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Abstract 
This paper investigates the impact of regional technological relatedness on the emergence of recombinant 
novelty (i.e. new combinations of subclasses occurring for the first time) in French regions using patent data over 
1990-2010. We find that relatedness favors incremental innovations which reuse already applied combinations, 
whereas increasing levels of relatedness reduces the likelihood of novelty. However, the impact is less negative 
when combined technologies are new, unrelated or not locally specialized because it facilitates learning and 
technological recombination. We also find that universities and large incumbents are less dependent on 
relatedness than small and novel players to create novelty.     
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1. Introduction 
 
It is a well-established fact that regional economic development builds on the local 

available capabilities in terms of inputs and knowledge (Hidalgo et al., 2007, 2018). When 
regions benefit from a diverse set of related activities or industries, they enhance their 
strengths in specific areas by orienting their investments and thus fostering comparative 
advantages. This development path builds on the principle of relatedness which has been 
shown as one of the core mechanisms on which regions rely their future growth (Balland et 
al., 2018). It is based on the structural role of diversity and similarity: new activities enter more 
easily in a region when they require similar knowledge and inputs as those already present 
(Crespo et al., 2017).  

Boschma et al., (2015) and Kogler et al., (2013) have demonstrated that this principle of 
relatedness also applies to technologies. They provide empirical evidence that the entry (and 
exit) of technologies in cities over time is shaped by the existing (or declining) technological 
knowledge base of that city. A new technology is more likely to enter a city when it is 
cognitively related to technological domains in which the region is already specialized. 

This result is of particular importance when considering regional innovations and their 
capacity to be more creative. In the Schumpeterian tradition, innovation is the result of a 
process of recombination which “refers to the way old ideas can be reconfigured in new ways 
to make new ideas” (Weitzman, 1998, p.333). The result of this process can lead both to 
incremental and radical innovations given the underlying search process. Because exploration 
is costly and uncertain, most innovations are incremental and follow a well-known trajectory 
in which search occurs in close cognitive proximity. It builds on reusing and improving known 
technological combinations (Carnabuci and Operti, 2013). In a regional context, it means that 
innovations tend to rely on local specialization and expertise which are diffused and improved 
through localized knowledge spillovers and learning. In contrast, more novel combinations 
may lead to radical innovations and tend to follow a more uncertain and disruptive path. The 
invention can be considered as radical when it combines previously unconnected technologies 
or components (Fleming, 2007; Verhoeven et al., 2016). The underlying search process is more 
exploratory as it deviates from usual paths and combines technological domains that are 
cognitively more distant (Arts and Fleming, 2018; Schoenmakers and Duysters, 2010). Applied 
to a regional context, novel innovations can be defined as a combination of technologies that 
occur for the first time in a region (Montresor et al., 2020).  

If the entry of new technologies has been shown to be crucial for innovation as it feeds 
local technological diversity and enhances the opportunities to combine them, it is less clear 
whether this principle also supports more radical types of innovation (Boschma, 2017). And in 
fact a number of scholars argue that unlike most (incremental) innovations, relatedness may 
not be sufficient to explain the occurrence of radicalness which combines rather unrelated 
technologies (Castaldi et al., 2015; Hesse and Fornahl, 2020). 

The aim of this paper is to contribute to this literature by considering the relationship 
between novelty and relatedness and focus on the regional dynamic underlying the 
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emergence of these combinations. More specifically, we study whether novelty combines 
technologies that build on the regional technological portfolio using the relatedness density 
indicator. However, our paper departs from this literature by its methodology and empirical 
strategy. First, unlike studies based on aggregate data, we explore the microeconomic process 
underlying patent novelty by considering individual inventions produced by inventors located 
in a given region. Focusing on patents and their underlying technological combinations, we 
control for patent specific characteristics which allows to focus on regional determinants of 
novelty. The approach is very similar to microeconomic approaches investigating spillovers 
arising from agglomeration economies such as urbanization or localization on individual 
innovations; in our case, the variable of interest is relatedness density. Second, previous 
studies show that the likelihood, for a new technology, of entering a region increases when 
the technology is related to the local knowledge base. However, a technology rarely enters 
the region on its own, it is combined with other technologies within a patent invented in a 
region. Our empirical strategy enables to control for the characteristics of these other 
technologies by considering whether they build upon existing trajectories or instead depart 
from it when introducing novelty. More precisely, patents may combine technologies 1) that 
enter the region for the first time, 2) that are already in the region but do not have 
comparative advantage or 3) are unrelated with each other and make its entry less likely and 
more difficult. Our aim is to consider how relatedness interacts with these technological 
characteristics and facilitate or instead limit the occurrence of novelty.  

We operationalize the relationship between novelty and relatedness by using the OECD 
REGPAT database (March 2018 Edition) and the EPO and PCT patent applications at the NUTS 
2 level. We focus on a subsample of patents produced by French-resident inventors over 1990-
2010 and consider for each region and each technological subclass pair used in a patent 
whether it enters the region for the first time, and if not, how many times it has been used 
previously. We do also use the OECD REGPAT database to characterize the technological space 
of regions in terms of specialization patterns based on 18 countries and compute the 
relatedness density indicator which reveals the extent to which a technological class is related 
to the existing space.  

While it is admitted that the entry of new technologies within a region is driven by its 
degree of relatedness to its technological portfolio, our results indicate that this relationship 
does not apply to novel technological combinations. Our findings suggest that relatedness 
density tends to favor the production of inventions that reinforce local specialization and the 
reuse of already applied combinations which translates into a negative impact on recombinant 
novelty. More specifically, relatedness density has an inverted quadratic relationship with 
novelty: for small levels of relatedness density, it increases the likelihood of novel 
combinations but for higher levels the impact is decreasing. By further investigating the 
determinants of novelty, we find that novel combinations occur when it combines 
technologies that are new to the region, unrelated or do not rely on local comparative 
advantage. However, the likelihood of novelty is less negative if these technologies are related 
to the local capabilities as it facilitates learning and knowledge spillovers. Said differently, 
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novel inventions combine technologies for which the region has an expertise with 
technologies that are more cognitively distant and unrelated to the local portfolio. Finally, we 
do also consider the impact of different types of actors and explore whether they rely 
differently on relatedness. Our findings suggest that small and novel players unlike large 
incumbents and universities tend to build on the local technological capabilities to create 
novelty. 

The rest of the paper is structured as follows. In the next section, we explain the underlying 
mechanisms and the hypothesis we test based on previous literature. Section 3 unveils the 
data, our empirical strategy and the construction of variables. Section 4 presents descriptive 
statistics, section 5 our empirical results. The last section concludes. 
 

2. Literature review 
 

Innovation processes are usually geographically localized and constrained by the local 
knowledge base available to organizations and their inventors. The regional knowledge 
portfolio offers opportunities for novel combinations by broadening the available knowledge 
base and geographical proximity facilitates learning and lowers the cost of searching for new 
technologies and moving into related ones (Boschma et al. 2015). The question raised in this 
paper is whether and under which conditions relatedness favors or inhibits the creation of 
genuinely novel innovations.  

 
2.1 Recombinant search process and the sources of novelty 
 

Innovations are not all alike and they differ by their degree of novelty which is best 
understood using the recombinant approach (Weitzman, 1998; Fleming, 2001; Verhoeven et 
al., 2016). The Schumpeterian tradition conceptualizes the innovation process as the outcome 
of a recombination of existing or new technologies, knowledge elements or components 
(Nelson and Winter, 1982, p. 130; Fleming, 2001; Weitzman, 1998). When successful, this 
recombinant process does not necessarily lead to genuinely novel inventions and in fact most 
inventions build on incremental improvements of formerly used combinations (Arts and 
Fleming, 2018). The capacity of organizations to innovate and find new technological 
combinations depends on their underlying search mechanisms, that is, whether they explore 
new and distant knowledge or instead exploit and deepen their prior knowledge (March, 
1991).   

The literature converges to claim that genuine novelty relies primarily on distant search 
and exploration as it offers higher opportunities for cross-fertilization and new combinations. 
First, the degree of novelty of an invention depends on the combination of previously 
unconnected technologies or components (Fleming, 2007; Verhoeven et al., 2016). The 
invention is considered as radical when it is composed by a relatively high number of new 
combinations. This definition highlights the introduction of genuinely new combinations 
which may also potentially generate new areas of development as compared to already 
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existing combinations which may rather indicate a refinement or an incremental 
improvement. Second, novelty can also be conceived as the combination of technologies 
distributed over different technological domains (Keijl et al., 2016; Nemet and Johnson, 2012). 
For a given invention, the larger the distance between the technological domains and the 
larger the degree of novelty. Both definitions refer to technological brokering of ideas and 
technologies that may belong to similar or separate technological fields or industries. 

Even though distant search and exploration offer higher opportunities for cross-
fertilization, they are also more uncertain and increase the variability of outcomes, failures as 
well as successes (Fleming, 2001). For these reasons, most inventions reuse familiar 
technologies as they benefit from experience and learning and they rely on local search in 
closely related technologies within organizational and regional boundaries (Rosenkopf and 
Nerkar, 2001) as interactive learning is more effective and can be realized at lower cost.  

In order to better formalize this distinction between local and distant search and whether 
inventors reinforce regional specialization or instead explore new trajectories, we decompose 
and characterize the technologies combined in each invention. First, technologies can be 
related or unrelated with each other: related means they are commonly combined and appear 
frequently within patent documents in a region otherwise they are unrelated, more difficult 
and riskier to interact, and inventors may lack the needed competences (Caviggioli, 2016; Li 
et al., 2021). Second, individual technologies may enter the region for the first time; we know 
that they are more likely to enter the region if they are related to the local knowledge base as 
in Boschma et al. (2015). Third, the combined technologies may belong to the regional 
specialization or not. If they do, they tend to reinforce and deepen the current regional 
technological trajectory. Otherwise, the combination may potentially open new technological 
developments.  
  
2.2 Deepening technological trajectories and regional path-dependence 
 

Because actors have limited cognitive capabilities and try to reduce uncertainty and risk, 
they will primarily exploit their own knowledge and expand it through local search by 
exploring technological combinations that are related to their existing technology portfolio 
and regional network. As knowledge is tacit and sticky, sourcing knowledge within a region 
enables to reduce the cost of learning and knowledge absorption. This is the main result of 
the relatedness literature which demonstrates that the probability that a region enters – or 
exits – new technologies is a function of the number of related technologies that already exists 
in that region (Hidalgo et al., 2007, 2018; Boschma et al., 2014; Boschma et al., 2015; Balland 
et al., 2018).  

As a consequence, the technological composition of a region affects the rate and direction 
of technical change which ends-up being a cumulative, path- and place-dependent process 
(Martin and Sunley, 2006; Rigby and Essletzbichler, 2008; Henning et al., 2013; Heimeriks and 
Boschma, 2014). Said differently, organizations are conditioned by the existing knowledge 
base and they search new technologies by diversifying in closely related technologies because 
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it lowers risk, uncertainty and facilitates learning processes (Arts and Fleming, 2018; Arts and 
Veugelers, 2015; Fleming, 2001; Rosenkopf and Nerkar, 2001). However, this path and place-
dependent process will predominantly favor incremental refinements of already existing 
combinations instead of genuine novelty (Castaldi et al., 2015; Li et al., 2021) as these 
inventions tend to reinforce and deepen the current specialization and the existing 
technological trajectory. Thus, we have the following expectations:  

 
Hypothesis 1a: Relatedness and local specialization increase the likelihood of reusing existing 
technological combinations.  
 
Hypothesis 1b: Relatedness and local specialization reduce the likelihood of producing new 
combinations.  
 
 
2.3 Path-breaking trajectories and novelty 
 

The previous section just argued that relatedness reduces the likelihood of producing new 
combinations when the associated technologies reinforce and deepen the current 
specialization (hypothesis 1b). However, when these combinations introduce technological 
novelty that departs from local trajectories, there is a greater need for stronger 
embeddedness in the local knowledge base because relatedness facilitates the underlying 
learning and recombinant search process. Said differently, the impact of relatedness on the 
likelihood of producing new combinations will depend on their characteristics in terms of 
novelty and path-breaking trajectory relative to the local knowledge base. Three situations 
may be distinguished:    

1. the combination introduces a technology subclass that is new to the region; 
2. the combination is rather unusual in the sense that the combined subclasses are 

usually unrelated with each other; 
3. the combination associates technologies that have no comparative advantage 

within the region (RCA < 1).  
We now discuss each of these three scenarios and explain their moderating role on the impact 
of relatedness density on novelty, that is, why novel combinations are more likely to be 
produced if they are related to the local knowledge base.  

First, an invention may combine technologies that enter the region for the first time, as 
depicted in Boschma et al. (2014 and 2015), with the difference that we consider a pair of 
technologies. If the novel technology is combined with subclasses that are related to the local 
knowledge base, it will be easier to deal with the learning challenge of exploring new 
technologies (Boschma et al., 2014; Boschma et al., 2015; Balland et al., 2018; Arts and 
Fleming, 2018). Building on local knowledge through collaborations or networks provides 
competences and expertise of how technologies may interact with each other, it reduces the 
cost of learning new competences and increases the likelihood of success.  
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Second, inventions may combine technologies in which the region has limited or no 
expertise, that is, for which the region has no revealed comparative advantage (RCA < 1). As 
in the previous case, the lack of prior knowledge may be compensated if the combined 
technologies have some proximity with the local knowledge base as it facilitates the learning 
and recombinant search process.  

Third, the new invention may combine technologies that are unrelated with each other in 
the sense that the combination of two subclasses are seldomly found together on a patent 
document within a region1. When an invention combines technologies that are unrelated with 
each other, it requires by definition completely different capabilities and their combination 
can be difficult especially if actors lack absorptive capacity to integrate and combine too 
distant bodies of knowledge effectively. However, unrelated technologies are more likely to 
be recombined if they are individually strongly present in the same region or related to the 
local knowledge base as technological distance is easier to bridge within geographical 
boundaries (Janssen and Frenken, 2019; Li et al., 2021). When these combinations occur 
successfully they may even help create new technological paths and generate competitive 
advantage as these novel competences are more difficult to imitate than innovations 
stemming from related knowledge as argued by Janssen and Frenken (2019). Finally, Castaldi 
et al. (2015) also find that innovations in general draw on technologies that are locally related 
whereas more breakthrough inventions tend to rely on rather unrelated diversity. 

Compared to the baseline effect (Hypothesis 1b) in which relatedness has rather a negative 
impact on the introduction of novelty, its impact is moderated when individual technologies 
do not belong to the local knowledge base. In consequence, we hypothesize that relatedness 
facilitates the emergence of technologies and technological combinations which depart from 
the local trajectory because it facilitates learning and the recombinant search process.  

 
Hypothesis 2a. Relatedness increases the likelihood of novelty when the combined 

technologies are new to the region  
 
Hypothesis 2b. Relatedness increases the likelihood of novelty when the combined 

technologies have no comparative advantage (RCA < 1)  
 
Hypothesis 2c. Relatedness increases the likelihood of novelty when the combined 

technologies are unrelated.  
 
 
 
 

                                                        
 
1 Here we make a clear distinction between individual technologies that are unrelated with each other and 
relatedness density; however, these individual technologies may nevertheless be related to the technological 
portfolio which is proxied by the relatedness density variable.  
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2.4 Relatedness and agents of technological novelty 
 

In this last section, we move one step forward and ask whether the effect of relatedness 
varies across agents. We investigate who are the actors that introduce technological novelty 
within regions and whether they build on relatedness to achieve this goal. The heart of the 
discussion is whether new activities are introduced by new players and whether they build on 
local resources to do so. In order to distinguish between agents, we rely on inventive activity 
and distinguish 1) organizations with large inventive activity that have the characteristics of 
incumbent firms; 2) organizations that patent for the first time and have the characteristics of 
start-ups, 3) organizations that patent in the region for the first time and may potentially bring 
extra-regional knowledge and 4) universities that are located in the region but may benefit 
from external linkages to renew their knowledge base. 

Because large incumbents are strongly embedded in their region, it is expected that they 
develop inventions that reuse local capabilities and resources that reinforce local 
specialization (Neffke et al., 2018). In contrast, novelty is most likely to be introduced by 
smaller and novel players that are less constrained by regional specialization and structure. 
The question is then whether they build on local experience to develop innovations that are 
related to the local knowledge base (Klepper, 2007) or rather unrelated. Actors that enter the 
region for the first time have a higher likelihood of producing novelty but may not be able to 
benefit from the local market due to a lack of anchoring. This is probably the reason why 
Neffke et al., (2018) find that new firms introduce novel and unrelated activities when they 
come from outside the region. Finally, we consider the specific role of universities. When 
universities collaborate intensively with local actors they probably reinforce local 
specialization, however as they are embedded in extra-regional networks, they may have 
wider access to potentially unrelated technologies. In sum, through their degree of 
embeddedness and local networks, large incumbents and universities will tend to reinforce 
current specialization and decrease the degree of novelty. We propose to test the following 
hypotheses.  
 
Hypothesis 3. Large incumbents and universities are less likely to rely on local relatedness to 
produce novelty. 
 
Hypothesis 4. Small and novel players are more likely to rely on local relatedness to produce 
novelty. 
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3. Data, variables and estimation strategy 
 
3.1. Data and indicators 

 
The empirical analysis uses the OECD REGPAT database (March 2018 Edition) and the EPO 

and PCT patent applications at the NUTS 2 level and refers to a sample of 22 French regions 
with priority year between 1990-2010. A patent is assigned to a region if at least one of the 
inventors listed on the patent document reports an address located in that region. In case 
where two inventors of the same patent report location in different regions, patents are 
affected to each region.  

Our objective is to estimate whether a new technological combination occurring in a region 
is related to the technology portfolio of that region. Following the literature on new 
technological combinations (Fleming, 2001; Verhoeven et al., 2016; Arts and Fleming, 2018) 
and applying it at the regional level, we count the number of times  a subclass pair combining 
two IPC codes (International Patent Classification) at the 4 digit level has already been used in 
a given year and region. Henceforth, a combination is considered as new if it appears for the 
first time in a given year and region, that is, the count is equal to one. On this basis, we identify 
each new technological combination entering the region. The sample includes all patents with 
two or more IPC combinations and amounts to 50% of all patents (46,596 out of 92,000). Of 
those 50%, there are 70% with inventors from only one region.  

We consider two dependent variables. The first is New technological combination; it takes 
the value one if the subclass combination appears in the region for the first time in history2 
and zero otherwise. In order to contrast the impact of relatedness on inventions that are not 
novel, we compute also the variable Reuse of technological combination which counts the 
number of times a given combination, composing the patent, has already been used in the 
region.   

The main explanatory variable is the relatedness density of each IPC subclass. For each 
subclass pair, we use the mean of the relatedness density of both subclasses. Relatedness 
density is computed following the method proposed by Boschma et al., (2015). To capture the 
relatedness of technologies available in regions, we use the OECD REGPAT 2018 database. All 
individual patents are allocated to one of the 245 NUTS 2 regions3 based on inventors’ location 
and one of the 633 IPC codes at the 4-digit level (IPC4) using fractional count (Kogler et al., 
2017). Thus, if a patent has been invented by inventors located in three NUTS 2 regions and if 
the patent is characterized by 2 IPC codes, a patent is allocated at a NUTS 2 region and IPC 
code with a weight of 1/3*1/2 = 1/6. The advantage is that it avoids double counting of 
patents.  

                                                        
 
2 Over the whole history of the EPO patents 
3 Based on REGPAT regions for 18 countries – EU 15 plus Norway and Switzerland and the US 
("DE","BE","FR","IT","LU","NL","DK","IR","UK","GR","ES","PT","AT","FI","SE","CH","NO","GB") 
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Based on fractional count, we compute the revealed comparative advantage for each 
region and technology, which is the relative frequency of a technology in a region compared 
to the frequency of the same technology over all regions. If the value is larger than 1, the 
region is considered as having a revealed comparative advantage (0/1). More precisely, a 
region r has a revealed comparative advantage (RCA) in technological class i if the ratio below 
is higher than 1: 
 

!"#$%#&',)/ ∑ !"#$%#&',)'

∑ !"#$%#&',)) / ∑ ∑ !"#$%#&',))'

(1) 

 
The next step is to compute the conditional probability of having a comparative advantage in 
two technologies i and j. We compute the conditional probability of having comparative 
advantage in a technology i conditional on having comparative advantage in technology j and 
vice versa. To avoid the issue when a region is the only one who has a specialization in one 
specific technological class, we keep the minimum value of those two conditional 
probabilities. Hence, to measure the relatedness between each two pair of technological 
classes i and j, we build variable /',0  following Hidalgo et al. (2007) and Boschma et al. (2015): 
 

/',0 = min56789:'|89:0<, 6789:0|89:'<= (2) 
 
/',0, relatedness, is the minimum of these two pairwise conditional probabilities. 
6789:'|89:0< is the number of regions with a RCA in both i and j divided by the number of 
regions with RCA in i, and 6789:0|89:'< is the number of regions with a RCA in both j and i 
divided by the number of regions with RCA in j. We get a relatedness matrix with conditional 
probabilities [0,1]. Finally, we consider only the highest conditional probabilities. Thus, we 
consider a 5% threshold meaning that only the top 5% of all technology pairs that have the 
highest relatedness are considered as related, while the remaining 95% are considered as 
unrelated. After calculating the relatedness /',0, we follow Boschma et al. (2015) and calculate 
the relatedness density for French regions, at NUTS level 2, specific to each class i and region 
r. This is calculated as the weighted i of /',0. More formally: 
 

Relatedness	Density',) = 	
∑ /',00∈),0J'

∑ /',00J'

	(3) 

  
The relatedness density variable captures how each technological class L	is connected to 

the technological portfolio of the region M. This is a combination of two factors: how 
connected is the technological class L to the rest of the technological space, and the portfolio 
of technological specialization of each specific region M. Formally, in equation 3 the numerator 
measures the sum of relatedness from technology class L to all technological classes j that are 
part of the region portfolio (RCAj,r > 1), and the denominator is the sum of the relatedness to 
all technological classes present in the technological space. All in all, a high level of our main 
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explanatory variable of interest, relatedness density, reveals a strong connection to the 
regional technological portfolio, while a low level of relatedness density shows that the 
technological class L is sparsely embedded in the knowledge portfolio of region M. In order to 
cope with the fact that relatedness density may have a higher impact for lower values and 
lower impact for higher values as we expect that high specialization may rather limit novelty 
(see Hypothesis 1), we also estimate the quadratic form of relatedness density.  

In addition, we characterize each technological subclass pair used in a patent in order to 
identify whether they reinforce or rather depart from the preexisting technological set of 
capabilities in the region. New subclass takes value one if the combination includes at least 
one technology that is new to the region; No subclass has RCA >1 takes value one if none of 
the combined subclasses have comparative advantage within the region, One subclass has 
RCA >1 takes value one if one of the combined technologies has comparative advantage and 
zero otherwise; both variables are included in the regression and the base reference is when 
both subclasses have RCA >1. Unrelated technologies takes value one if two technologies are 
usually not related within a region. It is based on the conditional probability, /',0 , computed 
in the previous section and independent of the specific regional context.  

In order to investigate the impact of relatedness density by type of agents, we distinguish 
five categories of applicants. Entry takes value one if the patent is invented by an applicant 
that appears for the first time in the OECD HAN database, March 2018. Entry in the region 
takes value one if the applicant applies for the first time for a patent with inventors located in 
the region. In this case, it may be a large incumbent or a subsidiary that has already patented 
with an inventor team in other regions. University takes the value one if the applicant is a 
French university. Local applicant takes value one if the applicant has inventors all located in 
a single region over the past five years as an indicator of the applicant’s location of its inventive 
activity. Experience (# patents) is the applicant’s number of patents accumulated over the past 
five years as provided by the HAN OECD database.  

We do also include regional variables to control for the potential determinants of novel 
combinations at the technological and economic level. Number of patents in the subclass is 
the average number of patents applied in the region in each of the subclasses combined during 
the five previous years. Number of associated subclasses is the average number of subclasses 
to which our focal subclass pair is combined in the region during the five previous years. 
Technological specialization of the region is measured by the average location quotient 
weighted by the number of patents computed at the region and subclass level (Boschma et al. 
2015). Technological generality is the average generality index of all patents in the region 
(Trajtenberg et al., 1997; Squicciarini et al., 2013) as provided by OECD Patent Quality 
Indicators database, March 2018. The generality index measures to what extent citations 
come from distinct technological domains and thus the higher potential for cross-
technological recombination within the region. Inventors with external collaborations is the 
average number of inventors within the region with extra-regional collaborations and 
computed for each subclass combined in the patent.  
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Finally, we include a number of time-varying region characteristics such as the number of 
employees in the region (Employment), the number of inhabitants by square meters 
(Population density), the economic wealth of a region (Income per employee) (Boschma et al. 
2015) from INSEE.  
 
3.2. Empirical strategy: estimated model, estimator choice and endogeneity issues 

 
Our empirical strategy is to decompose each patent in a number of subclass pairs and apply 

a patent fixed effect estimation procedure. Through these fixed effects, we capture all effects 
that are common to a patent and as all patent-specific variables are perfectly collinear with 
the patent fixed effects, they are not included4 and we focus our estimations on the impact of 
technology-region variables on novelty. Furthermore, year fixed effects are not needed as a 
patent is invariant in time. We include subclass fixed effects (two for each combination): they 
capture all factors specific and common to each technology subclass that are common to all 
patents based on these codes. At last, note that everything that is region specific is only 
estimated when using the sample of patents with inventors from more than one region. When 
including all patents, even those reported in two or more regions, we do also include region 
fixed effects. We end-up with 46,596 patents and 264,948 observations.  
 

The estimated model is:  
New	technological	combination),',0,U

= VW + YZ + Y[Relatedness	Density),',0,U+Y\X′),U_[ + Y`ab,U	+	c) + db

+ e',f,U  
 
Reuse	of	technological	combination),',0,U

= VW + YZ + Y[Relatedness	Density),',0,U+Y\X′),U_[ + Y`ab,U + 		c) + db

+ e',f,U		 
 

As we keep only patents with at least three pairs of combinations (three IPC subclasses), 
the patent fixed effects αj captures all common feature from a single patent !. Both our 
dependent variables are measured at the region, subclass pair combination L, k and time # 
level. Our explanatory variable of interest, Relatedness Density, is calculated at this same 
level, and measured as explained above. The explanatory variables Xlare listed above, such as 
population density: they are variables at the regional level, that can be estimated as many 
patents in our sample have inventors located in different regions. The conditioning set Z refers 
to variables at the same region-technology level such as our variable of interest: the number 
of patents in the subclass and the number of associated subclasses.  At last, we include region 

                                                        
 
4 Such as the number of inventors, the characteristics of patents such as family size, technological scope, or firm 
characteristics that are usually controlled for in a patent analysis.  



13 
 
 

fixed effects c and technological (subclass) fixed effects d. Our standard errors are clustered 
at the patent level5.  

We estimate the above models using a traditional linear panel data fixed effect estimator, 
also known as least square dummy variable (LSDV). To our knowledge, to use a linear 
probability model (LPM, or applying an OLS) in a panel data setting with a binary dependent 
variable is the most appropriate empirical method (Boschma et al., 2015). Our identification 
strategy relies on the variation of combinations of technological classes within a patent: that 
is, we estimate the effect of relatedness density on novelty controlling for patent fixed effects. 
In contrast, including a fixed effect in a nonlinear model, such as logit or probit, leads to an 
incidental parameter problem. Nonetheless, in Table A2 in the appendix, we estimate our 
benchmark specification (Column 6 of Table 3) using a logit and a probit, without patent fixed 
effects, although keeping region and technological class fixed effects. Our main results are 
robust to these alternative estimation methods. 

The endogeneity of our independent variable of interest (Relatedness Density) could arise 
from two sources: reverse causality and omitted variables. We explain in detail below how we 
tackle these issues. 

Regarding reverse causality, endogeneity is very limited. At first, Relatedness Density is 
primarily computed using data from 245 NUTS 2 regions of 18 countries. This is the step 
explained in equation (2), in which we compute the relatedness for each subclass pair. 
Therefore, it is very unlikely that a French region may influence this calculation. Next, the 
numerator of Relatedness Density (equation 3) is calculated as the sum j of technological 
subclasses present in region r. Straightforward reverse causality for the technological class i 
can then be excluded, as the variable that measures a new combination of a pair of IPC classes 
does not enter directly the calculation of relatedness density. Nonetheless, as in our 
regressions we use the average relatedness density of both IPC’s, the relatedness of the IPC i 
is used in the calculation of the relatedness density of the IPC class j. Once again, note that 
there are 633 IPC codes in this level of disaggregation: a reverse causality effect is again very 
low. At last, the RCA dummy in equation 3 (RCAj,r>1) incorporates information on the 
technological classes of patents in the region. An issue would arise if a specific patent drove 
the number of the other technological classes j having a revealed comparative advantage in 
the region. A concern would be that patents with many IPC codes develop some kind of 
technological spillovers in the region. In that sense, it could lead to a situation where having 
many IPC codes in a patent draws a higher count in equation 1, generating higher observations 
of RCA>1. Therefore, to address this issue, we estimate again our model by dropping patents 
with a high number of IPC classes. We discuss these results in section 5 below. 

Regarding the omitted variable bias, the relationship between relatedness density and 
recombinant novelty could catch unobserved determinants of novelty. However, our 
                                                        
 
5 We test two different levels of clustering to check if our results are robust. In Table A2 in the appendix, we 
present results from our benchmark specification (column 6 of Table 3) clustering our standard errors either at 
the region (Column 1) or IPC4-region combination (Column 2) level. Our main results are robust to this change. 
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empirical strategy includes patent, technology class and region fixed effects. These capture 
common features for all combinations of IPCs in a patent, for every single IPC in the 
combination which is common to all patents and regions, and for characteristics of patents 
and IPCs located in a single region. For example, the patent fixed effects capture variables 
such as patent scope, patent quality and backward or forward citations. The technology class 
fixed effects captures intrinsic and invariant characteristics of each technology. At last, the 
regional fixed effects capture the state of technological development of a region, such as being 
a lead or a laggard. Summed up, these set of variables control a great share of the 
determinants of recombinant novelty. However, note that our variable is at the technology-
regional level: it is specific for each technology in each region for a given year. For example, 
the density of links to other technologies for IPC subclass H04N in region Bretagne in a given 
year. In that direction, we control for two variables (our Z variables above) that can be specific 
to a technology in a given region: the average number of patents applied in the region in each 
of the subclasses combined during the five previous years (nb of patents in subclass), and the 
average number of subclasses to which our focal subclass pair is combined in the region during 
the five previous years (nb of associated subclasses). These variables control for knowledge 
and spillovers related to the subclasses in the same region. In the end, our estimated model 
covers the different levels potentially determining recombinant novelty. 
 

4. Descriptive statistics  
 

Descriptive statistics and correlation for the variables used in the regressions are provided 
in the appendix in Table A1. In order to better understand the regional process of novelty 
generation, this section provides descriptive statistics on the percentage of patent novelty, 
new combinations, relatedness density and specialization averaged at the region level. As 
relatedness density relies on regional specialization, we do also explore whether the 
technologies that are combined within a patent produced in a region relies on local 
specialization (i.e. RCA >1). More specifically, we consider for each patent combination 
whether it includes none, one or two subclasses with a revealed comparative advantage larger 
than one and compute the mean RCA. We do also consider whether a given technology pair 
combines subclasses from different fields or different sectors based on WIPO classification 
(Schmoch, 2008).  
 
------ Table 1 here -------- 

 
Table 1 describes the spatial characteristics of patent novelty and their related new 

combinations for each region. The table shows a certain variability in the percentage of novel 
patents (resp. new combinations) across regions ranging from 17.3 % (resp. 7,7%) in Ile de 
France which is a leading region with many patent applications and a large technological 
portfolio to 67.7% (resp. 62,5%) in Limousin which has the opposite characteristics.  
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Relatedness density is ranging from 0.23 for Limousin to 0.54 for Languedoc-Roussillon 
whereas Ile de France has a rather high value of 0.37 as well as Rhône-Alpes (0.42) which 
characterizes portfolio for which technologies are diversified and rather related. Regarding 
regional specialization, most regions combine technologies for which only one out of the two 
combined technologies are based on regional specialization (Mean RCA <1) and only seven 
regions including Ile de France combine technologies for which both are built on local 
specialization (Mean RCA >1).  

Table 1 also shows that new combinations associate technologies from different fields or 
different sectors confirming previous findings from the literature (Nemet and Johnson, 2012;  
Keijl et al., 2016) : across regions, 65.9 % to 76.5 % of all combinations are cross-fields and 
25% to 40% are cross-sector. Finally, the last column indicates the number of subclasses (out 
of 633) for which a region has a revealed comparative advantage larger than one. Rhône-Alpes 
and Île de France are the regions with the largest number of specializations. 

Table 2 explores the relationship between novel combinations and the characteristics of 
combined subclasses. It shows descriptive statistics on the characteristics of novel versus 
already used technological combinations and t-tests for the comparison of means. The table 
summarizes the 264,948 technological combinations (50,960 new to the region versus 
213,988 already used combinations) characterizing the 46,596 patents in the final sample. 
Regarding already used technologies, the table indicates that on average a combination is 
used 153.54 times in a region and associates individual subclasses that are used on average 
between 356.25 and 539.36 times. In comparison, new combinations rely on subclasses used 
eight times less6. Thus, it is not surprising that new combinations build on technologies in 
which the region is not specialized: 39% of new combinations are based on technologies for 
which the region is not specialized (RCA >1), 44% rely on a combination for which only one 
subclass has RCA larger than one and only 17% associated subclasses for which both have a 
revealed comparative advantage. The differences are statistically significant when compared 
to reused combinations. An interesting point to note here is that 44% of new combinations 
combine RCA with non-RCA technologies suggesting that local organizations explore new 
combinations by relying on local expertise combined with more exploratory or even 
technologies that are new to the region.  

 
------ Table 2 here -------- 

Table 2 also indicates that the mean relatedness density is lower and significant for new 
combinations but the difference is small. Finally, 84% of new combinations combine 
technologies from different fields (compared to 69% for reused combinations) and 52 % from 
different sectors (compared to 26%). And 15% (resp. 12 %) of new combinations occur in Ile 
de France (resp. Rhône-Alpes) region.  

                                                        
 
6 Table 2 shows that IPC codes are used on average 60.81 and 57.91 times in new technological combinations 
compared to 539.36 and 356.25 for technological reuse.  



16 
 
 

5. Estimation results 
 
5.1 Main results 
 

In this section, we estimate the conditions under which technological combinations 
occurring in a region are related to the technology portfolio of that region. In order to do so, 
we contrast the impact of relatedness density on the number of reused combinations and the 
likelihood of introducing a new combination in order to explore whether the impact changes 
given the degree of novelty as measured by the number of times a combination is used in the 
region. 

Table 3 presents our main results. The first three columns test the impact of relatedness 
density on the Reuse of a technological combination, that is, the number of times a given 
combination has been used in the region. The variable is introduced in a linear and in a 
quadratic form, and the impact is clearly linear and positive meaning that relatedness density 
favors the combination of technologies that are already used and related to the regional 
technological portfolio. This result is depicted in Figure 1a. Results hold in column 3 when we 
introduce control variables concerning the patent subclass recombination characteristics.   
When the combined subclasses have no comparative advantage (RCA >1) or only one, the 
number of reused combinations is lower than when both are specialized, as the coefficients 
associated with these variables are negative and significant. In sum, these results confirm the 
hypothesis 1a that relatedness and local specialization increase the likelihood of reusing 
existing technological combinations. Regarding our control variables, the level of activity in 
the region such as the income per employee, the number of patents or inventors with external 
collaborations in the subclass has a positive impact on the number of recombinant reuses. 
New subclass has also a positive impact on the number of already used combinations7.  

The remainder of Table 3 tests the impact of relatedness density on the occurrence of a 
new recombination. In column 4 relatedness density is introduced linearly and the impact is 
negative and strongly significant. Relatedness density appears to reduce the likelihood of 
introducing a new combination in a region. In column 5 and 6, we test the quadratic form 
which is significant and the curve has an inverted u-shape. The average marginal effect shows 
that the slope of Relatedness density is positive only for small values of relatedness up to .30 
and then becomes negative and decreases sharply as Relatedness density increases. The 
maximum probability of novelty corresponds to a relatedness density of around 0.38 as 
illustrated by Fig. 1b. This result holds throughout the paper and the interpretation is the 

                                                        
 
7 This result is explained because the dependent variable also includes the cases in which the combination occurs 
for the first time. If we exclude the “novel” combinations, the impact becomes negative of course.  
8 The inflexion point of the u-shape curve is -b1/(2*b2) = - 0.104/(2*0.173) = 0,3 (column 6 of table 3) 
The inflection point is within the set of possible values as the median of Relatedness density is 0.36 and the first 
quartile is .24 and the third quartile is .51.  
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following9: as relatedness to the regional portfolio becomes stronger, the probability of 
introducing a new combination of subclass diminishes, supporting hypothesis 1b. Relatedness 
and local specialization reduce the likelihood of producing new combinations. Columns 7 to 
10 explore the impact of relatedness density given the characteristics of the combined 
technologies in three situations through interactions. The results are easier to interpret based 
on graphical representations. Figure 1c illustrates the interaction between Relatedness 
density and new subclass (column 7) showing that the introduction of a new subclass in the 
region increases the likelihood of having a novel combination as the degree of relatedness 
density increases. This confirms hypothesis 2a as well as the results found by Boschma et al. 
(2015) that relatedness density eases the introduction of new technologies in a region. If the 
combinations rely on technologies that are already present, the impact is decreasing as the 
degree of relatedness density increases. Figure 1d illustrates the impact when the combined 
technologies are unrelated to each other. The inverted u-shaped curve moves upwards 
indicating that the likelihood of introducing a new combination is significantly higher when 
subclasses are unrelated given a level of relatedness density meaning that relatedness 
facilitates the introduction of unrelated and uncommon combinations confirming hypothesis 
2b. However, as before the impact reduces as relatedness density increases. Finally, Figure 1e 
illustrates the interaction between relatedness density and whether the combined subclasses 
belong or not to the local specialization (RCA >1). Results support hypothesis 2c and show that 
novelty is favored when subclasses are not or only partly specialized as compared to the case 
where both subclasses have revealed technological advantage and the relationship with 
relatedness density has an inverted-u shape. Compared to figure 1b the decreasing part is less 
sharp for a given level of relatedness density. These results support hypothesis 2 (a,b,c) that 
relatedness increases the likelihood of novelty when the combined technologies are new to 
the region, have no comparative advantage or are unrelated.  

 
------ Table 3 here -------- 

 
Table 4 tests the impact of relatedness density on the likelihood of a new technological 

combination given the type of agents. Again, the strategy is based on interactions and the 
results are the following. Table 4 provides partial support for hypothesis 3 as universities do 
not seem to rely on relatedness density to develop new technological combinations (column 
1). The interaction is negative and not significant. In contrast, large incumbents approximated 
by their level of patenting over the past five years do not rely on the local technological 

                                                        
 
9 This result also holds when we test novelty at different geographical levels. Table A3 shows a similar quadratic 
relationship between relatedness density and novelty when the new combination occurs for the first time at the 
world level (i.e. it is a new combination pair for the whole EPO database history disregarding location) and at the 
level of France (i.e. it is a new combination pair for patents applied by French resident inventors disregarding the 
region in which it occurs). These two variables differ from our main dependent variable which considers a new 
combination occurring for the first time within a French region.   
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portfolio to produce novelty (column 2). The impact is clearly negative and significant. Figure 
2a shows that relatedness density benefits marginally more to small and medium agents 
which provides support to hypothesis 4. The agents that benefit most from relatedness 
density are applicants that are located in a single region (column 3). They clearly rely on this 
local environment to produce novelty. Finally, column 4 and 5 test the impact of agents’ entry 
on novelty and in relationship with relatedness density and results are remarkedly similar to 
those obtained by Neffke et al., (2018). Those actors that benefit from local specialization are 
not start-ups that patent for the first time but rather agents that enter the region for the first 
time but have already a patenting record in other regions. This result, illustrated by Fig 2c., 
provides partial support to hypothesis 4 that novel players are more constrained by their local 
environment and more likely to rely on local relatedness to produce novelty.  

The next section is devoted to robustness checks.  
 

------ Table 4 here -------- 

 
5.2 Robustness Checks 

Table 5 presents some robustness checks using our benchmark specification (column 6 of 
Table 3) which uses new technological combination as the dependent variable. The objective 
is to verify if our main result, the quadratic relationship between relatedness density and 
novelty, is robust to different samples that could potentially explain its effect.  

The first four columns focus on inventor location. In the first column, we only estimate our 
relationship using patents that have inventors located in a single region. Our results remain 
similar. In column 2 we use only patents for which inventors are located in at least two 
different NUTS 2 regions: relatedness density remains negatively and significantly associated 
with novel recombination. Then, we distinguish estimates for inventors located in the largest 
French innovative regions (namely, Ile-de-France and Rhône-Alpes in column 3) and outside 
those regions (column 4). Results are similar in both specifications. The following columns 
focus on the technological characteristics of combinations. Column 5 and 6 test the effect 
when the combined technologies are cross-field or from similar fields using WIPO classification 
(Schmoch, 2008). Our main result remains constant. Next, we estimate our relationship using 
a sample of patents that have at least one new recombination among all combined pairs: 
relatedness density still has a quadratic impact associated with patent novelty. At last, we 
verify if relatedness density is robust to the estimation without extreme values for this 
variable, namely the top and bottom 1% of the distribution. Results remain unchanged.  

To further test the robustness of our results, we run our benchmark specification on the 
relative density measure instead of the relatedness density. Table 1 shows that regions have 
different technological portfolios with an average relatedness density ranging from 0.23 to 
0.56. These different absolute values are not comparable from one region to another if 
technologies are not in the same interval throughout all regions. More importantly, if regions 
with a high-density on average are also those that do not combine new subclass pairs, our 
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results could be driven only by these observations. Note that, although our estimations 
already include patent and fixed effects, we still decide to be conservative and test the 
robustness of our results to the estimation using a relative density measure following Pinheiro 
et al., (2018). Relative density enables to compare the density of technologies not present in 
the region with the density of a region’s option set (OS). The option set of a region comprises 
all the technologies that are not yet in that region.  Relative density is computed as: 
 

8$m"#Ln$	o$%&L#p',) =
8o',) − r$"%78o),st<

us(8o),st)
 

 
where 8o',)  is relatedness density of a technology in a region as in equation (3), 
r$"%	(8o),st) is the average density of all technological subclasses in the option set, that is, 
technologies in which the region has no revealed comparative advantage and the 
denominator is the standard deviation of the density of the technologies in the same group 
OS (Pinheiro et al., 2018). This measure centers around zero and negative values indicate 
unrelated technologies. Thus, we test the impact of a variable “Unrelatedness” which takes 
value 1 when relative density is negative and zero otherwise. Results in column 9 confirm that 
new technological combinations rely on technologies that are mainly unrelated to the local 
portfolio as the associated coefficient is positive and significant.  
 
------ Table 5 here -------- 

 
Table 6 tests the robustness of our results for other potential biases. In the first five 

columns we verify how the dependent variable evolves through the period of study. As novelty 
is any combination that has never occurred before, regions with a larger knowledge base in 
the end of the period will find it more difficult to generate new combinations10. We tackle 
these potential biases in two ways. First, in columns 1 to 3, we split the sample period in three: 
1990-1996, 1997-2003 and 2004-2010. Our main result is robust for these separate periods. 
Second, in columns 4 and 5 we split the sample in two, above and below the median, and the 
criteria we use is the share of new combinations of the total of combinations of a region for 
the year in the middle of our period (2000). Results are robust for both samples. In the last 
two columns, we check for potential endogeneity from reverse causality as explained in 
section 3.2. This could be an issue if a patent with many IPC codes drive the number of other 
technological classes in the same region, generating technological spillovers that could raise 
the potential number of RCA and thus raising relatedness density. In that direction, to curb a 
possible indirect effect of reverse causality from IPC codes to relatedness density, we estimate 
our benchmark specification using only patents with a few numbers of IPC codes.  At first, in 
column 6 we present results from an estimation only with patents having no more than 6 IPC 
                                                        
 
10 We thank one referee for pointing out this potential bias. 
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codes (15 combinations), which account for 86% of our observations. In column 7 we show 
estimation results for patents with no more than 8 IPC codes (28 combinations), which 
account for 95% of our observations. Our main result remains unchanged. 

 
------ Table 6 here -------- 

 
 
6. Conclusion 

In this paper, we contribute to explain the emergence of technological novelty for 
individual innovations in a given region, following the recombinant literature (Fleming 2007; 
Verhoeven et al., 2016). Using patent data for French regions over the period 1990-2010, we 
contrast events in which technological subclass pairs are combined for the first time with 
events in which they have been reused already many times. We use a representative sample 
of patents combining at least three subclass pairs in order to exploit variations of technological 
characteristics at the regional level while controlling for patent fixed effects amongst other 
covariates. Our indicator of recombinant novelty is regressed on the average relatedness 
density of the combined subclasses indicating whether they are related to the technological 
portfolio of the region. To measure our explained variable of interest, we follow the 
relatedness literature (Hidalgo et al. 2007; Hidalgo et al., 2018) which shows that the 
emergence of new activities in a region is driven by the number of related activities present 
in that location. Yet, as highlighted by Pinheiro et al. (2018, p.2), “what is true on average is 
not true for every instance. While countries and regions are more likely to enter related 
economic activities, sometimes they deviate from this behavior and enter unrelated 
activities…”.  

Our findings shed light on the aforementioned instances: relatedness density is associated 
with an increase in the number of times a combination has been already used in a region. 
More importantly, relatedness density is mostly negative associated with recombinant 
novelty. To be precise, relatedness density has an inverted quadratic relationship with novelty: 
for small levels of relatedness density, it increases the likelihood of a new pair of subclass 
technologies to be introduced in a region. This positive effect tapers quickly and with an 
increasing level of relatedness density, novelty emerges less often. This negative effect of 
relatedness density decreases when the subclass pairs are not both part of the set of 
technologies in which the region has a revealed comparative advantage, or when they are 
unrelated to one another. We have also checked if different actors react similarly to 
relatedness density when producing novelty in their innovations. Our results show that while 
large incumbents are less dependent on relatedness, small and novel players build on the local 
technological portfolio to create novelty, and relatedness density does not facilitate 
universities to engage in recombinant novelty.  

These main results are robust to different covariates and a series of fixed effects.  
Moreover, our results are also robust to different samples of regions, subclasses within and 
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across fields, to samples of patents with at least one novelty in their combinations, extreme 
values for relatedness density, as well as the introduction of relative density measure. We also 
check that our results are robust to the evolution of our dependent variable, endogeneity, 
other estimation methods and the level of clustering of our standard-errors. 

Our results shed light on a few important policy implications. First, in order to foster 
regional economic growth and development, relatedness (Balland et al., 2018)  plays an 
important role. We contribute to this literature by showing that the novelty of these activities 
does not follow the same pattern. In order to set foot on novel innovations, regions also need 
to explore more distant and less mastered pieces of knowledge, breaking apart from path and 
place dependence. This implies that the policy recommendations for exploring into distant 
and unknown knowledge should be adapted to the local environment. Second, these policy 
recommendations should also consider the type of agents present in the region when trying 
to foster novelty. Our empirical exploration suggests that the local technological environment 
heterogeneously constraints the production of novelty depending on the type of actor 
introducing novelty. While some actors are not affected, some are more constrained while 
others rely more on relatedness density. Policy design needs then to incorporate the novelty 
profile of agents in a given region when developing tools to promote novelty. As in the case 
of structural change in Neffke et al., (2018) we find that local agents are more embedded in 
the local technological space and novelty is sparked by agents producing already in other 
regions. In sum, the interaction between local relatedness and the profile of agents is crucial 
to regional policy design. 

Nonetheless, our results and methodology have some limitations which pave the way to 
future improvements. First, further microeconomic analysis could empirically test specific 
underlying mechanisms that spark the emergence of new combinations. Second, the field 
could also benefit from deepening the knowledge associated with the agency dimension: are 
the new combinations driven by multinationals or other type of companies, and what are they 
previous experience in introducing novelty elsewhere?  Third, an important path is to explore 
in which type of the technologies are those new combinations intrinsically more complex or 
not (in the sense of Hidalgo, 2021), and do they pave the way to robust and durable new 
trajectories? Finally, focusing on specific improvements, we could, for example, find a new 
way to aggregate the relatedness density of two subclass pairs rather than the average of both 
single measures, such as a weighted average. We could also interact our variable of interest 
with other potential determinants of recombinant novelty, especially those that allow regions 
to bring knowledge and technologies from outside its territory, such as migrant inventors. 
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TABLE 1. Spatial characteristics of novel patents, new combinations and specialization 

    % Patent  
Novelty1  

% New  
Combinations2 

Relatedness  
Density3 

Mean  
RCA4 

Cross 
Field 

Cross 
Sector 

Region 
# RCA5 

 NUTS2  Regions Mean SD Mean SD Mean SD Mean Mean Mean Mean 
FR10 ÎLE DE FRANCE 0.173 0.378 0.077 0.268 .371 .221 1.03 .72 .297 218 
FR21 CHAMPAGNE-ARDENNE 0.543 0.499 0.454 0.498 .293 .151 .774 .692 .29 134 
FR22 PICARDIE 0.441 0.497 0.355 0.479 .393 .176 .984 .751 .364 162 
FR23 HAUTE-NORMANDIE 0.378 0.485 0.26 0.439 .383 .147 1.2 .732 .367 137 
FR24 CENTRE 0.457 0.498 0.356 0.479 .264 .171 .608 .731 .308 166 
FR25 BASSE-NORMANDIE 0.623 0.485 0.493 0.5 .324 .117 .938 .765 .409 123 
FR26 BOURGOGNE 0.572 0.495 0.46 0.498 .345 .173 .883 .707 .388 168 
FR30 NORD - PAS-DE-CALAIS 0.436 0.496 0.282 0.45 .484 .135 .986 .716 .299 192 
FR41 LORRAINE 0.511 0.5 0.397 0.489 .36 .171 .961 .659 .353 160 
FR42 ALSACE 0.261 0.439 0.158 0.364 .465 .14 1.44 .735 .256 159 
FR43 FRANCHE-COMTÉ 0.662 0.473 0.56 0.496 .288 .178 .768 .685 .385 130 
FR51 PAYS DE LA LOIRE 0.546 0.498 0.427 0.495 .382 .193 .672 .705 .335 187 
FR52 BRETAGNE 0.359 0.48 0.287 0.453 .397 .25 .905 .733 .27 124 
FR53 POITOU-CHARENTES 0.548 0.498 0.452 0.498 .296 .122 .752 .683 .258 141 
FR61 AQUITAINE 0.464 0.499 0.351 0.477 .455 .143 1.13 .744 .367 184 
FR62 MIDI-PYRÉNÉES 0.403 0.491 0.286 0.452 .36 .152 1.01 .698 .271 164 
FR63 LIMOUSIN 0.677 0.469 0.625 0.485 .232 .0939 .784 .731 .387 88.9 
FR71 RHÔNE-ALPES 0.288 0.453 0.151 0.358 .42 .139 .814 .742 .338 227 
FR72 AUVERGNE 0.385 0.487 0.268 0.443 .258 .116 1.18 .673 .392 101 
FR81 LANGUEDOC-ROUSSILLON 0.341 0.474 0.252 0.434 .546 .183 1.51 .725 .253 148 
FR82 PROVENCE-ALPES-CÔTE D'AZUR 0.355 0.478 0.231 0.422 .38 .153 .899 .722 .311 183 

1 % Patent Novelty is the percentage of patents which include at least one technological combination new to the region 
2 % New Combinations is the percentage of combinations that are new to the region  
3 Relatedness density is the average relatedness density of the combined technologies  
4 For each patent combination, we consider whether it combines none, one or two subclasses belonging to the regional specialization and averaged 
At the regional level 
5 Total number of subclasses which represent a revealed comparative advantage (RCA) 

 

 
TABLE 2. Ttest of novel versus reuse of technological combinations 
 Reuse of technological combinations  New technological combinations Ttes 
 mean sd min max  mean sd min max Mean  sd 
Recombinant novelty (Region) 0.00 0.00 0.00 0.00  1.00 0.00 1.00 1.00 -1.00 0.00 
Recombinant reuse1 153.54 369.78 2.00 3089.00  1.00 0.00 1.00 1.00 152.54*** 1.64 
# of times a subclass IPC1 has been used2 539.36 822.82 2.00 4623.00  60.81 175.33 1.00 4619.00 478.55*** 3.66 
# of times a subclass IPC2 has been used2 356.25 494.92 2.00 4618.00  57.91 144.51 1.00 3366.00 298.34*** 2.21 
Relatedness Density IPC1 0.39 0.21 0.00 1.00  0.36 0.21 0.00 1.00 0.03*** 0.00 
Relatedness Density IPC2 0.40 0.23 0.00 1.00  0.36 0.22 0.00 1.00 0.04*** 0.00 
Relatedness density 0.39 0.20 0.00 1.00  0.36 0.17 0.00 1.00 0.03*** 0.00 
New subclass 0.00 0.00 0.00 0.00  0.13 0.34 0.00 1.00 -0.13*** 0.00 
Both subclasses have RCA >1  0.35 0.48 0.00 1.00  0.17 0.38 0.00 1.00 0.18*** 0.00 
One subclass has RCA >1  0.36 0.48 0.00 1.00  0.44 0.50 0.00 1.00 -0.09*** 0.00 
No subclass has RCA > 1 0.29 0.46 0.00 1.00  0.39 0.49 0.00 1.00 -0.09*** 0.00 
Unrelated techn. (subclass) 0.34 0.47 0.00 1.00  0.72 0.45 0.00 1.00 -0.39*** 0.00 
Different fields 0.69 0.46 0.00 1.00  0.84 0.36 0.00 1.00 -0.15*** 0.00 
Different sectors 0.26 0.44 0.00 1.00  0.52 0.50 0.00 1.00 -0.26*** 0.00 
IDF – Ile de France 0.43 0.50 0.00 1.00  0.15 0.36 0.00 1.00 0.28*** 0.00 
Rhône-Alpes  0.17 0.37 0.00 1.00  0.12 0.33 0.00 1.00 0.04*** 0.00 
Observations 213988     50960    264948  
1  # of times a combination has been used in the region 
2 Each invention is decomposed in subclass pairs (i.e. combination IPC1-IPC2) – The table characterizes these combinations. 

  



 
TABLE 3. Impact of relatedness density on the number of reused combinations and the likelihood of a new combination (Patent level with patent fixed effects) 
 # of recomb. Reuse  New recombination (0/1) 
Regional characteristics (1) (2) (3)  (4) (5) (6) (7) (8) (9) (10) 
Relatedness density 0.653*** -0.061 0.154**  -0.091*** 0.154*** 0.104*** 0.102*** 0.036 -0.127*** -0.161*** 
 [0.027] [0.078] [0.072]  [0.010] [0.026] [0.026] [0.027] [0.030] [0.033] [0.038] 
Relatedness density sq  0.840*** 0.063   -0.288*** -0.173*** -0.173*** -0.063** 0.051 0.119*** 
  [0.086] [0.079]   [0.028] [0.027] [0.028] [0.031] [0.034] [0.038] 
New subclass 0.175*** 0.171*** 0.234***  0.283*** 0.284*** 0.279*** 0.283*** 0.278*** 0.279*** 0.296*** 
 [0.018] [0.018] [0.018]  [0.008] [0.008] [0.008] [0.015] [0.008] [0.008] [0.016] 
New subclass x Relatedness density        -0.130   -0.236** 
        [0.095]   [0.100] 
New subclass x Relatedness density sq       0.326**   0.479*** 
        [0.158]   [0.163] 
Patent recombination             
No subclass has RCA >1   -0.445***    0.036*** 0.035*** 0.037*** -0.029*** -0.023** 
   [0.011]    [0.004] [0.004] [0.004] [0.010] [0.011] 
One subclass has RCA >1   -0.363***    0.037*** 0.036*** 0.037*** -0.038*** -0.031*** 
   [0.007]    [0.002] [0.002] [0.002] [0.008] [0.008] 
Unrelated subclasses   -0.716***    0.119*** 0.119*** 0.105*** 0.119*** 0.108*** 
   [0.008]    [0.003] [0.003] [0.007] [0.003] [0.008] 
Unrelated subclasses x Relatedness density         0.151***  0.129*** 
         [0.034]  [0.036] 
Unrelated subclasses x Relatedness density sq       -0.238***  -0.207*** 
         [0.037]  [0.038] 
No subclass has RCA >1 x Relatedness density          0.324*** 0.293*** 
          [0.058] [0.063] 
One subclass has RCA >1 x Relatedness density          0.370*** 0.329*** 
          [0.037] [0.038] 
No subclass has RCA >1 x Relatedness density sq         -0.367*** -0.328*** 
          [0.081] [0.086] 
One subclass has RCA >1 x Relatedness density sq         -0.399*** -0.347*** 
          [0.041] [0.042] 
Regional Controls            
Population density 0.371 0.327 0.668  -0.187 -0.172 -0.192 -0.190 -0.193 -0.201 -0.198 
 [0.591] [0.593] [0.577]  [0.192] [0.192] [0.191] [0.191] [0.191] [0.191] [0.191] 
Income per employee 0.775*** 0.756*** 0.454**  0.016 0.022 0.045 0.044 0.041 0.052 0.047 
 [0.213] [0.214] [0.208]  [0.063] [0.063] [0.063] [0.063] [0.063] [0.062] [0.062] 
Employment -0.190 -0.317 -0.233  0.293** 0.337** 0.326** 0.327** 0.316** 0.333** 0.325** 
 [0.441] [0.443] [0.431]  [0.141] [0.141] [0.140] [0.140] [0.140] [0.140] [0.140] 
Technological generality  0.035 0.110 0.110  0.214** 0.188+ 0.191+ 0.192+ 0.190+ 0.187+ 0.186+ 
 [0.326] [0.328] [0.321]  [0.105] [0.105] [0.105] [0.105] [0.105] [0.104] [0.105] 
Technological specialization  -0.063 -0.076 -0.076+  -0.027+ -0.023 -0.023 -0.023 -0.022 -0.022 -0.021 
 [0.046] [0.046] [0.045]  [0.016] [0.016] [0.016] [0.016] [0.016] [0.016] [0.016] 
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Nb of patents in the subclass 0.325*** 0.329*** 0.229***  0.015*** 0.013*** 0.018*** 0.018*** 0.019*** 0.018*** 0.018*** 
 [0.011] [0.011] [0.011]  [0.003] [0.003] [0.004] [0.004] [0.004] [0.004] [0.004] 
Number of associated subclasses -0.128*** -0.128*** -0.091***  -0.160*** -0.159*** -0.163*** -0.163*** -0.163*** -0.162*** -0.163*** 
 [0.011] [0.011] [0.011]  [0.004] [0.004] [0.004] [0.004] [0.004] [0.004] [0.004] 
Inventors with external collaborations 0.234*** 0.235*** 0.251***  0.024*** 0.023*** 0.021*** 0.021*** 0.020*** 0.021*** 0.020*** 
 [0.008] [0.008] [0.008]  [0.003] [0.003] [0.003] [0.003] [0.003] [0.003] [0.003] 
Constant -7.988 -5.603 -4.111  -2.491 -3.307+ -3.429+ -3.451** -3.245+ -3.512** -3.366+ 
 [5.630] [5.657] [5.489]  [1.763] [1.764] [1.760] [1.761] [1.759] [1.757] [1.756] 
Observations 264948 264948 264948  264948 264948 264948 264948 264948 264948 264948 
R-Squared .6 .6 .64  .22 .22 .23 .23 .23 .23 .23 
Robust standard errors clustered at the patent level in brackets, + 0.10 ** 0.05 ***0.01  

 
 

Figure 1.  Impact of relatedness density and interaction with combined technologies (subclasses) 

Fig 1a Impact on recombinant reuse Fig 1b Impact on new recombination  
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Impact on recombinant novelty (New combination) 

Fig 1c when the combination introduces a new subclass Fig 1d When the subclasses are unrelated  Fig 1e When the combined subclasses have not an RCA > 1 

   

 



 
 

Table 4. Agency – Impact of relatedness density on new recombination.  
 (1) (2) (3) (4) (5) 
 b/se b/se b/se b/se b/se 
Relatedness density 0.16*** 0.24*** 0.13*** 0.14*** 0.11*** 
 [0.03] [0.05] [0.03] [0.03] [0.03] 
Relatedness density # Relatedness density -0.29*** -0.39*** -0.26*** -0.28*** -0.24*** 
 [0.03] [0.05] [0.03] [0.03] [0.03] 
New subclass 0.28*** 0.28*** 0.28*** 0.28*** 0.28*** 
 [0.01] [0.01] [0.01] [0.01] [0.01] 
University x Relatedness density -0.05     
 [0.06]     
University x Relatedness density sq 0.01     
 [0.07]     
Experience (# patents) x Relatedness density  -0.02**    
  [0.01]    
Experience (# patents) x Relatedness density sq  0.02**    
  [0.01]    
Local applicant # Relatedness density   0.23***   
   [0.08]   
Local applicant # Relatedness density # Relatedness density   -0.24***   
   [0.08]   
Entry x Relatedness density    0.13  
    [0.09]  
Entry x Relatedness density sq    -0.12  
    [0.08]  
Entry in the region x Relatedness density     0.21*** 
     [0.03] 
Entry in the region x Relatedness density sq     -0.22*** 
     [0.05] 
Population density -0.14 -0.17 -0.17 -0.17 -0.13 
 [0.19] [0.19] [0.19] [0.19] [0.19] 
Income per employee 0.02 0.02 0.02 0.02 0.00 
 [0.06] [0.06] [0.06] [0.06] [0.06] 
Employment 0.34** 0.34** 0.34** 0.34** 0.32** 
 [0.14] [0.14] [0.14] [0.14] [0.14] 
Technological generality 0.20+ 0.19+ 0.19+ 0.19+ 0.19+ 
 [0.11] [0.10] [0.10] [0.10] [0.10] 
Technological specialization -0.02 -0.02 -0.02 -0.02 -0.02 
 [0.02] [0.02] [0.02] [0.02] [0.02] 
Nb of patents in the subclass 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 
 [0.00] [0.00] [0.00] [0.00] [0.00] 
Number of associated subclasses -0.16*** -0.16*** -0.16*** -0.16*** -0.16*** 
 [0.00] [0.00] [0.00] [0.00] [0.00] 
Inventors with external collaborations 0.02*** 0.02*** 0.02*** 0.02*** 0.02*** 
 [0.00] [0.00] [0.00] [0.00] [0.00] 
Constant -3.41+ -3.32+ -3.30+ -3.30+ -3.14+ 
 [1.76] [1.76] [1.76] [1.77] [1.77] 
Observations 264948 264948 264948 264948 264948 
R-Squared .22 .22 .22 .22 .22 
Robust standard errors clustered at the patent level in brackets, + 0.10 ** 0.05 ***0.01  
Patent, region fixed effects and combined subclass fixed effects  



 

 

 

Figure 2.  Impact of relatedness density on new recombination given the type of agents  

Fig 2a. Size of applicants   Fig 2b. Location of applicant  Fig 2c. Entry in the region   
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Table 5: Robustness Checks                    
(1) (2) (3) (4) (5) (6) (7) (8) (9)  

Single 
Region1 

Multi 
Regions 

IDF and 
Rhône Alpes 

Outside IDF 
and Rhône Alpes 

Cross- 
field 

Similar 
Field 

Patent 
Novelty 

Without 
Extreme Values RD 

Relative 
Density <0 

Regional characteristics 
         

Relatedness density 0.13*** 0.07+ 0.13*** 0.09** 0.08*** 0.15*** 0.11*** 0.10*** 
 

 
[0.03] [0.04] [0.03] [0.04] [0.03] [0.04] [0.04] [0.03] 

 

Relatedness density sq -0.19*** -0.12*** -0.20*** -0.17*** -0.14*** -0.20*** -0.21*** -0.17*** 
 

 
[0.04] [0.04] [0.04] [0.05] [0.03] [0.05] [0.05] [0.03] 

 

New subclass 0.26*** 0.28*** 0.36*** 0.27*** 0.26*** 0.51*** 0.21*** 0.28*** 0.28***  
[0.01] [0.01] [0.04] [0.01] [0.01] [0.03] [0.01] [0.01] [0.01] 

Unrelatedness (Relative density <0) 
        

0.01***          
[0.00] 

Patent subclass recombination characteristics 
        

No subclass has RCA >1 0.04*** 0.03*** 0.02*** 0.07*** 0.04*** 0.01 0.09*** 0.04*** 0.04***  
[0.00] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.00] [0.00] 

One subclass has RCA >1 0.04*** 0.04*** 0.02*** 0.06*** 0.04*** 0.01*** 0.08*** 0.04*** 0.04***  
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

Unrelated subclasses 0.11*** 0.13*** 0.08*** 0.16*** 0.12*** 0.05*** 0.19*** 0.12*** 0.12***  
[0.00] [0.01] [0.00] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00] 

Regional characteristics - Controls 
        

Population density 
 

-0.24 0.40 0.05 -0.07 -0.46** -0.21 -0.19 -0.20   
[0.19] [2.05] [0.30] [0.23] [0.22] [0.29] [0.19] [0.19] 

Income per employee 
 

0.04 -0.35 -0.60** 0.05 0.02 -0.31*** 0.04 0.05   
[0.06] [0.41] [0.25] [0.07] [0.08] [0.10] [0.06] [0.06] 

Employment 
 

0.35** -0.11 0.33 0.26 0.34** 0.30 0.33** 0.29**   
[0.14] [0.95] [0.23] [0.17] [0.16] [0.22] [0.14] [0.14] 

Technological generality 
 

0.16 -0.09 0.02 0.23+ -0.01 0.25+ 0.19+ 0.18+   
[0.10] [0.46] [0.16] [0.12] [0.14] [0.15] [0.10] [0.10] 

Technological specialization 
 

-0.02 0.21 -0.01 -0.01 -0.05** 0.01 -0.02 -0.02   
[0.02] [0.19] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] 

Number of patents in the subclass -0.01 0.03*** 0.01 -0.01** 0.01*** 0.01 0.02*** 0.02*** 0.02***  
[0.01] [0.00] [0.01] [0.01] [0.00] [0.01] [0.01] [0.00] [0.00] 

Number of associated subclasses -0.10*** -0.20*** -0.07*** -0.10*** -0.15*** -0.16*** -0.15*** -0.16*** -0.16***  
[0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.00] [0.00] 

Inventors with external collaborations 0.01 0.03*** 0.01*** -0.00 0.02*** 0.04*** -0.01 0.02*** 0.02***  
[0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00] 

Constant 0.74*** -3.46+ 2.58 2.35 -3.22 -1.88 0.81 -3.43+ -3.03+  
[0.10] [1.78] [7.56] [3.50] [2.06] [2.36] [2.67] [1.76] [1.76] 

Observations 168567 96381 142480 122468 223646 41302 124262 264948 264948 

R-Squared .19 .32 .19 .24 .24 .36 .3 .23 .23 

Robust standard errors clustered at the patent level in brackets, + 0.10 ** 0.05 ***0.01 - 1  In the single region specification, regional variables cannot be computed 
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Table 6: Robustness checks               
 (1) (2) (3) (4) (5) (6) (7) 
 Period 1 Period 2 Period 3 Above_Median Below_Median nb comb <=15 nb comb <=28 
Regional characteristics        

Relatedness density 0.09+ 0.06 0.08 0.09 0.10*** 0.08*** 0.10*** 
 [0.05] [0.04] [0.05] [0.08] [0.03] [0.03] [0.02] 

Relatedness density sq -0.16*** -0.14*** -0.11** -0.21** -0.17*** -0.14*** -0.16*** 
 [0.05] [0.04] [0.05] [0.09] [0.03] [0.03] [0.03] 

New subclass 0.23*** 0.31*** 0.28*** 0.25*** 0.29*** 0.28*** 0.28*** 
 [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] 

Patent subclass recombination characteristics       

No subclass has RCA >1 0.04*** 0.04*** 0.03*** 0.10*** 0.03*** 0.04*** 0.04*** 
 [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] 

One subclass has RCA >1 0.04*** 0.03*** 0.03*** 0.08*** 0.03*** 0.04*** 0.04*** 
 [0.01] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00] 

Unrelated subclasses 0.12*** 0.10*** 0.15*** 0.16*** 0.11*** 0.12*** 0.12*** 
 [0.01] [0.00] [0.01] [0.01] [0.00] [0.00] [0.00] 

Regional characteristics - Controls        

Population density -1.31 -0.21 0.56 -1.36 0.00 -0.39** -0.31 
 [1.07] [0.72] [0.70] [1.01] [0.24] [0.19] [0.19] 

Income per employee -0.54 0.06 0.11 0.04 -0.01 0.05 0.05 
 [0.56] [0.26] [0.13] [0.59] [0.08] [0.06] [0.06] 

Employment 0.19 1.12** 0.51 0.42 0.30+ 0.44*** 0.34** 
 [0.56] [0.51] [0.60] [0.79] [0.17] [0.14] [0.14] 

Technological generality -0.06 0.36 0.22 0.09 0.40*** 0.17+ 0.19+ 
 [0.32] [0.30] [0.24] [0.31] [0.14] [0.10] [0.10] 

Technological specialization -0.12** 0.05 -0.04 -0.07+ -0.00 -0.04** -0.03+ 
 [0.05] [0.05] [0.04] [0.04] [0.03] [0.02] [0.02] 

Number of patents in the subclass 0.01 0.02*** 0.02*** -0.02** 0.01*** 0.02*** 0.02*** 
 [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] [0.00] 

Number of associated subclasses -0.16*** -0.15*** -0.18*** -0.08*** -0.14*** -0.17*** -0.16*** 
 [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.00] 

Inventors with external collaborations 0.02*** 0.03*** 0.01*** -0.01 0.02*** 0.02*** 0.02*** 
 [0.01] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00] 

Constant 10.01 -14.96** -10.88+ 0.32 -3.47 -4.18** -3.09+ 
 [9.99] [7.46] [5.90] [8.39] [2.23] [1.72] [1.74] 

Observations 69985 116240 78723 48047 216901 230297 252431 

R-Squared .26 .26 .25 .27 .22 .22 .22 

Robust standard errors clustered at the patent level in brackets, + 0.10 ** 0.05 ***0.01         
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  Table A1. Descriptive statistics and Correlation table                                       

  mean sd min max 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 Recombinant novelty (Region) 0.19 0.39 0.00 1.00 1.00                               

2 Recombinant novelty (World) 0.01 0.09 0.00 1.00 0.19* 1.00               

3 Recombinant novelty (France) 0.06 0.23 0.00 1.00 0.50* 0.37* 1.00              

4 Recombinant reuse (#) 124.20 337.71 1.00 3089 -0.18* -0.03* -0.09* 1.00             

5 Recombinant reuse (log) 2.65 2.13 0.00 8.04 -0.61* -0.11* -0.31* 0.65* 1.00            

6 Relatedness density 0.39 0.19 0.00 1.00 -0.07* -0.00* -0.00 -0.16* -0.06* 1.00           

7 Unrelated techn. (subclass) 0.41 0.49 0.00 1.00 0.31* 0.10* 0.23* -0.20* -0.43* -0.01* 1.00          

8 New subclass 0.02 0.16 0.00 1.00 0.33* 0.09* 0.15* -0.06* -0.20* -0.11* 0.10* 1.00         

9 Both specialized subclasses 0.31 0.46 0.00 1.00 -0.15* -0.02* -0.06* 0.13* 0.17* 0.50* -0.07* -0.10* 1.00        

10 No specialized subclass 0.31 0.46 0.00 1.00 0.08* -0.00* 0.00 -0.12* -0.09* -0.44* -0.09* 0.10* -0.46* 1.00       

11 One specialized subclass 0.37 0.48 0.00 1.00 0.07* 0.02* 0.05* -0.01* -0.08* -0.06* 0.15* 0.00 -0.52* -0.52* 1.00      

12 Regional patent generality 0.36 0.04 0.21 0.45 -0.17* -0.01* -0.04* 0.12* 0.25* 0.14* -0.05* -0.09* 0.16* -0.17* 0.01* 1.00     

13 Population density 5.54 1.08 3.76 6.89 -0.26* -0.02* -0.03* 0.31* 0.42* -0.00* -0.00 -0.16* 0.01* -0.08* 0.07* 0.47* 1.00    

14 Income per employee 11.04 0.20 10.56 11.53 -0.21* -0.03* -0.05* 0.32* 0.37* -0.05* 0.01* -0.15* 0.01* -0.08* 0.06* 0.05* 0.67* 1.00   

15 Employment 14.57 0.87 12.51 15.61 -0.27* -0.01* -0.02* 0.28* 0.40* -0.02* 0.01* -0.18* -0.07* -0.01* 0.07* 0.22* 0.87* 0.64* 1.00  

16 Subclass specialization  1.89 0.51 1.22 4.07 0.23* 0.01* 0.02* -0.24* -0.35* -0.03* -0.01* 0.17* 0.06* 0.00* -0.06* -0.15* -0.75* -0.59* -0.88* 1.00 

17 Nb of patents in the subclass 4.31 1.74 0.00 7.89 -0.50* -0.10* -0.20* 0.52* 0.79* 0.03* -0.18* -0.28* 0.15* -0.20* 0.05* 0.34* 0.63* 0.52* 0.63* -0.56* 

18 Number of associated subclasses 3.85 1.20 0.00 5.77 -0.54* -0.11* -0.21* 0.36* 0.70* 0.07* -0.16* -0.34* 0.12* -0.15* 0.03* 0.37* 0.62* 0.43* 0.64* -0.57* 

19 Inventors with external collaborations 1.82 1.23 0.00 4.98 -0.42* -0.09* -0.19* 0.59* 0.80* -0.10* -0.22* -0.19* 0.06* -0.10* 0.04* 0.29* 0.54* 0.48* 0.53* -0.47* 

20 Cross field 0.84 0.36 0.00 1.00 0.15* 0.03* 0.09* -0.27* -0.32* 0.08* 0.26* 0.03* -0.03* -0.02* 0.05* -0.04* -0.03* -0.01* -0.00* 0.01* 

21 Cross sector 0.59 0.49 0.00 1.00 0.16* 0.05* 0.12* -0.17* -0.26* 0.04* 0.19* 0.03* -0.05* 0.02* 0.03* -0.03* -0.03* 0.03* -0.03* 0.02* 

22 Entry 0.10 0.31 0.00 1.00 0.09* 0.02* 0.05* -0.04* -0.10* -0.03* 0.02* 0.05* -0.06* 0.06* 0.00* -0.03* -0.05* -0.05* -0.04* 0.04* 

23 Entry in the region 0.22 0.41 0.00 1.00 0.13* 0.01* 0.03* -0.07* -0.15* -0.08* -0.01* 0.09* -0.11* 0.13* -0.01* -0.08* -0.16* -0.14* -0.15* 0.13* 

24 Experience (# patents) 4.36 2.66 0.00 9.93 -0.14* -0.04* -0.07* 0.06* 0.15* 0.05* 0.00 -0.08* 0.09* -0.08* -0.01* 0.06* 0.11* 0.14* 0.09* -0.08* 

25 Local applicant 0.13 0.33 0.00 1.00 0.11* 0.03* 0.07* -0.06* -0.13* -0.01* 0.03* 0.06* -0.05* 0.04* 0.01* -0.04* -0.05* -0.06* -0.03* 0.03* 

26 Local inventors 0.44 0.50 0.00 1.00 -0.00* 0.03* 0.05* 0.01* 0.01* 0.11* 0.08* -0.02* 0.08* -0.12* 0.03* 0.02* 0.17* 0.09* 0.22* -0.15* 

27 University 0.18 0.38 0.00 1.00 -0.05* -0.02* -0.03* 0.04* 0.10* -0.08* -0.10* -0.02* -0.11* 0.11* 0.00 -0.04* -0.01* 0.04* 0.05* -0.07* 
* p < 0.05 

 
   Table A1. Descriptive statistics and Correlation table                     

  17 18 19 20 21 22 23 24 25 26 27 
17 Nb of patents in the subclass 1.00           

18 Number of associated subclasses 0.93* 1.00          

19 Inventors with external collaborations 0.91* 0.79* 1.00         

20 Cross field -0.17* -0.09* -0.21* 1.00        

21 Cross sector -0.16* -0.12* -0.18* 0.52* 1.00       

22 Entry -0.11* -0.11* -0.09* 0.03* 0.05* 1.00      

23 Entry in the region -0.20* -0.20* -0.14* 0.01* 0.06* 0.65* 1.00     

24 Experience (# patents) 0.19* 0.20* 0.16* -0.04* -0.10* -0.41* -0.38* 1.00    

25 Local applicant -0.13* -0.14* -0.12* 0.04* 0.05* 0.70* 0.46* -0.54* 1.00   

26 Local inventors 0.08* 0.06* -0.03* 0.06* 0.02* -0.02* -0.19* -0.01* 0.07* 1.00  

27 University 0.09* 0.09* 0.13* -0.01* 0.05* 0.00 0.04* 0.22* -0.12* -0.11* 1.00 



 

 
Table A2  

Cluster 1 Cluster 2 Logit Probit  
(1) (2) (3) (4) 

Regional characteristics 
    

Relatedness density 0.10*** 0.10*** 0.60*** 0.35***  
[0.02] [0.03] [0.20] [0.10] 

Relatedness density sq -0.17*** -0.17*** -0.99*** -0.57***  
[0.03] [0.03] [0.22] [0.12] 

New subclass 0.28*** 0.28*** 0.00 0.00  
[0.01] [0.01] [.] [.] 

Patent subclass recombination characteristics 
   

No subclass has RCA >1 0.04*** 0.04*** 0.69*** 0.37*** 
 [0.01] [0.00] [0.03] [0.02] 
One subclass has RCA >1 0.04*** 0.04*** 0.59*** 0.32***  

[0.01] [0.00] [0.02] [0.01] 
Unrelated subclasses 0.12*** 0.12*** 1.39*** 0.78***  

[0.02] [0.00] [0.02] [0.01] 

Regional characteristics - Controls 
    

Population density -0.19 -0.19 -1.04 -0.54  
[0.24] [0.18] [0.67] [0.37] 

Income per employee 0.04 0.04 -1.64*** -0.94***  
[0.06] [0.06] [0.11] [0.06] 

Employment 0.33*** 0.33** 1.26*** 0.68***  
[0.11] [0.13] [0.35] [0.19] 

Technological generality 0.19 0.19+ 0.50 0.26  
[0.11] [0.10] [0.38] [0.21] 

Technological specialization  -0.02+ -0.02 0.08 0.06+  
[0.01] [0.01] [0.05] [0.03] 

Nb of patents in the subclass 0.02** 0.02*** -0.10*** -0.03**  
[0.01] [0.00] [0.02] [0.01] 

Number of associated subclasses -0.16*** -0.16*** -0.84*** -0.51***  
[0.01] [0.00] [0.03] [0.01] 

Inventors with external collaborations 0.02*** 0.02*** -0.16*** -0.08***  
[0.00] [0.00] [0.02] [0.01] 

Constant -3.34 -3.34 5.77+ 3.52**  
[1130.22] [7286.47] [3.27] [1.79] 

Observations 264948 264948 258077 258077 

R-Squared .23 .23 
  

Robust standard errors clustered at the patent level in brackets, + 0.10 ** 0.05 ***0.01 
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Table A3. Robustness check – Impact of Relatedness density on combinations new to the world and New to France 
 New to the world  New to France 
 (1) (2) (3)  (4) (5) (6) 
 b/se b/se b/se  b/se b/se b/se 

Relatedness density 0.004+ 0.036*** 0.030***  -0.005 0.140*** 0.116*** 
 [0.002] [0.008] [0.008]  [0.005] [0.016] [0.016] 

Relatedness density # Relatedness density  -0.038*** -0.032***   -0.171*** -0.130*** 
  [0.009] [0.009]   [0.018] [0.018] 

New subclass 0.011*** 0.012*** 0.012***  0.047*** 0.048*** 0.048*** 
 [0.003] [0.003] [0.003]  [0.006] [0.006] [0.006] 

No subclass has RCA >1   -0.002***    0.002 
   [0.001]    [0.002] 

One subclass has RCA >1   0.000    0.006***  
  [0.001]    [0.002] 

Unrelated subclasses   0.005***    0.051*** 
   [0.001]    [0.002] 

Regional patent generality 0.002 -0.001 -0.001  0.014** -0.002 0.000 
 [0.003] [0.003] [0.003]  [0.007] [0.008] [0.008] 

Population density -0.005 -0.003 -0.000  -0.017+ -0.008 -0.005 
 [0.004] [0.004] [0.004]  [0.009] [0.010] [0.011] 

Income per employee -0.009*** -0.009*** -0.011***  -0.027*** -0.023*** -0.023*** 
 [0.002] [0.002] [0.002]  [0.005] [0.005] [0.005] 

Employment 0.004+ 0.010*** 0.010***  0.004 0.030*** 0.026*** 
 [0.002] [0.003] [0.003]  [0.006] [0.008] [0.008] 

Subclass specialization  0.000 0.001** 0.001**  0.000 0.003*** 0.003*** 
 [0.000] [0.000] [0.000]  [0.001] [0.001] [0.001] 

Nb of patents in the subclass -0.002** -0.002** -0.003***  -0.005** -0.006*** -0.008*** 
 [0.001] [0.001] [0.001]  [0.002] [0.002] [0.002] 

Number of associated subclasses -0.003** -0.003** -0.003**  -0.001 -0.001 -0.001 
 [0.001] [0.001] [0.001]  [0.002] [0.002] [0.002] 

Inventors with external collaborations 0.001 0.001 0.001  0.001 0.000 -0.001 
 [0.001] [0.001] [0.001]  [0.002] [0.002] [0.002] 

Constant 0.102*** -0.005 -0.000  0.385*** -0.102 -0.102 
 [0.039] [0.045] [0.045]  [0.101] [0.118] [0.117] 

Observations 264948 264948 264948  264948 264948 264948 

R-Squared .095 .095 .095  .14 .14 .15 

 

 


