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A water cylinder deposited on a heated channel levitates on its own generated vapor film owing to the
Leidenfrost effect. This experimental setup permits the study of the one-dimensional propagation of surface
waves in a free-to-move liquid system. We report the observation of gravity-capillary waves under a dramatic
reduction of gravity (up to a factor 30), leading to capillary waves at the centimeter scale. The generated nonlinear
structures propagate without deformation and undergo mutual collisions and reflections at the boundaries of the
domain. They are identified as Korteweg–de Vries solitons with negative amplitude and subsonic velocity. The
typical width and amplitude-dependent velocities are in excellent agreement with theoretical predictions based
on a generalized Korteweg–de Vries equation adapted to any substrate geometry. When multiple solitons are
present, they interact and form a soliton turbulencelike spectrum.

DOI: 10.1103/PhysRevE.92.011002 PACS number(s): 47.35.Fg, 05.45.Yv, 68.03.Kn

Since their first observation by Russell on the water surface
of a channel [1], solitons have been studied in a wide range
of physical contexts, for instance, acoustics, hydrodynamical
internal waves [2,3], and living systems, such as in the propaga-
tion of the pressure blood disturbance in arteries [4]. Korteweg
and de Vries (KdV) provided the first theoretical description
of solitonic waves through the so-called KdV equation [5–7],
describing the propagation of noninteracting solitons by a
balance between dispersion and nonlinear effects [8]. Solitons
can be either supersonic or subsonic, depending on the sign
of the curvature of the dispersion relation close to infinite
wavelength [7]. A superposition of many propagating solitons
forming a turbulent soliton state has also been encountered
in various situations ranging from plasma waves [9,10] to
crystalline solids [11]. In spite of the full integrable feature
of such systems [12], the description of the dynamical and
statistical properties of many interacting solitonic structures
remains an open question.

At the surface of a liquid layer, solitons are observed in the
shallow regime (� � H ) where � is the typical soliton width
and H is the fluid depth. Most observed are supersonic solitons
in the gravity-driven domain (� � �c), where �c = √

σ/gρ

(with σ the surface tension, ρ the liquid density, and g the
acceleration of gravity) is the capillary length which defines
the transition scale between gravity and capillary dominating
forces. Under Earth’s gravity, �c is typically equal to a few
millimeters.

Albeit predicted in the capillary-driven domain, the ob-
servations of subsonic solitons on a fluid layer remain
scarce. When the depth of the fluid is millimetric or less,
dissipative effects on the surface and in the bulk [13,14]
quickly damp the capillary waves. One experiment reports
their observation at the surface of a thin layer of mercury
but for a limited range of amplitude [15]. By driving
with a moving object, recent experiments have observed
localized subsonic waves, but with a more complex spatial

structure [16] described by a modified nonlinear Schrödinger
equation [17].

In order to observe surface waves corresponding to subsonic
solitons, we take advantage of the Leidenfrost effect. It
provides a remarkable situation in which a liquid levitates
over its own vapor film [18]. Using a curved substrate [19],
a 100 mL water cylinder is levitated. Capillary waves are
found to propagate along the levitated liquid cylinder, arising
now up to the centimeter scale. An effective 30-fold reduction
of gravitational effects in an on-Earth laboratory experiment
is indeed observed. The generated localized structures are
identified as subsonic KdV solitons driven by surface tension.
Eventually, when multiple solitons are generated, they interact
and a turbulentlike wave spectrum is observed, which might
be assigned to soliton turbulence.

The experimental setup is displayed in Fig. 1(a). A cylinder
of distilled water is set in levitation by the Leidenfrost
effect [20] on a Dural channel of 45 cm length and 4 cm width,
heated at a temperature Tp = 280 ± 10 ◦C. The liquid has a
quarter-pipe section. The liquid evaporation is compensated
by a flow (Q = 7 mL/min) of simmering water poured into
the levitating cylinder with a motorized syringe [21]. A
steady volume of water in levitation (density ρ = 960 kg/m3

and surface tension σ = 50 ± 10 mN/m at 100 ◦C) is then
obtained with W = 18 ± 0.2 mm for the width and with
h = 4.5 ± 0.5 mm for the depth. The cylinder is pinned at
each extremity and one end can be set in oscillation by a
mechanical shaker driven either with a periodic function of
frequency f varying from 1 to 20 Hz or with short pulses
to generate localized structures. We focus on the horizontal
disturbance of the liquid width η(x,t) [Fig. 1(a)]. The interface
position η(x,t) is recorded from above with a digital camera
at 50 fps and numerically detected with an algorithm of
contour detection based on the change in the color gradient. A
movie of propagating solitons is shown in the Supplemental
Material [22], together with the detected interface.
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FIG. 1. (Color online) Sketch of the experimental setup.
(a) 100 mL of distilled water is poured onto a 45 cm long quarter-
pipe-shaped channel, heated at 280 ◦C, forming a levitated liquid
cylinder. A wave maker is used to generate a disturbance η(x,t) of
the cylinder interface. (b) Side view of the channel: We focus on
the propagation of waves along the free right-hand border of the
interface. The inclination angle α of the container is tunable. (c)
Sketch of the geometry investigated theoretically. (d) Photography of
the experimental setup.

The originality of this setup comes from the channel
geometry. At low inclination angle α of the channel with
respect to the horizontal [see Fig. 1(b)], the motion of the left-
hand liquid interface is limited by the substrate confinement.
In contrast, the right-hand liquid interface is free to move along
an almost horizontal plane and can undergo large variations.
The liquid moving along u is subjected to a gravitational
force through its projection g′ = g · u. It defines an effective
gravity g′ = g sin α. Experimentally, α can be tuned from a
zero gravity situation (α → 0,g′ → 0) to a symmetric channel
(α = 45◦,g′ → g/

√
2).

In this configuration, the wave propagation depends on the
ratio between the fluid inertia per unit length ρS and the width
W of the interface. The effective fluid depth H ′ for any cross
section shape yields [23]

H ′ = S

W sin α
. (1)

The cross section [Fig. 1(b)] is modelized by a triangle
[Fig. 1(c)] with an effective depth H ′ = 1

2 cos αW . This
geometry is thus analogous to a one-dimensional water channel
in which gravity g and fluid depth H can be tuned continuously
simply by changing the inclination angle α. For instance, at an
inclination angle α = 2◦, the effective gravity g′ = 0.34 m s−2

is 30 times smaller than usual.
Linear waves are characterized by exciting the water

cylinder at 1 Hz. Figure 2 shows Sη(k,ω), the space-time
spectral density of the liquid displacement η(x,t), as a function
of the wave number k and the angular frequency ω for an
inclination angle α = 2◦. The energy is localized in Fourier
space along two curves for ω ranging from 0.1 to 80 rad s−1.
While the driving is performed at low frequency, energy is
observed in a large frequency range, stemming from nonlinear
wave interactions leading to an energy cascade [24,25].
The lines of maximum energy density reveal the dispersion
relations between k and ω. Two distinct branches are identified,
corresponding to two propagation modes (I and II). The
main branch (I) is a convex curve related to phase velocity

0 2 4 6 8
0

10

20

30

40

50

60

70

80

90

Wave number k (cm−1)

P
ul

sa
ti

on
ω

(r
ad

.s
−

1
)

 

 

7.5

8

8.5

9

9.5

10

10.5

11

11.5

0 20 4010 30
0

5

10

15

20

α(◦)

c
0

(c
m

/s
)

I

II

P
ow

er spectrum
 (a.u.)

FIG. 2. (Color online) Power spectrum Sη(k,ω) of the cylinder
right interface η(x,t) for α = 2◦ as a function of k and ω. Color is log
scaled. The energy is localized along two branches of propagation.
I: Gravity-capillary waves given by Eq. (2) (solid line). The dashed
line corresponds to the dispersion relation of pure capillary waves.
II: Sloshing modes, i.e., in-phase oscillations of both the left- and
right-hand sides of the interface. Inset: Experimental (◦) minimum
phase velocity c0 as a function of α. c0 is measured from a fit of the
dispersion relation in the limit k → 0. Theoretical model c0 = √

g′H ′

[see Eq. (3)] with no fit parameter (dashed line) and with an adjusted
geometrical factor Heff = 0.65H ′ (solid line).

c(k) = ω/k ranging from 5 to 30 mm/s. It is associated with
the variation of the cross section and therefore to deformations
localized on the right interface, the left-hand side being almost
unperturbed. The other branch (II) exhibits a frequency cutoff
at ωc = 14 ± 1 rad s−1. This branch is related to a sloshing
mode corresponding to an in-phase oscillation of both sides
of the interface [26]. In the following, we solely focus on the
main branch (I).

The main branch (I) is described by the usual dispersion
relation for gravity-capillary waves,

ω2 = 	(H ′k)

(
g′k + σ

ρ
k3

)
, (2)

where H ′ and g′ are the effective depth and gravitational ac-
celeration and 	(x) = tanh(x) for a rectangular channel [26].
	 may, however, depend on the substrate shape. In our case,
	(x) = tanh(x) remains a good approximation in the whole
range of tested inclination angles (2◦ < α < 45◦) (solid line
in Fig. 2).

For k > 1 cm−1 the wave propagation is well described
by the pure capillary wave dispersion relation (ω2 = σk3/ρ,
dashed line in Fig. 2). The surface tension σ = 35 mN/m is,
however, 30 % smaller than expected. The most likely origin
of this discrepancy is the presence of contaminants at the
surface. Other possible origins of this low surface tension
value, such as the influence of a curved interface, still need
to be investigated. The contamination process occurs during
the first 30 min, at which time the surface tension reaches this
asymptotic value. We choose to perform our measurements
at a later time to ensure that σ remains constant during
all the measurements. To avoid too much accumulation of
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contaminants, the water is changed at least every 2 h. The
effective capillary length computed with g′ = g sin α is larger
than usual (�eff

c = √
σ/ρg′ ≈ 1.2 cm for α = 2◦) due to the

reduction of gravity.
In the limit k → 0, the capillary term vanishes and grav-

ity dominates. Using a section-averaged Saint-Venant equa-
tion [27] for inviscid fluid in the shallow water limit (kH ′ � 1)
and neglecting capillarity (k�c � 1), the nondispersive limit
is recovered using the effective gravity g′ and the effective
depth H ′,

ω2 = g
S

W
k2 = g′H ′k2, (3)

where S and W designate the section and the cylinder width,
respectively. The minimum phase velocity c0 = ω/k is shown
in the inset of Fig. 2 as a function of the inclination angle α.
c0 is in good agreement with its analytical expression deduced
from Eq. (3) with a prefactor 20% smaller than expected. This
discrepancy may be attributed to the difference between the
experimental cross section [Fig. 1(b)] and the theoretical ansatz
[Fig. 1(c)]. In the following, the effective depth Heff = 0.65H ′
is used.

Close to k = 0, the leading dispersive contribution is found
by expanding Eq. (2) to the fourth order in k. It yields

ω2 	 c2
0k

2
[
1 + Heff

2(Bo − Boc)k2
]
, (4)

where c0 = √
g′Heff is the modified phase velocity for k → 0

and Boc = −	′′′(0)/6 is a critical Bond number. The ampli-
tude and sign of the leading dispersive term strongly depends
on the Bond number Bo ≡ (�eff

c /Heff)
2

which compares Heff

to the effective capillary length �eff
c .

When the dispersive effects are balanced by the nonlinear
term in ηηx [28], the propagation of nonlinear waves in the
shallow limit (kHeff � 1) is described by a Korteweg–de Vries
equation [5,7],

ηt + c0

[
ηx + μ1

Heff
ηηx + 1

2
H 2

eff(Boc − Bo)ηxxx

]
= 0, (5)

where μ1 = 3/2 for an uniform depth (rectangular channel).
In the case of our geometrical ansatz, it can be shown that
μ1 = 5/2 [23].

The sign of the dispersive term in ηxxx changes for a
critical Bond number Boc (1/3 in the rectangular case). This
limit separates two different types of solitons. Small Bond
numbers Bo < Boc correspond to supersonic gravity-driven
waves, whereas large Bond numbers Bo > Boc lead to the
propagation of subsonic capillary-driven structures.

The shape of a gravity-capillary soliton can then be derived
from the KdV equation (5),

η(x,t) = A0 sech2

(
x − ct

�

)
, (6)

with A0 the amplitude of the soliton, c its speed, and � its
width. Both are related to the minimum of phase velocity c0,
the effective Bond number Boeff , and the effective depth Heff ,

c = c0

(
1 + μ1A0

3Heff

)
, � ≡

√
6(Boc − Bo)H 3

eff

μ1A0
. (7)
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FIG. 3. (Color online) Top: η(x,t) of a capillary soliton as a
function of time (solid line) with a time step 0.04 s between two
neighboring profiles (α = 4◦). Left inset: Experimental data (�) and
theoretical shape of a negative amplitude soliton given by Eq. (6)
(solid red line). Right inset: Rescaling of the solitonic shape for
various soliton amplitudes using the expression of � given by
Eq. (7) (×). Bottom: Normalized velocity c/c0 as a function of the
normalized amplitude A0/3Heff for α = 3◦ and 4◦ and data from
Falcon et al. [15] (gray symbols). Linear relations correspond to
Eq. (7) for three theoretical values of μ1 [flat channel μ1 = 3/2,
triangular geometry in Fig. 1(c) μ1 = 5/2], and best experimental fit
(μ1 = 3 ± 0.4). Typical error bars are shown on four data points.

Figure 3 (top) shows the evolution of one depression soliton
as a function of time. The shape is conserved during the
propagation while its amplitude is modulated at low frequency
by the sloshing modes. The amplitude slowly decreases with
time due to dissipative effects. Its shape is given by Eq. (6)
[left inset of Fig. 3 (top)]. The velocity c is measured from
the position of the soliton minimum as a function of time.
Individual interaction events with other solitons perturb briefly
both the shape and the velocity but the speed remains constant
between two of these events.

The right inset of Fig. 3 (top) shows the rescaled solitons
A/|A0| as a function of (x − ct)/� for various initial pulses
corresponding to negative amplitudes A0 ranging from 2 to
5 mm. Since c, A0, and W are measured and Boeff is known
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FIG. 4. (Color online) Sη(ω), calculated for each x location and
then spatially averaged. A ω−1.5 power law (red dashed line) is
observed at low ω, with a cutoff at ω = 18 rad/s corresponding
to the sloshing mode. This low frequency regime can be interpreted
as a solitary wave turbulence regime. Inset: Normalized PDF of η.
High amplitude negative events lead to a departure from the Gaussian
statistics (red dashed line).

for a given α, there is no adjustable parameter. The rescaled
data are found to be in good agreement with the theoretical
shape. A typical soliton can undergo several reflections at the
edges of the cylinder before being totally dissipated. Therefore,
the typical dissipative scale is of the order of 1 m, which is 100
times larger than their sizes. The soliton velocity c/c0 is plotted
as a function of its normalized amplitude A0/3Heff for several
experiments of various driving amplitudes [Fig. 3 (bottom)].
All the observed solitons are subsonic, since Boeff > Boc. In
addition, the speed decreases for larger negative amplitude.
Straight lines correspond to (c/c0) = 1 + μ1(A0/3Heff) for
three values of μ1. The classical rectangular case is given by
μ1 = 3/2, and the case of our triangular ansatz corresponds to
μ1 = 5/2. The best fit to our experimental data is slightly

larger with μ1 	 3 ± 0.4, which is a 20% deviation from
the triangular ansatz. Good quantitative agreement with the
theoretical prediction is then obtained.

The observed range can be compared to a positive shallow
water KdV soliton observed by Falcon et al. [15] [Fig. 3
(bottom)]. Heff replaces the liquid depth H in Ref. [15].
Our results go far beyond these observations in the subsonic
domain, reaching an amplitude limit that is almost the same
as in the supersonic case (|A/3Heff| ≈ 0.1 and |c − c0|/c0 ≈
0.3). Note that the data at low ratio A0/3Heff ≈ 0.04 are
scattered due to the concomitance of linear waves of various
frequencies.

When solitons are continuously generated, multiple solitary
waves of various sizes and amplitudes are observed. Figure 4
shows the wave height power spectrum Sη(ω) as a function
of ω. Sη(ω) follows a power law at low frequency, with
Sη(ω) ∼ ω−β , and β = 1.5. The power law exponent is found
to be roughly constant (1 < β < 1.5) for all tested driving
amplitudes and low gravity cases (α < 4◦). This solitary wave
turbulencelike regime is limited at high frequency by the
sloshing frequency and at low frequency by the duration of the
experiment. Interestingly, a similar regime has been recently
reported for gravity-driven solitary waves in shallow water
approaching the coast [29] and assigned to soliton turbulence,
similar to a dense gas soliton turbulence [12]. Finally, the
inset in Fig. 4 shows the probability density function (PDF)
of the wave height. The wave statistic presents a clear
asymmetry, related to the capillary wave asymmetry, together
with a departure from the Gaussian statistics, due to the
occurrence of numerous nonlinear solitons of negative large
amplitude.
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