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Abstract

We study the shape and the geometrical properties of sessile drops with translational
invariance (namely “liquid cylinders”) deposited upon a flat super-hydrophobic substrate. We
account for the flattening effects of gravity on the shape of the drop using a pendulum rotation
motion analogy. In the framework of the inviscid Saint-Venant equations, we show that
liquid cylinders are always unstable because of the Plateau–Rayleigh instability. However, a
cylindrical drop deposited upon a super-hydrophobic non-flat channel (here, wedge-shaped
channels) is stabilised beyond a critical cross-sectional area. The critical threshold of the
Plateau–Rayleigh instability is analytically computed for various profiles of the channel. The
stability analysis is performed in terms of an effective propagation speed of varicose waves.
Experiments are performed in order to test these analytical results. We measure the critical
drop size at which break-up occurs together with the decreasing effective propagation speed
of varicose waves as the threshold is approached. Our theoretical predictions are in excellent
agreement with the experimental measurements.

Keywords: Capillary flow; Break-up; Instability

1 Introduction
Liquid cylinders, namely volumes of liquid of a given cross-section with translational invariance
along its normal direction, have long been a matter of study, more specifically their stability,
when surface tension is at play. Historically, in this context, the first reported experimental study
of the destabilisation of a liquid column was due to Savart while studying the decay of liquid jets
(Savart, 1833). However, Savart did not mention surface tension as the driving phenomenon and
Plateau was the first to interpret the destabilisation of a static circular column of liquid in terms of
surface minimisation of the liquid interface (Plateau, 1849, 1873). Lord Rayleigh then performed
a linear analysis of stability, computing the fastest axisymmetric growing mode of sinusoidal
perturbations along its axis of a free infinite circular cylinder of inviscid liquid, confirming the
values obtained by Plateau from the aforementioned experiments by Savart (Rayleigh, 1878).
In this framework, Lord Rayleigh stressed the fact that this now so-called Plateau–Rayleigh
instability is independent of the general translatory motion of the jet. This first theoretical
study was immediately followed by azimuthal perturbations of a circular cross-section (Rayleigh,
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1879). Later, the viscous properties of the liquid column were accounted by Rayleigh (1892a,b),
then followed by Tomotika who took the surrounding fluid into account (Tomotika, 1935).

Ever since these seminal works on circular liquid cylinders, many studies regarding the prob-
lem of free liquid jets have been devoted to the instability of jets of various cross-section ge-
ometries (Gutmark & Grinstein, 1999), including elliptical cross-section (Morris, 1988; Amini &
Dolatabadi, 2011; Amini et al., 2014), rectangular cross-section (Tam & Thies, 1992) or even
star-shaped jets (Quinn, 1992). However, these studies mostly concern high Reynolds number
flows at which other physical phenomena such as vortex shedding or vorticity–surface interaction
play a key role in the instability mechanism. At low Reynolds number, the pinch-off of a viscous
elongated drops has been studied for various initial shapes by Stone & Leal (1989b) and Stone
& Leal (1989a).

In a different context, the Plateau–Rayleigh instability can also be encountered in the case of
a free surface liquid cylinder constrained by the presence of a solid substrate along its longitudinal
direction. For instance, the annular coating of a liquid on a wire or on the inside of a tube was
first studied by Goren (1962). He related the fastest growing perturbation wavelength to the
ratio of the two radii of the annulus and the Ohnesorge number.

Deposited upon a solid surface, a liquid cylinder is called a rivulet, and it can undergo different
instabilities such as capillary break-up (Schmuki & Laso, 1990); meandering, for different wetting
conditions: hydrophobic conditions (Nakagawa & Scott, 1984; Nakagawa, 1992; Couvreur, 2013),
partial wetting (Birnir et al., 2008) or total wetting (Daerr et al., 2011); braiding (Mertens et al.,
2005); splitting (Myers et al., 2004).

In the absence of longitudinal flow, liquid cylinders were called static rivulets, and the first
theoretical study of their stability was due to Davis (1980). Using balance of kinetic energy
arguments, he gave sufficient conditions for circular sessile cylinders to be stable, and he studied
their stability for different contact angle conditions at a planar substrate (pinned contact line,
constant contact angle, smooth contact angle variations with contact line speed).

Using a geometrical variational formulation, Sekimoto et al. (1987) studied the shape and
the instability of steady liquid ridges on a horizontal planar substrate, under partial wetting
conditions, in a small slope approximation, and taking gravity into account. Speth & Lauga
(2009) gave explicit calculations of unstable long-wave modes of a cylindrical ridge for pinned
contact lines in the inviscid case. Within lubrication approximation, taking the gravity effects
into account, together with the wetting conditions using a disjoining pressure model, Diez et al.
(2009) analysed the stability of a rivulet on a horizontal plane. They evidenced the respective
dependence of the instability on these effects and the nano- or macroscopic size of the rivulet.
Recently, Bostwick & Steen (2018) performed, through a Rayleigh–Ritz method, a thorough
study of the stability of inviscid sinuous and varicose modes, for pinned contact lines or free
contact lines with constant contact angle. More specifically, they identified the dominant modes
for various contact line configurations.

The case of non-planar substrates, in the context of a wedge-shaped groove, was first treated
by Langbein (1990). Based on energy arguments, he showed that, depending on the contact
angle and the opening angle of the wedge, static cylinders on a wedge-shaped groove could be
stable or unstable. These results were extended by Roy & Schwartz (1999), considering various
geometries of substrate and different wetting conditions. Using hydrodynamic considerations,
the stability of a rivulet on a wedge was studied by Yang & Homsy (2007) in the flowing case
(using lubrication approximation together with a model of dynamic contact line) and by Speth
& Lauga (2009) in the static case (inviscid fluid, with pinned contact line wetting conditions).
In the context of a circular constraint applied to one side of a cylindrical drop, Bostwick &
Steen (2010) showed that this constraint slowed the growth rate of the unstable modes. In all
aforementioned cases, gravity effect were not taken into account and circular cylindrical base
states were considered.
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As a summary, we can state that the Plateau–Rayleigh instability in liquid cylinders depends
on the shape of the cross-section of the cylinder and on the wetting conditions when placed upon
a substrate, either flat, wedge-shaped or curved. Moreover, the scale of the cross-section can
reduce the critical wavenumber of the perturbations, beyond which the cylinder becomes stable:
gravity, known to flatten sessile drops, has a stabilising effect on the Plateau–Rayleigh instability
(Diez et al., 2009).

Note that the Plateau–Rayleigh instability can be fully inhibited to a certain extent in coated
tubes because of gravitational drainage (Duclaux et al., 2006). The stability of a liquid cylinder
has also been studied for other liquid systems: ferromagnetic liquid cylinder stabilised by an
orthoradial magnetic field (Arkhipenko et al., 1980); soft solids for which the Plateau-Rayleigh
instability can be inhibited by elastic forces (Mora et al., 2010).

Other examples of non-breaking slender liquid drops, without contact with any solid wall have
been observed in the case of liquid cylinders levitating above hot curved rectilinear substrates
owing to the Leidenfrost effect (Perrard et al., 2015). Large volumes of liquid can be deposited
above such substrates. Their lengths are several times larger than the perimeter of their cross-
section, which contradicts the historical stability criterion proposed by Plateau (1849), stating
that a — circular — slender drop breaks up whenever its length is larger than the circumference
of its cross-section. In the study by Perrard et al., Leidenfrost drops are flattened by gravity,
which may play a significant stabilising role. If such drops are left evaporating without being
water-fed the volume decreases down to a critical volume, at which break-up eventually occurs.

The current article will be devoted to the full characterisation of the shape of these flattened
drops together with the characterisation of linear waves that the authors observed along these
levitating liquid cylinders (here, restricting ourselves to the non-dispersive regime). To that end,
we will consider — instead of a levitating liquid — a simpler system that can be viewed as
geometrically equivalent: we will consider an infinite sessile cylinder deposited upon a super-
hydrophobic substrate.

The exact shape of the cross-section of such a drop will be obtained using a mechanical
analogy with the rotation motion of a pendulum. We will relate the break-up of these drops to
the Plateau–Rayleigh instability by studying the stability of varicose modes along these drops,
resorting to a mass conservation and a section-averaged momentum equation, a formalism best-
known as the Saint-Venant equations, in an inviscid framework. We will show that the Plateau–
Rayleigh instability is suppressed whenever the substrate underneath the drop becomes non-flat
and cross-section is sufficiently large, which explains the observed stability of cylinders in Leiden-
frost state (Perrard et al., 2015). In order to validate our predictions, experimental comparisons
will be performed and show an excellent agreement, which confirms the validity of our approach
in the non-dispersive limit.

In §2, we present the computation of the exact shape of the cross-section of a sessile cylindrical
drop, under super-hydrophobic wetting conditions when placed upon a flat horizontal substrate.
In §3, we analyze the linear stability of such a drop using the Saint-Venant equations. We then
present experimental comparisons with the theoretical results in §4. Finally, in §5, we close this
paper with its conclusions and its perspectives.

2 Shape of a cylindrical sessile drop
This section is devoted to the full characterisation of the shape of a sessile drop deposited upon a
flat hydrophobic substrate, with translational invariance with respect to the x-direction, namely
cylindrical sessile drops, taking gravity into account. To that end, we draw an analogy with the
rotation motion of a pendulum and propose complete analytical expressions.

Let z denote the upward vertical direction and y the horizontal direction. The free interface
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Figure 2.1: The shape of the free surface Γ of a cylindrical sessile drop placed upon a horizontal
super-hydrophobic substrate is computed. The drop profile is invariant along the x-direction.
The border of the drop is parametrized by its arc length, s. The curve starts at the origin O (at
which s = 0) and ends at the point M(stot), with stot, the total arc length. The tangent vector
τ at the point M(s) forms an angle φ(s) with horizontal.

will be denoted as Γ. It can be described as a curve in the (y, z)-plane (see figure 2.1). The latter
will be parametrized by its arc length, s. The coordinates of a pointM(s) along the interface will
be denoted as (η(s), ζ(s)). At the point M(s), the unit tangent vector τ is given by τ = dM(s)

ds

and the transverse (that is the in-plane) curvature κt is given by dτ
ds = κt n, where n is the unit

normal vector. We set the angle φ(s) such that τ (s) = cosφ(s) ey + sinφ(s) ez, so that

κt =
dφ

ds
, η(s) = η0 +

∫ s

0
cosφ(s) ds, ζ(s) = ζ0 +

∫ s

0
sinφ(s) ds. (2.1)

In this section, by convention, the starting point of the curve M(s = 0) = (η0, ζ0) will be located
at the origin O = (0, 0).

The equation satisfied by the vertical position ζ of the interface is obtained solving the
hydrostatics equation, taking the Young–Laplace law into account. It reads (see, for instance,
Landau & Lifschitz (1987, §61))

ρgζ(s) + σκ(s) = C0, (2.2)

where σ denotes the surface tension and C0 is a constant independent of the x-coordinate.
We set the usual capillary length `c as `2c = σ

ρg . After differentiating (2.2) with respect to s,
knowing that dζ

ds = sinφ(s), we obtain

d2φ

ds2
+

1

`2c
sinφ(s) = 0, (2.3)

which is equivalent to the classic equation of motion of a pendulum, where the time variable is
now the arc length s. Equation (2.3) is equivalent to

1

2

[
dφ

ds

]2

+
1

`2c

[
1− cosφ(s)

]
= constant E ≡ H(q, p), (2.4)

with H the Hamiltonian of a pendulum of angular frequency 1/`c, for the time variable s and
(q, p) = (φ, dφ

ds ), the corresponding set of conjugate variables. As a conservative system, we have
H(q(s), p(s)) = E , the conserved “energy” along the time s, which only depends on the initial
conditions (φ = φi,

dφ
ds = κt

i )|s=si , at the given initial time si, so that

E = 1
2

[
κt

i

]2
+ 1

`2c
[1− cosφi]. (2.5)
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The energy value E labels the different orbits of the autonomous dynamical system given by
the corresponding Hamilton equations. The right-hand side part of the summation is bounded
(corresponding to the φ-periodic potential energy of gravity), whereas the left-hand side part
(corresponding to the kinetic energy, i.e. the curvature contribution) can assume arbitrary values.

Let us define Ec = 2
`2c
. The orbits corresponding to E = Ec are the usual separatrices of the

phase space, given by the equations

κt(φ) =
dφ

ds
= ± 2

`c
cos

φ

2
. (2.6)

In terms of arc length s, ranging from −∞ to +∞, they read

φ(s) = ∓π ± 4 arctan exp

[
± s
`c

]
+ 2kπ (k ∈ Z). (2.7)

The corresponding curves are displayed in figure 2.2. They partition the phase space into bounded
regions (related to libration pendulum motion) and unbounded regions (related to rotation pen-
dulum motion). In the framework of pendulum motion, they correspond to heteroclinic orbits,
connecting neighbouring unstable equilibrium positions φk = (2k + 1)π, k ∈ Z. We will later
see that these separatrices correspond to the limit case of a sessile drop of infinite horizontal
extension.

The orbits inside the separatrices (E < Ec) are closed. They correspond to libration modes in
terms of pendulum. They are related to the shape of the cross-section of a pendant drop (with
translational invariance along the x-direction). One can refer to the comprehensive review of
McCuan (2017) for the properties and the explicit analytical expressions of the solutions. Note
that the pendulum analogy was previously made by Roman et al. (2003) as well. Nevertheless,
only numerical solutions were proposed by the authors.

In the following, we will resort to the usual partial and complete elliptic integrals (for any
parameter m < 1) defined as

E(φ|m) =

∫ φ

0

√
1−m sin2 x dx, E(m) =

∫ π
2

0

√
1−m sin2 x dx, (2.8)

F(φ|m) =

∫ φ

0

dx√
1−m sin2 x

, K(m) =

∫ π
2

0

dx√
1−m sin2 x

. (2.9)

The solutions to our system are those corresponding to E > Ec, namely orbits outside the
separatrices. They are related to the rotating modes of a pendulum. If we set m, the parameter
such that

Ec

E
def
= m < 1, (2.10)

we have κt, the transverse curvature, given by the equation

κt(φ) =
dφ

ds
= ± 2

`c
√
m

√
1−m sin2 φ

2 , (2.11)

that yields the solution

φ(s) = 2 arcsin

[
sn

(
s

`c
√
m

;m

)]
, (2.12)

with the proper determination of arcsin function and sn, the Jacobi elliptic function of parameter
m (φ(s) can be expressed in terms of am amplitude function as well). For a given m, the total
arc length stot is given by

stot(m) =
`c
√
m

2

∫ 2π

0

dφ√
1−m sin2 φ

2

= 2`c
√
m K(m) (2.13)
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Figure 2.2: Cylindrical drop shapes viewed as pendulum orbits. (a) Phase space and typical
orbits. The separatrices (E = Ec, see text for definition) partition the phase space into two
types of regions. The bounded regions are those related to closed pendulum orbits (libration
mode); they correspond to pendant drop profiles. Outside the separatrices, the orbits are those
of pendulum rotation mode; they correspond to sessile drop profiles. In the case of super-
hydrophobic wetting conditions, the orbits start at φ = 0 at arc length s = 0 and end at φ = 2π
at arc length stot (see (2.13)). Two orbits are displayed, corresponding to parameters m = 0.4
and m = 0.9. (b) Drop shapes for different values of m, calculated starting at origin O. The
closer m to the value 1, the larger the drop. In this limit, its height approaches 2`c. In contrast,
the drops are nearly circle when m approaches zero. (c) Same drops, but centred with respect
to their vertical symmetry axis.

and the orbits in the phase space are given by the following parametrization with angle φ

η(φ) =
`c
2

√
m

∫ φ

0
dϕ

cosϕ√
1−m sin2 ϕ

2

, ζ(φ) =
`c
2

√
m

∫ φ

0
dϕ

sinϕ√
1−m sin2 ϕ

2

. (2.14)

The explicit expressions of η(φ) and ζ(φ) then read

η(φ) =
2`c√
m

[
E(φ2 |m)− (1− m

2 ) F(φ2 |m)
]
, ζ(φ) =

2`c√
m

[
1−

√
1−m sin2 φ

2

]
. (2.15)

Note that Lamb (1928, §127), Ku et al. (1968) previously gave the same expressions, using dif-
ferent parametrizations, but without resorting explicitly to pendulum analogy, whereas Michael
& Williams (1977) solved the same problem using numerical calculations.
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In figure 2.2, we show various shapes of drops for different values of m (and the drop pic-
tured in figure 2.1 corresponds to m = 0.95). One must keep in mind that the m → 0+-limit
corresponds to vanishingly small droplets (i.e. high energy E) whereas the limit case m → 1−

corresponds to large flattened drops (i.e. energy E close to Ec, namely orbits close to the sepa-
ratrices).

From (2.15), we can compute the following typical quantities:

• The vertical thickness of the drop, denoted as ∆Zmax(m), is given by

∆Zmax(m) = ζ(π)− ζ(0) = 2`c
1−
√

1−m√
m

(2.16)

and is upper-bounded by 2`c, which corresponds to the usual result that the maximum
height of a liquid puddle is 2`c.

• The transverse curvature at the top of the drop is given by

κtop(m) =
2

`c

√
1−m
m

. (2.17)

Note that we have the following relationship, as a consequence of (2.2):

C0(m)

ρg`c
=

∆Zmax(m)

`c
+ `cκtop(m) =

2√
m
. (2.18)

• The horizontal extension of the drop is given by

∆Ymax =
[
η(3π

2 )− η(π2 )
]

(2.19)

=
2`c√
m

{
(1− m

2 )
[
F (π4 |m)− F (3π

4 |m)
]

+
[
E(3π

4 |m)− E(π4 |m)
]}
. (2.20)

• The cross-sectional area of the drop is given by

A (m) = −
∫

Γ
ζ dη = −

∫ 2π

0
ζ(φ)

dη

dφ
(φ) dφ,

=
8`2c
m

[
(1− m

2 ) K(m)− E(m)
]
. (2.21)

• The contact extension at the substrate is given by

Λc(m) = [η(0)− η(2π)] = −`c
2

√
m

∫ 2π

0

cosϕ√
1−m sin2 ϕ

2

dϕ (2.22)

and we have the following relationship between Λc(m) and A (m)

A (m) =
2√
m
`c Λc(m), (2.23)

which yields

Λc(m) =
4`c√
m

[
(1− m

2 ) K(m)− E(m)
]
. (2.24)
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Note that we have exhibited the shape of a cylindrical drop deposited upon a super-hydrophobic
flat substrate (i.e. imposing a contact angle θc = π) that corresponds to an orbit starting from
angle φ = 0 and ending at angle φ = 2π. In a more general case, if the drop is deposited upon
a horizontal substrate at which the corresponding contact angle is θc, the shape of the interface
then corresponds to a symmetric portion of the same kind of orbit, with an angle φ ranging
from π − θc to π + θc, allowing us to recover analytically the shape of a static rivulet previously
numerically computed by Myers et al. (2004). We will resort to an analogous statement in §3.5,
where a wedge-shaped substrate will be considered. We now turn to a couple of asymptotic
cases, for which the expressions can be greatly simplified and will be of use thereafter.

2.1 Small values of m regime (nearly circular drop)

For small values of positive parameter m, we have the following expansions

∆Zmax(m) =
m→0+

`c
√
m [1 + 1

4m+ O(m2)], (2.25)

∆Ymax(m) =
m→0+

`c
√
m [1 + 1

4(1 + π
4 )m+ O(m2)], (2.26)

A (m) =
m→0+

π
4m`

2
c + O(m2). (2.27)

Therefore, the cross-section of the drop is nearly that of a circle of radius R0 that reads at leading
order

R0(m) = 1
2

√
m`c =

m→0+
1
2∆Zmax =

m→0+
1
2∆Ymax (2.28)

and a contact length to the substrate Λc(m) that satisfies

Λc =
m→0+

π
8m

3/2`c. (2.29)

which is then negligible compared to the radius R0(m). As the volume per unit-length (in the
x-direction) increases, we depart from the circular shape because of gravity that flattens the
drop.

2.2 Parameter m close to 1− (flattened drop)

Let the parameter µ be such that m = 1 − µ. We can compute the following asymptotic
expressions for µ→ 0+ that read

∆Zmax(m) =
µ→0+

2`c [1−√µ+ o (
√
µ)] , (2.30)

∆Ymax(m) =
µ→0+

`c

[
− logµ+

(
−4 + 2

√
2 + 2 log tan π

8 + 4 log 2
)]

+ O(µ logµ), (2.31)

A (m) =
µ→0+

2`2c
[
− logµ+ 4(log 2− 1)

]
+ O(µ logµ), (2.32)

Λc(m) =

√
m

2`c
A (m) =

µ→0+
`c
[
− logµ+ 4(log 2− 1)

]
+ O(µ logµ), (2.33)

with the following approximate numerical values of the additive constants to the logarithmic
expressions, found in (2.31) and (2.33),

C1 = −4 + 2
√

2 + 2 log tan π
8 + 4 log 2 ' −0.16173, (2.34)

C2 = 4(log 2− 1) ' −1.2274. (2.35)
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Figure 2.3: (a) Plot of the horizontal extension ∆Ymax and the thickness ∆Zmax with respect to
the variables m and µ = 1 −m (inset); the y-coordinates are expressed in `c-unit. (b) Plot of
the aspect ratio %A(m) = ∆Ymax/∆Zmax with respect to µ = 1 −m. For m → 0 (or µ → 1),
the cross-section of the cylinder is nearly a circle, whereas for m→ 1 (or µ→ 0), the horizontal
extension diverges and the thickness tends to 2`c.

Last, note that we have the following relationship between the value of cross-sectional area and
those of the vertical thickness and the contact extension

A (m) =
µ→0+

Λc(m)×∆Zmax(m)
[
1−√µ+ O(µ)

]
, (2.36)

and we have `c
2 (C1−C2), corresponding roughly to half the capillary length, which is the length

of the tip of the drop protruding above the wetted area.
In figure 2.3, we plot ∆Zmax, ∆Ymax together with the aspect ratio %A = ∆Ymax/∆Zmax.

The latter is always larger than 1 and diverges in the limit m → 1− as ∆Ymax does. The plots
are given with respect to the coordinate m or µ = 1−m, in lin–lin or log–lin scales.

3 Plateau–Rayleigh instability in the Saint-Venant equa-
tions framework

In the previous section, the shape of a sessile cylindrical drop was calculated when placed upon a
horizontal planar substrate with non-wetting conditions; typical dimensions were also obtained.
In this section, the question of their stability against varicose perturbation is dealt with. It is
related to the classical Plateau–Rayleigh instability in the context of non-circular geometry. To
that end, we will use the inviscid Saint-Venant equations and focus on the speed of propagation
of varicose waves along our sessile cylinder placed upon a super-hydrophobic substrate. We will
show that such drops can become stable provided the substrate is non-flat and sufficiently large.

3.1 Saint-Venant governing equations

The Saint-Venant equations are a set of hyperbolic equations that were proposed by epony-
mous Saint-Venant (1871) in order to study flows in open-channels along the x-direction. Their
derivation is based on a long-wavelength (shallow water limit k → 0) expansion and the basic
hypotheses are the following: (i) the flow is considered quasi-parallel in the x-direction; (ii) the

9
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pressure is hydrostatic. Under these hypotheses, if one sets the following quantities

S(x, t), the transverse cross-sectional area of liquid, (3.1)

ū(x, t) =
1

S(x, t)

∫
S(x,t)

u(x, y, z, t) dy dz, the section-averaged velocity, (3.2)

P (x, y, z, t), the hydrostatic 3D pressure field, (3.3)

the inviscid Saint-Venant equations read

∂tS + ∂x(Sū) = 0, (3.4)

∂tū+ ū∂xū+
1

S(x, t)

∫
S(x,t)

1

ρ

∂

∂x
[P (x, y, z, t)] dy dz = 0. (3.5)

This set of equations is expressed in terms of section-averaged pressure gradient in the x-
coordinate and turns into 1D equations in space. For a complete derivation of these equations
(including viscous effects), one can read the article of Decoene et al. (2009). As we are interested
in the linear stability of a sessile drop, we will study a linearised version of these equations.

3.2 Special case of triangle-shaped cross-section

As a first elementary result given by the Saint-Venant equations, let us neglect the surface tension
effects and consider a triangular cross-section of liquid, with both sides Γα and Γβ respectively
making an angle α and β with horizontal (see figure 3.2). As no capillary effects are considered,
we consider a flat horizontal interface. Let S(x, t) be the cross-sectional area at coordinate
x. We have S(x, t) = 1

2λH
2(x, t), with H, the liquid depth measured from the bottom of the

substrate and λ = 1
2

sin(α+β)
sinα sinβ . We denote as S0, the liquid cross-sectional area at rest and as

H0, its corresponding depth. The pressure field is hydrostatic, hence it is independent of the
y-coordinate and reads

P (x, y, z, t) = ρg[H(x, t)− z]. (3.6)

The Saint-Venant equations (3.4) and (3.5) after linearisation then read

∂tS + ∂(Sū) = 2λH0∂tH + S0∂xū = 0, (3.7)

∂tū+
1

S

∫
S

1

ρ
(∂xP ) dy dz = ∂tū+ g∂xH = 0, (3.8)

so that we obtain the following wave equation on H

∂ttH − 1
2gH0∂xxH = 0, (3.9)

hence the gravity wave speed

c0 =

√
gH0

2 . (3.10)

3.3 Adiabatic perturbation hypothesis and discussion

In this article, we will make the following strong hypothesis: at any coordinate x, at any time
t, we will assume that the cross-section shape (of area value S(x, t)) is adiabatically given by
the equilibrium static shape calculated in §2, at that very value S(x, t), corresponding to a
geometrical parameter m(x, t). This assumption implies that the contact line is free to move
on the super-hydrophobic substrate, with contact angle at the substrate kept constant at value

10
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π. Moreover, we assume that the pressure field remains hydrostatic, hence independent of the
y-coordinate.

In the current situation, translational invariance in the x-direction does not hold any longer
so that constant C0 given by (2.2) must depend on coordinate x and time t. In the framework
of our assumption, the shape corresponds to that at equilibrium, provided it is given by some
parameter m(x, t) and we have

C0(x, t) = ρgζ(x, s, t) + σκt(x, s, t) (3.11)

at given x and t, all along the interface, namely for all s ∈ [0, stot(x, t)]. It can be calculated
anywhere along the interface. In the following, we will chose to calculate it at the top of the drop,
i.e. at angle φ = π, at which we have ζ(π) = ∆Zmax(m(x, t)) and κt(x, s, t) = κtop(m(x, t)),
respectively given by (2.16) and (2.17).

Let us now focus on the hydrostatic pressure field. A priori, for a point of coordinates (x, y, z)
inside the drop, its expression reads, because of the Young–Laplace law and (3.11)

P (x, y, z, t) = ρg
[
ζ(x, s, t)− z

]
+ σκt(x, s, t) + σκl(x, s, t), (3.12)

= C0(x, t)− ρgz + σκl(x, s, t), (3.13)

with s being an arc length coordinate satisfying η(s, t) = y and the curvature term being the
sum of the transverse curvature κt(x, s, t) (i.e. in the (y, z)-plane) and the longitudinal curvature
κl(x, s, t) (i.e. in the x-direction) at a given point of coordinates (x, s, t) located at the interface.
At this stage, note that, because of the possible values of s, the pressure P can be bi-valued.

The adiabatic hypothesis regarding the equilibrium shape is valid in the limit κt � κl, which
corresponds to the long-wave limit. Without entering into further technical details, at linear
approximation, the longitudinal curvature term κl(x, s, t) will yield second-order contributions
in x-derivatives of S(x, t) in the expression of the pressure P , whereas C0(x, t) only involves
zeroth-order contributions in x-derivatives of S(x, t). Therefore, in the following, we will not
account for the presence of κl and will then solely focus on the terms that will have non-dispersive
contributions in the dispersion relation we are looking for. The section-averaged value of ∂xP
used in the Saint-Venant equations then reads

1

S(x, t)

∫
S(x,t)
{∂xP (x, y, z, t)} dy dz =

1

S(x, t)

∫
S(x,t)
{∂xC0(x, t)}dy dz = ∂xC0(x, t). (3.14)

3.4 Plateau–Rayleigh instability in drops on flat hydrophobic substrate

We now turn to the stability study of the static sessile drops considered in §2. As mentioned in
§3.3, we consider one particular class of perturbation by making the following assumption: the
cross-section shape — of transverse area value S(x, t) — is adiabatically given by the equilibrium
static shape calculated in §2, at that very value S(x, t), corresponding to a geometrical parameter
m(x, t), at any given space coordinate x and time t. The contact line is then free to move on
the super-hydrophobic substrate, keeping a constant contact angle equal to π. We focus on the
varicose deformations; the liquid is supposed inviscid. Moreover, we choose the particular class of
varicose perturbations with a symmetry about its (x, z)-mid-plane, as displayed in figure 2.2 (c).
The base state is supposed to correspond to the parameter m0, with a cross-sectional area equal
to S0 = S(m0).

We set the perturbed cross-sectional area as being S(x, t) = S0 + ς(x, t), with ς � S0 and
set ū as the section-averaged velocity. Because of (3.14), the section-averaged value of ∂xP can
be expressed as

∂xp̄ = ρg ∂x

[
∆Zmax(x, t)

]
+ σ∂x

[
κtop(x, t)

]
. (3.15)

11
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The linearised Saint-Venant equations then read

∂tς + S0 ∂xū = 0, (3.16)
∂tū+ 1

ρ ∂xp̄ = 0, (3.17)

that is,

∂ttς =
S0

ρ
∂xxp̄. (3.18)

Knowing that

∂x

[
∆Zmax(x, t)

]
=

[
∂[∆Zmax]

∂m

] [
∂S

∂m

]−1 [∂S
∂x

]
, (3.19)

∂x

[
κtop(x, t)

]
=

[
∂κtop

∂m

] [
∂S

∂m

]−1 [∂S
∂x

]
, (3.20)

we obtain the following wave equation, after only retaining the linear contributions of ς,

∂ttς = g

[
S0

∂S
∂m(m0)

] {[
∂[∆Zmax]

∂m
(m0)

]
+

σ

ρg

[
∂κtop

∂m
(m0)

]}
∂xxς. (3.21)

Setting ς(x, t) = ε exp[i (ωt− kx)] eventually yields the following dispersion relation

ω2(k) = gk2

[
S0

∂S
∂m(m0)

] {[
∂[∆Zmax]

∂m
(m0)

]
+ `2c

[
∂κtop

∂m
(m0)

]}
. (3.22)

We have an instability whenever ω2(k) < 0; conversely, if ω2(k) > 0, the varicose mode is stable.
Let the following dimensionless quantities be

a(m0) =

[
S0

∂S
∂m(m0)

]
= 2m0(1−m0)

(m0 − 2) K(m0) + 2 E(m0)

(m0 − 4)(m0 − 1) K(m0) + (3m0 − 4) E(m0)
, (3.23)

b(m0) =
1

`c

[
∂[∆Zmax]

∂m
(m0)

]
+ `c

[
∂κtop

∂m
(m0)

]
= −m0

−3/2, (3.24)

we then obtain the dispersion relation, that reads

ω2(k) = g`ck
2
[
a(m0)

] [
b(m0)

]
, (3.25)

which yields the expression of the wave speed

c2
eff(m0) = g`c[a(m0)] [b(m0)]. (3.26)

This quantity is always negative because of the factor b(m0) (see (3.24)), so that a cylindrical
sessile drop on a flat super-hydrophobic substrate is always unstable regardless of its size. As
a visual illustration, in figure 3.1, we plot the quantities a(m) and c2

eff/(g`c) = a(m) b(m) as
functions of the parameter m.

In the following, we will make more quantitative statements, by analysing these results in
two distinct limits: small m regime, i.e. small cross-section cylinder and large m regime (m close
to 1−), i.e. large cross-section regime.
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Figure 3.1: Plots of (a) the coefficients a(m) together with (b) the renormalised c2
eff/(g`c) =

a(m) b(m) with respect to the parameter m. The values of c2
eff are always negative, therefore,

the drop is unstable. The larger m, the smaller the growth rate. In the limit m→ 1−, we have
c2

eff → 0−: in this regime, the horizontal extension of the cylinder tends to infinity and the latter
becomes marginally unstable.

3.4.1 Small m regime: nearly circle cross-section, Plateau–Rayleigh instability recovered

Let us consider the asymptotic regime m→ 0+. We have

a(m) =
m→0+

m− 3
4m

2 + O(m3), (3.27)

b(m) = −m−3/2. (3.28)

and the dispersion relation then reads

ω2(k,m) '
m→0+

g`ck
2

[
− 1√

m

]
. (3.29)

We see that for small values of m, we have an instability corresponding to the classic Plateau–
Rayleigh instability: rewriting this expression in terms of radius of the drop R0 = 1

2`c
√
m (see

(2.28)) indeed leads to

ω2(k,R0) '
m→0+

= − σ

2ρR3
0

(kR0)2. (3.30)

As a reminder, we recall that the growth rate Σ of the classic Plateau–Rayleigh instability in the
case of a free cylinder of radius R0 reads

Σ2(k,R0) =
σ

ρR3
0

I1(kR0)

I0(kR0)

[
1− (kR0)2

]
kR0, (3.31)

with I0 and I1 the zeroth and first modified Bessel functions of the first kind, which satisfy
for small x, I0(x) ∼

x→0
1 and I1(x) ∼

x→0

x
2 . The angular frequency ω satisfies the exact same

properties as the growth rate Σ at small k, at leading quadratic order.

3.4.2 Large cross-section regime

For large cross-section drops, the Plateau–Rayleigh instability still holds, for b(m) is always
negative, for any m ∈ ]0, 1[ (see (3.24)). Still, let us be more quantitative. For m = 1 − µ with
µ→ 0+, we have

a(µ) = −µ[log(µ) + 4(1− log(2))] + O
(
µ2
)
, (3.32)

b(µ) =
µ→0+

−1− 3µ

2
− 15µ2

8
+ O

(
µ3
)
, (3.33)
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Figure 3.2: Geometry of a sessile cylindrical drop deposited upon a wedge-shaped substrate with
angles to horizontal equal to α and β. In dashed cyan is superimposed the shape of a drop
of same horizontal extension ∆Ymax, deposited upon a flat super-hydrophobic substrate. Eight
particular points are shown (see §3.5 for their definition). Γ0 denotes the free surface, while Γα
and Γβ correspond to the parts of the wedge wetted by the drop. They respectively connect Mα

to Mbott and Mbott to Mβ .

so that the wave celerity reads

c2
eff '

µ→0+
g`cµ [log(µ) + 4(1− log 2)] −→

µ→0+
0−. (3.34)

In the limit of very large cross-sectional areas, the growth rate vanishes and wide drops become
marginally unstable. This result is reminiscent of the result evidenced by Diez et al. (2009), in
a different wetting situation (partial wetting), who stated that, because of gravity, a rivulet was
unstable for a reduced interval of small wavenumbers.

As a general conclusion to this subsection, a sessile cylindrical drop placed upon a super-
hydrophobic flat substrate is always unstable whatever its volume by unit-length may be.

3.5 Stabilisation due to substrate shape

In this section, we will study the stability of our previous sessile drop, this time deposited upon
a non-flat super-hydrophobic substrate, more specifically, a substrate that has a wedge-shaped
geometry. We will start with the general case and then focus on two particular geometries used
in our experimental setups, as a comparison with theoretical results. This study will greatly
depart from the studies regarding wedge-shaped substrates that were cited in the Introduction
(Langbein, 1990; Roy & Schwartz, 1999; Yang & Homsy, 2007; Speth & Lauga, 2009) because
we account for gravity effects that will play a crucial role on stabilising sessile drops as we will
see.

The substrate that we consider is a wedge with angles to horizontal equal to α and β.
Without any loss of generality, we will assume that 0 < α ≤ β < π

2 . When α = β, the substrate
is symmetric. The shape of the liquid domain will consist in a sessile liquid cap (Γ0 will denote
its boundary) connected to tangent straight lines of angle α and β with horizontal, i.e. that of
a (partial) sessile cap placed upon a triangular liquid cylinder, as pictured in figure 3.2. The
sessile cap profile Γ0 corresponds to a partial pendulum orbit starting at φ = β, ending at
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φ = 2π − α in the phase space. Such a cross-section shape can be characterised by the eight
following characteristic points M , with the corresponding coordinates (η, ζ) given by (2.15). We
first choose the reference point M0 as the origin (0, 0) and the other points are

M2π, η1 = η(2π) = −Λc, ζ1 = 0, (3.35)
Mβ, ηβ = η(β), ζβ = ζ(β), (3.36)
Mπ

2
, η+

tip = η(π2 ), ζ+
tip = ζ(π2 ), (3.37)

Mπ, ηtop = η(π), ζtop = z(π), (3.38)
M 3π

2
, η−tip = η(3π

2 ), ζ−tip = ζ(3π
2 ) = ζ+

tip, (3.39)

Mα, ηα = η(2π − α), ζα = ζ(2π − α). (3.40)

The last point Mbott is located at the bottom of the wedge and has the following coordinates

ηbott = ηα +
cosα

sin(α+ β)
[(ηβ − ηα) sinβ − (ζβ − ζα) cosβ], (3.41)

ζbott = ζα −
sinα

sin(α+ β)
[(ηβ − ηα) sinβ − (ζβ − ζα) cosβ] ≡ −Hbott(α, β,m). (3.42)

Note that the points M0 and M2π are located inside the cross-section, they do not belong to the
boundary of the cross-section and serve as known references.

Using the Green–Riemann formula, we can exactly compute the cross-sectional area of the
cylinder by an integration along Γ, the closed curve Γ = Γ0 ∪ Γα ∪ Γβ with positive orientation,
that is, using Stot = −

∮
Γ ζ dη,

Stot = −
∫ 2π−α

β
ζ(ϕ)

dη

dϕ
(ϕ) dϕ−

∫
Γα

ζ(α) dη(α) −
∫

Γβ

ζ(β) dη(β) (3.43)

with (η(α), ζ(α)) and (η(β), ζ(β)) straightforward parametrizations of the line segments Γα and Γβ ,
respectively connectingMα toMbott andMbott toMβ (see figure 3.2). This yields the expression
for the total cross-sectional area Stot(m,α, β)

Stot(m,α, β) = − 1
m

{
2(m− 2)

[
F(π − α

2 |m)− F(β2 |m)
]

+ 4
[
E(π − α

2 |m)− E(β2 |m)
]}

− 1
2

[
(ηbott − ηα)(ζα + ζbott) + (ηβ − ηbott)(ζbott + ζβ)

]
(3.44)

with expressions of ηα, ηβ, ηbott, ζα, ζβ, ζbott given by (2.14) and (3.35–3.42), which yield an ex-
plicit expression for the cross-sectional area, for given parameter m and angles α and β. Note
that the dependence of Stot onm is monotonous, so that the relationship between both quantities
is unequivocal. In the flat substrate case, for a given cross-sectional area value S, the interface
has translational invariance in the y-direction if the starting point M(s = 0) is not specified. In
contrast, in the wedge case, the relative position of the interface to Mbott is unequivocal, once
the cross-sectional area Stot is set.

In the following, we will focus on the symmetrical case, namely α = β. We will again study
the dispersion relation of our system in the framework of the Saint-Venant equations (see (3.16),
(3.17) and below), that is to say, in the non-dispersive limit. We will only retain the partial
derivatives of order zero in x, i.e. only the quadratic terms in k, in the dispersion relation (3.25).
Possible instabilities will appear at small wavenumber.

The presence of the symmetrical substrate adds a supplementary term to the expression of
the hydrostatic pressure given by (3.15): due to the presence of the wedge underneath the liquid
cap, the position of the interface now reads, on top of the drop

ζtop(x, t) = ∆Zmax(x, t) +Hbott(x, t), (3.45)
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Figure 3.3: Dependence of the critical parameter mc on the angle α of a symmetrical V-shaped
substrate (α = β). For positive α, large drops (m close to 1) are stable as long as m > mc(α).

so that we can now write:

1
ρ∂xp̄ = g∂x

[
∆Zmax(x, t) +Hbott(x, t)

]
+ σ

ρ∂x
[
κtop(x, t)

]
. (3.46)

Equation (3.44) allows us to compute the derivative of the cross-sectional area with respect
to the parameter m, so that the effective speed of propagation of waves along a sessile cylindrical
drop above a wedge can be explicitly computed, using

c2
eff(m,α, β) = g`c

[
Stot(α, β,m)
∂Stot(α,β,m)

∂m

] [
1

`c

∂Hbott

∂m
−m−3/2

]
, (3.47)

for a parameterm corresponding to that of the drop at rest, knowing that β = α. The full explicit
expression of c2

eff(m,α, β) is overly complicated to be written down. However, one important
remark is that the negative factor −m−3/2 yielding the Plateau–Rayleigh instability in the case of
a flat substrate can be compensated by the additional positive term `−1

c × [∂Hbott/∂m] stemming
from the presence of the non-flat substrate underneath the sessile drop, provided it is sufficiently
large.

At given angle α, the quantity 1
`c
∂Hbott
∂m −m−3/2 is negative for small values of m. It becomes

positive when m is larger than a critical value mc = 1 − µc. This latter can be numerically
computed and its dependence on the angle α is plotted in figure 3.3. For α = 0, i.e. for a flat
substrate, the cylinder is unstable whatever its cross-section may be (see §3.4.2).

In the following, in order to illustrate all these calculations in a meaningful way, we per-
form some approximate computations and discuss their validity. They will come in handy for
comparisons with the experimental results (see §4).

As a reminder, we are dealing with the symmetrical case (α = β) and we will make the
following hypotheses: the angle α is supposedly small and the parameter m = 1−µ is close to 1,
i.e. large flattened cross-sections are considered. We can approximate the geometrical properties
of our system by considering a cap (given by the shape of a sessile drop on a flat surface) placed on
top of a symmetrical triangle (see figure 3.4 (a)). We have the following approximate quantities,
using the asymptotic formulas of §2.2,

• for the sessile cap:

– width W (m) ' ∆Ymax ' `c[− log(1−m) + C1];
– cross-sectional area Scap(m) 'W (m)×∆Zmax(m) ' 2`2c [− log(1−m) + C1];

• for the triangle:
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(a)

αα

W (m)

W (m)

(b)

W (m)

W (m)

α

Figure 3.4: Geometry of the two different substrate shapes used in our experiments. (a) V-shaped
symmetrical channel. (b) L-shaped asymmetrical channel. For a given parameter m, W (m) is
the width of the sessile cap, whereas W (m) denotes the width of the triangular cross-section,
which can somehow be approximated by the wetted length Λc(m) (see text).

– width W (m) ' Λc(m) ' `c[− log(1−m) + C2];

– height Hbott(m) ' 1
2W (m) tanα;

– cross-sectional area S0 = 1
4W (m)2 tanα.

The total cross-sectional area is

Stot(m) ' Scap(m) + S0(m) ' 2`2cW (m) + 1
4W (m)2 tanα,

' `2c
[
2(− log(1−m) + C1) + tanα

4 [− log(1−m) + C2]2
]
, (3.48)

so that

∂Stot

∂m
(m) = `2c

tanα [C2 − log(1−m)] + 4

2(1−m)
. (3.49)

The effective wave celerity then reads, using (3.47)

c2
eff(m) = g`c

[
Stot(m)
∂Stot
∂m (m)

] {
+

tanα

2µ
− 1− 3µ

2
+ O

(
µ2
)}

, (3.50)

with [
Stot(m)
∂Stot
∂m (m)

]
= 2(1−m)

2[C1 − log(1−m)] + tanα
4 [C2 − log(1−m)]2

tanα [C2 − log(1−m)] + 4
. (3.51)

If we have α = 0 (flat substrate), we recover c2
eff < 0, corresponding to an unstable drop,

whatever its size may be. For small values of µ and tanα 6= 0, the drop is stable, provided
tanα

2µ − 1− 3
2µ > 0, that is

µ < µ̃c =

√
1 + 3 tanα− 1

3
. (3.52)

As a comparison, in the experiments we present in the next section, we have typical values of
width equal to 7.5 `c, that corresponds to a parameter µexp ' 5 × 10−4, which satisfies the
stability criterion.

Note that up to α ' 10◦, our approximations in terms of logµ are valid for calculating the
critical threshold. For large angles α, this approximate threshold value is arguable. One has to
resort to the exact analytical computations presented previously. However, comparisons between
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α [deg] 3◦ 5◦ 10◦ 15◦ 20◦ 30◦ 45◦
µc (exact) 0.0237 0.0376 0.0685 0.0958 0.121 0.168 0.243

µ̃c (approximation) 0.0252 0.0412 0.0788 0.114 0.149 0.218 1/3
∆Ymax(µc)/`c 3.65 3.21 2.66 2.36 2.15 1.87 1.56
S(µc)/`

2
c 5.45 4.70 3.87 3.51 3.33 3.20 3.18

Table 3.1: Values of critical µc together with corresponding non-dimensional values of horizontal
extension ∆Ymax(µc)/`c and of cross-sectional area S(µc)/`

2
c , for a symmetrical V-shaped sub-

strate. The values in the framework of the approximate computations (namely µ̃c, see §3.5) are
added for comparison.

these approximations and actual exact results remain surprisingly good, the relative errors being
no greater than 30% for α up to 45◦ (see table 3.1).

We can compute an ultimate term, that of (3.51), in the limit µ→ 0+, that reads[
Stot

∂Stot
∂m

]
∼

µ→0+
2µ

tanα
4 log2 µ− 2 logµ

− tan(α) logµ+ 4
∼

µ→0+
−1

2
µ logµ. (3.53)

We recover the expression of the wave celerity ceff :

c2
eff = −g`c

tanα

4
logµ = g

Hbott

2
(3.54)

in the large cross-section limit as explained in §3.2 (see (3.10)). It is the gravity wave speed
directly given by the Saint-Venant equations, in the case of a symmetrical channel of angle α, in
the absence of capillarity. The presence of a sessile cap is of no importance in this limit and it
thus can be disregarded, as one would have expected it.

4 Experimental comparisons

4.1 Experimental setup

In this section, we present an experimental characterisation of the varicose waves propagating
along cylindrical drops, when deposited upon super-hydrophobic substrates. The critical volume
at which break-up of these drops occurs is studied as well. In order to distinguish the theoretical
liquid cylinder shape from its experimental realisation, we use the term “drop” in this section
to denote a slender volume of liquid deposited upon a non-flat substrate with translational
invariance.

For this study, we use two different substrates. The first one is a symmetrical V-shaped
Dural channel with angle α = 10◦. The second one is an L-shaped Dural channel, placed upon
a levelling table, so that it can be tilted by an angle α, set from 0◦ up to 45◦ (see the schematic
of substrate cross-section in figure 3.4). The surface of these substrates is treated using Rust-
Oleum NeverWet, so that the wetting conditions (contact angle around 160◦) can be considered
as super-hydrophobic (see Gupta et al., 2016). Both channels are 50 cm long. On either of them,
a controlled volume of distilled water is deposited and stretched from one end to the other end
of the channel. If the deposited volume is sufficiently large, we can pin such long drops at both
ends of the channel without break-up.

In order to study the propagation of varicose waves along these drops, we force one end of the
drop using a shaker at swept frequencies (1–25 Hz) (see figure 4.1 (a)). Two photos are shown
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x
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z levelli
ng table

shaker(a)

α

η(x, t)

(b)

(c)

Figure 4.1: (a) Schematic of the experimental setup. Top views of experiments of shaken drops
of volume 40 mL (b) on a symmetrical V-shaped substrate (of angle α = 10◦) and (c) on a
non-symmetrical L-shaped substrate tilted by an angle α = 10◦. They are lit so that the border
of the drop is clearly visible for numerical treatments. Varicose modes, i.e. constriction modes,
are clearly visible near the shaker. They are symmetrical in the V-shaped case. In contrast,
due to the asymmetry of the L-shaped substrate, only the constrictions of the interface border
located at the gentle slope side (upper side of the image) are clearly visible. They propagate and
vanish far from the shaker because of dissipation and dispersion.

as an illustration in figure 4.1 (b) and (c). The plate connected to the shaker can be seen at
the right-hand side of the photos. The photos correspond to excited drops of volume equal to
40 mL, respectively deposited on the symmetric V-shaped substrate and the non-symmetrical
L-shaped substrate with a tilt angle α = 10◦. In the symmetrical case, constriction modes are
clearly visible near the shaker, whereas in the non-symmetrical case, only the deformations of
one side of the drop can be captured, for deformations of the border of the drop at the steepest
side of the substrate are too small to be visible. We then naturally focus on the interface
located on the smallest slope of the substrate. The deformation of the border of the drop and
consequently the position η(x, t) of the border of the interface is recorded from above using a
digital camera at 50 fps (AVT Manta G223). The interface position is numerically reconstructed
using an algorithm of contour detection based on the change in the colour gradient, with a
0.03 mm accuracy: we record images of a region of interest of a border of the drop. Suppose the
images have resolution Nx× Ny, at all discrete x-coordinates (xi)1≤i≤Nx, we locate the minimum
of intensity in the y-direction (for 1 ≤ j ≤ Ny), using polynomial interpolations of the discrete
values in this direction. The procedure is performed at each discrete time tk (1 ≤ k ≤ Nt), so
that we obtain a discrete signal η(xi, tk). Last, we compute the position at rest η0(xi) of the
interface, using the same procedure.
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4.2 Experimental results

From the camera recordings, we compute the spatio-temporal spectrum Sη(k, ω) of the dis-
turbed interface by performing FFT on the difference η(xi, tk) − η0(xi). The spatial resolution
is 0.252mm/px and we use a typical image resolution Nx equal to 1690 px. As for the temporal
sampling, the typical recording duration is 2min, which yields a typical number of time samples
Nt ∼ 6000. Several branches can be identified from the spatio-temporal spectra (see figure 4.2).
We focus here on the lowest branch, which goes to zero when k → 0 (namely the varicose branch).
Other branches (characterised by cut-off frequencies at k = 0) are related to the other modes of
wave propagation, the very first upper branch being related to sloshing motion (namely sinuous
waves).

From the value of deposited volume, V0, we can deduce the value at rest of the cross-sectional
area, Stot = V0/L, with L, the length of the cylinder. Using the expression (3.44) of Stot(m),
we can estimate the corresponding parameter m, hence the width W (m). From these data, we
can evaluate ceff and plot f(k) = 1

2π ceffk (the non-dispersive long-wavelength regime given by
the Saint-Venant formalism) and compare them to the experimental measurements. The small-
wavelength regime (dispersive regime) together with the sinuous modes will be discussed in a
future article.

4.2.1 Case of the V-shaped symmetrical substrate

We now start with the spatio-temporal spectra of an elongated drop, placed upon a super-
hydrophobic symmetric V-shaped substrate, for four different volumes (23 mL, 40 mL, 60 mL,
80 mL) at fixed angle α = 10◦. These spectra are plotted in figure 4.2. The smaller the
volume, the smaller the slope at origin, which is the celerity of surface waves ceff . We compare
this experimental slope to its analytical value found using the Saint-Venant formalism, in the
large drop limit (see (3.50) and (3.51)), for a parameter m deduced from the value of deposited
volume of water. The agreement is excellent (even better if we use the exact computations given
by (3.47)). The larger the volume, the steeper the slope, that is the larger the value of ceff .

We can clearly distinguish the existence of upper branches. The very first branch corresponds
to sloshing modes. Its cut-off frequency depends on the volume of the drop. The larger the
volume, the smaller the cut-off frequency. This point will be discussed in a future article.

4.2.2 Case of non-symmetrical substrate: L-shaped substrate or inclined V-shaped sub-
strate

We now turn to the asymmetrical case which corresponds to a cap placed on top of an asymmet-
rical right-angled triangle (see figure 3.4 (b)). The triangle properties will satisfy the following
properties: small angle α and steep angle β = π

2 − α, width W (m) supposedly large. The prop-
erties of the sessile cap are identical to those of the symmetrical case. As for the triangle, we can
approximate the length of its hypotenuse W (m), with ∆Ymax minus the length of one of the tip
of liquid protruding above the wetted area, which was approximated as being `c

2 (C1−C2). W (m)
turns out to be somehow equivalent to the mean value of ∆Ymax and Λc. We set C3 = 1

2(C1 +C2),
so that the triangle has the following properties:

• width W (m) ' 1
2 [W (m) + Λc] = `c[− log(1−m) + C3];

• height Hbott(m) ' 1
2W (m) sin 2α;

• cross-sectional area S0 = 1
4W (m)2 sin 2α.
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Figure 4.2: Spatio-temporal spectra of elongated drops, on a super-hydrophobic symmetric V-
shaped substrate with an angle α = 10◦, for four different volumes V . We have superimposed
the linear relation f(k) = 1

2π ceffk with ceff calculated using (3.50) and (3.51). (a) V = 23 mL,
ceff = 7.47 cm · s−1; (b) V = 40 mL, ceff = 10.60 cm · s−1; (c) V = 60 mL, ceff = 12.86 cm · s−1; (d)
V = 80 mL, ceff = 13.98 cm · s−1. The smaller the volume, the smaller the slope at origin, namely
the effective celerity of long wavelength varicose modes. Below a critical volume Vc ' 15 mL,
the drop becomes unstable. The agreements are excellent. The secondary branches correspond
to other modes of propagation (in particular, sloshing modes).

Therefore, we can compute the effective propagation speed

c2
eff(m) = g`c

[
Stot(m)
∂Stot
∂m (m)

] {
+

sin 2α

2µ
− 1− 3µ

2
+ O

(
µ2
)}

(4.1)

with [
Stot(m)
∂Stot
∂m (m)

]
= 2(1−m)

2[C1 − log(1−m)] + sin 2α
4 [C3 − log(1−m)]2

sin 2α [C3 − log(1−m)] + 4
. (4.2)

For a fixed volume of 40 mL, we show the spatio-temporal spectra for two different angles (10◦

and 30◦) in figure 4.3. The values of the parameterm used for the following comparisons between
experiments and theory are set by the value of the deposited volume of water. For α = 10◦, the
agreement between the experimental slope at origin and ceff given by (4.1) is excellent, whereas
in order to capture the correct theoretical value of ceff at angle α = 30◦, we resort to exact
calculations given by (3.47) and we can see that the agreement is excellent as well.
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Figure 4.3: Spatio-temporal spectra of elongated drops, on a super-hydrophobic asymmetrical L-
shaped substrate, for a volume equal to 40 mL and two different angles α. We have superimposed
the linear relation f(k) = 1

2π ceffk. (a) α = 10◦, ceff = 13.5 cm · s−1; (b) α = 30◦, ceff =
18.8 cm · s−1. The larger the angle, the larger the slope, namely the celerity of varicose modes.
And last, (c) spectrum of an elongated drop, on a super-hydrophobic asymmetrical tilted V-
shaped substrate corresponding to the case α = 5◦ and β = 15◦, for volume V = 40 mL. We
have ceff = 9.13 cm · s−1. In all the cases, the secondary branches correspond to other modes of
propagation (for instance, sloshing modes).

Last, we have performed an experiment using our V-shaped substrate tilted by an angle 5◦,
that corresponds to the asymmetrical case α = 5◦ and β = 15◦. It is displayed in figure 4.3 (c)
together with the Saint-Venant dispersion relation f(k) = 1

2π ceffk, where ceff is computed using
(3.47), with an excellent agreement.

4.2.3 Experimental threshold of break-up

Section 3.5 was devoted to the critical value of the parameter µ (hence m) at which instability
occurs, that is when c2

eff changes its sign, from positive to negative as volume decreases (that
is when the parameter µ increases). In order to experimentally confirm these predictions, we
pin both ends of a large controlled volume of water, deposited upon our super-hydrophobic
substrates (V-shaped substrate together with L-shaped substrate that we tilt at angle α). We
progressively and carefully pump controlled volumes of water out from one end of the cylinder,
of length L, using a syringe with a very sharp needle in order to minimise meniscus effect. We
deduce the remaining deposited volume, down to a critical volume at which the drop breaks up.
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Substrate V-shaped L-shaped L-shaped L-shaped L-shaped
α 10◦ 10◦ 20◦ 30◦ 45◦

Theory: µc 0.0685 0.118 0.184 0.223 0.243
1
`2c
Sc 3.87 3.95 3.43 3.24 3.18

Experiments: µexp
c 0.0381 0.0710 0.101 0.131 0.150

1
`2c
Sexp
c 4.97 4.90 4.54 4.20 4.07

Table 4.1: Values of the critical thresholds found in our experiments, in the cases of the sym-
metrical V-shaped substrate (α = 10◦), and the non-symmetrical L-shaped substrates. Here, we
have `c = 2.5 mm.

The (slow) pinch-off is located about the centre of the cylinder and retraction of both remaining
halves eventually occurs, owing to surface tension (see supplementary movies, long shot and
close-up, in the case of the symmetrical V-shaped substrate). The critical volume V exp

c allows
us to obtain the critical cross-sectional area Sexp

c of the drop (Sexp
c = V exp

c /L), hence the critical
value µexp

c , using (3.44). We compare this experimental value to the theoretical one in table 4.1.
The break-up of the drops systematically occurs at volumes about 1.3 times larger than the
predicted theoretical volumes for a given substrate geometry.

At this limit regime, we have to stress that the system becomes very sensitive to any external
perturbations such as the vibrations caused by the pumping procedure. Moreover, the transla-
tional invariance is broken because of the meniscus created by our pinning procedure. It induces
a bulge at both tips of the drop, so that the effective volume per unit length, i.e. the effective
cross-sectional area of the cylindrical part of our drop, turns out to be lower than that measured
in our procedure. Using a longer channel would certainly help alleviate this discrepancy.

5 Conclusion

In this article, we have computed the exact shape of the cross-section of a cylindrical (i.e. assum-
ing translational invariance) sessile drop of liquid deposited upon a super-hydrophobic substrate,
taking into account the flattening effect of gravity. The substrate geometry was supposed either
flat and horizontal or that of a wedge. Using an analogy with the rotation motion of a pen-
dulum, we show how the shape is related to the value of the cross-sectional area (in capillary
length unit). When the cross-sectional area is small, the cross-section is nearly a circle, whereas
the large cross-section shapes more or less resemble oblong pills. In the wedge-shaped substrate
case, the cross-section is equivalent to that of a liquid cap placed upon a liquid wedge.

We have used the inviscid Saint-Venant equations, in order to study the stability of such
sessile drops, in terms of the square of an effective wave propagation speed, c2

eff , of the varicose
modes of the drop (namely constriction modes). In this framework, we have shown that in
the case of a flat substrate, such drops are linearly unstable as the values of c2

eff are always
negative, whatever the cross-sectional area may be. This regime corresponds to the well-known
Plateau–Rayleigh instability in the case of circular cross-sections. In contrast, placed upon a
wedge-shaped substrate, such drops can become stable, corresponding to a positive sign of c2

eff ,
provided the cross-sectional area of the drop is sufficiently large.

These theoretical predictions have been experimentally tested with an excellent agreement,
using specifically designed super-hydrophobic substrates: a symmetrical V-shaped substrate and
a non-symmetrical L-shaped substrate. Both can be tilted and using the L-shaped substrate
allows us to tune the geometry and reach a wide range of non-symmetrical wedge angles. By
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measuring the spatio-temporal spectra of the deformation of the border of the drop when excited
by a shaker, we have evidenced multiple branches corresponding to the dispersion relations of
the various wave modes (ω = f(k) with ω, the angular frequency and k the wave number).
Our theoretical Saint-Venant calculations correspond to the non-dispersive regime of the lowest
branch that goes to zero in the limit k → 0. The slope at origin is equal to the expected value
of ceff .

Note that these experimental results are equivalent to the spectra found in previous works
related to the wave propagation along levitating cylinders (Perrard et al., 2015). The Saint-
Venant formalism is only valid in the k → 0 -limit of the lowest branch. The dispersive effects
of the varicose modes cannot be captured by this formalism. It is of course unfit to capture the
upper branches. The problem of the full dispersive regime of the varicose modes together with
the characterisation of the sinuous modes (corresponding to sloshing motion) is beyond the scope
of this article. A future article will be devoted to this problem.
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