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Close to sinusoidal substrates, simple fluids may undergo a filling transition, in which the fluid passes from a
dry to a filled state, where the interface remains unbent but bound to the substrate. Increasing the surface field, the
interface unbinds and a wetting transition occurs. We show that this double-transition sequence may be strongly
modified in the case of ordered fluids, such as nematic liquid crystals. Depending on the preferred orientation
of the nematic molecules at the structured substrate and at the isotropic-nematic interface, the filling transition
may not exist, and the fluid passes directly from a dry to a complete-wet state, with the interface far from the
substrate. More interestingly, in other situations, the complete wetting transition may be prevented, and the fluid
passes from a dry to a filled state, and remains in this configuration, with the interface always attached to the
substrate, even for very large surface fields. Both transitions are observed only for a same substrate in a narrow
range of amplitudes.
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I. INTRODUCTION

Wetting on smoothly structured substrates show a rich
phenomenology. For simple fluids, the wetting behavior on
structured substrates presents a variety of phenomena [1–3],
for which several physical laws were theoretically proposed,
as the Wenzel [4] or the Cassie-Baxter laws [5]. These laws
extend Young’s law [6] for planar substrates, including new
substrate geometrical parameters. If these laws are justified in
some situations [7], they may also fail in general theoretical or
experimental conditions [8]. In addition to the usual wetting
transition, simple fluids at bulk coexistence may present other
surface transitions as the filling transition [9,10]. From a
thermodynamical point of view, the filling transition in simple
fluids always precedes a complete wetting transition. However,
the filling transition may not exist for shallow substrates [9],
but if it does exist, it always precedes the wetting transition.

The existence of long-range order in complex fluids may
alter the scenario depicted above [11]. In a nematic liquid
crystal, there is an orientational (continuous) long-range
order. However, the presence of substrates that favor specific
orientations frustrate the liquid crystal tendency to align along
a given direction. As a consequence, elastic distortions emerge,
altering the subtle balance between the different free-energy
contributions that lead to the surface transitions on structured
substrates.

In the past, we estimated the importance of the nematic
elastic distortions and derived a generalized Wenzel’s law
[Eq. (12)] for very general smooth structured substrates [7].
We calculated numerically the wetting phase diagram for a
periodic triangular (or sawtoothed) substrate and explained
how the nucleation of defects, with noninteger topological
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charges, near the singular points of the triangular substrate,
leads to logarithmic contributions to the elastic part of the
nematic free energies [7,13]. More recently, we reviewed and
highlighted the differences and similarities of the wetting
transitions of simple and nematic fluids for different types
of periodic substrates, and reported some preliminary results
for wetting of sinusoidal and rectangular substrates [11].

In this paper, we analyze in detail the wetting behavior of
nematics on sinusoidal substrates (the rectangular substrate
will be analyzed elsewhere). We show that the filling-wetting
sequence that is observed in simple fluids on sinusoidal
substrates may be deeply modified when we have a nematic
liquid crystal instead of a simple fluid. Depending on the
physical elastic parameters of the nematic, several scenarios
may occur: We may have only a wetting transition; or a filling
transition only, preventing the subsequent complete wetting
transition; or the double sequence as in the simple fluid case.
Both filling and wetting transitions are observed only for the
same geometry in a narrow range of amplitudes.

This article is organized as follows: In Sec. II A we briefly
review the main simple analytical results about filling and
wetting transitions of simple fluids. In Sec. II B, we extend
these results to nematic liquid crystal systems. In Sec. III, we
use the Landau–de Gennes model of nematics to study their
wetting behavior on a sinusoidal substrate. At the end, we draw
some conclusions.

II. MACROSCOPIC ANALYSIS

A. Thermodynamic description of filling and wetting
transitions for simple fluids

In this section, we review the simple description of filling
and wetting transitions for simple fluids, following the ideas
presented in Ref. [10]. To that end, let us consider a structured
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FIG. 1. Schematic representation of (i) dry, (ii) filled, and (iii)
wet states of a simple fluid (l) on a sinusoidal substrate (w) of wave
length L with vapor (v) above.

substrate, like the one presented in Fig. 1. The substrate is
translationally invariant along z, with Lz being the total length
along this direction, and periodic along the x axis with a
period L. The substrate profile can be described by a simple
even function g(x). To simplify the analysis, we consider a
monotonically increasing function for 0 < x < L/2.

We suppose the substrate favors the liquid phase and
consider three possible interfacial states: (1) dry, (2) filled,
and (3) wet (Fig. 1). If the bulk free energies of the vapor
and liquid phases are the same (so they can be set equal to
zero), and if we neglect interactions between the interfaces,
then the energies associated with each state will be simply
the sum of surface energy terms. Let us denote S as the
whole substrate area, A its projection on the x-z plane, and F
the excess interfacial free energy. Then, the free energy of the
dry state [Fig. 1(i)] is

F (i) = Sσvw, (1)

where σvw is the vapor-wall (substrate) surface tension.
The free energy corresponding to the filled interfacial state

[see Fig. 1(ii)] is

F (ii) = S(xc)σlw + [S − S(xc)]σvw +
(

2xc

L

)
A σlv, (2)

where σlw is the liquid-wall (substrate) surface tension, σlv

is the liquid-vapor surface tension, and S(xc) is the substrate
area in contact with the liquid phase, which can be obtained in
terms of the abscissa xc of the contact line of the filled region
with the substrate as

S(xc) = S
∫ xc

−xc

√
1 + g2

x dx∫ L/2
−L/2

√
1 + g2

x dx
, (3)

where gx is the derivative of g with respect to x. The value of
xc can be obtained by minimization of the free energy [Eq. (2)]
with respect to it. Making use of Young’s law, which relates
the surface tensions mentioned above with the contact angle
of a sessile drop of the liquid in a planar substrate θπ ,

σvw − σlw = σlv cos θπ , (4)

it can be shown that the minimum energy condition is fulfilled
when xc satisfies [10]

0 = 2σlv
[
1 −

√
1 + g2

x(xc) cos θπ

]

= 2σlv

(
1 − cos θπ

cos ψ

)
, (5)

showing that the filling region must make contact with
the substrate with an angle ψ = θπ . For smooth substrates,

this solution is a local minimum only if gxx(xc) = d2g/

dx2(xc) < 0.
Finally, the free energy for the wet state [see Fig. 1(iii)] is

given by

F (iii) = Sσlw + Aσlv. (6)

Different transitions between the different interfacial states
can be observed. The transition from the dry state directly to the
wet state is possible when the energies of these configurations
are the same, that is,

F (iii) − F (i) = 0 = S(σlw − σvw) + Aσlv. (7)

Using Young’s law [Eq. (4)], it is possible to deduce from
Eq. (7) Wenzel’s law for the dry-to-wet transition:

S
A cos θπ = r cos θπ = cos θr = 1, (8)

where r = S/A > 1 is the roughness of the substrate. As θr →
0, a wetting transition may occur. However, this transition
may be preempted by the presence of filled states. The filling
or unbending transition between a dry and a filled state may
occur if the free energies of these interfacial states are the
same:

F (ii) − F (i) = 0 = S(xc)(σlw − σvw) + A
(

2xc

L

)
σlv, (9)

which leads to the equation∫ xc

−xc

√
1 + g2

x dx

2xc

cos θπ = rc cos θπ = 1, (10)

where rc > 1. If this transition occurs at a lower temperature
than the wetting transition predicted by the Wenzel law (i.e., for
larger values of θπ , as θπ usually decreases with temperature),
then a filling transition occurs and Wenzel’s law does not
hold. Under these conditions, macroscopics dictates that the
wetting transition between a filled and a wet interfacial state
must occur under the same conditions as in the planar substrate
(i.e., θπ = 0). However, this prediction can be changed as inter-
actions between the substrate and the liquid-vapor interface are
taken into account. So, if there is a first-order wetting transition
for the planar substrate, the wetting transition is still first order
but shifted to larger values of θπ (smaller temperatures) [10].
On the other hand, for planar continuous wetting its location
and nature are unchanged [9].

B. Thermodynamic description of filling and wetting transitions
for nematic fluids

If instead of a simple fluid under saturation conditions,
we have a liquid crystal at the nematic-isotropic phase
coexistence, some new phenomena will inevitably arise. Let
us consider that the substrate favors the nematic phase at
a particular anchoring condition. From a thermodynamical
point of view, if the bulk free energies of the phases are
the same, the total energy of the nematic interfacial state has
a new positive extra term Fd > 0, corresponding to the Frank
elastic energy of the nematic distortions imposed by the
anchoring at the substrate. Figure 2 shows schematically an
example of a nematic phase in contact with a substrate with
homeotropic anchoring conditions (however, the theoretical
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FIG. 2. Schematic representation of the nematic wet state on a
rough substrate of typical l at isotropic-nematic phase coexistence.

arguments presented here are very general, and independent
on the particular anchoring conditions involved). The total free
energy of this interfacial state can be written as

F (iv) = Sσnw + Aσin + Fd . (11)

The elastic deformation creates an effective long-range re-
pulsion between the substrate and the interface: The closer
the interface is to the substrate, the more constrained the
order will be, leading to higher energies. As the interface
goes to infinity, the system will have only a characteristic
length scale, which is imposed by the substrate (Fig. 2). If no
defect arises, the elastic contribution may be simply estimated
as Fd = (KS/l)F̃d , where K is the Frank elastic constant,
and F̃d is a reduced elastic contribution to the interfacial free
energy, dependent only on the substrate geometry, but not on its
scale l [12]. In some cases, topological defects nucleate close
to or on the substrate. The presence of defects imposed by the
substrate introduce a ln(l/ξ ) dependence on the reduced elastic
contribution F̃d [13]. This dependence is easily justified. If the
defects are induced by the substrate, they will place themselves
at a distance of order of l (the characteristic length of the
substrate), usually close to its crests and/or troughs. On the
other hand, the cutoff length is given by the size of the defects,
which scales with the correlation length ξ .

The dry-to-nematic wet transition may be derived from the
generalized Wenzel law [7]:

F (iv) − F (i) = 0 = S(σnw − σiw) + Aσin + SK

l
F̃d ,

which can be rewritten as

r cos θπ = 1 + rKF̃d

lσin
. (12)

For large enough substrate lengths, l � K/σin, the effects of
elastic terms are unimportant, and Wenzel’s law is recovered.
Usually, K and σin are not independent, and their ratio scales
with the correlation length ξ . In fact, using a Landau–de
Gennes model for nematic liquid crystals (see next section),
it is possible to show that K/σin ∼ 10ξ (at coexistence
temperature).

For the simple fluid case (cos θπ = 1/r < 1), the dry-to-wet
transition for the rough substrate occurs always before the
wetting transition for the planar substrate, as the surface field or
the temperature is increased. In contrast, for the nematic case,
the wetting transition for a rough substrate may occur either
before (if the roughness is more important) or after the wetting
transition for the planar substrate (if the elastic deformations

are more important). These deviations with respect to Wenzel’s
law are enhanced if defects are present, as the elastic term of
the generalized Wenzel’s law [Eq. (12)] will decay slower
with increasing l. The sawtoothed substrate exemplifies this
effect [13].

We now turn to the case of nematic filled states. Once again,
it is useful to first consider configurations without defects,
which do not appear if the substrate is shallow enough. Given
the fact that the nematic-isotropic interface favors a particular
nematic anchoring [14], if the interface is near the substrate, it
will induce strong elastic deformations, because the nematic
director is constrained to follow the anchoring conditions on
both the interface and the substrate. Thus the elastic energy of
the deformations may be large enough to prevent any filling
transition, even if it would normally occur in the case of a
simple fluid. It should also be pointed out that the interfacial
free energies of the filled and wet states are normally very close
to each other [10], and a very tiny perturbation can exchange
their relative stability.

If the substrate imposes defects on the nematic matrix, a
different picture emerges. The case of a sinusoidal grating
is studied in detail in the next section. If the substrate is
rough enough, and if the nematic-isotropic interface favors,
for example, homogeneous planar anchoring, then the filled
state (with the interface placed in between the crests of the
sinusoidal substrate) may always have a smaller energy than
the wet state, for in the latter case, a periodic array of defects
is necessarily created at the top of each crest.

III. THE SINUSOIDAL SUBSTRATE: NUMERICAL
RESULTS

In this section, in order to substantiate our arguments, let us
consider a nematic liquid crystal in contact with a sinusoidal
grating, characterized by a wave vector q = 2π/L and an
amplitude A (see also Fig. 1):

g(x) = A(1 − cos qx). (13)

At the substrate, the nematic molecules preferentially align
homeotropically, i.e., perpendicularly to the substrate. The
system is translationally invariant along the out-of-plane axis
z and periodic along the x axis. Finally we impose that, far
from the substrate, we have an isotropic ordering.

A. The Landau–de Gennes model

In the Landau–de Gennes (LdG) model, both isotropic
and nematic phases can be locally represented by a traceless,
symmetric order-parameter tensor with components:

Qij = 3

2
S
(
ninj − 1

3
δij

)
+ 1

2
B(li lj − mimj ), (14)

where ni are the Cartesian components of the director field n, S
is the nematic order parameter that measures the orientational
ordering along the nematic director, and B is the biaxiality
parameter, which measures the ordering of the molecules
on the orientations perpendicular to n, characterized by
the eigenvectors l and m. In our model we will consider
only in-plane deformations, although out-of-plane or twist
deformations may also be important (a twist instability may
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occur for particular choices of parameters [15]). In this case
n = (cos θ, sin θ,0), and the tensor order parameter has only
three independent components (namely, Q11, Q22, and Q12).

The LdG free energy may be written as

FLdG =
∫
V

(φbulk + φel) dV +
∫
S

φsurf ds, (15)

where φbulk is the bulk free-energy density, φel is the elastic
free-energy density, and φsurf is the surface free energy, defined
as [16]

φbulk = aTrQ2 − bTrQ3 + c[TrQ2]2, (16)

φel = L1

2
∂kQij ∂kQij + L2

2
∂jQij ∂kQik, (17)

φsurf = −2

3
wTr[Q · Qsurf], (18)

where a depends linearly on the temperature, b and c are
positive constants, and L1 and L2 are positive parameters
related to the elastic constants. If we rescale all the variables
as follows [17]: Q̃ = 6cQ/b, the positions r̃ = r/ξ , where
the correlation length ξ is defined as ξ 2 = 8c(3L1 + 2L2)/b2,
and F̃LdG = 242c3FLdG/ξ 3b4, we get F̃LdG = ∫

Ṽ
(
φ̃bulk +

φ̃el
)
dṼ + ∫

S̃ φ̃surf ds̃, with rescaled free-energy densities:

φ̃bulk = 2

3
τTrQ̃2 − 8

3
TrQ̃3 + 4

9
[TrQ̃2]2, (19)

φ̃el = 1

3 + 2κ
[∂̃kQ̃ij ∂̃kQ̃ij + κ∂̃j Q̃ij ∂̃kQ̃ik], (20)

φ̃surf = −2

3
w̃Tr[Q̃ · Q̃surf]. (21)

Here τ = 24ac/b2 is a dimensionless temperature, κ = L2/L1

is an elastic dimensionless parameter (for stability reasons,
the elastic parameter is restricted to the values, κ > −3/2),
and w̃ = 16wc/b2ξ is the dimensionless anchoring strength.
Hereafter, we will consider these rescaled expressions, so we
will drop the tilde notation.

In our model we will place ourselves at coexistence
temperature, τ = 1, for which the bulk free-energy density
has two minima, corresponding to φbulk = 0 for rescaled scalar
order parameters SI = 0 (isotropic phase) and SN = 1 (nematic
phase). It is important to note that the order parameter S in
the coexisting nematic phase is rescaled, so its value in real
units is b/6c, which must be smaller than 1 (typically ≈ 0.4).
If the elastic parameter κ is positive (negative), the nematic
prefers to align parallel (perpendicular) to a possible nematic-
isotropic interface. Finally, Qsurf defines the favored tensor at
the substrate. We favor a homeotropic alignment of the nematic
by setting Qsurf = (3ν ⊗ ν − 1)/2, with ν the normal vector
to the substrate, establishing a direct connection to previous
papers [18–20].

B. Numerical procedure

For every set of model parameters, we numerically mini-
mized the Landau–de Gennes free energy, using a conjugate-
gradient method. The numerical discretization of the contin-
uum problem was performed with a finite-element method
combined with adaptive meshing in order to resolve the
different length scales [21]. Due to the translational symmetry

along the z axis and the periodicity on the x axis, we restricted
the minimization to a section of the system perpendicular to the
z axis and with a width along the x axis equal to the period L

of the substrate. We used periodic boundary conditions on the
lateral sides, and the fluid on the substrate, which corresponds
to the bottom boundary of our unit cell, does not have an
imposed ordering or anchoring, although a nematic phase with
homeotropic orientation is energetically favorable. Finally, we
impose different fixed boundary conditions at the cell top
(which we place at a large height H ) in order to explore the
different interfacial states we may observe. The value of H was
varied until we found convergence in the free energy. In order
to find the dry (D) or the filling (F ) interfacial states, we fix a
bulk isotropic phase on top of the cell. Under these conditions,
different states may be obtained when we vary the initial
condition (for example, by considering initial conditions with
different heights for the nematic filling region). The complete
wet (W ) interfacial states are obtained by imposing a fixed
nematic phase at the cell top with a homogeneous nematic
director along either the x axis (W ‖) or the y axis (W⊥) (see
Fig. 4 for illustrations). The free energy for the wet states is
calculated by adding to the numerically obtained free energy
the contribution of an isotropic-nematic interface parallel to
the x-z plane, Lσin, calculated also numerically (and in some
cases analytically) and corresponding to the most favored
anchoring conditions (homeotropic to the interface for κ < 0,
planar for κ > 0). In this way we consider the presence of a
nematic-isotropic interface infinitely away from the substrate
in the wet state, allowing us to neglect the elastic deformations,
which may exist between the top cell and the nematic-isotropic
interface. The true equilibrium state will be the state that gives
the least free energy at the same thermodynamic conditions.

C. Numerical results

1. Case of κ > 0

As an example, in Fig. 3 we plot the free energy per
projected unit area f = F/A corresponding to the most
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FIG. 3. Plot of the free energy densities (per projected unit area)
of different branches of (meta)stable states, as a function of the
anchoring strength w, for a sinusoidal substrate with L = 10ξ , κ = 2,

and Aq = 0.628, 1.288, 1.307, and 1.885. Numbers correspond to
the typical configurations shown in Fig. 4. See text for explanation.
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relevant interfacial states for L = 10ξ , κ = 2 (favoring a
parallel anchoring at the nematic-isotropic interface) and
different values of Aq = 0.628, 1.288, 1.307, and 1.885. For
the shallowest case A = ξ we plot the branches corresponding
to D states (which is the most stable for small w), W⊥ states,
and W ‖. No F states are observed. As it is expected, the W ‖
branch has always larger free energy than the others, since
for shallow substrates the elastic deformations are stronger for
this state than for the W⊥ state. On the other hand, the D and
W ‖ branches intersect at a first-order wetting transition for
wW = 0.2056, so W⊥ branch is the most stable for w > wW

[typical configurations for both D and W⊥ states are shown in
Figs. 4(1) and 4(2)].

For rougher substrates, the scenario is completely different
(Fig. 3). For Aq = 1.885 four different (locally) stable
branches are observed: D states (again the most stable for
small w), W⊥ states, W ‖ states, and a filled state where the
nematic is planar at the nematic-isotropic interface. This new
state will be denoted by F ‖ [a typical configuration is shown
in Fig. 4(3)]. For small w, the nematic-isotropic interface is
almost parallel to the x-z plane. As w increases, the position
of the nematic-isotropic interface for the F ‖ state is lifted
and curved slightly, and it eventually pins at the crests of the
substrate. Regarding the complete wet states, the free energy
of the W⊥ branch is always larger than those of the W ‖ states
(unlike for shallow wedges). Typical configurations are shown
in Figs. 4(4) (W ‖) and 4(5) (W⊥). Now roughness induces
larger deformations in W⊥, leading to a higher free energy. In
both cases topological defects may nucleate either close to the
substrate troughs (W⊥ states) or the crests (W ‖ states). We can

(1)

(4)

(2)

(5)

(3)

(6)

FIG. 4. (Color online) Typical configurations for a sinusoidal
substrate with L = 10ξ : from left to right and top to bottom: (1) a D

state (κ = 2, Aq = 0.628, and w = 0.2); (2) a W⊥ state for shallow
substrates (κ = 2, Aq = 0.628, and w = 1.0); (3) a F ‖ state (κ = 2,
Aq = 2.199, and w = 0.4); (4) a W ‖ state for rough substrates
(κ = 2, Aq = 2.199, and w = 1.0); (5) a W⊥ for rough substrates
(κ = 2, Aq = 2.199, and w = 1.0); and (6) a F ⊥ state (κ = −1/2,
Aq = 1.257, and w = 0.4). Numbers correspond to those shown in
Fig. 3.

see that the F ‖ branch has always a smaller energy than the
wetting states, so there is a first-order filling transition between
a D and F ‖ state at wF = 0.1693. However, we do not observe
a wetting transition, even for large w. This latter feature can
be rationalized by the fact that the F ‖ state does not present
topological defects as does the W ‖ state.

The crossover from the scenarios described above occurs at
intermediate values of Aq. Above some value of Aq the branch
of F ‖ emerges as a metastable branch. At Aq ≈ 1.288 a triple
point occurs, since the D, F ‖, and W⊥ branches intersect at
the same value of w = 0.291 (Fig. 3). Above this triple point,
the F ‖ states branch crosses both the D and W⊥ branches,
so filling and wetting transitions are observed for the same
geometry. However, the value of w for the wetting transition
has a steep increase with Aq, so the wetting transition is no
longer observable for Aq larger than 1.33.

The global adsorption phase diagram for κ = 2 is shown
in Fig. 5. The domains for the different possible stable phases
(D, W⊥, or F ‖) are divided by first-order transition lines that
meet at a triple point. Note that the F ‖-W⊥ transition line is
almost vertical, so the range in which both filling and wetting
transitions are observed is quite narrow. As the substrate
wavelength L increases, the importance of the elastic term of
the nematic free energy diminishes, and the D-W⊥ and D-F ‖
transition lines shift toward lower values of w, approaching
the values obtained for simple fluids within the macroscopic
theory outlined in Sec. II. However, due to the presence of
elastic distortions, larger deviations than for simple fluids can
be observed in all the cases,

For the D-W⊥ wetting transition we can estimate this devi-
ation through the modified Wenzel law prediction [Eq. (12)].
The different terms in this expression can either be evaluated
exactly or estimated numerically. First, the nematic order
parameter for the LdG model close to a planar substrate in the
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FIG. 5. Global phase diagram for nematic adsorption on si-
nusoidal substrates with κ = 2. Black lines correspond the phase
boundaries between the D, W⊥, and F ‖ states for L = 10ξ (solid
lines), L = 20ξ (dashed lines), and L = 40ξ (dotted lines). Gray
lines correspond to the transition from dry to filled state (dashed
line) and from filled to wet state (solid line) in the case of isotropic
fluid. Inset: Zoom of the phase boundaries around the triple point for
L = 10ξ .
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presence of a bulk nematic or isotropic phase can be solved
analytically [13]. The exact solutions of the corresponding
Euler-Lagrange equations for the order parameter profiles,
d2S/dy2 = 2S − 6S2 + 4S3, are given by

S±(y) = S±(0)

S±(0) + [1 − S±(0)] exp(∓√
2y)

, (22)

where S+(y) and S−(y) are, respectively, the nematic order
parameter profiles, as a function of the distance to the planar
substrate y, corresponding to a bulk nematic or isotropic phase
in bulk, and S±(0) are their values in contact with the substrate.
The surface tensions between the planar substrate and the
nematic or isotropic phase are given by

σnw =
∫ ∞

0
[φel(S+) + φbulk(S+)]dy − wS+(0)

=
√

2

6
[1 + 2S+(0)][1 − S+(0)]2 − wS+(0), (23)

σiw =
∫ ∞

0
[φel(S−) + φbulk(S−)]dy − wS−(0)

=
√

2

6
[3 − 2S−(0)]S−(0)2 − wS−(0). (24)

The nematic order parameter values at contact with the
substrate can be obtained from the boundary condition
(dS±/dy)(y = 0) = −w as

S±(0) = 1

1 ∓ (
1√
2w

± 1
) +

√(
1√
2w

± 1
)2 − 1

. (25)

The planar contact angle θπ is obtained from Young’s law:

cos θπ = σiw − σnw

σin
, (26)

where σIN ≈ 0.178 for κ = 2.
The roughness r of a sinusoidal substrate, is given in terms

of the amplitude A and the wave number q as

r = 2E[−(qA)2]

π
, (27)

where E(x) is the complete elliptic integral of second kind.
Finally, for the elastic term we have to resort to some numer-

ical calculations. As a first estimate, we may use Berreman’s
approximation Fd ≈ AK(Aq)2q/4 [12]. Figure 6 shows the
comparison between the numerical and the modified Wenzel
law predictions for the D-W⊥ transition line when Berreman’s
approach for the elastic free-energy contribution is used. They
are in qualitative agreement: For small L the wetting transition
is shifted toward larger values of w, and as L increases, the
transition line moves down, approaching Wenzel’s prediction
[Eq. (8)]. A similar behavior was observed for the wetting
transition of the sawtoothed substrate [7,11]. However, there
are quantitative discrepancies even for the largest system
considered. The explanation for these discrepancies is that
Berreman’s expression is accurate only for small Aq and wL

very large (strong anchoring conditions), but it overestimates
the exact result of Frank theory [22]. So we have estimated
the elastic energy obtained by using a Frank-Oseen (FO)
model with a Rapini-Papoular surface contribution, where the
interaction strength (which depends on w) is obtained from

0 0.5 1 1.5
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0.1

0.2

0.3

0.4

w

L=10 (LdG)
L=10 (FO)
L=20 (LdG)
L=20 (FO)
L=40 (LdG)
L=40 (FO)
L=60 (LdG)
L=60 (FO)
L=80 (LdG)
L=80 (FO)
Filling transition

FIG. 6. Location of the D-W⊥ wetting transitions for κ = 2 and
different values of L/ξ = 10 (circles and solid lines), 20 (squares
and dashed lines), 40 (rhombi and dot-dashed lines), 60 (upward
triangles and dashed-double dot lines), and 80 (downward triangles
and double dashed-dot lines). Symbols correspond to the numerical
results from full minimization of the LdG model (filled symbols) and
the FO model (open symbols). Thick lines indicate the predictions
from the modified Wenzel law [Eq. (12)], using Berreman’s approach
for the elastic term. Thin lines serve only as guides for the eyes for the
numerical results using the same style as the thick lines for the same
parameter L. For comparison, the prediction from usual Wenzel’s law
[Eq. (8)] is shown (thick dotted line).

a contrained minimization of the LdG model in presence
of a planar wall and a given nematic director orientation
at a distance 1.5ξ [13]. We used a similar adaptative-mesh
finite-element method to minimize the FO model to that
explained above for the LdG model. Our results show that,
for Aq ∼ 1 and assuming strong anchoring conditions, the
elastic contribution is reduced, taking a value of around 75%
of that obtained from Berreman’s expression. However, if weak
anchoring is considered, a further reduction is observed, even
for L = 80ξ . This fact contrasts with our previous results
in the sawtoothed substrate, in which the strong anchoring
regime is reached for relatively smaller values of L. When
the numerically obtained values of Fd are used in Eq. (12),
the predictions for the wetting transition from the generalized
Wenzel law are in very good agreement with the full numerical
values from the LdG model for L � 60ξ (Fig. 6).

2. Case of κ = 0 or κ < 0

Now we turn to the effect of κ in the adsorption phase
diagram. As was already stated, for κ = 2 the nematic fluid has
a preferred planar anchoring at the interface. As κ decreases
the free-energy cost to anchor the nematic in a parallel or
perpendicular orientation approach each other and become
identical for κ = 0. If we further decrease κ , the system starts
to prefer a perpendicular orientation at the interface. As a
consequence, new interfacial states emerge, as the filled state
F⊥ [Fig. 4(6)]. These new states appear at intermediate values
of Aq for large w, and the NI interface shows a pronounced
curvature following the substrate shape. The global adsorption
phase diagrams for L = 10ξ are shown in Fig. 7. Again, the
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FIG. 7. Global phase diagram for L = 10ξ and (left) κ = 0 ;
(right) κ = −1/2. The dashed line on the left-hand side is the D − W ‖

metastable transition line.

continuous lines correspond to first-order transition lines that
meet at triple points. For κ = 0, the region of the phase diagram
corresponding to F⊥ states is located between the regions
corresponding to W⊥ and F ‖ states, with almost vertical
boundaries between them. The D-F⊥ transition is weaker than
the other transitions, so it is almost observed as a crossover for
L = 10ξ . Finally, the W ‖ states’ free-energy branch approach
the F ‖ free-energy branch. The dashed line corresponds to the
(metastable) D-W ‖ transition. For κ = −1/2, the W ‖ states
become the stable states for large Aq and w. So the phase
diagram is reminiscent of that for κ = 0, by swapping the F ‖
states with the W ‖ states. It is interesting to note that it is
possible to observe reentrance of F⊥ states as w is increased:
The fluid undergoes a wetting transition from the F⊥ state
to the W ‖ state, and for larger values of w there is a reverse
dewetting transition from the W ‖ to the F⊥ state. However,
this sequence of three transitions is limited to a very narrow
range of values of Aq.

IV. CONCLUSIONS

In this article we have shown that the filling and wetting
transition sequence of an isotropic fluid on a sinusoidal
substrate is deeply changed for nematic liquid crystals.
Substrates favoring perpendicular anchoring in contact with
nematic liquid crystals, which favor parallel anchoring at the
nematic-isotropic interface, exhibit only a wetting (and not
filling) transition for small Aq, while for large Aq only filling
(and not wetting) transitions occur. In the latter case, the
complete wetting transition is prevented by the pinning of
the nematic-isotropic interface at the crests of the sinusoidal
substrate, thus hindering the nucleation of topological defects
that would otherwise be present in the wet configuration
at large enough anchoring strengths. When perpendicular

anchoring is favored at both the substrate and the interface, the
filling and wetting transition lines change places. In this case
the wetting transition may occur for larger Aq, while the filling
transition occurs for intermediate Aq. Finally, in conditions
such that the anchoring at the nematic-isotropic interface may
be either planar or homeotropic, the phase diagram shows
mixed features of the two previous cases. The analysis of these
situations is far more complex than in the previous cases, as
any perturbation can change the delicate balance between the
different contributions to the free energy.

In order to check the validity of the phenomenological
generalized Wenzel’s law [Eq. (12)], we have compared
its predictions with the numerical transition values for the
one-step D − W⊥ wetting transition. We see that they are in
excellent agreement for L � 60ξ . This fact shows that elastic
effects are important in the range of values of wavelength
L considered in our work. In particular, they stabilize the D

state with respect to the W⊥ state, as elastic deformations
are a positive contribution to the surface free energy present
only in the latter state. On the other hand, the location of the
wetting transition approaches the value predicted by the typical
Wenzel’s law [Eq. (8)] when L increases.

It is interesting to compare these results to those obtained for
other substrates [7,11]. Unlike the sawtoothed or rectangular
substrates, defects do not nucleate on the surface but may
emerge in the nematic. The selection of defect-free states is
always favored (the W⊥ state for shallow wedges, the F ‖ state
for rough substrates if κ = 2) and leads to the suppression
of interfacial transitions that may exist for simple fluids.
Due to the absence of topological defects, the finite-size
effects on the wetting transitions are less important than
for sawtoothed or rectangular substrates. Nevertheless, a
Berreman-like elastic contribution to the free energy is present,
and, consequently, wetting obeys a generalized Wenzel’s law
[Eq. (12)]. This is expected to be true in general for smooth
substrates.

ACKNOWLEDGMENTS

We acknowledge the support from FCT (Portugal)
through Grants No. PEst-OE/FIS/UI0618/2011, PTDC/FIS/
098254/2008, and SFRH/BPD/40327/2007 (NMS) and Acção
Integrada Luso-Espanhola Ref. E 17/09. JMR-E also ac-
knowledges financial support from Spanish Ministerio de
Ciencia e Innovacion through Grants No. FIS2009-09326 and
HP2008-0028, and Junta de Andalucı́a through Grant No.
P09-FQM-4938.

[1] C. Rascón and A. O. Parry, Nature (London) 407, 986
(2000).

[2] M. Calliès and D. Quéré, Soft Matter 1, 55 (2005).
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