ(ϕ)|mdµ

|χ|m(−t)
≤

!
Ω |u|mdµ

|χ|m(−t)
≤ Am

|χ|m(−t)
,

where Am ≥ 1 is an upper bound for
!
Ω |u|mdµ.

Choice of χ. We use again Lebesgue’s formula: if g : R+ → R+ is increasing and
normalized by g(0) = 1 then

"

Ω
g ◦ (−ϕ)dµ = µ(Ω) +

" Tmax

0
g′(t)µ(ϕ < −t)dt.

Setting g(t) = [χ′(−t)]n we define χ by imposing χ(0) = 0, χ′(0) = 1, and

g′(t) =

)
***+

***,

1

(1 + t)2µ(ϕ < −t)
, if t ∈ [0, T0],

1

t2 + 1
, if t > T0.

This choice guarantees that
"

Ω
(χ′ ◦ ϕ)ndµ ≤ µ(Ω) +

" +∞

0

dt

(1 + t)2
= 2.

Conclusion. We set h(t) = −χ(−t) and work with the positive counterpart of χ.

Note that h(0) = 0 and h′(t) = [g(t)]
1
n is positive increasing, hence h is convex

increasing (so χ is concave increasing and negative).
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Together with (4.1) our choice of χ yields, for all t ∈ [0, T0],

1

(1 + t)2g′(t)
= µ(ϕ < −t) ≤ Am

hm(t)
.

This reads

hm(t) ≤ Am(1 + t)2g′(t) = nAm(1 + t)2h′′(t)(h′)n−1(t).

We integrate this inequality as in the proof of Theorem 2.1 and obtain

T0 ≤ C ′,

for some uniform constant C ′ depending on n,m,Am.

To finish the proof we write µ = f(ddcφ)n, where 0 ≤ f ∈ L1(Ω, (ddcφ)n)
and φ ∈ T (Ω). This is known as Cegrell’s decomposition theorem [Ceg98, The-
orem 6.3]. We next solve (ddcϕj)

n = min(f, j)(ddcφ)n with ϕj ∈ T (Ω). Since
(ddcϕj)

n ≤ µ, our estimate above shows that |ϕj | ≤ C for a uniform constant
C. The comparison principle also gives that ϕj is decreasing and ϕ ≤ ϕj , thus
u := limj ϕj ∈ F(Ω) is bounded and (ddcu)n = µ. It then follows from [Ceg04,
Theorem 5.15] that u = ϕ, finishing the proof. □
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