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High-Quality Fault Resiliency in Fat-Trees
John Gliksberg∗†‡, Antoine Capra†, Alexandre Louvet†, Pedro Javier García‡, and Devan Sohier∗

Abstract—Coupling regular topologies with optimised routing algorithms is key in pushing the performance of interconnection
networks of supercomputers. In this paper we present Dmodc, a fast deterministic routing algorithm for Parallel Generalised Fat-Trees
(PGFTs) which minimises congestion risk even under massive network degradation caused by equipment failure. Dmodc computes
forwarding tables with a closed-form arithmetic formula by relying on a fast preprocessing phase. This allows complete re-routing of
networks with tens of thousands of nodes in less than a second. In turn, this greatly helps centralised fabric management react to faults
with high-quality routing tables and no impact to running applications in current and future very large-scale HPC clusters.

Index Terms—HPC, routing, fat-tree, fault-resiliency
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1 INTRODUCTION

A MAJORITY of current leading network topologies for
High Performance Computing (HPC) clusters are fat-

tree variants. (The five most powerful clusters of the June
2019 Top500 list [1] had fat-tree topologies.) These networks
have some form of static routing tables computed by a
centralised routing engine and uploaded to all switches.

It is sufficient for fat-tree-specific routing algorithms to
be minimal to guarantee deadlock-free routing, and the
regular nature of their target topology class should simplify
load-balancing strategies. PGFTs [2] describe all regular fat-
trees for which there is at most one downward switch-path
from any switch to any node (as shown in Figure 1). In
this article we refer to fat-trees as PGFTs. The oblivious
routing algorithm for non-degraded PGFTs (Dmodk [2], see
Section 2) uses this property and their connection logic to
provide load balance through an arithmetic rule.

Due to the sheer amount of equipment in current and
future supercomputers, hardware failures are to be ex-
pected [3] (especially in optical links [4] typically used in
higher levels of fat-trees) and should not hinder running
applications as far as possible. The fabric manager can react
to equipment failures that do not break graph connectivity
by uploading updated routing tables. In order to do this it
requires a fault-resilient routing algorithm capable of rapid
re-routing. The challenge is to provide these characteristics
while maintaining high-quality static load balance.

Some of the research regarding oblivious fault-resilient
routing focuses on techniques that explicitly target degrada-
tions to regular fat-trees [5] [6]; there are several re-routing
strategies for these techniques. OpenSM’s UPDN [7] and
Ftree [8] routing engines can also be applied from scratch to
a degraded fat-tree. PQFT [5] is similar, though it requires
a complete list of faults. The combination of Dmodk +
Ftrnd_diff [9] available in BXI FM [10] is applied in an
offline/online manner (with an iterative list of network
changes and an up-to-date view of the network), the goal
being fast reaction to faults with minimal routing changes.
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Fig. 1. PGFT (3; 2,2,3; 1,2,2; 1,2,1) with leaf switches shown in grey.

Fabriscale [11] also provides fast centralised re-routing of
fat-trees, by precomputing alternative routes. A short sum-
mary of the limits of the existing approaches is provided in
a previous conference paper [12].

The approach that we propose to meet that challenge
is to apply the closed-form arithmetic formula of Dmodk
while relaxing the topological constraint. For that purpose,
we compute shortest paths explicitly rather than relying on
an addressing scheme, and we balance load according to
locally propagated information rather than relying on level-
wide constants. These two goals are addressed together dur-
ing preprocessing and will be the focus of this article, whose
main contribution is the detailed algorithm description in
Section 3.

2 DMODK

The Dmodk routing algorithm and corresponding PGFT
topology are described in detail in [2]. The algorithm relies
on a criterion (not shown here) to determine whether a
destination d must be routed within the down ports and,
if so, which one. Otherwise, an arithmetic formula defines
the up port (with index p) to select:

p =
⌊
d /

∏l
k=1 wk

⌋
mod (wl+1pl+1)

The level-wide constants (or arities) wl and pl respec-
tively denote the numbers of uplinks and of interlinks of
all switches at level l. With this formula, each destination’s
routes are coalesced as early as possible, and routes to dif-
ferent destinations are spread out as much as possible, thus
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minimising collisions between independent traffic. These
closed-form steps rely on a given organisation of addresses
of switches and indexing of their ports. Dmodk is a very
low complexity and perfectly parallel routing algorithm
for PGFTs, but it is not applicable to degraded PGFTs or
irregular fat-trees.

3 DMODC DESCRIPTION

The idea behind the fault-resilient algorithm that we pro-
pose is to rely on local information while using the same
closed-form arithmetic formula as Dmodk. The c in Dmodc
refers to the neighbouring switches explicitly determined to
be closer to the destination among which paths are chosen.
The aim is fast centralised computation of routing tables for
degraded PGFTs, providing optimal or well-balanced deter-
ministic routes even under heavy fabric degradation. The
algorithm begins with a preprocessing phase (that can be
multi-threaded) followed by a parallel computation phase.
Links are assumed to be bi-directional; notations used in the
expressions hereafter are defined in Table 1.

TABLE 1
Notations Used in Expressions.

S is the set of switches
L is the set of leaf switches (L ⊂ S)
N is the set of nodes
E is the set of edges
λn is the (only) leaf switch connected to node n (λn ∈ L)�

,

� respectively denote down and up links, according to rank
Gs is the ordered list of port groups of switch s
Ωg is the switch connected to port group g
# denotes cardinality

Dmodc-specific notations:
cs,l is the cost of switch s to leaf switch l
Πs is the divider of switch s

3.1 Basic Preprocessing

For ranking, levels and link directions are determined ac-
cording to leaf switches being equivalent to the lowest level.
Groups of ports linked to the same switch are prepared and
sorted by globally unique identifier (GUID) to help with
same-destination route coalescing.

3.2 Cost

We define the cost cs,l of a switch s to a leaf switch l to
be the minimum number of hops between each other under
up–down restrictions according to rank, as defined in Pro-
cedure 1 and illustrated in Figure 2. This later allows us to
determine valid paths by exploring neighbouring switches
and comparing costs. That exploration could be done here
to prepare sets of output ports, but it’s better to leave it for
later since each set is only used once (see Subsection 3.4).
Other all-pairs shortest paths methods could be substituted
here.
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Fig. 2. Example sequence of cost propagation steps in a degraded part
of a network. Costs to the bottom-right switch are shown in switches.
At each propagation step, the updated costs are in grey. Note that in
steps 3–5, some propagations are interrupted due to the cs,l + 1 < cs′,l
condition in the procedure. They could have been achieved with a simple
cs′,l = ∞ condition instead; however this would have also interrupted
the propagation of 2 in step 5. As a result, the long path on the left would
not have been avoided. For PGFTs (degraded or not), such cases are
actually impossible and the simple condition would suffice; but it would
not guarantee shortest up–down paths in fat-tree-like topologies.

Procedure 1 Compute costs and dividers
for all s ∈ S do

for all l ∈ L do
cs,l ←∞

Πs ← 1
for all l ∈ L do
cl,l ← 0

for all s ∈ S sorted in ascending rank order do
π ← Πs ×#{s′ � s}
for all s′ � s do

for all l ∈ L | cs,l + 1 < cs′,l do
cs′,l ← cs,l + 1

for all s′ � s | Πs′ < π do
Πs′ ← π

for all s 6∈ L sorted in descending rank order do
for all s′ � s do

for all l ∈ L | cs,l + 1 < cs′,l do
cs′,l ← cs,l + 1

Thanks to the up–down restriction, the complexity of this
procedure is in O(#E#L). This restriction is only for effi-
ciency, it does not enforce deadlock-freedom. Some fat-tree-
like topologies would result in up–down–up–down paths
(if such shortcuts appear in neighbouring switches), since
path selection does not distinguish up and down neigh-
bours. Avoiding this requires a slightly different method:
an extra integer must be stored, similar to cost but only for
downpaths. More detail can be found in Section 3.4.

In our partially parallel implementation, each worker
thread obtains a block of switches to propagate with one
barrier per level upwards, then downwards.

3.3 Divider
Dmodc is based on the same arithmetic formula as Dmodk.
Prior to the modulo operation, it begins with an integer di-
vision by the product of #{s′ ∈ S | s′ � s} (the upward arity
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Fig. 3. Example sequence of divider propagation steps in a degraded
part of a network. Dividers are shown in switches. At each propagation
step, the updated dividers are in grey. Note that in step 2, the first
upswitch is not updated because π = 2 × 2 ≤ 6. Even though there
are multiple degradations in the considered case, all top switches end
up with the divider that they would have had in the complete network.

of s) of switches at each lower level. This value represents
the number of consecutive destinations to route through the
same port. It is multiplied when going up levels to mirror
the number of consecutive choices by switches below before
each switch is chosen again. To reflect the actual state of
the network (in which switches of the same level may have
different arities), only local information must be considered;
in turn, this operation is based on the products of up-to-date
counts of upswitches (switches connected above), as defined
in Procedure 1. Each downpath corresponds to a potential
divider value, and we choose to keep only the maximum
(as illustrated in Figure 3). The underlying motivation is
to generate the same values as in the non-degraded PGFT,
as long as the topological subgroup is not systematically
degraded. The complexity of this part of the procedure is in
O(#E).

3.4 Routes Computation
The deterministic output port ps,d and alternative output
ports Ps,d of every switch s for every destination d ∈ N
(not directly linked to s) are selected with a closed-form
formula based on the results previously determined. First,
port groups leading closer to λd are selected in (1) (without
taking ranking into account), setting corresponding alterna-
tive output ports in (2):

Cs,λd
←
{
g ∈ Gs | cΩg,λd

< cs,λd

}
(1)

Ps,d ← {p ∈ g | g ∈ Cs,λd
} (2)

Selected port groups C are stored in an array (ordered
by GUID of their remote switch), also represented by C :
individual groups are accessed with indices i ∈ [0,#Cs,λd

[
using the Cs,λd

[i] notation. From this, the output port group
is chosen in (3) and the port within that group in (4):

gs,d ← Cs,λd
[

⌊
d

Πs

⌋
mod #Cs,λd

] (3)

ps,d ← gs,d[

⌊
d

Πs ×#Cs,λd

⌋
mod #gs,d] (4)

Routes are computed in a loop over leaves so that Cs,λ is
determined only once for all nodes connected to λ (with Ps,d

3
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2Cs,λ20(1) Ps,20(2)

Π = 4
gs,20

(3)
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Fig. 4. Example route computation with s in grey, Πs = 4, and d = 20.
Costs to λ20 are shown in switches. Indices are ordered from left to right.
The top-right group is chosen as gs,20 because b20/4c mod 2 = 1, and
the right port in gs,20 is chosen as ps,20 because b20/(4× 2)c mod 3 =
2.

also unchanging ∀ d | ∃ λd). Figure 4 illustrates assignments
(1), (2), (3), and (4).

The cost variant for up–down restriction described in 3.2
requires (1) to compare c values for upswitches and the
downpath cost value for downswitches.

4 RESULTS

The algorithm was implemented in the fabric management
software for Atos’s Bull eXascale Interconnect (BXI). The
same code has been used for validation, simulation, and in
production.

4.1 Validity
Routing is valid for degraded PGFTs if and only if the cost
of every leaf switch to every other leaf switch is finite:
this reflects every node pair having an up–down path. Our
implementation includes a pass through all leaf switch pairs
to verify this condition. The up–down path restriction is
sufficient to guarantee deadlock-freedom within degraded
PGFTs [6].

4.2 Runtime
Our C99 implementation had computation of cost, divider,
and routes spread over POSIX threads fetching work with
a switch-level granularity. Figure 5 reports complete algo-
rithm execution time alongside OpenSM (version 3.3.21)
routing times (measured by adding timers in the source
code) running on the same machine. For clusters ranging
up to many tens of thousands of nodes, Dmodc provides
fast enough re-routing for a centralised fabric manager to
react to faults before applications are interrupted.

4.3 Quality
The routing algorithm was tested for quality by generating
randomly degraded networks, computing corresponding
routing tables, and then determining maximum congestion
risk for multiple communication patterns. This study is
available in a previously published extended abstract [12].
The results are comparable or better than the other available
algorithms across the studied range of degradations.
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Fig. 5. Algorithm runtime on a 2.50GHz Intel Xeon E5-2680 v3 for Real-
Life Fat-Trees of varying sizes (in log–log scale; lower is better).

5 CONCLUSION

The simulation results in Section 4 show that Dmodc
provides high-quality centralised fault-resilient routing for
PGFTs at a fraction of the runtime of existing algorithms,
without relying on partial re-routing. Dmodc is also appli-
cable to fat-tree-like topologies (as mentioned in Figure 2)
but with lower-quality load balancing. As defined here, no
effort has been made to minimise the size of updates to be
uploaded to switches throughout the fabric.

This algorithm is implemented inside BXI FM [10] and
has been successfully deployed to an 8490 node PGFT pro-
duction network in which it helps provide fault-resiliency
even when faced with thousands of simultaneous changes.
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