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ABSTRACT 

We recently adapted the Auxiliary DFT framework as implemented in deMon2k to the simulation of 

time-dependent problems via the Runge and Gross equations. Our implementation of the so-called 

Real-Time-Time-Dependent ADFT (RT-TD-ADFT) fully benefits from the algorithms available in 

deMon2k to carry out variational density fitting, notably the MINRES algorithm recently proposed for 

self-consistent-field calculations. We test here MINRES for the first time in the context of RT-TD-ADFT. 

We report extensive benchmarks calculations to assess the reliability of the ADFT framework. These 

encompass the construction of absorption spectra in the gas phase and in solvent, the calculation of 

electronic stopping power curves, the irradiation of zeolites by swift ions and the investigation of 

charge migrations with attosecond time resolution. All our results are very encouraging. We show that 

even small auxiliary basis sets are sufficient to obtain results almost undisguisable from those obtained 

with large and flexible auxiliary bases. Overall, we establish the reliability of RT-TD-ADFT to simulate 

electronics dynamics in large or very large molecular systems.  
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1. Introduction 

Real-Time Dependent Density Functional theory has emerged in the last two decades as a powerful 

approach to simulate electron dynamics within molecules, supramolecular assemblies or solids[1, 2]. 

The method is rooted in the Runge and Gross theorem[3]. At variance to Linear-Response TD-DFT 

which is a well-established method relying on perturbation theory to simulate absorption spectra of 

molecules[4], RT-TD-DFT relies on the numerical propagation of the electronic equations-of-motion[5, 

6]. It is not limited in principle to perturbations falling into the linear regime. RT-TD-DFT is available in 

many programs relying either on grid-based[1, 2], on plane waves[7, 8] or on localized basis sets[9–12] 

with compelling applications to interpret experimental electronic photoelectron spectra, attosecond 

spectroscopy experiments and pulse radiolysis results, to cite but a few examples[13].  

To speed-up RT-TD-DFT simulations, one can resort to well-known methods borrowed from stationary 

DFT calculations, notably the variational fitting of the Coulomb potential (density fitting, DF) or the 

Resolution of the Identity (RI). Note that density fitting relies on the variational fitting of the Coulomb 

potential, a feature that departs from the Resolution of the Identity approach (see [15] for a 

comparative discussion between the two approaches). A RT-TD-DF-DFT implementation was reported 

in the NWChem code [10, 14] with promising results, while a RT-TD-RI-DFT scheme was reported 

recently, again showing accuracy of the methodology[11]. We devised on our side an implementation 

of RT-TD-DFT within the framework of Auxiliary DFT (ADFT) as implemented in deMon2k[16, 17]. In 

ADFT, auxiliary densities fitted to minimize Coulomb repulsion error are also used in the evaluation of 

local exchange-correlation energy. The ADFT terminology stems from the fact that the Kohn-Sham 

potential doesn’t depend explicitly on the Kohn-Sham density, but only on auxiliary density[18].  ADFT 

speedss-up the calculation of electronic integrals and improve scaling with system size[15, 19, 20]. Our 

implementation of RT-TD-ADFT in deMon2k takes advantage of the most recent algorithmic 

developments of the code, notably the double-asymptotic integral[21] scheme method to evaluate 

electronic integrals or the numerical solvers to carry out variational density fitting[22, 23]. These 

features, combined with an efficient implementation of RT-TD-DFT equations[17], enabled us to tackle 

electron dynamics simulations in large molecular systems comprised of up to a few thousands of 

electrons[24].  

On the other hand, we have, to our point of view, insufficiently investigated the conditions of reliability 

of RT-TD-ADFT simulations, in particular the dependence on the quality of the auxiliary basis set. The 

objective of the present article is to address this point. We will consider the calculation of absorption 

spectra of molecules in the gas phase and in presence of solvent; the calculation of electronic stopping 

power in a lithium cluster; the deposition of energy by a 1MeV protons within a zeolite, and finally 

charge migrations within an ionized peptide.  
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2. Methods 

2.1. Real-Time Time-Dependent ADFT 

The simulation of electron dynamics in the framework of Density Functional Theory relies on the Runge 

and Gross theorem[3] that provides the equations-of-motion for the Kohn-Sham molecular orbitals 𝜓𝑖 

(MO): 

𝑖
𝜕𝜓𝑖(𝒓, 𝑡)

𝜕𝑡
= 𝐻[𝜌(𝒓, 𝑡)]𝜓𝑖(𝒓, 𝑡) 

(1) 

 

or, alternatively, if put under the form of a Liouville von-Neumann equation[9, 25]: 

𝑖
𝜕𝑃(𝑡)

𝜕𝑡
= [𝐻(𝑡), 𝑃(𝑡)] 

(2) 

 

In these equations 𝐻 is the Kohn-Sham Hamiltonian that functionally depends on the time-dependent 

electron density 𝜌. 𝑃 is the density matrix. In so-called real-time propagation of the electron density 

we propagate Eq. (1-2) by discretizing time into small time step.  We consider in this work the second 

order Magnus operator[26]: 

𝑃(𝑡) = 𝑈(𝑡, 𝑡0)𝑃(𝑡0)𝑈†(𝑡, 𝑡0) (3) 

𝑈(𝑡, 𝑡0) = exp [−𝑖𝐻 (𝑡 +
Δ𝑡

2
) . Δ𝑡] 

(4) 

 

We express in deMon2k the Kohn-Sham MO as Linear Combination of Gaussian Type Orbitals (LC-GTO). 

They permit to express the electron density as a sum of products of GTO. 

𝜌(𝒓, 𝑡) = ∑ 𝑃𝜇𝜐(𝑡)𝜇(𝒓)𝜈(𝐫)

𝑁𝐴𝑂

𝜇,𝜈

 

(5) 

We use Greek letters to denote and index GTOs. The elements of the density matrix are evaluated 

from the complex Kohn-Sham orbitals coefficients. For a closed-shell system we have: 

𝑃𝜇𝜈 =  2 ∑ 𝑐𝜇𝑖
∗  

𝑜𝑐𝑐

𝑖

𝑐𝜈𝑖  
(6) 

 

Note that because of the imaginary unit entering eq. 1, the MO coefficients are complex numbers in 

RT-TD-DFT propagations. We now introduce the RT-TD Density-Fitting DFT (RT-TD-DF-DFT) and the RT-
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TD Auxiliary DFT (RT-TD-ADFT) methods. In RT-TD-DF-DFT, a variationally fitted density is introduced 

to evaluate the classical repulsion term among electrons [15, 20]. In deMon2k, the fitted density is 

expressed as linear combination of Hermite Gaussian functions,  �̃�(𝒓, 𝑡) = ∑ 𝑥𝑘(𝑡)𝑘(𝒓)𝑘 . The 𝑥𝑘 are 

the fitting coefficients, which are real quantities. The DF-DFT energy and the Kohn-Sham potential 

read[15]: 

𝐸DF−DFT = ∑ 𝑃𝜇𝜈

𝜇,𝜈

𝐻𝜇𝜈
𝑐𝑜𝑟𝑒 +  ∑ ∑ 𝑃𝜇𝜈〈𝜇𝜈‖�̅�〉 𝑥�̅�  

�̅�𝜇,𝜈

−
1

2
 ∑ 𝑥�̅�𝑥𝑙 ̅〈�̅�‖𝑙〉̅

�̅�,𝑙 ̅

+  𝐸𝑥𝑐[𝜌]  
(7) 

𝐾μν =  𝐻𝜇𝜈
𝑐𝑜𝑟𝑒 + ∑  〈𝜇𝜈‖�̅�〉 

�̅�

+ (
𝜕𝐸𝑥𝑐[𝜌]

𝜕𝑃𝜇𝜈
) 

(8) 

 

In these expressions, 𝐻𝜇𝜈
𝑐𝑜𝑟𝑒 is a matrix element of the core Hamiltonian, collecting electronic kinetic 

energy and constant external potential. 𝐸𝑥𝑐[𝜌] is the XC energy, which has a functional dependence 

on 𝜌. The || sign denotes the Coulomb operator. We can further use  �̃�  to evaluate the exchange and 

correlation (XC) contributions leading to the so-called ADFT formalism [18, 19]. This simplification 

drastically reduces the computational cost of the calculation. Indeed, 𝐸𝑥𝑐 and the associated potential 

are evaluated by numerical integration over Lebedev grids centered on atoms[27]. The grid work is 

greatly simplified in the case of ADFT. DeMon2k also offers the possibility to fit the Fock potential 

giving access to hybrid or range separated XC functionals at low computational cost[33, 34]. We are 

currently adapting this methodology to RT-TD-ADFT simulations. In the present work, we will only 

consider LDA (Local Density Approximation) or GGA (Generalized Gradient Approximation) XC 

functionals. 

Following Dunlap[15, 28], the fitting coefficients (𝒙, bold variables denote vectors) are obtained by 

minimization of the self-interaction-energy 𝜀2 = 〈𝜌 − �̃�‖𝜌 − �̃�〉. Substituting the definition of the 

Kohn-Sham and fitted density into this expression leads to a set the inhomogeneous linear equation 

system, 

𝑮 𝒙 = 𝑱 , (9) 

 𝑮 and 𝑱 are the Coulomb matrix and vector, respectively, given by 

𝑮 =   (

〈1̅‖1̅〉 〈1̅‖2̅〉 … 〈1̅‖�̅�〉

〈2̅‖1̅〉 〈2̅‖2̅〉 … 〈2̅‖�̅�〉
⋮

〈�̅�‖1̅〉
⋮

〈�̅�‖2̅〉
⋱
…

⋮
〈�̅�‖�̅�〉

)    and   𝑱 =   (

〈𝜌‖1̅〉

〈𝜌‖2̅〉
⋮

〈𝜌‖�̅�〉

) . 

 

(10) 
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The number of rows (or columns) of the 𝑮 matrix is the number of auxiliary functions. There are usually 

three to four times that of the number of atomic orbitals. Three methodologies are available in 

deMon2k to solve this set of inhomogeneous equations. In the analytical method, one inverses the 𝑮 

matrix. This operation becomes cumbersome for very large matrices and two alternative numerical 

solvers are available. The first one relies on the BFGS (Broyden-Fletcher-Goldfarb-Shanno) quasi-

Newton approach[29–31]. This approach assumes the 𝑮 matrix to be positive-definite. In this respect, 

a truncated eigenvalue decomposition (TED) is performed to ensure positive definiteness[23]. Also, for 

large matrices, involving ten thousands of auxiliary functions, this initialization step may become 

impossible due to the cubic scaling coming from the matrix diagonalization, even with modern high 

performance computers (HPC). Moreover, the use of auxiliary functions with small exponents and high 

angular momentum, compromises even more the positive definiteness of the matrix which might not 

be guaranteed leading to numerical instabilities, notably in RT-TD-DFT propagations. To overcome 

these difficulties a MINRES[22, 32]  scheme relying on a preconditioned Krylov subspace method has 

been recently proposed. The MINRES iterative algorithm permits to deal with systems encompassing 

more than one hundred thousand auxiliary functions with reasonable timings. To this end, the MINRES 

algorithm avoids the explicit diagonalization of the 𝑮  matrix and solves Eq. 9 iteratively using matrix-

vector products. Also, because the matrix inversion is not needed, it reduces the RAM (Random Access 

Memory) usage and hard disk storage used for the calculations. It is therefore promising for RT-TD-

ADFT simulations of large systems with thousands of atoms. The introduction of MINRES in deMon2k 

is recent and we took the opportunity of this article to assess its use in RT-TD-ADFT.  

2.2. Performance and stability of RT-TD-ADFT simulations 

Unless otherwise stated, we used the deMon2k developer version 6.1.6[16] to produce all the results 

presented in this article. The source code is available on request to the authors. We used the R project 

for statistical computing[35] to analyze and produce the data (Figures and Tables) presented in this 

article.  

deMon2k is equipped with an algorithm to automatically generate an auxiliary basis set from the 

atomic orbital basis set. Auxiliary functions are grouped in sets containing s, spd or spdfg Hermite 

Gaussian functions (Hermite Type Orbitals HTO)[36]. In each set the functions share the same 

exponents. The notation GEN-An (𝑛 = 1, 2, 3 …) means an auxiliary basis set containing only s and spd 

while the GEN-An* notation the further addition of f and g functions. The number of exponents 𝑁 

(auxiliary function sets) is determined by the user-defined parameter 𝑛 : 

𝑁 = 𝐼𝑛𝑡 (
ln(𝛽𝑚𝑎𝑥 𝛽𝑚𝑖𝑛⁄ )

ln(6 − 𝑛)
+ 0.5) 

(11) 
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where 𝛽𝑚𝑎𝑥 and 𝛽𝑚𝑖𝑛 are respectively the largest and smallest exponents of the primitive in the atomic 

orbital basis set. The larger the 𝑛 parameter, the larger the number of exponents. In the following we 

will consider the GEN-A2, GEN-A2*, GEN-A3 and GEN-A3* auxiliary basis sets. In some instance we 

shall consider an intermediate GEN-A2* auxiliary basis constructed from GEN-A2* but from which we 

removed the g functions. GEN-A2 * only incorporates s, spd and spdf sets.  

To test the performances of RT-TD-ADFT with MINES, we consider as in Ref [22] a series of fullerenes 

and of water clusters. Simulations have been carried out on the Jean Zay supercomputer hosted at the 

IDRIS center using 20 nodes. All simulations have been carried out with the PBE[37] XC energy 

functional with a numerical integration grid of ultrafine accuracy (10-7Ha). We have used the DZVP-

GGA AO basis set and the GEN-A2* auxiliary basis. As seen on Figure 1, the largest systems involve 

more than 70, 000 HTO.  Electronic repulsion integrals have been calculated with the so-called direct 

scheme (ie. the integrals are not stored in RAM, but are recalculated whenever they are needed) and 

a multipole expansion for long range integrals[21]. The three main computational demanding tasks are 

plotted on the graph. The calculation of the Kohn-Sham potential is remarkably efficient even with the 

largest systems, as well as the basis transformations. The most time-consuming part remains the 

calculation of the exponential of the Kohn-Sham matrix involved in the propagation of the density. This 

task is achieved here using the Scalapack library[38]. Further improvement of the code could be 

obtained by using for instance GPUs, but the results shown in Figure 1 already illustrate the capability 

of RT-TD-ADFT simulations on very large molecular systems. 
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Figure 1: Computational performances of RT-TD-ADFT simulations with MINRES. Wall clock time to conduct 1 fs of RT-TD-
ADFT simulation with a 1 as time step. 

 

To assess the stability of RT-TD-ADFT simulations depending on methodology employed to conduct 

variational density fitting, we consider a small peptide embedded within a water droplet. We consider 

two molecular systems. In the first one, the peptide is surrounded by its first hydration layer water, 

while in the second one a few solvation layers molecules are included. The first and second systems 

respectively encompass 105 and 465 atoms, for 404 and 1 604 electrons. We first converged the Self-

Consistent-Field energy minimization with convergence criteria of 10-10 and 10-7 Ha on the MinMax[39] 

SCF energy and on the Density Fitting error respectively. We used a combination DZVP-GGA[40] and 

GEN-A2*[41] atomic orbital and auxiliary basis sets. The small and large systems respectively 

encompass on one hand 1 029 and 4 029 atomic orbitals and, on the on the hand, 5 205 and 22 345 

auxiliary functions. The large system is large enough but remains amenable to simulations with all 

three density fitting methodologies. After the SCF, an electric field of strength 0.001 a. u. was applied 
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in the x, y and z direction in the first step and we propagated the electronic dynamics for 200 or 100 

as. We used an iterative second order Magnus propagation with same convergence criteria as in the 

SCF, using a timestep of 1 as.  After application of the pulse, the electronic system was immersed in a 

constant potential and its energy should be constant. This is the property we probe here. Table 1 

reports the maximum deviation to the mean energy, in absolute value, during the simulation, as well 

as the time spent to run the simulations. In all cases the simulations were stable with strict 

conservation of the total number of electrons. 

The analytical density fitting produces the most stable propagations with an energy deviation below 

5.6 10-9  and 3.1 10-8 Ha for the small and large systems respectively. This is in practical applications a 

good energy conservation that normally ensures reliable propagations. Note that even further better 

energy stability could be obtained by tightening other simulations parameters such as the accuracy of 

the XC integration grid. But for the present discussion the results provided by the analytical density 

fitting will serve as reference. The BFGS-QN numerical solver based on the SVD decomposition of the 

𝑮 matrix provides very similar results to the analytical solver. The computational advantage of the 

BFGS-QN appears for the larger system with respect to the analytical algorithm. MINRES with the 

standard SCF convergence criteria (10-8) produces slightly less stable simulations, with an energy 

conservation around 10-6 Ha. However, when tightening the convergence criteria by a factor of one 

hundred or so, the energy is conserved up to 10-7 Ha. The computational cost significantly increases as 

one tighten MINRES convergence as more cycles are needed to reach convergence. Tolerance of 10-10 

seems to be a good compromise. In this case, RT-TD-ADFT simulations with MINRES are slightly costlier 

and slightly less stable than those performed with the BFGS-QN numerical solver. However, as outlined 

above, MINRES permits to address much larger systems than those accessible by the other methods. 

Therefore, MINRES is extremely valuable to conduct RT-TD-ADFT simulations of large molecular 

systems.  

 Analytical SVD  MINRES-TED 

  10-6 10-7  10-8 10-9 10-10 10-11 10-12 

5905 HTO          

Time (s) 3060 3221 -a  3191 3345 3593 4355 -a 

E. Stability (Ha) 5.6 10-9 5.7 10-9 -a  9.1 10-7 1.9 10-7 3.8 10-7 8.2 10-8 -a 

22 345 HTO          

Time (s) 27 168 14 579 14 492  14 626 15 046 20 083 -a 26 807 

E. Stability (Ha) 3.1 10-8 2.9 10-8 2.9 10-8  3.9 10-6 4.0 10-7 2.5 10-7 -a 1.3 10-7 

Table 1: Energy stability afforded by the analytical and numerical methods available in deMon2k to carry out density fitting 
of the Coulomb potential. a. not calculated. 
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3. Results 

In this section we consider various applications of RT-TD-ADFT and we systematically investigate the 

reliability of density fitting as a function of the auxiliary basis sets.  

3.1. Absorption spectra of coumarine in the gas phase 

We calculate here the absorption spectrum of coumarin in the gas phase. The geometry was 

preliminary optimized at the DFT level. The principle of the simulation is the following. First we 

optimized the electron density with convergence criteria of 10-10 and 10-7 Ha on the MinMax and 

density fitting error respectively. We used an adaptive grid of ultrafine accuracy to integrate the XC 

contributions, ensuring an accuracy of 10-7 Ha on the diagonal elements of the XC potential matrix. We 

used the PBE functional[37]. Real-time simulations were launched from the SCF solution with 

application of an electric field kick in either the x, y or z directions. This infinitely narrow electric kick 

populates all the electronic spectrum and the resulting variations of the molecular dipole moment 

encodes the energy position of the excited states. The field strength was set to 0.005 a.u. The 

simulations were run for 10 fs with the predictor-corrector second-order Magnus propagator and a 

time step of 1 as. To simulate the electron spectrum, we Fourier transformed the dipole moment that 

was calculated every 1 as. A damping exponential function with a characteristic decay of 4.84 fs was 

applied on the dipole moment in the post-treatment.  

Four auxiliary basis sets have been considered, always in combination with the TZVP atomic orbital 

basis set. These are GEN-A2, GEN-A2*, GEN-A3 and finally GEN-A2*. They respectively include 508, 

1166, 635 and 836 auxiliary functions. The upper panel of Figure 2 addresses the convergence of RT-

TD-ADFT absorption spectra as a function of the quality of the auxiliary basis set. We shall take GEN-

A2* as reference at it is the richest and most flexible auxiliary basis set. Globally the four curves are 

extremely similar with extrema located at almost the same wavelengths, indicating a weak 

dependence on the choice of the auxiliary basis set. The red curve (GEN-A3) is the one that present 

more pronounced deviations with respect to the green one (GEN-A2*). The deviations remain modest 

though. Remind that GEN-A3 permits less angular flexibility as it does not include f or g auxiliary 

functions. On the other hand, the intermediate GEN-A2*, that is similar to the GEN-A2* but deprived 

from its g auxiliary functions, is also quite satisfactory.  

The lower panel compares spectra obtained by the RT-TD-DF-DFT (dashed-dotted lines) and RT-TD-

ADFT (plain lines) approaches for each of the auxiliary basis sets. The agreement between both 

approaches is remarkable in all cases. Only the spectra obtained with GEN-A3 are somehow a little bit 

less convincing. These results show that it is safe to use the ADFT formalism to evaluate absorption 

spectra of organic molecules and that even the GEN-A2 auxiliary basis set has already provided spectra 
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extremely close to the computationally more expensive GEN-A2*. We do not have the possibility with 

deMon2k to perform RT-TD-DFT with four-centers-electron-repulsion-integrals, i.e. without density 

fitting, but DF-DFT with GEN-A2* leads in general to results very close to pure DFT calculations[18]. We 

may therefore conclude that RT-TD-ADFT is an excellent approximation to four-centers RT-TD-DFT 

calculations. In terms of computational efficiency, the reduction of the time afforded by the ADFT 

formalism over the DF-DFT is of the order of 7, 5, 5 and 4 with the GEN-A2, GEN-A2*, GEN-A3 and 

finally GEN-A2* auxiliary basis sets for the calculation of XC contributions. Overall, the cost of RT-TD-

ADFT propagation, including other tasks, is roughly divided by a factor of 2.  

 

 

Figure 2: top, absorption spectra obtained from RT-TD-ADFT simulations with GEN-A2 (black), GEN-A2* (green), GEN-A3 (red) 

and GEN-A2* (blue). Bottom, spectra obtained with RT-TD-DF-DFT (dashed-dotted lines) and RT-TD-ADFT (plain lines) 
approaches with different auxiliary basis sets (same color code as top graph). Each pair of curves have been vertically shifted 
to improve clarity.  
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3.2 Absorption spectra of uracil in water 

We consider here the absorption spectra of the deprotonated uridine monophosphate (USP) in water. 

We follow a hybrid QM/MM approach to account for the water environment. The geometry was 

extracted from a previous study in which we reported QM/MM MD simulation of this system[42]. The 

QM system encompasses the deprotonated nucleobase that holds a total charge of -2. The QM region 

is placed at the center of a 33 Å radius droplet of water molecules. We have considered the TZVP basis 

set and four independent auxiliary function sets, namely GEN-A2, GEN-A2*, GEN-A3 and GEN-A3*. Like 

for the previous section we consider both the RT-TD-DF-DFT and RT-TD-ADFT methods. Simulations 

have been carried out for 10 fs with the PBE[37] XC energy functional. The electronic spectra are 

displayed in Figure 3. The dependence of the calculated spectra (Left graph) on the auxiliary basis is 

very weak. The graph on the right-hand-side of the Figure 2 further shows that no noticeable 

differences can be detected when using the fitted density in the calculation of XC contributions. Overall 

the conclusions are the same as in the previous section, namely that the use of the ADFT framework is 

safe for the calculation of absorption spectra by RT-TD-DFT simulations, together with a very weak 

auxiliary basis set dependence.   

  

Figure 3: QM/MM absorption spectra of deprotonated uridine monophosphate in water. Left, RT-TD-ADFT spectra with four 
auxiliary basis sets (GEN-A2 in black, GEN-A2* in green, GEN-A3 in red and Gen-A3* in blue). Right, comparison between RT-
TD-DF-ADFT (dashed-dotted lines) and RT-TD-ADFT (plain lines) approaches with the four sets of auxiliary functions. For clarity 
each pair of colored curves has been vertically shifted.  

 

3.3 Stopping power of proton in aluminum 

We calculate the electronic stopping power curve of proton on a lithium cluster to test the 

performance of ADFT. The geometry of the cluster, consisting of 62 lithium atoms, has been taken 

from Maliyov et al., and used without further optimization[43]. Following the conclusion of the 

authors, we have used two sets of AO basis sets, namely cc-pVTZ for the 18 atoms close to the path of 

the proton, and cc-pVDZ for the rest of the atoms. Similarly, we have performed the calculation with 
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GEN-A2, GEN-A2*, GEN-A3, and GEN-A3* auxiliary functions for both RT-TD-DF-DFT and RT-TD-ADFT 

frameworks. The criteria for the grid was set to 10-8 Ha to ensure accuracy and stability during the 

following dynamics step. The SCF and CDF criteria have been set to 10-9 Ha and 5.10-7 Ha, respectively. 

Then, the real time simulation was performed for 500 to 6400 fs, depending on the kinetic energy of 

the projectile, with the predictor corrector second-order Magnus propagator and a time-step of 1 as. 

The stopping power of the cluster has been calculated as the average of deposited energy with respect 

to the distance travelled by the projectile within the system (dE/dx). For our current objective, the 

electronic stopping power has been calculated from one trajectory as a function of the kinetic energy 

of proton (0.005, 0.025, 0.05, 0.1, 0.5, and 1.0 MeV) for each of the auxiliary function.  

The electronic stopping power curves of lithium cluster calculated with RT-TD-ADFT have been 

obtained with the four auxiliary basis sets. They include 2 746, 6 620, 3 428, and 8 636 auxiliary 

functions respectively. The curves obtained for each of the auxiliary functions are shown to be 

overlapping with one another, as seen in Figure 4 (top left). As such in Figure 4  (top right), we show 

the energy difference between the stopping power curves of each set with the GEN-A3* function, 

which supposedly is the largest auxiliary sets in the series. The difference is in the scale of 10-4 a.u., 

which clearly illustrates the insensitivity of the electronic stopping power to the auxiliary functions 

used. This has also been shown in terms of the energy deposition (dE/dt) at maximum deposition at 

0.025 MeV in Figure 4 (left). Similarly, GEN-A2 auxiliary basis set performs remarkably well in this 

system.  

Similarly, the electronic stopping power curves calculated with RT-TD-DF-DFT framework for each of 

the auxiliary functions are overlapping, as seen in Figure 3 (bottom left), with the difference with GEN-

A3* function is also in the range of 10-4 Ha. (Figure 3 bottom right). As we compare the electronic 

stopping power curve obtained with both frameworks, they are remarkably similar with differences in 

the scale of 10-4 Ha/bohr as well. Moreover, it is worth mentioning that the RT-TD-DF-DFT framework 

takes around 3 to 4 times as long for the calculation. Therefore, the performance of RT-TD-ADFT has 

significantly cut the computational cost, giving access to calculation for larger systems. 
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Figure 4: (top-left) The stopping power of proton in lithium as a function of the kinetic energy of the projectile calculated with 
RT-TD-ADFT (top-right) The difference between the stopping power obtained with the GEN-A2, GEN-A2*, and GEN-A3 with G-
EN-A3* as the reference. Bottom, same as Top for RT-TD-DF-DFT simulations. 
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Figure 5: The energy deposition calculated with the series of auxiliary functions at RT-TD-ADFT (left) and RT-TD-DF-DFT (right) 
as the projectile of 0.025 MeV travel through the lithium cluster. For clarity, the curves have been shifted with respect to the 
x-axis. 

 

3.4 Charge migrations within a zeolite after irradiation by 1 MeV proton 

RT-TD-DFT simulation is a method of choice to investigate ultrafast electron dynamics following a 

perturbation by a laser field or the collision with high speed charged particles. The performances of 

RT-TD-ADFT permit for instance to investigate the deposition of energy within large molecular 

systems[24]. We consider in this example irradiation of a zeolite by a 1 MeV proton. The system is 

composed of 483 atoms (126 Si, 287 O, 70 H) for a total of 4 130 electrons. After convergence of the 

SCF procedure, we have placed a proton 50 Å away from the center of mass of the zeolite and have 

launched RT-TD-ADFT simulations. The projectile has a fixed propagation line (along the x-axis), and 

constant speed. We illustrate in Figure 6 the collision conditions. At every time step the position of the 

projectile is updated. We have chosen the PBE XC energy functional with the DZVP-GGA AO basis set. 

The XC contribution was evaluated with a grid of high accuracy (ensuring an accuracy of 5.108 Ha on 

the diagonal elements of the XC potential matrix). We have propagated the RT-TD-ADFT simulations 

for 1 fs with the predictor-corrector second order Magnus scheme and a Taylor formula to calculate 

the propagation matrix. We consider four auxiliary basis sets: GEN-A2 on all atoms (BS1), GEN-A2 on 

O and H atoms and GEN-A2* on Si (BS2), GEN-A3 on all atoms (BS3), and finally, GEN-A2* (BS4) on all 

atoms. Simulations with BS1, BS2, BS3 and BS4 respectively involve 15 708, 27 426, 20 321 and 31 339 

auxiliary functions. 
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Figure 6: irradiation of a zeolite by a 1 MeV proton. Color code, Si, O and H in yellow, red and white respectively. The two 
pictures correspond to a top-view and a side view of the zeolite. 

Figure 7 depicts the profile of energy deposition upon collision. The latter takes place 250 as after the 

beginning of the simulation. The upper panel deals with the RT-TD-ADFT simulation with the largest 

auxiliary basis set, that we consider here as our reference calculation.  Approximately 25 eV are 

deposited in the electron cloud at the end of the collisional process. This very large number is typical 

of irradiation by charged particles. The graph depicted on the lower panel shows the difference of 

deposited energy obtained with the other auxiliary basis sets with respect to BS4. We see that the 

differences are very small, i.e. two orders of magnitude smaller than the deposited energy. It is worth 

mentioning at this stage that the total simulation time amounted to 1370, 6912, 3755 and 6435 hours 

respectively for the BS1, BS2, BS3 and BS4 auxiliary sets. There is thus a factor 4.6 in terms of 

computational cost between the BS1 and BS4 auxiliary sets for almost undisguisable results as detailed 

just above.    
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Figure 7: Top, deposition energy profile upon collision of the zeolite with the projectile obtained with the largest auxiliary basis 
set function (BS4). Bottom: difference of deposited energy with respect to BS4 for the BS1 (black), BS2 (red), BS3 (blue) auxiliary 
basis sets.  

 

3.5 Electron flows within an ionized peptide 

  

In this last application we investigate electron flow within an ionized pentapeptide (Alanine, Alanine, 

Serine, Alanine, Alanine, see Figure 8). The two extremities of the pentapeptide are modified to 

accommodate a vinyl chemical group. This molecule was optimized by Berstis et al. as a simple 

chemical model to study electron tunneling through peptides[44]. During the SCF we impose the sum 

of the charges on the atoms within the dotted rectangular to be 1. This is achieved with the constrained 

DFT module implemented in deMon2k[45]. We then release the constrained and we follow the charge 

flow by RT-TD-ADFT simulations[46]. We contrast six auxiliary basis sets: GEN-A2 on all atoms (BS1), 

GEN-A2* on all atoms (BS2), GEN-A2 on H and GEN-A2* on C, N and O (BS3), GEN-A2* on all atoms 

(BS4), GEN-A3 on all atoms (BS5) and, finally, GEN-A3* on all atoms (BS6). The systems respectively 

encompass 1038, 3171, 2631, 2361, 1365 and 4416 auxiliary functions. The DZVP-GGA atomic orbital 

basis set is used for all atoms. All simulations are carried out with the PBE XC energy functional. We 

have conducted the RT-TD-ADFT simulations for 10 fs with a time step of 1 as via the predictor-

corrector Magnus propagator. Population analyses using Hirshfeld partitioning scheme have been 

carried out every 50 as based on the fitted density. Figure 9 depicts the charge evolutions following 

the system decomposition in fragment shown in Figure 8. The fragments roughly correspond to the 

aminoacid residues, except for the terminal groups that have been modified. We only depict the 

charges for the first three fragments that exhibit the largest variations.  
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Figure 8: decomposition of the AASAA pentapeptide into fragments.  

We start by the discussion of Fragment 1. All the curves are very similar, especially during the first 5 fs. 

The charge, initially around 0.86, drops to 0.65 in average with superimposed oscillations. These 

oscillations indicate charge migrations toward the peptide backbone. After this initial period, we notice 

slight deviations among the curves. If we consider the light blue curve as the richest auxiliary basis set, 

reference (BS2), we see that BS1 (GEN-A2 on all atoms) and BS5 (GEN-A3 on all atoms) are the basis 

sets showing the largest, though moderate, deviations. The other curves are very similar. In addition, 

we note that even for BS2 and BS5, the variations with respect to BS2 consist in a vertical shift of the 

curves, leaving the overall structuration of the oscillations unchanged. This is a quite encouraging 

result indicating that the underlying charge migration phenomena are correctly captured by all 

auxiliary basis sets. When considering charge fluctuations on Fragments 2  and 3, similar conclusions 

prevail.  
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Figure 9: Charge evolution for Fragment 1 to 3 after release of the potential constrain. Color code: BS1 (green), BS2 (blue), BS3 
(red), BS4 (orange); BS5 (dark blue), BS6 (brown). Note the different scales for each graph. 
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CONCLUSIONS 

In this article we have extensively assessed the reliability of Auxiliary DFT for carrying out electronic 

dynamic simulations by RT-TD-DFT. We also took the opportunity of this work to test the recently 

proposed MINRES algorithm to deal with very large systems comprised with more than one hundred 

thousand auxiliary basis functions.  

The methodology has been tested on various typical applications of RT-TD-DFT, namely the calculation 

of absorption spectra in the gas phase or in solvent by a hybrid QM/MM (Quantum 

Mechanics/Molecular Mechanics) scheme, the calculation of electronic stopping power curves for 

proton in lithium cluster, the deposition of energy upon collision of a zeolite by a swift proton, and 

finally on the investigation of charge migrations within an ionized peptide. We have obtained very 

encouraging results. Firstly, we highlighted the reliability of the ADFT framework for electronic 

dynamics simulations.  In all our test examples, we could hardly find evident artefacts due to this 

formalism. Secondly, we showed that even the GEN-A2 auxiliary basis provides very satisfactory 

results. Overall, we have demonstrated that the RT-TD-ADFT is a very a safe and powerful strategy to 

tackle electron dynamics simulations in small, large or very large molecular systems and their 

environment. 
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