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Abstract—Coupling regular topologies with optimized routing
algorithms is key in pushing the performance of interconnection
networks of HPC systems. In this paper we present Dmodc, a
fast deterministic routing algorithm for Parallel Generalized
Fat-Trees (PGFTs) which minimizes congestion risk even under
massive topology degradation caused by equipment failure. It
applies a modulo-based computation of forwarding tables among
switches closer to the destination, using only knowledge of
subtrees for pre-modulo division. Dmodc allows complete re-
routing of topologies with tens of thousands of nodes in less than
a second, which greatly helps centralized fabric management
react to faults with high-quality routing tables and no impact
to running applications in current and future very large-scale
HPC clusters. We compare Dmodc against routing algorithms
available in the InfiniBand control software (OpenSM) first for
routing execution time to show feasibility at scale, and then for
congestion risk under degradation to demonstrate robustness.
The latter comparison is done using static analysis of routing
tables under random permutation (RP), shift permutation (SP)
and all-to-all (A2A) traffic patterns. Results for Dmodc show
A2A and RP congestion risks similar under heavy degradation
as the most stable algorithms compared, and near-optimal SP
congestion risk up to 1% of random degradation.

1. Introduction

A majority of current leading network topologies for High
Performance Computing (HPC) clusters are fat-tree variants.
(The five most powerful clusters of the November 2018
Top500 list [1] boasted fat-tree topologies.) It is sufficient
for fat-tree-specific routing algorithms to be minimal to
guarantee deadlock-free routing, and the regular nature of
their target topology class should simplify load-balancing
strategies. In general, oblivious routing (without knowledge
of communication patterns) in fat-trees is deterministic and
optimized for shift patterns [2] [3] [4]. In particular, PGFTs [5]
describe all regular fat-trees for which there is at most one
downward switch-path from any switch to any node (as shown
in Figure 1). The oblivious algorithm for non-degraded PGFTs
(Dmodk) uses this property and their connection logic to
provide load balance through an arithmetic rule.

Section 2 goes into detail about existing works for fault-
resilient fat-tree routing and their shortcomings. The proposed
fault-resilient routing algorithm is presented in Section 3.
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Figure 1. PGFT (3; 2,2,3; 1,2,2; 1,2,1) with leaf switches shown in grey.

Section 4 then presents results by comparing our implemen-
tation against routing engines of OpenSM [6] (those deemed
appropriate for routing of degraded fat-trees), first for routing
runtime and then for congestion risk under degradation. Sec-
tion 5 summarizes pros and cons of the proposed technique.

2. Background

Some of the research regarding oblivious fault-resilient
routing focuses on techniques that apply to any connected net-
work [7] [8]; these topology-agnostic techniques require full
re-routing on topology change. Some other research explicitly
targets degradations to regular fat-trees [4] [9]; there are
several re-routing strategies for these techniques. OpenSM’s
UPDN [10] and Ftree [3] routing engines can also be applied
from scratch to a degraded fat-tree. PQFT [4] is similar, though
it requires a complete list of faults. The combination of Dmodk
+ Ftrnd diff [11] available in BXI FM [12] is applied in
an offline/online manner (with an iterative list of topology
changes and an up-to-date view of the topology), the goal
being fast reaction to faults with minimal routing changes.
Fabriscale [13] also provides fast centralized re-routing of
fat-trees, by precomputing alternative routes.

The random operation chosen in Ftrnd diff results in pro-
gressive degradation of load balance and incapacity to return
to the original routing in case of fault recovery. Ftrnd diff does
manage to recover rapidly from minor failures; however large
numbers of simultaneous changes (which happen for example
when entire islets are rebooted) cause computation times
to skyrocket in current implementations. The strategies of
PQFT and Fabriscale which consist in moving only invalidated
routes let one expect somewhat similar load-balancing issues
as with Ftrnd diff. Studies show topology-agnostic routing
outperforms fat-tree-specific routing under sufficient topology
degradations [14] [8].



3. Dmodc Description

The idea behind the fault-resilient algorithm that we
propose in this paper is to rely on local information like
Ftree (and no topological address), while using the same
closed-form arithmetic operation as Dmodk. The aim is fast
centralized computation of routing tables for degraded PGFTs,
providing optimal or well-balanced deterministic routes even
under heavy fabric degradation. The algorithm begins with a
partly sequential preprocessing phase followed by a parallel
computation phase. Links are bi-directional; notations used in
the expressions below are defined in Table 1.

3.1. Preprocessing

Rank. Levels and link directions are determined based on leaf
switches being equivalent to the lowest level.

Port Groups. Groups of ports linked to the same switch are
prepared and sorted by universally unique identifier (UUID,
defined at hardware fabrication) to help with same-destination
route coalescing.

Cost. We define the cost cs,l of a switch s to a leaf switch
l to be the minimum number of hops between one another
under up–down restrictions according to rank, as defined in
Algorithm 1.

Divider. Dmodc is based on the same arithmetic operation as
Dmodk: it begins with an integer division by the product of
upward arities (= #{s′ � s}) of lower levels. To reflect the
actual state of the topology, only local information must be
considered; in turn this operation is based on the products of
up-to-date counts of upswitches, as defined in Algorithm 1.

Algorithm 1: Compute costs and dividers.
foreach s ∈ S do

foreach l ∈ L do cs,l ←∞
Πs ← 1

foreach l ∈ L do cl,l ← 0
foreach s ∈ S going upwards do

π ← Πs ×#{s′ � s}
foreach s′ � s do

foreach l ∈ L | cs,l + 1 < cs′,l do
cs′,l ← cs,l + 1

if π > Πs′ then Πs′ ← π (max reduction)

foreach s ∈ S \ L going downwards do
foreach s′ � s do

foreach l ∈ L | cs,l + 1 < cs′,l do
cs′,l ← cs,l + 1

In a full PGFT, #{s′ � s} values are constant throughout
each level, and individual values are decreased following
faults; the max reduction accordingly helps keep load reparti-
tion stable under few faults. This choice of reduction was only
compared with one using the first downward path and showed
little to no change in route quality under random degradation.

TABLE 1. NOTATIONS USED IN EXPRESSIONS.

S is the set of switches,
L is the set of leaf switches (L ⊂ S),

U(s) is the UUID of switch s,
N is the set of nodes,
λn is the (only) leaf switch connected to node n (λn ∈ L)�

,

� respectively denote downlinks and uplinks (according to rank),
Gs is the ordered list of port groups of switch s,
Ωg is the switch connected to port group g,
# denotes cardinality, in number of port groups or of ports.
cs,l is the cost of switch s to leaf switch l,
Πs is the divider of switch s,
tn is the topological node identifier (NID) of node n,

Topological NID. The arithmetic nature of Dmodc guarantees
load-balancing only if NIDs (on which the modulo operation is
applied) are topologically contiguous. We explicitly determine
each node’s topological NID using previously computed costs
in Algorithm 2.

Algorithm 2: Compute topological NIDs.
t← 0
X ← L sorted by UUIDs
while X 6= Ø do

l← X0

µ← minl′∈X\{l}(cl,l′)
foreach l′ ∈ X | cl,l′ ≤ µ do

foreach n �

l′ in port rank order do
tn ← t
t← t+ 1
X ← X \ {l′}

Dmodc can provide optimal results for shift permutation
communication patterns which respect such an ordering,
otherwise one could expect results similar to those of random
permutation communication patterns.

3.2. Routes Computation

The deterministic output port ps,d and alternative output
ports Ps,d of every switch s for every destination d ∈ N (not
directly linked to s) are selected with a closed-form operation
based on the results previously determined. First, port groups
leading closer to λd are selected in (1), setting corresponding
alternative output ports in (2):

Cs,λd
←
{
g ∈ Gs | cΩg,λd

< cs,λd

}
(1)

Ps,d ← {p ∈ g | g ∈ Cs,λd
} (2)

Selected port groups Cs,λd
[i] ∀ i ∈ #Cs,λd

are ordered
by UUID of their remote switch. From this, the output port
group is chosen in (3) and the port within that group in (4):

gs,d ← Cs,λd
[

⌊
td
Πs

⌋
mod #Cs,λd

] (3)

ps,d ← gs,d[

⌊
td

Πs ×#Cs,λd

⌋
mod #gs,d] (4)
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Figure 2. Maximum congestion risk in a 8640 node PGFT (with blocking factor of 4) under random topology degradation (in log–log scale; lower is better).

4. Results

Validity

Routing is valid for degraded PGFTs if and only if the
cost of every leaf switch to every other leaf switch is finite:
this reflects every node pair having an up–down path. Our
implementation includes a pass through all leaf switch pairs to
verify this condition. The up–down path restriction is sufficient
to guarantee deadlock-freedom within degraded PGFTs [9].

Congestion Risk

Random degradation is simulated using hundreds of
throws for each considered routing algorithm and type of
equipment to degrade (switches or links). The integer amount
of equipment a ∈ [0, 2m[ to remove at each throw is chosen
using a shifted log-uniform distribution. This distribution is
chosen to test degradation uniformly across multiple scales
and include non-degraded tests; it is defined in the following
formula using uniform number generator u() ∈ [0, 1]:

a←
⌊
2m×u() − 1

⌋
The chosen amount of equipment is then randomly re-

moved from the complete topology. The resulting degraded
(or complete) topology is routed at this point, and linear
forwarding tables are dumped for analysis.

Evaluation of these tables is performed using static analy-
sis of metrics representing maximum congestion risk for three
communication patterns: all-to-all (A2A), random permuta-
tion (RP), shift permutation (SP). The congestion risk metric
consists of counting min(#srcs,#dsts) for all routes of

the corresponding pattern; this approximates network-caused
congestion risk [15]. For A2A, the maximum congestion risk
(throughout all ports) is the only value kept. RP consists of
computing the maximum congestion risk for 1000 random
permutations and keeping the median value. (σ = 0,96 for
100 RP samples in the case of Figure 2 with 256 randomly re-
moved switches routed with Ftree.) SP consists of computing
the maximum congestion risk for all (#N − 1) shift permu-
tations and keeping the maximum value. (Shifts are based
on the same node ordering which OpenSM’s Ftree follows
internally in order for quality comparison to be fair.) Such
simplified performance models faithfully reflect comparative
behaviour [16], though the absolute values measured are not
good estimators of real throughput. Note that virtual channels
potentially required by other algorithms are not taken into
account in this analysis.

Congestion risk results are shown in Figure 2. When con-
sidering existing routing algorithms, Ftree provides the best
performance for complete PGFTs (especially regarding SP for
which the maximum congestion risk approaches theoretical
optimal), but SSSP provides better stability under massive
degradation, confirming results of the studies mentioned in
Section 2. UPDN and MinHop provide visually identical
results in this analysis: in fact in a full PGFT they are
equivalent and vary only slightly under degradation. They both
provide comparatively poor results for SP and A2A throughout
the observed scale, however for RP they surprisingly improve
significantly under massive degradation.

Dmodc provides minimal congestion risk throughout
the considered range of degradations when compared with
existing oblivious algorithms. In particular, it is even more
stable than Ftree for SP under minimal degradation and nearly
as stable as SSSP for A2A and RP under massive degradation.



1ms

10ms

100ms

1s

10s

1min

10min

 256  512  1024  2048  4096  8192  16384  32768  65536

A
lg

o
ri

th
m

 r
u
n
ti

m
e

RLFT size (in number of nodes)

Dmodc (1 thread)
Dmodc (20 threads)
UPDN
MinHop
Ftree
SSSP

Figure 3. Algorithm runtime on an Intel Xeon E5-2680 v3 @ 2.50GHz (in
log–log scale; lower is better).

Runtime

On our production implementation coded in C99, com-
putation of cost, divider, topological NIDs, and routes are
spread over POSIX threads fetching work with a switch-level
granularity. Figure 3 reports complete algorithm execution
time alongside OpenSM (version 3.3.21) routing times (mea-
sured by adding timers in the source code) running on the
same machine. Note that local erraticness is partly due to our
RLFT construction process for which the number of resulting
switches is not monotonic with the number of requested nodes.

For clusters ranging up to many tens of thousands of nodes,
Dmodc provides fast enough re-routing for a centralized fabric
manager to react to faults before applications are interrupted.

5. Conclusion

The simulation results in Section 4 show that Dmodc
provides high-quality centralized fault-resilient routing for
PGFTs at a fraction of the runtime of existing algorithms,
without relying on partial re-routing. Dmodc is also applicable
to non-PGFT fat-tree-like topologies but with lower quality
load balancing. As defined here, no effort has been made
to minimize size of updates to be uploaded to switches
throughout the fabric.

This algorithm is implemented inside BXI FM and has
been succesfully deployed to an 8490 node PGFT production
topology in which it helps provide fault-resiliency even when
faced with thousands of simultaneous changes.
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