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Region‑specific expression of young 
small‑scale duplications in the human central 
nervous system
Solène Brohard‑Julien1,2,3* , Vincent Frouin2, Vincent Meyer1, Smahane Chalabi1, Jean‑François Deleuze1,4,5, 
Edith Le Floch1*† and Christophe Battail1,6*† 

Abstract 

Background: The duplication of genes is one of the main genetic mechanisms that led to the gain in complexity of 
biological tissue. Although the implication of duplicated gene expression in brain evolution was extensively studied 
through comparisons between organs, their role in the regional specialization of the adult human central nervous 
system has not yet been well described.

Results: Our work explored intra‑organ expression properties of paralogs through multiple territories of the human 
central nervous system (CNS) using transcriptome data generated by the Genotype‑Tissue Expression (GTEx) consor‑
tium. Interestingly, we found that paralogs were associated with region‑specific expression in CNS, suggesting their 
involvement in the differentiation of these territories. Beside the influence of gene expression level on region‑spec‑
ificity, we observed the contribution of both duplication age and duplication type to the CNS region‑specificity of 
paralogs. Indeed, we found that small scale duplicated genes (SSDs) and in particular ySSDs (SSDs younger than the 2 
rounds of whole genome duplications) were more CNS region‑specific than other paralogs. Next, by studying the two 
paralogs of ySSD pairs, we observed that when they were region‑specific, they tend to be specific to the same region 
more often than for other paralogs, showing the high co‑expression of ySSD pairs. The extension of this analysis to 
families of paralogs showed that the families with co‑expressed gene members (i.e. homogeneous families) were 
enriched in ySSDs. Furthermore, these homogeneous families tended to be region‑specific families, where the major‑
ity of their gene members were specifically expressed in the same region.

Conclusions: Overall, our study suggests the involvement of ySSDs in the differentiation of human central nervous 
system territories. Therefore, we show the relevance of exploring region‑specific expression of paralogs at the intra‑
organ level.

Keywords: Paralog, Small scale duplication, Brain region‑specific expression, Human central nervous system, Gene 
co‑expression network
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Background
Comparative genomics and large-scale transcriptional 
studies have highlighted the major contribution of 
gene duplication to tissue differentiation and pheno-
typic diversity [1, 2]. The fact that some paralogs are 
retained in genomes through evolution seems to be ini-
tially favored by dosage balance [3] and their long-term 
preservation is then made possible by the following two 
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processes: the neo-functionalization, which consists in 
the gain of a new function by one duplicate potentially 
associated with a different spatial expression [4–7], or 
the sub-functionalization which consists in the partition 
of the ancestral function or spatial expression between 
duplicates [8, 9]. The divergence of spatial expression 
between paralogs can be studied by the analysis of broad 
or narrow gene expression patterns across a collection 
of tissues [3, 10, 11]. The comparison of transcriptomes 
between different mouse organs has shown that the brain 
was among the ones expressing the highest proportion of 
tissue-specific paralogs in relation to the total number of 
genes expressed in the brain, while it does not express the 
highest proportion of tissue-specific singletons [10]. The 
brain is therefore a model perfectly suited for exploring 
the intra-organ expression heterogeneity of the dupli-
cated genes.

Among the 60% of human genes considered as paral-
ogs [2], some come from whole-genome duplications 
(WGD) in early vertebrate lineage approximately 500 
million years ago [12, 13], the others come from small 
scale duplications (SSD) that have occurred throughout 
the evolution [14]. A comparison in mammals, notably in 
humans, of the brain transcriptome with those of other 
organs has shown that WGDs tend to be enriched in 
brain-specific genes compared to SSDs [15, 16]. This sup-
ports the theory that genome duplications have allowed 
vertebrates to develop more complex cellular organiza-
tions of the central nervous system (CNS) [17, 18].

In complement of the role of the WGDs in the tissue 
complexity, some studies support the idea that young 
duplicated genes tend to be preferentially expressed in 
evolutionarily young tissues. A higher proportion of pri-
mate-specific paralogs were found to be up-regulated in 
the developing human brain compared to the adult brain 
[19], whereas this expression pattern was not found for 
older duplications [20]. Regarding recent duplications, 
that emerged in the human lineage, studies have sug-
gested their contribution to human-specific adaptive 
traits, such as the gain of brain complexity [21–23].

While the expression properties of paralogs between 
different organs, including the brain, have been well stud-
ied, we have little knowledge of the expression character-
istics of duplicated genes between different regions of the 
same organ. Large-scale transcriptional profiling of neu-
roanatomic regions [24] allows us now to further investi-
gate paralog expression between the different territories 
of the human CNS according to their evolutionary prop-
erties. Exploring gene expression in this frame of refer-
ence, restricted to the CNS territories, makes it possible 
to identify distinct gene features which could be masked 
by transcriptome comparisons performed across several 
organs.

This present study explores in detail the expression 
patterns of paralogs between the different territories of 
the human CNS, using the GTEx resource, according to 
their evolutionary characteristics and gene families. We 
started assessing the changes in expression of duplicated 
genes between CNS regions and investigating paralogs 
expressed specifically in certain regions. Secondly, we 
studied the evolutionary characteristics of these paralogs 
with regional expression such as their age and the type 
of duplication event. We then analyzed the organization 
of paralogs in families using co-expression and stud-
ied their CNS region-specificity and their evolutionary 
characteristics.

Results
Association of paralog expression with CNS differentiation
We considered in our study all human protein cod-
ing genes and the information collected on duplication 
events in order to split the gene population into paralogs 
and singletons [2] (“Methods”). In a landmark contribu-
tion, the GTEx (Genotype-Tissue Expression) consor-
tium used RNA sequencing technology to establish the 
landscape of human gene expression across a large col-
lection of postmortem biopsies [24]. Gene expression 
data for hundreds of individuals from 13 normal brain-
related regions (Methods) were obtained from the GTEx 
consortium. After filtering out low information content 
genes, abundance values (i.e. filtered, log-transformed 
and adjusted RPKM values, described in the Methods) of 
16,427 protein-coding genes, including 10,335 paralogs 
and 6,092 singletons were retained.

Previous work by GTEx established the relevance of 
using gene expression data to cluster samples obtained 
from the same organ or from the same region of the CNS, 
even though assigning samples to the correct CNS region 
was more difficult [24]. We observed similar results for 
CNS territories when focusing specifically on paralogous 
gene expression (Additional file 1: Result S8 and Fig. S1).

To assess the association of paralogous genes with 
CNS differentiation, we performed differential expres-
sion analysis of gene count data between all pairs of CNS 
regions (Methods). We obtained a list of significantly 
differentially expressed genes (DEGs) for each pair of 
regions (Additional file  2: Table  S3). By comparing the 
relative proportion of DEGs in paralogs and singletons, 
we observed that DEGs were significantly enriched in 
paralogs for 75 out of the 78 region-pairs tested (Chi-
squared test, and threshold p-value = 6.41E−04 with 
Bonferroni correction to account for the number of 
region pairs). Overall, this expression study illustrates the 
biological contribution of paralogous genes to expression 
differences between CNS territories. From the next result 
sections on region-specificity analyses, we pool together 
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some of the 13 initial regions that showed similar expres-
sion profiles in order to define a shorter list of 7 CNS 
regions (Methods).

CNS region‑specific expression of paralogs
We further investigated gene expression changes across 
the 7 CNS territories by looking at their region-specific-
ity using the Tau score because of its high sensitivity to 
detect genes with narrow expression [25, 26].

The Tau score ranges from 0 for broadly expressed 
genes, to 1 for highly specific genes (Methods). The Tau 
score distributions reported in a previous study of tis-
sue-specificity on different organs being bi-modal, the 
median value was used to separate the tissue-specific 
genes (unimodal distribution close to 1) from the broadly 
expressed genes [26]. However in the present study 
on intra-organ region-specificity the Tau scores had a 
skewed unimodal distribution (Fig.  1a). Consequently, 
we developed an approach based on permutations to 
identify the Tau score threshold from which to consider 
a gene as region-specific, suitable for the study of a sin-
gle organ system. We calculated an empirical p-value for 
the Tau score of each gene, using permutations of the 
region labels to simulate the distribution of Tau scores 
in the absence of region-specificity, and then performed 
a False Discovery Rate (FDR) correction on the p-values 
for the multiple genes tested (Benjamini–Hochberg cor-
rected p-value < 0.01) (Fig.  1a). This approach led to 
a Tau threshold of 0.525. We found that 17% (2,829) of 
protein-coding genes expressed in the CNS regions were 
region-specific. Moreover, we established that paral-
ogs were significantly enriched in region-specific genes 
compared to singletons (19.2% of paralogs were region-
specific, versus 13.9% of singletons, p-value = 2.045E−18, 
using a Chi-squared test) (Table  1). We also performed 
a Mann–Whitney–Wilcoxon test to compare the Tau 
scores between paralogs (median Tau = 0.29) and single-
tons (median Tau = 0.23) and we observed a very signifi-
cant difference (p-value = 3.07E−73), which confirmed 
our enrichment result (Additional file 2: Table S20).

To check that low expression values did not bias the 
Tau score computation, we kept only genes with their 
maximal expression over the CNS regions higher than 
1 RPKM and we obtained similar enrichment results 
(Additional file 2: Table S19). We confirmed this associa-
tion between paralogs and region-specificity in addition 
to the effect of their expression level, by using a multi-
variate linear model that predicts the Tau score of a gene 
from its maximal expression over the CNS regions and 
its duplication status (Additional file  1: Result S1 and 
Additional file  2: Table  S16A). This association was still 
observed when filtering out genes with low expression 

(< 1 RPKM, Additional file  1: Result S1 and Additional 
file 2: Table S16A).

Although this method based on the Tau score can 
identify region-specific genes, it does not indicate 
which CNS region is targeted by this specificity [25]. In 
order to study the regional distribution of gene expres-
sion, we mapped each specific gene to one CNS region 
(Additional file 2: Table  S4). Therefore, for each region-
specific gene, we considered the anatomical region asso-
ciated with the highest expression value to be the specific 

Fig. 1 Specific expression of protein coding genes across human 
CNS regions. a Density plot of original Tau scores (blue line) 
calculated from the expression values of 16,427 protein coding 
genes, and permutated Tau scores (purple line) calculated from 
1000 × 16,427 permutations. The region‑specificity threshold of 
0.525 (red dotted line) is defined, from permutated scores using the 
Benjamini–Hochberg corrected p‑value of 0.01. b Unsupervised 
hierarchical clustering of region‑specific genes expressed across 
CNS territories. The heatmap illustrates the mean gene expression 
calculated over samples of the cohort for each CNS region
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region (Fig.  1b). We discovered that the distribution of 
region-specific genes across CNS territories was very 
heterogeneous (Additional file 2: Table S6) compared to 
an almost constant proportion of expressed genes across 
these regions (Additional file  2: Table  S5). The highest 
proportions of region-specific genes were found in the 
cerebellum (40.2%), spinal cord (20.9%) and hypothala-
mus (16.4%). The remaining specific genes (22.5%) were 
scattered over the last four brain-related regions. The dis-
tribution of CNS region-specific paralogs was also highly 
heterogeneous and similar to the distribution obtained 
for all protein-coding genes (Additional file 2: Table S6).

In summary, we found that paralogs were more CNS 
region-specific than other genes. Furthermore, region-
specific paralogs were concentrated in a limited num-
ber of CNS regions similarly to the other region-specific 
genes. Finally, we observed that beside the influence of 
abundance value, the paralog status also contributed to 
the specificity of gene expression to a CNS region.

Evolutionary properties of CNS region‑specific paralogs
The date of an SSD can be estimated in relation to the 
WGD events and attributed to one of the three duplica-
tion age categories: younger SSD (after WGD events—
ySSD), older SSD (before WGD events- oSSD) and 
WGD-old SSD (around WGD events—wSSD) (Meth-
ods) [27]. Using our collection of paralogs with CNS 
region-specific expression, we performed statistical tests 
to determine if they were enriched in particular duplica-
tion events (WGD or SSD) or dates of SSDs (oSSD, wSSD 
and ySSD categories). Genes can undergo both WGD 
and SSD duplication and can sometimes be retained 
after each duplication. Unless otherwise stated, when 
we refer to a duplication type from this point on in the 
paper, we are referring to genes that have been retained 

after this duplication type only (WGD or SSD), in order 
to make a clear distinction between the effects of the two 
duplication types. Of the 10,335 paralogs considered in 
our study, 5114 are from WGD, 3719 from SSD (1192 
from ySSD, 1260 from wSSD and 1267 from oSSD) and 
1502 unclassified (966 both WGD-SSD and 536 without 
annotation).

We first observed that among paralogs, SSD genes 
were significantly enriched in CNS region-specific genes 
(22.6% of SSDs were region-specific versus 17.3% of 
the other paralogs, p-value = 9.022E−11), while on the 
opposite WGDs were depleted in region-specific genes 
(Table  1). Furthermore, when we performed the same 
analysis only on the paralogs duplicated around the 
WGD events (WGDs and wSSDs) to remove the poten-
tial confounding effect of the duplication date, the WGD 
genes were still significantly depleted in region-specific 
genes (15.7% of WGDs were region-specific versus 24% 
of wSSDs, p-value = 5.185E−12) (Table  1). This last test 
allowed us to conclude that SSD paralogs were enriched 
in CNS region-specific genes, independently of the 
potential effect of the duplication date.

In addition to assessing the effect of duplication type, 
we also tested the association between duplication age 
categories and region-specificity, and found that ySSD 
were even more enriched in region-specific paralogs 
(28.6% of ySSDs versus 18.0% of the remaining paralogs, 
p-value = 6.341E−18). This last result was confirmed by 
the fact that ySSDs were still enriched in region-specific 
paralogs when we performed the analysis on SSD para-
logs only (28.6% of ySSDs versus 19.8% of the remain-
ing SSDs, p-value = 3.483E−09). On the other hand, 
oSSDs were depleted in region-specific genes compared 
to other SSD paralogs (15.6% of oSSDs versus 26.2% of 
the remaining SSDs, p-value = 2.729E−13) and showed 

Table 1 Enrichments in CNS region‑specific genes for the tested and reference gene groups

a Abbreviations for gene duplication categories: WGD (Whole‑Genome Duplication), SSD (Small‑Scale Duplication), ySSD (younger SSD occuring after WGD events), 
oSSD (older SSD occuring before WGD events) and wSSD (WGD‑old SSD occuring around WGD events)
b Application of Chi‑squared tests (or of Fisher’s exact test when the Chi‑squared test could not be applied) with a corrected p‑value threshold = 7.14E‑03 (Bonferroni 
correction for 7 statistical tests)
c The odds ratio (> 1 or < 1) indicates the group (tested or non‑tested respectively) in which there is an enrichment
d The paralog reference group includes the genes belonging to WGD, SSD and WGD‑SSD categories and the paralogs without annotation

Reference  groupa Tested group for CNS region‑
specificitya

Percentage of CNS region‑specific genes in 
the tested group (%)

Chi‑squared test 
P‑valueb

Odds  ratioc

Protein coding genes Paralogous genes 19.2 2.045E−18* 1.48

Paralogous  genesd WGD genes 15.7 1.061E−18* 0.64

SSD genes 22.6 9.022E−11* 1.39

ySSD genes 28.6 6.341E−18* 1.82

SSD genes ySSD genes 28.6 3.483E−09* 1.62

oSSD genes 15.6 2.729E−13* 0.52

WGD + wSSD genes wSSD genes 24.0 5.185E−12* 1.69
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the same proportion of region-specific genes as WGDs 
(15.7%) (Table 1).

Expression of young duplicates has been evidenced 
to be lower than older duplications (Guschanski et  al. 
2017). Thus, we have further explored the expres-
sion levels of the different types of genes (Singletons, 
WGDs, oSSDs, wSSDs and ySSDs) and their influence 
on region-specificity. First, we reported the distribution 
of singletons and the different duplicate types through 
bins of expression values (Fig. 2a). While the singletons 
and the WGD and oSSD duplicates were distributed 
among the expression bins according to a Gaussian 
profile with a peak for the range of 7 to 15 RPKM, the 
distribution of ySSDs had its maximum for low levels 
of expression and then decreased progressively towards 

the highest abundances. This result confirmed that 
ySSDs tended to be more weakly expressed within the 
CNS than other types of genes. We then questioned 
whether the low levels of expression were associated 
with a higher CNS region-specificity for the different 
types of genes (Fig.  2b). The distribution of the pro-
portions of region-specific genes per bin of expression 
showed that approximately 50% of genes expressed in 
the range of 0 to 1 RPKM were region-specific, what-
ever the type of genes. On average, these proportions 
decrease with increasing expression levels up to 63 
RPKM. More precisely, we observed for the expres-
sion bins in the range of 1 to 31 RPKM, greater propor-
tions of region-specific genes for the wSSD and ySSD 
types, compared to the other gene types. In addition, 
an increase in the proportion of region-specific genes 
for the oSSD and wSSD types seems to appear in the 
range 63–127 RPKM. However, we noted that for 
higher expression bins (> 127 RPKM) the number of 
genes was not enough in some gene types to compare 
their proportion of region-specific genes. Finally, the 
gradual decrease in the percentage of regions-specific 
genes with increasing levels of expression suggests that 
this trend is more related to a biological reality than a 
technical effect. However, we cannot completely rule 
out the possibility that the calculation of the Tau score 
could be biased for genes characterized by low expres-
sion values. Therefore to assess this potential bias, we 
performed the same enrichment tests as in Table 1 by 
removing weakly expressed genes (genes with their 
maximal expression over the CNS regions lower than 1 
RPKM), and we confirmed the enrichment of SSDs and 
particularly of ySSDs in region-specific genes (Addi-
tional file 2: Table S19).

We also confirmed the contribution of both duplica-
tion age and duplication type to the region-specificity 
of paralogs, independently of the effect of their expres-
sion level, using multivariate linear models (Additional 
File 1: Result S1 and Additional file 2:T ables S16B-C).

To obtain a complementary view of this region-
specificity for recent duplications, we examined the 
distribution of the Tau scores of paralogs according to 
their phyletic age (Fig. 3). We found that the maximum 
Tau scores were obtained for genes with phyletic ages 
around 0.12 which corresponds in most cases to ySSD 
duplication events that occurred around the separation 
of the Simians clade (Ensembl Compara GRCh37 p.13).

In summary, we found that SSD genes and in particu-
lar ySSD genes were more CNS region-specific than 
other paralogs, probably due to both their SSD origin 
and their duplication age, in addition to the influence of 
expression level on region-specificity.

Fig. 2 Distribution of CNS region‑specific genes across ranges 
of expression values. Barplots show a the number of expressed 
genes and b the percentage of region‑specific genes for different 
expression bins. For each gene, we first calculated its expression value 
per CNS region by averaging over all the samples associated with 
each region. We then selected as reference value for each gene, the 
maximum of these averages of expression across the CNS regions. 
Gene expression values are given in RPKM (on a log2 scale) and each 
bin corresponds to 1 unit of the log2(RPKM + 1) values. The open 
square bracket for each bin means that the start value is included and 
the round bracket means that the end value is excluded from the bin. 
The last bin groups all gene expressions higher or equal to 127 RPKM
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CNS region‑specific expression of gene families
We previously found that paralogs, and especially SSDs 
and ySSDs, were involved in territorial expression of CNS 
regions. Paralogs being organized into gene families, we 
also assessed whether or not the paralogs belonging to 
the same family tend to share region-specific expression 
properties.

We first studied the expression similarity between 
paralogs across CNS regions by using a co-expression 
analysis without using a priori knowledge on their 
region-specificity. The study of co-expression allowed 
us to explore the higher level of organization of the 
paralogs into groups of genes with coordinated expres-
sion across CNS regions and compare these modules of 
co-expressed paralogs across regions against annotated 
gene families. The Weighted Gene Correlation Network 
Analysis (WGCNA) methodology [28] was used to infer 
the correlation-based co-expression network. Contrary 
to previous studies that inferred a network per tissue and 
then compared modules between networks [29, 30], we 
carried out co-expression network inference by simul-
taneously using all the 13 CNS region samples profiled 
by the GTEx consortium in order to explore gene asso-
ciations with regional differentiation. We optimized the 
WGCNA to generate highly correlated co-expression 
modules of small size in order to compare them with the 
annotated gene families (Methods and Additional file 1: 
Fig. S3). Indeed, out of our 3487 gene families, 1644 

(47%) were constituted of only two genes. Our WGCNA 
analysis extracted 932 modules of co-expressed paralo-
gous genes. Only 104 genes were not included in a co-
expression module. The module size ranged from 2 to 
911 genes with 84% of small size modules (modules with 
less than 10 genes) (Additional file 2: Table S7). If we con-
sider modules greater than 20 genes, a high proportion of 
them were enriched in molecular function and biological 
process GO terms indicating that our network inference 
approach captured shared biological functions among 
co-expressed paralogs (Additional file 1: Result S4).

This co-expression network analysis allowed us to clas-
sify the gene families into two categories, homogeneous 
and heterogeneous gene families, based on their patterns 
of expression across CNS regions (Methods). A homoge-
neous gene family was defined by the property that the 
majority of its member genes were included in the same 
co-expression module. Out of the 3487 gene families 
considered in this co-expression study, we identified 111 
homogeneous families (with 257 co-expressed paralogs 
out of a total of 300 expressed paralogs in these fami-
lies, the remaining 43 not co-expressed paralogs being 
removed from all tests on homogeneous family genes in 
the rest of the article) and thus 3,376 heterogeneous fam-
ilies (10,035 paralogs) (Additional file 2: Tables S13–S14). 
We showed by a permutation approach that this number 
of homogeneous families was significantly large, with an 
empirical p-value inferior to  10–3 (Methods), suggest-
ing that paralogs were more co-expressed across CNS 
regions when they came from the same family. A bio-
logical pathway enrichment analysis of the homogeneous 
family genes revealed that they were notably enriched 
in transcription factors and signaling proteins involved 
in neural development (Additional file  1: Result S6 and 
Additional file 2: Table S10).

We then investigated the link between shared region-
specificity and homogeneous gene families by catego-
rizing families according to their region-specificity [31] 
(Additional file  1: Result S7). Families composed of 
a majority of genes specific to the same regions were 
classified as region-specific families. We identified 58 
region-specific families and we found a strongly signifi-
cant enrichment of these families in homogeneous fami-
lies (45% of region-specific families versus 2.5% of other 
families, p-value = 1.691E−69) (Table  2). Symmetrically, 
homogeneous families are thus much more region-spe-
cific than heterogeneous families (23% of homogeneous 
families are region-specific versus 1% of heterogeneous 
families, p-value = 1.691E−69).

Finally, we studied whether homogeneous families 
were associated with a type of duplication event or with 
a duplication age. We found that SSD genes and ySSD 
genes in particular were enriched in genes coming from 

Fig. 3 Association between the phyletic age of the duplication and 
the region‑specificity. Boxplots show the distribution of Tau scores 
for paralogs grouped according to their phyletic age obtained from 
Chen et al. 2013. The range of phyletic ages corresponding to WGDs 
is indicated by a blue horizontal bar. The red horizontal line represents 
the threshold of region‑specificity (Tau score = 0.525)
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homogeneous families (3.3% of SSD versus 2.1% of the 
other paralogs, p-value = 2.777E−04; 5.2% of ySSD ver-
sus 2.1% of the other paralogs, p-value = 5.758E−10) 
(Table  2). Similarly, SSD and ySSD genes were signifi-
cantly enriched in genes coming from region-specific 
families (Additional file  2: Table  S17). Lastly, we also 
investigated the shared region-specificity at the paralog 
pair level. We observed, among region-specific pairs, 
a high proportion of SSD (50%) and ySSD (59%) pairs 
specific to the same region than WGD pairs (31%), even 
though the very low number of these region-specific 
pairs did not allow us to get significant results (Addi-
tional file 1: Result S2).

In order to interpret these results, one may expect 
that the co-expression level between two duplicates in 
a paralog pair will be associated with their proximity on 
the genome, as epigenetic co-regulation of gene expres-
sion partly depends on the proximity between genes on 
the genome [32–34]. We thus investigated whether the 
genomic distance between paralog pairs (Additional 
file 1: Result S5) could be used to differentiate homoge-
neous from heterogeneous families. For homogeneous 
families, we considered only pairs in which both paralogs 
belonged to the main co-expression module (37 pairs), 
and removed the other pairs from the test. We found that 
homogeneous families were depleted in inter-chromo-
somal pairs (70.3% of homogeneous families versus 90.2% 
of heterogeneous families were spread across different 
chromosomes, p-value = 7.73E−04) and were enriched 
in tandem duplicated pairs (27% of homogeneous fami-
lies and 6.7% of heterogeneous families were separated by 
less than 1  Mb, p-value = 1.743E−04) (Additional file  2: 
Table S20); this supports the idea that paralog co-expres-
sion is favored by proximity along the genome. Moreover, 
we confirmed that the genomic proximity of duplicates 
was associated with recent SSDs and that the younger the 
SSD pair, the more the duplicates were found in tandem 
in the genome (Additional file 1: Result S5). The tandem 

duplication explains why SSDs, and especially ySSDs, 
tend to be more co-expressed and to share more often 
the same region-specificity within their family than other 
paralogs.

In summary, the gene co-expression network analysis 
performed on the CNS regions allowed us to find that 
within gene families, the shared region-specificity of 
paralogs was associated with their co-expression across 
regions and we classified gene families into two cat-
egories according to co-expression status. Homogene-
ous families were enriched in paralog pairs which were 
closely located on the genome in tandem duplication, 
probably due to the specific trend of SSD pairs to be 
duplicated in tandem. Indeed, these homogeneous fami-
lies were enriched in SSDs, especially in ySSDs, and were 
associated with a shared region-specificity.

Discussion
As far as we are aware, this study is the first to focus 
specifically on the spatial expression of paralogs and 
gene families between the different human CNS territo-
ries based on post-mortem human tissues analyzed by 
the GTEx consortium. Previous studies based on gene 
expression analysis between organs have already estab-
lished the important association between paralogs and 
tissue differentiation [10, 35]. We showed the contribu-
tion of paralogs to expression differences between CNS 
territories.

Paralogs are known to be more tissue-specific than 
other genes [10, 31, 36, 37]. Among paralogs, SSDs [15] 
and in particular ySSDs [35] seem to be more often tis-
sue-specific than other paralogs when comparing tissues 
from different organs. However, when considering the 
brain as a whole and comparing it with other organs, it 
has been found that WGDs tend to be enriched in brain-
specific genes compared to SSDs [15, 16, 31]. In order to 
obtain a complementary vision to these previous stud-
ies, we focused on the expression of paralogs considering 

Table 2 Enrichments in genes from homogeneously expressed families for the tested and reference gene groups

a Abbreviations for gene duplication categories: WGD (Whole‑Genome Duplication), SSD (Small‑Scale Duplication) and ySSD (younger SSD occuring after WGD 
events)
b Application of Chi‑squared tests (or of Fisher’s exact test when the Chi‑squared test could not be applied) with a corrected p‑value threshold = 1.67E‑02 (Bonferroni 
correction for 3 statistical tests)
c The odds ratio (> 1 or < 1) indicates the group (tested or non‑tested respectively) in which there is an enrichment
d The paralog reference group includes the genes belonging to WGD, SSD and WGD‑SSD categories and the paralogs without annotation
e Genes included into region‑specific families. Only genes specific to the major region are considered

Reference group Tested group for homogeneous 
family  expressiona

Percentage of homogeneous family genes 
in the tested group (%)

Chi‑squared test 
P‑valueb

Odds  ratioc

Paralogous  genesd SSD genes 3.3 2.777E−04* 1.59

ySSD genes 5.2 5.758E−10* 2.49

Paralogous  genesd Region‑specific  familiese 45 1.691E−69* 42.94
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only the regions that composed the human CNS. We 
observed that paralogs, especially ySSDs were more 
region-specific than other genes. In addition, we found 
that even wSSDs were enriched in region-specific genes 
compared to other paralogs of the same age (WGDs), 
thus suggesting that the region-specificity between 
brain regions is not only associated with the young age 
of duplication but also with the type of duplication (i.e. 
with SSD duplications). Our results, although apparently 
contradictory, do not question the known involvement 
of WGDs in brain-specific expression. Indeed, the genes 
specific to the brain as a whole may not be specific to a 
particular CNS region and conversely a gene specific to 
a given region within the brain may also be expressed in 
other organs. Moreover, the fact that an SSD gene tends 
to be more often specific to only one or just a few CNS 
anatomical regions than a WGD gene, implies that the 
average expression of SSD genes over the whole brain 
would be lower than the average expression of WGDs. 
Thus, this broad expression of WGDs within the brain 
regions facilitates the detection of their brain-specific 
expression when comparing several organs, while some 
ySSDs specific to the brain may not be detected.

Using multivariate linear models, we reported the 
major contribution of expression level and that of dupli-
cation status to region-specificity in CNS territories. 
Among paralogs, we found that the SSD duplication type 
explained also part of the region-specificity variance. 
Regarding the evolutionary time, low phyletic ages were 
also significantly associated with high region-specificity; 
a property potentially restricted to CNS regions. Beside 
this global effect of the duplication age, we observed that 
the highest region-specificity seemed to occur for young 
duplication events, around the separation of the Simians 
clade. However in order to clarify the limitations of our 
results, we must consider that our paralog annotations 
were generated in 2013 and that the gene expression val-
ues obtained from the GTEx consortium were produced 
from RNA-seq short-reads. These two elements mean 
that our population of ySSDs, especially very recent 
ones, is certainly underestimated and that the quanti-
fication of expression is probably not very reliable for a 
few of these genes. Indeed, short-read sequencing data 
being generally not able to accurately quantify duplicate 
genes with high sequence identity (> 90%; known as seg-
mental duplications), these genes are usually filtered out 
of genome-wide gene expression studies [11]. In recent 
years, advances in long-read RNA-seq technologies com-
bined with information from short-reads, have revealed 
new human-specific segmental duplications and more 
robustly quantified their level of expression despite their 
high sequence identity [38]. However, the precise quan-
tification by these approaches of a fairly large population 

of very recent SSDs across a collection of tissues is not 
yet accessible. Furthermore, based on our preliminary 
results on the tendency for ySSDs with very young phy-
letic ages to decrease in region-specificity compared to 
ySSD events occurring around the separation of the Sim-
ians clade, the observed enrichment of ySSDs in region-
specific genes is probably driven by the latter. Thus, it will 
be relevant to keep recent ySSDs and fairly older ySSDs 
in two distinct categories to study their region-specificity 
for future analyses.

We then studied the gene family level of organization 
using gene co-expression network analysis of paralogs 
across CNS regions. We showed that modules of co-
expressed genes were able to identify clusters of paralogs 
with the same region-specificity. The characterization of 
gene families according to the level of co-expression of 
their member genes has led to the identification of two 
categories of families: homogeneous families, which are 
composed of a majority of co-expressed genes, and heter-
ogeneous families. We observed that homogeneous fami-
lies were enriched in ySSD genes and tandem duplicate 
pairs, in agreement with a previous study showing that 
pairs of ySSD paralogous genes tend to be duplicated in 
tandem and co-expressed just after the duplication event 
[11]. A previous study established that when the two 
paralogs of an ySSD pair are tissue-specific, they tend to 
be specific to the same tissue more often than for other 
paralog pairs [35]. Similarly, regarding region-specificity 
in the CNS, we showed the high co-expression of ySSD 
pairs and the enrichment of co-expressed families in 
region-specific families, where the majority of genes were 
region-specific to the same region.

From the analysis of gene expression across human and 
mouse organs, Lan and Pritchard 2016 proposed a model 
for the retention of SSD duplicates appearing in mam-
mals. In this model, pairs of young paralogs are often 
highly co-expressed probably because tandem duplicates 
are co-regulated by shared regulatory regions. In addi-
tion, this model is consistent with the dosage-sharing 
hypothesis in which down regulation of the duplicates, 
to match expression of the ancestral gene, is the first step 
enabling the initial survival of young duplicates [11]. Our 
analyses of ySSDs expression features between CNS ter-
ritories seem to be concordant with this model, indeed 
ySSDs tend to be organized within small families of co-
expressed genes and also weakly expressed in concord-
ance with the sharing of the gene ancestral expression. 
Furthermore, our results in the CNS regions seem to 
confirm that, after the initially high co-expression of SSD 
paralogs just after their duplication, they become more 
region-specific and less co-expressed in part through 
chromosomal rearrangement, suggesting a long term 
survival by sub-/neofunctionalization [11].
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Conclusions
Our exploration of paralogs suggests that young SSDs 
are particularly involved in the specificities of expres-
sion of the different human CNS territories. This suggests 
the relevance to investigate paralog expression between 
the territories of the same organ. However, to determine 
whether or not the region-specific expression patterns of 
young SSDs are solely associated with the central nerv-
ous system regions, it will be interesting to explore their 
expression between anatomic regions of other complex 
organs.

Methods
Human genes, duplication events and families
A list of 21,731 human genes, with both their HGNC 
gene symbol and their Ensembl IDs (GRCh37, release 
59), was collected based on the work of Chen et al. [39]. 
Among these genes, 14,084 paralogs made up of 3692 
gene families, identified by TreeFam methodology [40], 
were obtained from Chen et al. [39]. These authors down-
loaded all gene families from the TreeFam v.8.0 data-
base, which identifies duplicates based on gene family 
evolution. Moreover, for each paralog, they represented 
the phyletic age of its last duplication event by the total 
branch length from the node indicating where the dupli-
cation event had happened on the species tree to the 
human leaf node, and they assigned the associated dupli-
cate [39, 41]. A second list of 20,415 genes was extracted 
from Singh et  al. 2014. This gene ID list was converted 
to HGNC gene symbols and intersected with the first 
list in order to annotate it (17,805 protein-coding genes 
in common). Thus, in the present study, we collected the 
duplication category for each paralog [27] (Singh et  al. 
2014). Singh et al. obtained WGD annotations from [42] 
and obtained their SSD annotations by running an all-
against-all BLASTp using human proteins [43]. Singh 
and co-workers defined genes as singletons if they were 
not classified as WGDs or SSDs and they obtained the 
duplication age for SSD genes from the Ensembl compara 
[44]. They classified paralogs into the following catego-
ries: WGD, SSD, ySSD (i.e. SSD with duplication event 
younger than WGD), oSSD (i.e. SSD with duplication 
event older than WGD) and wSSD (i.e. SSD with dupli-
cation date around the WGD events). There were 5390 
annotated paralogs originating from the WGD and 4889 
from SSD (2104 from ySSD, 1354 from oSSD and 1431 
from wSSD). Moreover, there were 2607 paralogs without 
annotations and 1198 paralogs annotated as both WGD 
and SSD (WGD-SSD). The WGD-SSD paralogs were not 
included into the WGD or the SSD duplication catego-
ries. However, the unannotated and WGD-SSD paralogs 
were both considered into the paralog group. We verified 

that these paralog duplication categories were consistent 
with the phyletic ages (duplication dates) collected from 
Chen et al. [39, 41] (Additional file 1: Fig. S4). The list of 
our paralogous gene pairs and families is given in the sup-
plementary table S1 (Additional file 2: Table S1). The evo-
lutionary annotation of paralogous genes is indicated in 
the supplementary table S2 (Additional file 2: Table S2). 
The list of singleton genes is given in the supplementary 
table S12 (Additional file 2: Table S12). Furthermore, for 
the analysis of the duplicate pairs, we considered only 
the 3050 pairs which appeared twice in our paralog list 
(i.e. where the first paralog is associated with the second 
paralog and vice versa and where the duplication cat-
egory annotation is the same for both paralogs); genomic 
distances between duplicate pairs were obtained from 
Ensembl (GRCh37/90).

Gene expression profiles in CNS regions
We obtained gene counts and RPKM (Reads Per Kilo-
base Million) values for 63 to 125 individuals (1259 post-
mortem samples—RNA integrity > 6) distributed over 13 
CNS regions (cerebellum, cerebellar hemisphere, cortex, 
frontal cortex, anterior cingulate cortex, hypothalamus, 
hippocampus, spinal cord, amygdala, putamen, caudate, 
nucleus accumbens and substantia nigra) from the GTEx 
consortium data release 6 (GRCh37) [24]. The CNS 
regions associated with each GTEx patient sample used 
in our study is indicated in the supplementary table S11 
(Additional file 2: Table S11). These gene expression data, 
calculated by GTEx took into account only uniquely 
mapped reads (https:// gtexp ortal. org). We filtered out 
low-information content genes by removing genes with a 
null variance across samples and weakly expressed genes 
with mean expression per region lower than 0.1 RPKM 
for all regions. We thus kept for analyses a total 16,427 
genes distributed across 10,335 paralogs (5114 WGD, 
3719 SSD, 1192 ySSD, 1260 wSSD and 1267 oSSD, 966 
WGD-SSD and 536 without annotations) grouped in 
3487 families and 6092 singletons. It should be noted that 
all our analyses were performed on this list of expressed 
genes only. Gene RPKM values were log-transformed 
(log2 (RPKM + 1)) and adjusted by linear regression for 
batch effects and various biological effects (sequencing 
platform, age, gender and the first 3 principal compo-
nents of genetic data illustrating the population struc-
ture given by the GTEx Consortium; the intercept of the 
regression was not removed from the residuals in order 
to keep the mean differences between genes (https:// 
www. cnrgh. fr/ genod ata/ BRAIN_ paral og)). These filtered, 
log-transformed and adjusted RPKM values were used 
as input for differential analyses between CNS regions, 
as well as for gene co-expression network inference and 
for region-specificity analysis. Moreover, gene expression 

https://gtexportal.org
https://www.cnrgh.fr/genodata/BRAIN_paralog
https://www.cnrgh.fr/genodata/BRAIN_paralog
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data for regions considered to anatomically overlap 
were merged by calculating the average expression value 
across related regions prior to the expression specific-
ity analysis. Therefore, from an initial list of 13 regions, 
we gathered samples into a shorter list of 7 CNS regions: 
cerebellum (cerebellum and cerebellar hemisphere), cor-
tex (cortex, frontal cortex and anterior cingulate cortex), 
basal ganglia (putamen, nucleus accumbens and caudate), 
amygdala-hippocampus, hypothalamus, spinal cord and 
substantia nigra.

Differential gene expression analysis
Genes with low-information content were removed 
before differential gene expression (DGE) analysis. DGE 
analysis was performed by DESeq2 [45] on count data 
for each pair of CNS regions, with the “median ratio” 
between-sample normalization and using batch and bio-
logical effects as covariates. For each region pair, we then 
corrected gene p-values for the number of tested genes 
using FDR [46] and obtained a list of significantly dif-
ferentially expressed genes (DEGs) (FDR < 0.05). Finally, 
we considered only the DEGs with an absolute log2 fold-
change greater than 0.5.

CNS region‑specificity calculation
Tau score calculation. To identify genes expressed in spe-
cific regions of the CNS, we used the τ score that was 
proposed to estimate the degree of tissue-specificity of 
each gene [25]:

In this equation, xi is the mean expression of a given 
gene in region i and n is the number of different regions. 
τ varies from 0 to 1 where 0 indicates that the gene is 
broadly expressed and 1 that the gene is tissue-specific. 
For τ computation, genes must have a positive mean of 
expression in every CNS region. Although we log-nor-
malized expression data with log2(RPKM + 1) leading to 
positive expression values, the correction for batch and 
some biological effects induced some negative values in 
gene mean expression. We pooled expression data gen-
erated by GTEx for the 13 regions into the list of 7 non-
overlapping CNS regions so that the τ score would not 
decrease artificially for genes specific to several close 
sub-regions.

(1)τ =

∑
n

i=1

(
1− X̂i

)

n− 1
; X̂i =

xi

max
1≤i≤n

(xi)

Tau score threshold defined by permutations
The τ score was computed for each gene and for the 7 
CNS regions. We then plotted the τ score distribution 
obtained from all protein coding genes (Fig. 1a). How-
ever, there is no general τ score threshold at which a 
gene is considered to be region-specific. To define a 
region-specificity threshold, we implemented a sta-
tistical method based on permutations. We applied 
1000 permutations on the region labels assigned to the 
samples to shuffle the correspondence between sam-
ples and regions. For each permutation, τ scores were 
recomputed for each gene. The distribution of the 
1000 X 16,427 τ scores obtained from the permuta-
tions is given in Fig. 1. For each gene and its original τ 
score, a p-value was then calculated as the proportion 
of permutation-based τ scores higher than the origi-
nal τ score. The Benjamini–Hochberg correction for 
the number of genes tested was applied to all p-values. 
Genes with a corrected p-value lower than 0.01 were 
declared CNS region-specific, which corresponded to 
a τ score threshold of 0.525 (Fig.  1a). Visualization of 
gene profiles across brain regions at different windows 
of the τ score showed region-specificity beyond the τ 
score threshold of 0.525. We visualized expression val-
ues at different windows of Tau scores and we observed 
better region-specific profiles over 0.5 (Additional 
file 1: Fig. S2). Therefore, for each region-specific gene, 
we considered that the CNS region with the highest 
expression value to be the specific region.

Inference of gene co‑expression networks
The gene network inference was carried out using 
the Weighted Gene Correlation Network Analysis 
(WGCNA) methodology [28], which generates co-
expression networks and identifies modules (groups) 
of co-expressed genes. We applied the WGCNA tool 
only to paralogous gene expression data (RPKM) 
across the GTEx samples of the 13 CNS regions. Genes 
were grouped into modules according to their expres-
sion profile similarity. The module named “grey”, 
which grouped genes that were not considered as co-
expressed by WGCNA, was composed of genes with 
very low variability across all samples. Since we had 
removed the genes with no variance across region sam-
ples and those which were weakly expressed before 
performing the WGCNA analysis, the grey module 
was small in size (104 genes). Furthermore, if this fil-
tering had not been performed, some of the genes with 
an overall weak expression might have been integrated 
into co-expression modules, thus creating a bias. One 
of our goals was to compare gene families to co-expres-
sion modules. Given that 47% of gene families have a 
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size equal to 2, we optimized WGCNA parameters to 
obtain small highly co-expressed modules (Additional 
file 1: Result S3).

Homogeneous and heterogeneous families
Definition
A gene family was defined as homogeneous if the major-
ity, more than 60%, of its member genes were included in 
the same co-expression module. It should be noted that 
the total size of gene families was used to compute this 
percentage, even if some member genes were not in the 
list of expressed paralogs. Gene families which did not 
respect this homogeneity rule, i.e. those with member 
genes scattered over different co-expression modules, 
were defined as heterogeneous.

Assessment of the significance of the number 
of homogeneous families
Starting from the paralog modules obtained with 
WGCNA, we used a permutation procedure (by permut-
ing 1000 times the module labels of paralogs and count-
ing the number of falsely homogeneous families for each 
permutation) and were able to conclude that the number 
of homogeneous families was significantly large, since for 
each permutation the number of falsely homogeneous 
families was lower than the number that we obtained, 
leading to an empirical p-value inferior to  10–3.
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