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Non-Newtonian rheology in a capillary tube with varying radius
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Fluid blobs in an immiscible Newtonian fluid flowing in a capillary tube with varying radius show highly non-linear behaviour. We consider here a generalization of previously obtained results to blobs of non-Newtonian fluids. We compute here the yield pressure drop and the mean flow rate in two cases: (i) when a single blob is injected, (ii) when many blobs are randomly injected into the tube. We find that the capillary effects emerge from the non-uniformity of the tube radius and contribute to the threshold pressure for flow to occur. Furthermore, in presence of many blobs the threshold value depends on the number of blobs and their relative distances which are randomly distributed. For a capillary fiber bundle of identical parallel tubes, we calculate the probability distribution of the threshold pressure and the mean flow rate. We consider two geometries: tubes of sinusoidal shape, for which we derive explicit expressions, and triangular-shaped tubes, for which we find that essential singularities are developed. We perform numerical simulations confirming our analytical results.

Introduction

In many industrial, geophysical or biological applications related to porous media, non-Newtonian fluids are frequently encountered. Indeed many complex fluids present a non-linear rheology as for example slurries, heavy oils, suspensions [START_REF] Barnes | An introduction to rheology[END_REF][START_REF] Coussot | Rheometry of pastes, suspensions, and granular materials: applications in industry and environment[END_REF] or some biological fluids like blood [START_REF] Popel | Microcirculation and hemorheology[END_REF][START_REF] Bessonov | Methods of blood flow modelling[END_REF]. Here, we are interested in yield stress fluids, which require a minimal applied stress to flow. These fluids are involved in many practical applications, such as drilling for oil extraction, where proppant fluids are injected in the soil for the fracking process [START_REF] Barbati | Complex fluids and hydraulic fracturing[END_REF], stabilization of bone fractures in biomedical engineering [START_REF] Soyka | Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone[END_REF], or ground reinforcement by cement injection. Yield stress fluids in porous media is a challenging and interesting problem which has been the subject of many studies in the last decades [START_REF] Entov | On some two-dimensional problems of the theory of filtration with a limiting gradient[END_REF][START_REF] Park | The flow of non-Newtonian solutions through packed beds[END_REF][START_REF] Al-Fariss | Flow through porous media of a shear-thinning liquid with yield stress[END_REF][START_REF] Chen | The flow and displacement in porous media of fluids with yield stress[END_REF][START_REF] Sochi | Pore-scale network modeling of Ellis and Herschel-Bulkley fluids[END_REF][START_REF] Talon | On the determination of a generalized Darcy equation for yield-stress fluid in porous media using a lattice-Boltzmann trt scheme[END_REF][START_REF] De Castro | Non-Darcian flow of shear-thinning fluids through packed beads: Experiments and predictions using forchheimer's law and ergun's equation[END_REF][START_REF] Liu | Darcy's law for yield stress fluids[END_REF]. Because of the presence of a yield stress, the fluid is able to flow only if a certain amount of pressure is imposed [START_REF] Roux | Disorder-induced nonlinear conductivity[END_REF][START_REF] Chen | The flow and displacement in porous media of fluids with yield stress[END_REF][START_REF] Liu | Darcy's law for yield stress fluids[END_REF][START_REF] Fraggedakis | The first open channel for yield-stress fluids in porous media[END_REF]. There is then a strong coupling between the rheology of the fluid and the disorder of the porous structure, implying that some regions are easier to yield than others. Above this pressure threshold, as demonstrated by several studies [START_REF] Roux | Disorder-induced nonlinear conductivity[END_REF][START_REF] Talon | On the determination of a generalized Darcy equation for yield-stress fluid in porous media using a lattice-Boltzmann trt scheme[END_REF]Chevalier and Talon, 2015;[START_REF] Waisbord | Anomalous percolation flow transition of yield stress fluids in porous media[END_REF][START_REF] Liu | Darcy's law for yield stress fluids[END_REF], a progressive increase of flowing paths occurs. As a consequence, the flow rate Q increases with the applied pressure drop ∆P according to a power-law:

Q ∝ (∆P -∆P c ) β , (1) 
where ∆P c is a pressure drop threshold and β a characteristic exponent to be determined. The origin of this flowing regime is an effect of the disorder, but remarkably the value of the exponent β = 2 found in a recent work by [START_REF] Liu | Darcy's law for yield stress fluids[END_REF] for 2D porous media is independent from the type of disorder. This is however not the case in 1D, if one describes the porous media by a series of uniform bundle of capillaries. The flow curve above the threshold depends then on the details of the opening distribution [START_REF] Nash | The effect of microstructure on models for the flow of a Bingham fluid in porous media[END_REF].

If the flow of yield stress fluids in porous media is already a challenging problem, in many situations the complexity is increased by the presence of different immiscible fluids. Multi-phase flow in porous media is a very old and rich subject, and is still the topic of many ongoing research. One of the main difficulties lies in the presence of numerous interfaces exerting capillary forces on the fluids present, which makes the dynamic very non-linear. It is then surprising that, during many decades, the models predicting the mean flow rate as function of the mean applied pressure has assumed linear relations (Bear, 1988;[START_REF] Dullien | Porous media: fluid transport and pore structure[END_REF].

In the last decade, however, a series of experiments and simulations [START_REF] Tallakstad | Steady-state, simultaneous two-phase flow in porous media: An experimental study[END_REF][START_REF] Rassi | Nuclear magnetic resonance characterization of the stationary dynamics of partially saturated media during steady-state infiltration flow[END_REF][START_REF] Sinha | Effective rheology of immiscible two-phase flow in porous media[END_REF][START_REF] Yiotis | Blob population dynamics during immiscible two-phase flows in reconstructed porous media[END_REF]Chevalier et al, 2015;[START_REF] Zhang | Quantification of nonlinear multiphase flow in porous media[END_REF] have shown the existence of a nonlinear flowing regime at low flow rate. Similarly to the yield stress fluid case, the physical reason behind this observation lies in the presence of the heterogeneity. In fact, due to capillary forces the interfaces can only move if a certain pressure is applied. In a disordered media, certain regions allows the movement of interfaces more easily than others. At very low applied pressure, the displacement of the interfaces occurs only in few pathways whose number rises with the applied pressure [START_REF] Yiotis | Nonlinear Darcy flow dynamics during ganglia stranding and mobilization in heterogeneous porous domains[END_REF]. This increase is then responsible for a non-linear flow rate-pressure relationship similar to eq. ( 1), where the exponent β has been reported to vary in the range β ∈ [1.5, 2] depending on the flow condition [START_REF] Tallakstad | Steady-state, simultaneous two-phase flow in porous media: An experimental study[END_REF][START_REF] Yiotis | Blob population dynamics during immiscible two-phase flows in reconstructed porous media[END_REF][START_REF] Rassi | Nuclear magnetic resonance characterization of the stationary dynamics of partially saturated media during steady-state infiltration flow[END_REF][START_REF] Sinha | Effective rheology of immiscible two-phase flow in porous media[END_REF][START_REF] Sinha | Effective rheology of twophase flow in three-dimensional porous media: Experiment and simulation[END_REF][START_REF] Yiotis | Nonlinear Darcy flow dynamics during ganglia stranding and mobilization in heterogeneous porous domains[END_REF][START_REF] Zhang | Quantification of nonlinear multiphase flow in porous media[END_REF]). An argument based on comparing length scales associated with the viscous forces with those set by the capillary forces gave β = 2 [START_REF] Tallakstad | Steady-state, simultaneous two-phase flow in porous media: An experimental study[END_REF]. This value was also found using a mean field theory-based calculation [START_REF] Sinha | Effective rheology of immiscible two-phase flow in porous media[END_REF], whereas a calculation based on the capillary fiber bundle model, gives either β = 3/2 or β = 2 depending on the statistical distribution of the flow thresholds [START_REF] Roy | Effective rheology of two-phase flow in a capillary fiber bundle model[END_REF]. These approaches are all based on the mobilization of interfaces and can be understood for instance by considering many blobs in a single 1D pore with spatial varying opening. In this case, there exists a minimal pressure threshold to initiate the flow. Above, the flow rate increases with a power-law as eq. ( 1), similarly to a Herschel-Bulkley yield stress fluid with index n = 1/β. [START_REF] Aursjø | Film flow dominated simultaneous flow of two viscous incompressible fluids through a porous medium[END_REF] found the values β = 1.49 and 1.35 for a two-dimensional porous model where transport of one of the fluids occurs entirely through film flow, depending on the fractional flow rate.

In this work, we aim to investigate two-phase flows, but in the case where one of the two fluids presents a yield threshold. The situation is then more complex as both the rheology and the surface tension lead to a threshold pressure to initiate the flow. For simplification, we propose to model a porous medium by a set of identical capillaries with varying opening (i.e., the capillary fiber bundle model, see [START_REF] Scheidegger | Theoretical models of porous matter[END_REF][START_REF] Scheidegger | The physics of flow through porous media[END_REF]). The first question we want to address is the determination of the pressure threshold depending on the rheology, the surface tension and the disorder of the capillaries. The second question is then to determine the flow curve just above this threshold. We will show that the flow rate follows a power law, and we will determine the exponent depending the structure disorder.

For a Newtonian fluid in a cylindrical capillary tube, neglecting inertia, the volumetric flow rate, q, is expected to grow linearly with the pressure gradient ∆P/l. Here ∆P = P in -P out is the pressure difference applied to the edges of a tube of length l (in the following we assume ∆P > 0 for simplicity). This behaviour is given by the celebrated Poiseuille law q = πr 4 0 ∆P/(8µl), where µ is the fluid viscosity and r 0 the tube radius. However, non-Newtonian yield stress fluids display a non-linear response. Their rheology can be modeled by 
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Fig. 1 Two-dimensional sketch of a blob of yield stress fluid in a uniform tube. On the xaxis, the one-dimensional model relative to the problem is pictured, where the thick line is the projection along x of the yield stress blob, while the thin line represent the part occupied by the Newtonian fluid.

the Herschel-Bulkley constitutive equation [START_REF] Bird | Useful non-Newtonian models[END_REF], that gives a relation between the shear stress τ applied to the fluid and the shear rate γ

τ = τ y + k γn , (2) 
The constant k is the consistency, the exponent n > 0 is the flow index and τ y is the yield stress. In this case the flow in the tube occurs only above an yield pressure drop ∆P c , and the flow rate grows with pressure in a non-linear way.

For example, for a perfect cylindrical tube filled with a non-Newtonian yield stress fluid, the yield pressure is ∆P c = 2τ y l/r 0 and the flow law [START_REF] Bird | Dynamics of polymeric liquids[END_REF]:

q =        C 0 r 4+ 1 n 0 ∆P -∆Pc l 1 n +1 if ∆P → ∆P + c , C ∞ r 3+ 1 n 0 ∆P -∆ Pc l 1 n if ∆P ∆P c , (3) 
here C 0 = nπ/((n + 1)2 1+1/n k 1/n τ y ), C ∞ = nπ/((3n + 1)(2k) 1/n ) and ∆ P c = ((3n + 1)/(2n + 1))∆P c is a pseudo critical pressure (see [START_REF] Talon | Effective rheology of Bingham fluids in a rough channel[END_REF]; [START_REF] Bauer | Experimental and numerical determination of Darcy's law for yield stress fluids in porous media[END_REF]).

1 Model for a single blob

Uniform tube

We now consider the case of a cylindrical tube with constant radius filled with a Newtonian liquid, in which one small blob of yield stress fluid (YSF) is injected, as pictured in Figure 1. We assume the fluids to be immiscible and incompressible. The blob, of size ∆x b l and position x b , is at the origin of a critical yield pressure ∆P c = P 0 y = 2τ y ∆x b /r 0 . The total pressure drop ∆P needed to sustain a flow rate q can be expressed as the sum of the pressure drops across every portion of fluid. We call P - x b and P + x b , respectively, the pressure value just before and just after the left surface separating the Newtonian fluid from the blob (positioned at x b ), while P - x b +∆x b and P +

x b +∆x b will be, respectively, the pressure just before and just after the right surface (positioned at x b +∆x b ). The pressure drops across both portions of Newtonian fluid, in the intervals 0 < x < x b and x b + ∆x b < x < l, are given by the Poiseuille law

P in -P - x b = q 8µx b πr 4 0 , P + x b +∆x b -P out = q 8µ(l -x b -∆x b ) πr 4 0 . (4) 
The pressure drop across the blob is instead given by Equation (3) and writes

P + x b -P - x b +∆x b =          q C0 r 4+ 1 n 0 n n+1 ∆x b + ∆P c if ∆P → ∆P + c , q n ∆x b C n ∞ r 3n+1 0 + ∆ P c if ∆P ∆P c (5) 
Moreover, when two immiscible fluids are in contact, at the interface emerges a discontinuity in pressure, called capillary pressure, whose sign depends on the curvature of the interface (Bear, 1988). Hence, in a perfect cylindrical tube, the total capillary pressure across the two interfaces of a blob cancels out since at each interface the capillary pressure discontinuity is 2σ/r 0 (σ being the surface tension between the two fluids)1 , but the signs of the two contributions are opposite as the two interfaces have opposite curvature. The sum of the three pressure drops given in equations ( 4) and (5) in the limit ∆P ∆P c is then

∆P = q 8µ(l -∆x b ) πr 4 0 + q n n+1 ∆x b C n n+1 0 r 4n+1 n+1 0 + ∆P c . (6) 
In this limit the flow vanishes to 0, so we can neglect the linear term in equation ( 6) as n/(n + 1) < 1 ∀ n > 0.

In the opposite limit ∆P ∆P c we have

∆P = q 8µ(l -∆x b ) πr 4 0 + q n ∆x b C n ∞ r 3n+1 0 + ∆ P c . (7) 
Since now q → ∞, we should distinguish between a shear-thinning fluid and a shear-thickening fluid, for which n < 1 and n > 1 respectively. In the first case, the leading term is the one proportional to q n , while in the other case the leading term is the linear one. Finally, we can write the volumetric flow Newt.
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Fig. 2 Two-dimensional sketch of a blob of yield stress fluid in a non-uniform tube. On the x-axis, the one-dimensional model relative to the problem is pictured, where the thick line is the projection along x of the yield stress blob, while the thin line represent the part occupied by the Newtonian fluid.

rate in the two different limits:

q(∆P ) =                    C 0 r 4+ 1 n 0 ∆P -∆Pc ∆x b 1+ 1 n if q → 0        C ∞ r 3+ 1 n 0 ∆P -∆ Pc ∆x b 1 n if n < 1 πr 4 0 8µ ∆P -∆ Pc l-∆x b if n > 1 if q → +∞ (8)

Non-uniform tube

We consider now a tube still of length l, but with varying radius r(x) (see figure 2) described by the following equation

r(x) = r 0 1 + af (x/r 0 ) , (9) 
where f (x/r 0 ) is a bounded function with zero average in the interval x/r 0 ∈ [0, l/r 0 ], a 1 a dimensionless constant and r 0 a characteristic radius. In this work, we will assume that the radius varies slowly enough that the radial component of the fluid velocity can be neglected compared to the axial component f

1. The size of the blob ∆x b can also be considered constant along the tube. This hypothesis, also named lubrication approximation, is usually used in heterogeneous tube or fracture [START_REF] Brown | Fluid flow through rock joints: The effect of surface roughness[END_REF] as it allows to determine the flow rate as function of the local gradient of pressure [START_REF] Happel | Low Reynolds number hydrodynamics[END_REF]. For Newtonian fluids, this approximation holds for a sufficiently slow variation of the radius [START_REF] Happel | Low Reynolds number hydrodynamics[END_REF][START_REF] Malevich | Stokes flow through a channel with wavy walls[END_REF]. For yield stress fluid, a mathematical criterion of application remains an open question. This approximation has however been successfully applied in many pore network models for Newtonian and non-Newtonian fluids (for example: [START_REF] Lopez | Predictive network modeling of single-phase non-Newtonian flow in porous media[END_REF]; [START_REF] Balhoff | Modeling the steady flow of yield-stress fluids in packed beds[END_REF]; [START_REF] Sochi | Pore-scale network modeling of Ellis and Herschel-Bulkley fluids[END_REF]).

Indeed, this approximation allows to determine a general relationship between pressure drop and flow rate. Even when the condition of applicability is not fullfilled, the deviation to the lubrication prediction can then be circumvented by introducing an effective hydraulic radius [START_REF] Dullien | Porous media: fluid transport and pore structure[END_REF]). For yield stress fluids, the lubrication approximation is more complicated (see [START_REF] Frigaard | Flow of a visco-plastic fluid in a channel of slowly varying width[END_REF]). For example, [START_REF] Roustaei | Non-Darcy effects in fracture flows of a yield stress fluid[END_REF] study the flow-pressure relationship for Bingham fluid in different heterogeneous fractures. The flow-pressure relationship is affected by two other mechanisms. First, the lubrication approximation predicts an unyielded plug in the center that breaks when the variation in opening is too large. More important is the presence of a unyielded "fouling" layer at the wall. Interestingly, this layer tends to smooth out the effect of the heterogeneity of the opening. As in the Newtonian case, it follows that even if the lubrication approximation does not hold, the flow-pressure relationship can be approximated by an equation like eq. ( 3) providing the introduction of an equivalent radius distribution.

Analytic radius variability

Let's assume f (x/r 0 ) to be analytic in x ∈ [0, l]. Two modifications should be included with respect to the uniform case. First, the capillary pressure across the blob interfaces do not cancel anymore [START_REF] Sinha | Effective rheology of bubbles moving in a capillary tube[END_REF]. Since P

- x b -P + x b = 2σ/r(x b ) and P + x b +∆x b -P - x b +∆x b = 2σ/r(x b +∆x b ), their difference is in general non zero and approximately equal to 2σ r(x b ) - 2σ r(x b + ∆x b ) a P σ ∆x b r 0 f (x b /r 0 ), (10) 
with P σ = 2σ/r 0 and f (x b /r 0 ) the derivative of f at x b . Secondly, as r(x) is non-constant, both Poiseuille law and Eq. ( 3) can be considered valid only along infinitesimal intervals of length dx. For both reasons, the flow rate varies in time as a function of the blob location x b . The Poiseuille equation becomes q(x b ) = -πr(x) 4 (dP/dx)/(8µ) from which, integrating along both portions of Newtonian fluids, at the first order of a we get:

P in -P - x b = q(x b ) 8µ πr 4 0 x b + 4a x b 0 f (x/r 0 )dx , (11) 
P + x b +∆x b -P out = q(x b ) 8µ πr 4 0 l -x b -∆x b + 4a l x b +∆x b f (x/r 0 )dx (12) Considering the limit ∆P → ∆P + c , eq. (3) becomes instead q(x b ) = C 0 r(x) 4+ 1 n (dP/dx -2τ y /r(x)) 1 n +1
, which, integrated along the blob interval, gives:

P + x b -P - x b +∆x b q(x b ) C 0 r 4+ 1 n 0 n n+1 ∆x b + P 0 y [1 + af (x b /r 0 )] ,
where P 0 y = 2τ y ∆x b /r 0 . Note that we approximated the integral:

x b +∆x b x b 1 r 4+1/n (x) dx 1 r 4+1/n 0 ∆x b , (13) 
because the correction only affects the prefactor of the flow curve, and not the exponent or the threshold. Since in this limit q(x b ) 1, the leading behavior of the flow curve can be written as:

q(x b ) C 0 r 4+ 1 n 0 ∆P -γ(x b /r 0 ) ∆x b 1+ 1 n , (14) 
where we have defined the function:

γ(x b /r 0 ) = P 0 y + a P 0 y f (x b /r 0 ) + P σ ∆x b r 0 f (x b /r 0 ) . ( 15 
)
From eq. ( 14) we note that in a deformed tube the critical pressure drop ∆P y above which flow is possible has increased with respect to the cylindrical tube, and is equal to the maximum of γ(x b ):

∆P c = P 0 y + a max 0<x b <l P 0 y f (x b /r 0 ) + P σ ∆x b r 0 0 f (x b /r 0 ) , (16) 
= P 0 y 1 + a max 0<x b <l f (x b /r 0 ) + σ r 0 τ y f (x b /r 0 ) ; (17) 
we denote x m the position of such maximum along the tube. Three terms contribute to the critical pressure. The first constant one is due to the yield threshold. The second is also due to the yield stress, but depends on the tube shape. The last one, related to the capillary force, is based on the derivative of f . The competition between the last two terms is then governed by the ratio between the relative derivative f /f and the dimensionless number

Pσ∆x b P 0 y r0 = σ r0τy .
The blob position moves as dx b /dt = q/(πr 2 0 ), hence from eq. ( 14) we get the equation of motion

dx b dt = C 0 r 2+ 1 n 0 π∆x 1+ 1 n b [∆P -γ(x b /r 0 )] 1+ 1 n . ( 18 
)
The time T needed for the blob to move from one end of the tube to the other can be computed from (18):

T = l 0 dx b dx b /dt ∝ l 0 dx b [∆P -γ(x b /r 0 )] 1+ 1 n . (19) 
In general γ(x b /r 0 ) relies on the specific form of f (x b /r 0 ). However, supposing that f (x b /r 0 ) is analytical, we can expand γ(x b /r 0 ) around

x m : γ(x b /r 0 ) = ∆P c -α(x b -x m ) 2 + . . . For ∆P → ∆P + c
, the dominant contribution to the integral of eq. ( 19) is around x m , so we can write

T ∝ l 0 dx b [∆P -∆P c + α(x b -x m ) 2 ] 1+ 1 n ∝ (∆P -∆P c ) -( 1 n + 1 2 ) . ( 20 
)
The flux averaged over the time T , q T is then

q T = πr 2 0 l T ∝ (∆P -∆P c ) 1 n + 1 2 . ( 21 
)
Note that close to the yield threshold ∆P c , the power-law exponent 1/n + 1/2 of the flow rate turns out to be different from 1 + 1/n in eq. ( 8) for the uniform tube.

On the other hand, in the opposite limit ∆P ∆P c , since the fluctuations along the critical pressure are negligible, we expect the same behaviour of the cylindrical tube.

Non-analytic radius variability

As a final remark, we discuss the case where f (x b /r 0 ) is not analytic. In the framework of the fiber bundle model, capillary tubes presenting non analytic points allows to model porous materials presenting a rough and angular microstructure, e.g. matrices of randomly packed grains of quartz sand [START_REF] Xiong | Impact of pore structure and morphology on flow and transport characteristics in randomly repacked grains with different angularities[END_REF]. The non-linear prediction of eq. ( 21) hold only if γ(x b /r 0 ) is derivable at least twice. Otherwise, its expansion around x m is of the form:

γ(x b ) = ∆P c + α|x b -x m | δ + . . . , with δ > 0.
In this case, the behavior of the integral in eq. ( 20) is modified and the flux averaged over T is then

q T ∝ (∆P -∆P c ) 1 n +1-1 δ . ( 22 
)
To provide a concrete example, we consider a saw-tooth triangular geometry: A sketch of such geometry is shown in Figure 3. In this case we have

f x r 0 = 4r 0 l x r 0 - l 2r 0 -1, x ∈ ]0, l] . (23) 
γ(x b /r 0 ) = P 0 y + 4ar 0 l P 0 y x b r 0 - l 2r 0 + P σ ∆x b r 0 sgn x b r 0 - l 2r 0 = P 0 y 1 + 4ar 0 l x b r 0 - l 2r 0 + σ τ y r 0 sgn x b r 0 - l 2r 0
Its maximum is located at the discontinuity point x m = l and writes

∆P c = P 0 y + a 2P 0 y + 4 l P σ ∆x b (24) = P 0 y 1 + 2a 1 + 2σ τ y l .
Integrating eq. ( 19) yields to δ = 1 if the blob fluid presents yield stress, while q T ∝ (∆P -∆P c )

1 n +1 in absence of yield stress (P 0 y = 0).

Model for many blobs

In a uniform tube, the flow curve obtained when a single shot of non-Newtonian fluid is injected is identical to the one obtained when the same amount of fluid is split in N small blobs. This is not the case for a non-uniform tube. To be concrete, we address the case of several identical blobs of non-Newtonian fluid (see figure 4). It comes out that the critical pressure obtained with N blobs of length ∆x b is larger than N P 0 y = 2N ∆x b τ y /r 0 , the value expected for a single shot of length equal to N ∆x b . The difference depends on the total number of blobs and on the specific blob configuration. During the flow, the relative distances between different blobs remain constant as the fluids are incompressible. Moreover, periodic boundary conditions are set, namely f (x/r 0 ) = f x+l r0 . This assumption can describe two different situations: (i) a tube of length l with periodic boundary conditions (ii) a tube of length L l presenting a periodic deformation of spatial period l. In the latter case, the blobs are in general located on different periods, but it is convenient to shift their position in the first period: more precisely, if a blob is located at a certain position in the k-th period, the dynamics of the system does not change if we subtract the quantity (k -1)l from that position. We then denote with x b the position of the most left blob and with x i the distance from its i-th blob neighbour. Thus i = 1, . . . , N -1, and the i-th right neighbour is located at x b + x i . When x b moves from 0 to l all the other blobs move exactly one period.

x 0 l x b x 1 x 2 x i . . . . . .
In the limit of small flow rate q → 0, the pressure drop at the edges of the i-th blob is

P + x b +xi -P - x b +xi+∆x b = ∆x b q C 0 r 4+ 1 n 0 n n+1 + P 0 y + aP 0 y f x b + x i r 0 . (25) 
At this, one must add the capillary pressure drop aP σ ∆x b r0 f ( x b +xi r0 ). Summing the contributions of all the N blobs and neglecting the pressure drop induced by the Newtonian fluid, we obtain the following flow rate equation, that depends not only on the variable x b , but also on the set of constant values {x i }:

q(x b ; {x i }) = C 0 r 4+ 1 n 0 ∆P -γ(x b /r 0 ; {x i /r 0 }) N ∆x b 1 n +1 , (26) 
with

γ x b r 0 ; x i r 0 = N P 0 y + a P 0 y F x b r 0 ; x i r 0 + P σ ∆x b r 0 F x b r 0 ; x i r 0 , (27) 
where the function

F x b r 0 ; x i r 0 = f (x b /r 0 ) + N -1 i=1 f x b + x i r 0 , (28) 
and F (y; { xi r0 }) is the first derivative of F (y; { xi r0 }) with respect to y. The critical pressure ∆P c needed for the system to flow is then given by the maximum 

∆P c x i r 0 = max 0≤x b <l γ x b r 0 , x i r 0 . ( 29 
)
From eq. ( 29) we can see that the value of the critical pressure relies thus not only on the number of blobs, but also on the specific configuration of the blobs position along the tube, namely on their distances {x i }.

Since there is no preferred position of the blobs along the tube, the most important configuration is the one where the positions of the blobs are uniformly (evenly) distributed. In the diluted limit where N ∆x b is very small compared to the tube length, the position of every blob shifted in the first period is uniformly distributed in the interval (0, l). Our first goal is to compute the probability distribution function of the critical pressure, Π(∆P c ), associated to such ensemble. The second goal is to characterize the flow rate. Again the flow of a given tube averaged over a period, q T = q({x i }) T , depends on its specific blobs configuration, and thus on its pressure threshold value ∆P c = ∆P c ({x i }). For ∆P → ∆P + c :

T ∝ l 0 dx b ∆P -γ x b r0 ; xi r0 1+ 1 n ∝ (∆P -∆P c ) -( 1 n + 1 2 ) ( 30 
)
and thus q T ∝ (∆P -∆P c ) 1/n+1/2 if the tube modulation is analytical, or, more generally, q T ∝ (∆P -∆P c ) 1/n+1-1/δ . Once these two quantities are obtained, we can calculate the flow rate in a fiber bundle model [START_REF] Roy | Effective rheology of two-phase flow in a capillary fiber bundle model[END_REF], in which the same pressure drop ∆P is applied to many tubes which are identically shaped. Each tube is assumed to be filled with a Newtonian liquid together with N blobs injected at random positions along the tube, as pictured in Figure 5. In the limit of many tubes, the mean flow rate averaged over a period is obtained by averaging over all possible configurations of the blobs positions. We will call it q T , where the overline denotes the average over the blob configurations. For ∆P slightly greater than N P 0 y , we expect that the flow rate of every tube of the fiber bundle follows the small flow power-law exponent 1/n + 1 -1/δ if the pressure drop applied is greater than the pressure threshold of that tube, namely ∆P > ∆P c , or is null if on the contrary ∆P ≤ ∆P c . Instead, we have tubes in the large flow limit, whose flow rate is described by the second case of eq. ( 8), only if ∆P is sufficiently greater than ∆P c = ((3n + 1)/(2n + 1))N P 0 y . Since N P 0 y < ∆ P c < (3/2)N P 0 y for all n > 0, there's always a finite range of values of ∆P for which all tubes in the bundle presenting non-null flow obey to the small flow regime. Moreover, ∆P c ≥ N P 0 y but is typically much lower than ∆ P c , because the fluctuations on the value of ∆P c are smaller than the difference between N P 0 y and ∆ P c . The effects on the mean flow rate caused by the non-uniformity of the tubes can then be seen only if ∆P is sufficiently close to N P 0 y . In this limit we can compute the mean flow rate per tube as

q T ∝ ∆P N P 0 y d∆P c Π(∆P c )(∆P -∆P c ) 1 n +1-1 δ .
(31)

Sinusoidal geometry

In this section, we study the case

f (x/r 0 ) = cos (2πx/l) . (32) 
It is useful to introduce the angle variables θ b = 2π x b l and θ i = 2π xi l . Using the trigonometric relations, we can write

F (θ b ; {θ i }) = cos(θ b ) + N -1 i=1 cos(θ b + θ i ) = √ N A cos(θ b + φ) (33)
where the amplitude is

A = 1 √ N 1 + N -1 i=1 cos θ i 2 + N -1 i=1 sin θ i 2 (34)
and the phase shift φ = arcsin

√ N N -1 i=1 sin θ i /A . Similarly, we obtain F (θ b ) = -(2π/l) √ N A sin(θ b + φ). So γ(θ b , {θ i }) can be written as a cosine function γ(θ b ; {θ i }) = N P 0 y + √ N A P γ cos(θ b + φ + ϕ) (35) 
where and ϕ =arccos (P y 0 /P γ ), from which it's easy to see that the pressure threshold is

P γ = a P 0 y 2 + (2πP σ ∆x b /l) 2 ( 
∆P c = N P 0 y + √ N A P γ (38) = P 0 y   N + a √ N A 1 + 2πσ τ y l 2   (39) 
We now discuss three different possible cases related to different configurations of the blobs positions:

• Each blob is separated from its nearest neighbours by a distance equal to the spatial period l, namely θ i = 0 ∀ i. This implies that A = √ N , and ∆P c reaches the highest possible value

∆P c = N P 0 y + P γ (40) 
• Each blob is separated from its nearest neighbours by half of the spatial period l/2, so θ i = π for i odd and θ i = 2π for i even. It follows that A = 0 if N is even, or A = 1 if N is odd, and ∆P c takes the lowest possible value

∆P c =      N P 0 y if N even N P 0 y + P γ if N odd (41) 
• The position of every blob is uniformly distributed along the tube. This is equivalent to suppose that all the N -1 angular differences θ i are uniformly distributed in the interval [0, 2π]. In the limit of N sufficiently large, A follows, in the interval [0, +∞[, the probability distribution

Π(A) = 2A e -A 2 . ( 42 
)
In order to prove eq. ( 42), we first calculate the probability distribution of the variable B = N A 2 : To solve (43) it's convenient to perform a Laplace transform:

g(B) = 1 (2π) N -1 2π 0 dθ 1 • • • 2π 0 dθ N -1 δ B -N A 2 . ( 43 
g(s) = +∞ 0 dB e -sB g(B) = 1 (2π) N -1 2π 0 dθ 1 • • • 2π 0 dθ N -1 e -s (1+ N -1 i=1 cos θi) 2 +( N -1 i=1 sin θi) 2 (44)
We define m x = N -1 i=1 cos θ i and m y = N -1 i=1 sin θ i . Note that the average and the variance of both cos θ i and sin θ i in the interval [0, 2π], are respectively 0 and 1/2. Moreover, their crossed integral (the covariance) in the same interval is zero, meaning that m x and m y are statistical independent. According to the central limit theorem, when N -1 N is sufficiently large, the distribution of both m x and m y is Gaussian with mean zero and variance N/2. Eq. ( 44) can be rewritten as

g(s) = +∞ -∞ dm x e -m 2 x N √ πN +∞ -∞ dm y e - m 2 y N √ πN e -s((1+mx) 2 +m 2 y ) = e -s+ s 2 1/N +s 1 + N s N 1 ---→ 1 1 + N s . ( 45 
)
The inverse Laplace transform leads to g(B) = exp (-B/N )/N , from which eq. ( 42) follows directly. Non-Newtonian rheology in a capillary tube with varying radius

From Π(A) we get the distribution of ∆P c in the interval [N P 0 y , +∞[:

Π(∆P c ) = 2(∆P c -N P 0 y ) N P 2 γ e -( ∆Pc -N P 0 y ) 2 N P 2 γ . ( 46 
)
The mean flow rate per tube is finally obtained from (31) and using ∆P → (N P 0 y ) + in eq. ( 46) q T ∝ (∆P -N P 0 y )

1 n + 5 2 . ( 47 
)
2.2 Beyond the sinusoidal geometry: the triangular saw tooth shape

In the previous section we computed explicitly the distribution of critical threshold (see equation ( 46)) for a tube tube with a sinusoidal deformation and random located identical blobs. In particular it comes out that the distribution vanishes linearly at N P 0 y . How general is this result? We can prove that the result is still robust if the N blobs have slightly different sizes (see Appendix A). However, in this section we show that the shape of the distribution is very sensitive to the analytical properties of f (x). As an important example, we discuss in detail the triangular saw tooth shape introduced in eq. ( 23), and we first focus on the fully Newtonian case (for which τ y = 0), and then on the non-Newtonian blobs case but where capillarity effects can be neglected (for which σ = 0).

Blobs of Newtonian fluid

If the tube is non uniform, even Newtonian blobs lead to a critical pressure ∆P c , due to the capillary pressure drop at the interface. The value of ∆P c corresponds to the global maximum, in the interval 0 ≤ x b < l, of the function γ(x b /r 0 ), expressed by equation ( 27), with P 0 y = 0, namely

∆P c = √ N AP γ , (48) 
where

A = 1 √ N l 4r 0 max 0≤x b <l F x b r 0 ; x i r 0 ( 49 
)
and P γ = (4r 0 /l)aP σ ∆x b . We remind that F (y; { xi r0 }) is the first derivative of Eq. ( 28) with respect to y, and can be seen as the sum of N contributions. For the triangular saw tooth shape, there is a contribution -4r 0 /l for every blob located in the semi-period interval [0, l/2] and +4r 0 /l for every blob in the other semi-period [l/2, l]. When x b moves from 0 to l, all the blobs are shifted of the same quantity. The function γ( x b r0 ; { xi r0 }) remains constant until one of the two facts occurs: either the most right blob belonging to the first semi-period enters the second, so that the function γ increases by 2P γ , or the last blob belonging to the second semi-period enters the first, so that γ Fig. 8 Plot of a typical F (x b /r 0 ), obtained from eq. ( 23) and ( 28), in a triangular tube with N = 50 blobs uniformly distributed in (0, l). Here we set l = 1. The two bridges are shown separately in the inset.

x 0 l/2 l +2P γ -2P γ
decreases by -2P γ . A sketch of this procedure is shown in figure 7. Increasing x b further, other jumps occur for every blob entering in a new semi-period. γ corresponds then to a 1-dimensional simple random walk [START_REF] Weiss | Random walks and random environments, volume 1: Random walks[END_REF], a process in which, for each of the N steps corresponding to the N blobs, γ will perform a stepwise increment of ±2P γ . Since the probability for a blob to be in the first or second semi-period is the same, γ can increase by 2P γ or -2P γ with equal probability, so this random walk is symmetric with a diffusion coefficient of D = 2P 2 γ . Moreover, due to the periodicity of the system, this random walk is periodical of period l. A typical trajectory is shown in figure 8. The random walk displays the symmetry

γ x b r0 ; { xi x0 } = -γ l/2+x b r0 ; xi x0
and can be decomposed into two Brownian bridges with mirror symmetry, namely two Brownian processes constraint to both start and end at 0 and with opposite sign. If we denote the two processes z 1 (i) and z 2 (i), they evolve from i = 0, in which z 1 (0) = z 2 (0) = 0, to i = N , in which z 1 (N ) = z 2 (N ) = 0; the two bridges are identical but opposite in sign, namely z 1 (i) = -z 2 (i). As a consequence, equation ( 49) can be written as 50) Non-Newtonian rheology in a capillary tube with varying radius

A = 1 √ N l 4r 0 max 0<i<N |z 1 (i)| (
The exact calculation of the distribution of A can be done using the methods discussed in [START_REF] Mori | Distribution of the time between maximum and minimum of random walks[END_REF] for Brownian bridges. However, the statistical behaviour of max 0<i≤N |z 1 (i)| should be similar to the one of the span S of the process, defined as S = max 0<i≤N (z 1 )min 0<i≤N (z 1 ). For the span, rigorous results are proven not only for the Brownian motion but for Gaussian processes with generic Hurst exponent H (the Brownian motion corresponds to H = 1/2). In particular, the probability to have a small span ε is known to vanish singularly as

Prob[S < ε] ∝ e -kN ε 1/H for ε → 0, ( 51 
)
where k is a numerical prefactor of order one [START_REF] Dean | Diffusion in periodic, correlated random forcing landscapes[END_REF]. From eq. ( 51), we can infer that the probability distribution of A vanishes as

Π(A) ∝ A -3 e -k A 2 for A → 0. ( 52 
)
The presence of an essential singularity at the origin indicates that the tubes with small critical pressure are extremely rare. From ( 52) it follows that the probability distribution of ∆P c goes as

Π(∆P c ) ∝ (∆P c ) -3 e - 2kN P 2 γ (∆Pc ) 2 for ∆P c → 0. (53) 
From eq. ( 31) we then find that, in the limit of small ∆P , the mean flow rate per tube vanishes exponentially as

q T ∝ e - 2kN P 2 γ ∆P 2 . (54)

Blobs of yield stress fluid without capillary effects

The same approach allows to solve the case of blobs of Non-Newtonian fluid for which we neglect capillary effects. The value of ∆P c corresponds to the maximum, in the interval 0 < x b < l, of ( 27) with P σ = 0, namely

∆P c = N P 0 y + √ N AP γ (55) 
where

A = 1 √ N max 0≤x b <l F x b r 0 ; x i r 0 (56) 
and

P γ = aP 0 y . Here F x b r0 , xi r0
is the integral of the random walk discussed in the Newtonian case. A typical trajectory is shown in figure 10 and corresponds to the trajectory of a Random Acceleration Process (RAP) [START_REF] Burkhardt | The random acceleration process in bounded geometries[END_REF], a piecewise linear function where the slope performs a Random walk; in particular, this Gaussian process represents the integral of a Brownian Bridge, 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5. 23) and ( 28), in a triangular tube with N = 50 blobs uniformly distributed in (0, l). Here we set l = 1. The two bridges are shown separately in the inset.

and is characterized by H = 3/2. The methods discussed in [START_REF] Majumdar | Time at which the maximum of a random acceleration process is reached[END_REF] may be a starting point for deriving an exact form for the distribution of the maximum of a RAP. However, following the lines of the previous discussion, we expect that the distribution of A vanishes at 0 as for ∆P c → N P 0 y .

Π(A) ∝ 1 A 5/3 e -k * A 2/3 for A → 0. ( 57 
(58)

For ∆P N P 0 y the mean flow rate per tube scales now as

q T ∝ e - k * N P 2/3 γ ( ∆P -N P 0 y ) 2/3 . ( 59 
)
As a final remark we note that, as H → +∞ the function γ x b r0 , xi r0 becomes smoother in x b and the critical pressure distribution remains singular, but at a higher order of derivative. The linear behaviour in the limit ∆P c → 0 found for the sinusoidal case represents then the most regular behaviour we can expect.

Conclusion

In this paper, we studied the flow rate curve in tubes filled with a Newtonian fluid and where blobs of non-Newtonian (or Newtonian) fluid are injected.

One blob. When a single blob is injected, we found a yield pressure threshold ∆P c below which there is no flow. Above this threshold, the flow Q is strongly non-linear and grows with a characteristic exponent:

Q(∆P ) ∝ (∆P -∆P c ) β . ( 60 
)
The value of the threshold for the uniform tube of radius r 0 is: ∆P c = P 0 y = 2τ y ∆x b /r 0 , where τ y is the yield stress of the non-Newtonian blob of size ∆x b . For a non-uniform tube of radius r(x) = r 0 /(1 + af (x/r 0 )), the value of the threshold is modified:

∆P c = P 0 y + P γ , (61) 
where the value of P γ depends on the geometry of the tube. The exponent β depends on both the rheology and the geometry of the tube. Its value has been summarised in table 1.

Concerning P γ , we show that in general:

P γ = a max 0<x b <l P 0 y f x b r 0 + P σ ∆x b r 0 f x b r 0 , ( 62 
)
where P σ is the contribution of the surface tension, and l is the length of the tube. Two special cases have been studied.

• Sinusoidal deformation, f (x/r 0 ) = cos (2πx/l):

P γ = a P 0 y 2 + (2πP σ ∆x b /l) 2 = aP 0 y 1 + 2πσ τ y l 2 (63) 
In this case, the function γ(x/r 0 ) is regular around the maximum, so that β = 1/2 for the Newtonian case and β = 1/2 + 1/n for the non-Newtonian one. • Triangular deformation, f (x/r 0 ) = 4r0 l x r0 -l 2r0 -1:

P γ = a 2P 0 y + 4∆x b l P σ = 2aP 0 y 1 + 2σ τ y l (64) 
In this case, the function γ(x/r 0 ) is singular around the maximum (δ = 1), so that β = 0 for the Newtonian case and β = 1/n for the non-Newtonian one.

N blobs. In the case of the uniform tube, the flow curve is identical as for the single blob. The value of the threshold coincides with the one of a single blob with the same amount of fluid. The case of a non-uniform tube is instead more interesting. The value of the pressure threshold ∆P c depends explicitly 1 Summary of the exponent β when a single blob is injected in a tube filled with a Newtonian fluid. In the case of a non-uniform tube, γ(x/r 0 ) is assumed regular around the maximum, i.e. γ(x/r 0 ) ∼ ∆Pc + α(x -xm) 2 . Otherwise, if γ(x/r 0 ) ∼ ∆Pc + α(x -xm) δ , the exponent are β = 1 -1/δ and β = 1 + 1/n -1/δ for the Newtonian and non-Newtonian case respectively.

Newt Non-Newt Uniform β = 1 β = 1/n + 1 Non-uniform β = 1/2 β = 1/n + 1/2 Table
on the number of blobs and their relative distance. Assuming that the blobs are identical and evenly distributed, we show that ∆P c can be written as

∆P c = N P 0 y + √ N AP γ , ( 65 
)
where A is a non-dimensional positive random variable of order 1. The probability distribution of A depends on the tube shape. We studied the following particular cases:

• Sinusoidal deformation, f (x) = cos 2π x l. We found an explicit formula for Π(A), valid in the limit of many blobs

Π(A) = 2Ae -A 2 .
(66)

• Triangular deformation, f (x/r 0 ) = 4r0 l x r0 -l 2r0 -1. We don't have an explicit formula for Π(A), but we show how Π(A) vanishes when A → 0, in two limiting cases:

1. Newtonian fluid:

Π(A → 0) ∝ 1 A 3 e -k A 2 , ( 67 
)
where k is a numerical constant. 2. Non-Newtonian fluid neglecting capillary effects:

Π(A → 0) ∝ 1 A 5/3 e -k * A 2/3 , (68) 
where k * is another numerical constant.

Concerning the flow, for a fiber bundle model and in the limit of many tubes, the total flow curve results from averaging all the blobs position configurations.

It can be written in the form:

Q(∆P ) ∝ ∆P -N P 0 y β , (69) 
where the overline stands for an average over all blobs configurations. The values obtained for the exponent β are given in table 2. 2 Summary of the exponent β when many blobs are injected in a tube filled with a Newtonian fluid. If the tube is uniform, we recover the result of a single blob. If the tube has a sinusoidal shape, the exponent is modified.

Newt Non-Newt Uniform β = 1 β = 1/n + 1 Sinusoidal β = 5/2 β = 1/n + 5/2 Table
It is important to remark that within the fiber bundle model, the value of β depends explicitly on the regularity of the function γ(x). For example, in the triangular case, β = 0 and the flow displays an essential singularity:

Q(∆P ) ∝ e - k ( ∆P -N P 0 y ) 1/H , (70) 
the Hurst exponent H characterizes the self-affine behavior of the function γ(x). For example, we showed that in the triangular geometry H = 1/2 for a Newtonian fluid and H = 3/2 for a non-Newtonian fluid with negligible capillarity. One can wonder if this dependence holds also for a realistic porous media. Indeed, the fiber bundle model is a crude approximation as all tubes are independent. A challenge for future works is then to solve the flow in frameworks of interacting tubes.

A Blobs of different sizes in a tube with sinusoidal geometry

We generalize the study of the flow in a tube considering N blobs of different lengths. We call ∆x 0 the size of the blob positioned at x b and ∆x i the size of the blob at x b + x i , and for all i we take ∆x i l. We also consider a radius variation small enough so that we can take every ∆x i constant. In the limit of small flow rate q → 0, the pressure drop at the edges of the i-th blob is

P + x b +xi -P - x b +xi+∆xi = ∆x i q(x b ) C 0 r 4+ 1 n 0 n n+1 + P 0 y,i 1 + af x b + x i r 0 . ( 71 
)
where P 0 y,i = 2τ y ∆x i /r 0 . To this, one must add the capillary pressure drop aP σ ∆x i f ((x b + x i )/r 0 ). Summing the contributions of all the N blobs and neglecting the pressure drop induced by the Newtonian fluid, we obtain the following flow rate equation: 

q(x b , {x i }; {∆x i }) = C 0 r 4+ 1 n 0 ∆P -γ (x b /r 0 ; {x i /r 0 }, {∆x i }) N -1 i=0 ∆x i
; x i r 0 , {∆x i } = ∆x 0 f x b r 0 + N -1 i=1 ∆x i f x b + x i r 0 . ( 74 
)
We now focus on the case of a tube presenting the sinusoidal modulation given by eq. ( 32). Defining θ b = 2πx b /l and θ i = 2πx i /l, equation ( 74) can be written as a single sine function 

where P γ = a (2τ y /r 0 ) 2 + (2πP σ /l) 2 and ϕ =arccos 2τ y /(r 0 P γ ) .The maximum of eq. ( 76) gives the pressure threshold

∆P y = N -1 i=0 P 0 y,i + √ N A P γ . ( 77 
)
We now suppose that every blob size is distributed uniformly between two extreme values ∆x m and ∆x M , with ∆x m < ∆x M l. Then, for N sufficiently large, N -1 i=0 P 0 y,i = N P 0 y with P 0 y = τ y (∆x M + ∆x m ) /r 0 . Moreover we assume the angular position θ i to be distributed uniformly in the interval [0, 2π]. It follows that the probability distribution Π(A), in the domain [0, +∞[, has the following expression:

Π(A) =
2A q e -A 2 q ;

(78) here we define q = (∆x 2 M + ∆x 2 m + ∆x m ∆x M )/3. In particular, Π(A) vanishes linearly as A → 0. To prove (78), we calculate the probability distribution of the variable B = N A 2 -s (∆x0+ i ∆xi cos θi) 2 +( i ∆xi sin θi) 2 .

(80)

We now define the statistical variables m x = N -1 i=1 ∆x i cos θ i and m y = N -1 i=1 ∆x i sin θ i . The mean and variance of both ∆x i cos θ i and ∆x i sin θ i in the interval [0, 2π]×[∆x m , ∆x M ] are respectively 0 and q/2. m x and m y are statistical independent since their covariance is zero. When N -1 N is sufficiently large, the distribution of both m x and m y is Gaussian with mean zero and variance N q/2. Eq. ( 80) becomes: The Laplace inversion gives g(B) = exp(-B/(N q))/(N q), from which eq. ( 82) follows. From Π(A) we get the distribution of ∆P c in the interval N P 0 y , +∞ : 

g(s) = +∞ -∞ dm x e -m 2 x N q √ πN q +∞ -∞ dm y e -

Fig. 3

 3 Fig.3Two-dimensional sketch of a blob of yield stress fluid in a triangular tube. On the x-axis, the one-dimensional model relative to the problem is pictured, where the thick line is the projection along x of the yield stress blob, while the thin line represent the part occupied by the Newtonian fluid.

Fig. 4

 4 Fig.4Two-dimensional sketch of several blobs of yield stress fluid in a non-uniform tube of length l. On the x-axis, the one-dimensional model relative to the problem is pictured, where the thick line is the projection along x of the yield stress blobs, while the thin line represent the part occupied by the Newtonian fluid.

Fig. 5

 5 Fig. 5 Sketch of a fiber bundle of identically shaped tubes, each filled with blobs randomly located along it.
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Fig. 6

 6 Fig.6Probability distribution of the amplitude A defined in equation (34). Blue dots represent the histogram of 10 6 numerical samplings of A, each obtained generating N = 1000 values of θ i uniformly distributed in (0, 2π); the samplings are collected in 50 bins of equal size in the domain[0, 4]. The solid line is the analytical prediction given by equation (46).

Fig. 7

 7 Fig.7Sketch of several blobs in a tube presenting the triangular modulation given by eq. (23).

Fig. 9 Fig. 10

 910 Fig. 9 Distribution of A for a train of blobs of Newtonian fluid in a triangular tube. Blue dots represent the histogram of 10 7 numerical samplings of A, each obtained generating N = 1000 values of blob positions and calculating (49); the samplings are collected in 100 bins of equal size in the domain 0, 200/ √ N . The dashed curve is the probability distribution (46) valid for a sinusoidal tube. In the inset, the numerical data (A -2 , Π(A)) are compared to the asymptotic trend of eq. (53) setting k 3.2.

Fig. 11

 11 Fig. 11 Distribution of A for a train of blobs of yield stress fluid in a triangular tube neglecting capillary effects. Blue dots represent the histogram of 10 7 numerical samplings of A, each obtained generating N = 1000 values of blob positions and calculating (56); the samplings are collected in 100 bins of equal size in the domain 0, 100/ √ N . The dashed curveis the probability distribution (46) valid for a sinusoidal tube. In the inset, the numerical data (A -2 , Π(A)) are compared to the asymptotic trend of eq. (53) setting k * 1.2.
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  (x b /r 0 ; {x i /r 0 }, {∆x i }) = √ N A sin (θ 0 + φ)∆x i sin θ i Non-Newtonian rheology in a capillary tube with varying radius and the phase shift φ = arcsin A -1 N -1 i=1 ∆x i sin θ i . Similarly, we obtainG (x b ; {x i }, {∆x i }) = -√ N A(2π/l) sin(θ b + φ). So γ(θ b ; {θ i }, {∆x i }) can be written as: γ(θ b ; {θ i }, {∆x i }) = γ cos(θ b + φ + ϕ),

Here we implicitly assume the contact angle between the meniscus and the tube to be small such that the radius of the spherical interface is approximately equal to the radius of the tube.
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