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Abstract

Gravito-capillary waves propagating along extended liquid cylinders in the inviscid limit
are studied in the context of experiments of sessile cylinders deposited upon superhydropho-
bic substrates, with tunable geometries. In Part 1 of this work (Pham et al., 2020), we
characterised the non-dispersive regime of the varicose waves. In this second part, we char-
acterise the varicose waves in the dispersive regime, as well as the sinuous and the sloshing
modes. We numerically study the shape function of the system (the counterpart of the
standard tanh function of the dispersion relation of gravity-capillary wave in a rectangular
channel) and the cut-off frequencies of the sloshing modes, and show how they depend on the
geometry of the substrate. A reduced-gravity effect is evidenced and the transition between
a capillary- and a gravity-dominated regime is expressed in terms of effective Bond number
and effective surface tension. Semi-quantitative agreements are found between the theoret-
ical computations and the experiments. As a consequence of these results, resorting to the
inviscid section-averaged Saint-Venant equations, we propose a Korteweg–de Vries (KdV)
equation with adapted coefficients that governs the propagation of localised nonlinear waves.
We relate these results to the propagation of depression solitons observed in our experimen-
tal set-up and along Leidenfrost cylinders levitating above a hot substrate (Perrard et al.,
2015). We extend our derivation of the KdV equation to solitary-like waves propagating
along Plateau borders in soap films, evidenced by Argentina et al. (2015).

Keywords: solitary waves, drops

1 Introduction

Considering a mass of liquid with a translational invariance in one direction (which we will
henceforth call “liquid cylinders”, regardless of the shape of its transverse section), such a cylinder
can have a totally free surface in the case of a jet; it can be bounded by the presence of a flat
substrate in the case of a rivulet ; it can be laterally bounded in the case of open-channel flows.

Since the seminal works of Savart (1833), Plateau (1849) and Rayleigh (1878), jets are known
to be unstable because of the capillary forces that lead to the Plateau–Rayleigh instability,
whereas the stability of a rivulet on a flat surface depends on the wetting condition at the sub-
strate (Davis, 1980; Bostwick & Steen, 2018; Sekimoto et al., 1987). In both cases, the two
principal modes of propagating deformations are identified as varicose modes (that is, modu-
lations of the cross-sectional area along its axis) and as sinuous modes (that is, displacements
of the center of mass of the section, in the transverse direction). Recently, Bostwick & Steen
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(2018) performed a comprehensive numerical study of the stability of inviscid sinuous and vari-
cose modes along sessile circular cylinders, for pinned contact lines or free contact lines with
constant contact angle. In particular, they identified the dominant modes for various contact
line configurations.

In contrast, liquid cylinders placed upon a horizontal trough are supposedly stable, at least at
centimetre scales, because gravity acts as a stabilising force, and waves at the surface of an open
channel can propagate along the latter. This is actually one of the oldest problems studied in
hydrodynamics (see Craik (2004, 2005) for a historical review) and in any textbook is treated the
classical result of the gravity-capillary waves propagating along a rectangular channel (see Lamb
(1932), for instance). Regarding the varicose waves, the capillary- and the gravity-dominated
regimes can be distinguished depending on the channel depth. Other modes of wave propagation
can be evidenced. They correspond to sloshing modes (Lamb (1932); Groves (1994)), observed
as standing waves in the case of bounded tanks, even at very large scales and known in this
context as “seiches” (Forel, 1904).

At millimetre scales, the Plateau–Rayleigh instability comes into play along a liquid cylinder
in a small trough. In particular, it depends on the contact line configuration at the substrate.
In the context of a wedge-shaped groove, the problem the stability of a circular cylinder was
first treated by Langbein (1990) and extended by Roy & Schwartz (1999), considering various
substrate geometries and different wetting conditions. The stability of a rivulet on a wedge
was studied by Yang & Homsy (2007) in the flowing case and by Speth & Lauga (2009) in the
static case. In all aforementioned cases, gravity effect were not taken into account and circular
cylindrical base states were considered.

In 1844, Russell reported for the first time the propagation of a hump of water, propagating
at constant speed and constant shape (Russell, 1844). In 1895, Korteweg and de Vries derived
the now so-called Korteweg–de Vries (KdV) equation which governs the properties of this soliton
(speed, amplitude, width) propagating along a rectangular channel. They predicted the existence
of negative amplitude solitons whenever the depth of waterH is below

√
3`c, where `c =

√
σ/(ρg)

denotes the capillary length for a fluid of surface tension σ and density ρ, that is, whenever the
Bond number — defined as Bo = σ/(ρgH2) in this article — is larger than 1/3 the critical value
of the Bond number in the case of a rectangular channel (Korteweg & de Vries, 1895). The
first experimental observation of such negative solitons was made by Falcon et al. (2002), at the
surface of a thin layer of mercury.

In the context of Leidenfrost liquid cylinders levitating above their own vapour (see figure
1.1 (a)), Perrard et al. (2015) experimentally studied the linear and nonlinear waves propagating
along this cylinder. They evidenced a reduced-gravity effect due to the shape of their exper-
imental substrate, as well as an effective reduced surface tension, supposedly stemming from
the non-trivial shape of the cylinder section. Different branches of the dispersion relation were
evidenced. One branch was related to the varicose modes of the drop, whereas an upper branch
was characterised by a cut-off frequency and corresponded to sloshing modes. In this context,
the general dispersion relation of the varicose modes read

ω2 =

(
geffk +

σeff

ρ
k3

)
Ψ(Weffk), (1.1)

with geff = g sinα; Weff = c2
eff/geff , ceff being the phase velocity of long-wave varicose modes;

σeff , an effective surface tension (fitted in experiments), lower than the expected surface tension
of the liquid; α, a tilt angle; Ψ, a function depending on the substrate shape and equivalent to
the standard tanh function for a rectangular channel.

Negative amplitude solitons were observed along these Leidenfrost cylinders. The authors
characterised the existence of these depression solitary waves by means of an effective Bond
number that they compared to a critical Bond number related to the substrate section shape.
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(a) (b)

Figure 1.1: (a) Photograph of a water cylinder deposited upon a hot substrate. The temperature
is larger than the boiling temperature. Owing to the Leidenfrost effect, this cylinder levitates
above its own vapour. Depression Korteweg–de Vries solitons can propagate along such a cylinder.
(b) A cylinder of water can be deposited upon a superhydrophobic substrate (here a symmetrical
V-shaped substrate). Beyond a critical volume, such a cylinder is stable and waves can propagate
along it.

By adding nonlinear corrections to the dispersive wave equation, they proposed a KdV equation
with ad-hoc coefficients of the form

ηt + ceff

[
ηx +

ν1

Weff
ηηx +

1

2
W 2

eff (Boc − Boeff) ηxxx

]
= 0. (1.2)

The coefficient ν1 depended on the substrate geometry, the critical Bond Boc and the effective
Bond number Boeff were respectively equal to |Ψ′′′(0)|/6 and σeff/(ρgeffW

2
eff). No details of the

theoretical derivation of this KdV equation were given within the article.
Recently Pham et al. (2020) studied a system that bridges open-channel flows and the free

cylinder encountered in the Leidenfrost experiments, provided the curved substrate is replaced by
a superhydrophobic non-heated wedge-shaped substrate. They calculated the exact shape of the
capillary cap and showed that cylinders can be stable against the Plateau–Rayleigh instability
as long as the liquid is deposited upon a non-flat substrate and its section is sufficiently large
(see figure 1.1 (b) as an illustration). They interpreted this instability in terms of the square of
the effective celerity of the varicose waves in the non-dispersive regime, c2

eff . It is positive for
large volumes of liquid, it becomes negative for small volumes of liquid.

This article is the follow-up of this first part. We present a thorough study of the dispersive
regime of the waves propagating along sessile cylinders of water, deposited upon superhydropho-
bic wedge-shaped substrates.

We start with the presentation of our experimental set-up along with the experimental results
in §2. Cylinders of liquids are deposited upon superhydrophobic substrates (either a symmetrical
V-shape channel, or an L-shaped channel such that its geometry can be finely tuned). These
cylinders are excited and the spectra of the deformations of the interface are analysed. We
evidence the existence of varicose, sinuous and sloshing waves. Fittings of the varicose branch of
excitations with (1.1) are carried out.

In §3, we numerically study the varicose and the sloshing waves, without taking the surface
tension into account, by studying the inviscid equations governing the motion of the fluid in
such channels. To do so, we solve the equations governing the velocity potential, in the form
of a generalised eigenvalue problem that we solve through a code based on the finite element
method. This leads to the dispersion relations of the different wave modes. More specifically,
we characterise the varicose waves in terms of a shape function Ψ, equivalent to the standard
tanh function of the classic capillary-gravity waves, and relate this function Ψ to the substrate
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geometry. We compute the sloshing branches above the varicose branch and compare them to
the experimental results by analysing their characteristic cut-off frequencies at zero wavenumber.

We introduce the dispersive correction due to the surface tension effects. An estimation of
the renormalized surface tension is proposed in §4, based on a toy model. It is developed and
discussed in details in appendix B. Because the varicose perturbations of the base state induce
a non-uniform distribution of the curvature along the section border of the cylinder, there is an
effective averaging of the surface tension, which leads to an effective surface tension lower than
the expected standard value.

In §5, based on a nonlinear acoustics analogy, we add nonlinear corrections to the wave
equation obtained through the dispersion relation (1.1) and derive the ad-hoc KdV equation
(1.2) governing our system, taking into account the shape of the channel. Experiments are
performed in order to check the validity of this equation. In a similar way to the Leidenfrost
case of Perrard et al. (2015), negative amplitude solitons can propagate along our cylinder. We
characterise them by measuring their amplitude and their propagation speed, which is subsonic,
namely lower than ceff .

Last we show in §5.4 how our method can be generalised and how it can describe the prop-
agation of depression pulses in Plateau borders, observed in experiments by Argentina et al.
(2015), and we draw our conclusions in §6.

2 Experimental set-up and results
In this section, we present an experimental characterisation of the waves propagating along
cylindrical drops (namely with translational invariance along one direction), when deposited
upon superhydrophobic substrates. We will study the dispersive regime, while Pham et al.
(2020) only focused on the non-dispersive regime.

2.1 Experimental set-up

We use the same two different substrates as in Pham et al. (2020). The first one is a symmetrical
V-shaped Dural channel with an angle α = 10◦. The second one is an L-shaped Dural channel,
placed upon a levelling table, so that it can be tilted by an angle α, set from 0◦ up to 45◦ (see the
schematics in figures 2.1 (a, b, c)). The surface of these substrates is treated using Rust-Oleum
NeverWet, so that the wetting conditions can be considered as superhydrophobic (contact angle
around 160◦, see Gupta et al., 2016). Both channels are 50 cm long. On either of them, a
controlled volume of distilled water is deposited and stretched from one end to the other end of
the channel. If the deposited volume is sufficiently large, such long drops can be pinned at both
ends of the channel without breaking up (see Pham et al. (2020)).

In order to study the propagation of waves along these drops, we force one end of the drop
using a shaker at slowly increasing frequencies from 1 Hz to 20 Hz. Three snapshots are shown as
an illustration in figure 2.1 (d, e, f). The plate connected to the shaker can be seen at the right-
hand side of the photographs. The photographs correspond to excited drops of volume equal
to 40 mL, deposited on the symmetric V-shaped substrate and the non-symmetrical L-shaped
substrate with a tilt angle α = 10◦. In the symmetrical case, constriction modes are clearly
visible near the shaker, whereas in the non-symmetrical case, only the deformations of one side
of the drop can be captured, for deformations of the border of the drop at the steepest side of
the substrate are too small to be visible. We then naturally focus on the interface located on the
smallest slope of the substrate.

The deformation of the interface border is recorded from above using a digital camera at 50 fps
(AVT Manta G223). The position of the interface border, η(x, t), is numerically reconstructed
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Figure 2.1: Geometry of our two different substrate shapes used in our experiments. (a) Cross-
section of the V-shaped substrate (α = 10◦). (b) Cross-section of the L-shaped substrate. (c)
Schematic of the experimental set-up. Movies are recorded from above. Top views of experi-
ments of shaken drops of volume 40 mL (d) on the non-symmetrical L-shaped substrate tilted
by an angle α = 10◦; (e) on the V-shapes symmetrical substrate. Varicose modes, that is con-
striction modes, are observed. They are symmetrical in the V-shape case. In contrast, due to
the asymmetry of the L-shaped substrate, only the constrictions of the interface border located
at the gentle slope side (upper side of the image) are clearly visible. (f) V-shaped symmetrical
substrate: generation of sinuous modes when excited close to their cut-off frequency.

using an algorithm of contour detection based on the change in the colour gradient, with a
0.03 mm accuracy.

From the camera recordings, we compute the spatio-temporal spectrum Sη(k, ω) of the per-
turbed interface by performing Fast Fourier Transforms (FFTs) on the difference η(xi, tk)−η0(xi),
where η0(xi) is the shape of the border at rest. The typical spatial resolution is of order 0.25mm
per pixel and we use a typical image resolution Nx equal to 1700 pixels.
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2.2 Experimental results

Several branches can be observed from the obtained spatio-temporal spectra (see figures 2.2 and
2.3). We will first focus on the lowest branch, which goes to zero when k → 0 (namely the
varicose branch), then on the other branches (characterised by a low-frequency cut-off at k = 0),
that are related to other modes of wave propagation. The very first upper branch is related to
sinuous modes (in the V-shape case), while the other ones correspond to sloshing modes.

We have analytically characterised the long-wave regime (k → 0-limit) of the varicose modes
in Pham et al. (2020), with a very good agreement with the experiments. From the value of
the deposited volume, V0 and the substrate geometry (given by the angle α), we were able to
deduce the value of the geometric parameter m that sets the section of the drop at rest. Then
we deduced the slope at zero of the varicose branch, corresponding to the phase velocity ceff of
the varicose modes. Note that this wedge-shaped geometry corresponds to the ansatz used in
Perrard et al. (2015). In this latter work, the authors found a corrective 0.8 factor, because of
the curvature of the substrate bottom, which made the actual cross-sectional area lower than
that of the ansatz.

We can then deduce the parameter Weff = c2
eff/geff in the dispersion relation (1.1) and we

have superimposed the latter to the spectra using Ψ ≡ tanh. This functional ansatz will be
justified in §3. Moreover, in order to take into account the short-wave dispersive regime where
ω2 ∼ (σeff/ρ)k3, we have fitted the experimental varicose curve using a fitted value of σeff ,
typically about 57mN/m. As already observed in the case of levitating Leidenfrost cylinders (see
Perrard et al. (2015)), this value is below its expected value (72mN/m in the superhydrophobic
case). This property is due to the non-uniform distribution of curvature of the interface along its
section border. This point is thoroughly discussed in §4 and appendices A and B. The agreement
is very good for both the V-shape and the L-shape cases. Note that in the V-shape case, the
curve loses its convexity as expected, when the Bond number is below the critical Bond number.
This transition between a capillary- and a gravity-dominated regime occurs at a critical volume
Vc ' 80mL (see discussion in §4).

Several upper branches ω = ω(k), those that do not go to zero at k → 0, are clearly visible
in the spectra. In order to characterise the first upper branch, we consider the spectra of the
interface border in the V-shape case. The geometry allows us to capture both the upper ηup(x, t)
and the lower ηlo(x, t) borders of the interface. The spectrum of ηup(x, t) is shown in figure 2.2 (c)
for a volume V = 35mL, whereas we have plotted the spectrum of the difference W (x, t) =
ηup(x, t) − ηlo(x, t) which corresponds to the spectrum of the drop width (figure 2.2 (d)). The
latter figure is plotted in log–log scale in order to evidence the long-wave regime (for k → 0,
ω(k) scales like k) along with the short-wave regime (for k →∞, ω(k) scales like k3/2). The first
upper branch has vanished. It corresponds to a motion of the drop of constant section, namely
to sinuous modes.

The other upper branches are related to sloshing modes because of the presence of the sub-
strate. The cut-off frequencies of the sinuous and the sloshing modes decrease for increasing
values of the deposited volume of liquid. Comparisons with numerical simulations are made in
§3 in the V-shape case.

In the case of the L-shaped substrate, by inspection of figures 2.3 (a–d), one can tell that, at a
fixed volume V = 35 mL, the cut-off frequencies increase as the angle α increases. A quantitative
measurement of these cut-off frequencies along with a comparison with numerical simulations
will be discussed in §3. No sinuous branch is visible.
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Figure 2.2: Spatio-temporal spectra Sη(k, ω) of the deformation of the border of elongated drops,
on a superhydrophobic symmetric V-shaped substrate for three different volumes V : (a) V = 120
mL, (b) V = 80 mL, (c) V = 35 mL, at fixed angle α = 10◦. The larger the volume, the larger the
slope at origin, that is the speed of sound. We have superimposed the analytical non-dispersive
relation ω = ceffk (dashed white, with respective values of ceff : (a) 15.9 cm/s; (b) 13.8 cm/s;
(c) 9.9 cm/s) along with the dispersion relation (1.1) with the tanh function as an ansatz of
Ψ (solid cyan). The agreements are very good. At large volumes (greater than 80 mL), the
dispersion relation is not convex, it is the gravity-dominated regime. For smaller volumes (which
will correspond to regimes of Bond numbers larger than a critical value), the dispersion relation
is purely convex, it is the capillary-dominated regime. The other branches are characterised by a
cut-off frequency. They correspond to other modes of propagation (sinuous and sloshing modes).
(c) At a volume of water equal to 35 mL, we can clearly distinguish two branches with cut-off
frequencies: fsinuous ' 2.6 Hz and fslosh ' 10 Hz. (d) Spectrum SW (k, ω) of W (x, t), the width
of the same drop, at V = 35 mL (see text for its definition). The figure is plotted in log–log scale.
The sinuous branch with cut-off frequency fsinuous ' 2.6 Hz vanishes; only remains the varicose
mode branch, as well as the upper sloshing branch. For k → 0, ω(k) scales like k (non-dispersive
regime), while for k →∞, ω(k) scales like k

3
2 .
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Figure 2.3: Spatio-temporal spectra of elongated drops, on a superhydrophobic asymmetrical
L-shaped substrate for volume equal to 35 mL and four different angles (a) α = 10◦, (b) α = 20◦,
(c) α = 30◦, (d) α = 40◦. We have superimposed the analytical non-dispersive relation ω = ceffk
together with the dispersion relation (1.1) with the tanh function as an ansatz of Ψ . The larger
the angle, the larger the slope, that is the propagation speed of long wavelength varicose modes.
We have ceff = (a) 12.8 cm/s, (b) 16.2 cm/s, (c) 17.9 cm/s, (d) 18.7 cm/s. At this low-volume
regime, the varicose branches are convex. No sinuous branch is visible.

3 Numerical dispersion relations without surface ten-
sion

We will start with a brief presentation of classical results on gravity waves. We will then address
the question of gravity waves propagating along general wedge-shaped channels and then, more
specifically, along the channels used in our experiments.
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Figure 3.1: (a) General notations of the numerical problem. W denotes the width of the hori-
zontal free interface Γ0. S0 denotes the cross-sectional area of the cylinder at rest. Γ1 denotes
the solid boundary of the channel. H denotes the maximum depth of the liquid. (b) Rectangular
geometry. (c) Symmetrical square triangle geometry.

3.1 Governing equations and classical results

In this section, we present the equations that govern the propagation of surface waves in the
x-direction, along a channel of given cross-section of water at rest S0, without taking surface
tension into account. The flat free interface is denoted Γ0 and the solid bottom of the substrate
is denoted Γ1 (see figure 3.1(a)). Let us consider an irrotational, incompressible, inviscid flow.
We set Φ(x, y, z) as the velocity potential and separate it into Φ(x, y, z, t) = φ(y, z) e i(kx−ωt),
the problem to solve is: Find an non-zero function φ(y, z) such that it exists ω that satisfies (see
Lamb (1932))

(∆− k2)φ = 0, ∀ (y, z) ∈ S0, (3.1)
∂φ

∂n
= 0, ∀ (y, z) ∈ Γ1, (3.2)

∂φ

∂y
=
ω2

g
φ, ∀ (y, z) ∈ Γ0. (3.3)

It corresponds to a generalised eigenvalue problem. As stated in McIver & McIver (1993) and
Groves (1994), very few analytical solutions of the problem (3.1–3.3) can be exhibited. We will
present the two standard following ones.

3.1.1 Rectangular channel

In the case of a rectangular channel of depth H and width W (see figure 3.1(b)), we have a
discrete set of dispersion relations, indexed by an integer N

ω2(k) = gµN (k) tanh[µN (k)H], (3.4)

with

µN (k) =

√
N2π2

W 2
+ k2. (3.5)

The case N = 0 yields the classical dispersion relation

ω2(k) = gk tanh kH. (3.6)

In the limit kH → 0, we have ω2 = c2
0k

2 with c2
0 = gH.

For positive integers N , the other branches possess a cut-off frequency ωcut(N) that reads

ω2
cut(N) = g

[
Nπ

W
tanh

(
H
Nπ

W

)]
. (3.7)

For N = 1 and a depth H much smaller than the width W , the first cut-off frequency then reads

ωcut(N = 1) =
H/W�1

π
√
gH

W
. (3.8)
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3.1.2 Square symmetrical wedge-shaped channel

In the case of a square symmetrical wedge-shaped channel (see figure 3.1(c)), exact solutions can
be exhibited as well (Lamb (1932), Wehausen & Laitone (1960, p. 551), Groves (1994)). The
first two branches (varicose and first sloshing modes) respectively satisfy the following dispersion
relations

ω2 =
g√
2
k tanh

kH√
2
, (3.9)

ω2 =
g√
2
k cotanh

kH√
2
. (3.10)

Rewriting (3.9) as ω2 = geffk tanh(Weffk), yields geff = g sinα with α = π
4 . Note that in the

long-wavelength limit, we recover the non-dispersive varicose regime

ω2 =
k→0

gH

2
k2. (3.11)

Note that (3.11) is valid for any wedge-shaped channel, regardless of the wedge slopes.
The cut-off frequency of the first branch is

ωcut(N = 1) =

√
g

H
. (3.12)

and in order to obtain the upper-branches of the dispersion relations, one has to resort to nu-
merical calculations (Groves, 1994).

3.2 Numerical results

We now turn to the general case of an arbitrary triangular channel section, with angles α and
β ≥ α (see figure 3.2(a)). In such a geometry, the substrate is unequivocally characterised by
its height H and its angles α and β. We recall that the relationships between the height H, the
width W and the cross-sectional area S are given by

W =
sin(α+ β)

sinα sinβ
H, (3.13)

S =
1

2
WH =

1

2

sin(α+ β)

sinα sinβ
H2 =

1

2

sinα sinβ

sin(α+ β)
W 2, (3.14)

which yields for our substrates: W = (cotα)H in the V-shape case and W = H/ sin 2α
in the L-shape case. The eigenvalue problem (3.1–3.3) depends on 6 independent quantities:
α, β, g, ω,H, k. The Buckingham π theorem implies that our system is governed by four inde-
pendent dimensionless numbers α, β,Ω = ω

√
H/g and K = kH. Hence, H sets our length scale

and
√
H/g our time scale.

In order to obtain the dispersion relation of the problem, we resort to numerical computations.
To that end, we have discretised the domain into a 2D triangular mesh using Matlab/Octave
mesh2d mesh-generator (Engwirda, 2014). A Lagrange P1 finite element method is used to
solve the problem (3.1–3.3) which consists in a generalised eigenvalue problem . The numerical
computations yield different branches Ω(K). A typical number of 2,000 to 4,000 elements is used
in order to ensure numerical convergence, depending on the angles α and β.

The first branch, the one that goes to zero as k → 0, corresponds to the varicose modes.
Their dispersion relation reads in physical units

ω2(k) = (g sinα)kΨα,β

(
kH

2 sinα

)
= (geffk) Ψα,β (Weffk) , (3.15)

10
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Figure 3.2: (a) Schematic of the geometry. Example of a 2D mesh used in numerical simulation
(low spatial resolution, here 239 elements). Two spectra : (b ) V-shape and (c) L-shape, for an
angle α = 10◦. Note that in the L-shape case, branches do not converge asymptotically in pairs
as in the V-shape case. (d) Comparison between the classical tanh function (dashed line) and
the actual shape function Ψα,β for the V-shape and the L-shape cases (solid lines). Both shape
functions are almost identical, whereas they differ from the tanh function at intermediate values
of ξ.

with the function Ψα,β , for given angles α and β, having the following properties

Ψα,β(ξ) ∼
ξ→0

ξ, (3.16)

lim
ξ→+∞

Ψα,β(ξ) = 1, (3.17)

and Weff = H/(2 sinα) being the effective width. The boundary conditions (3.16) and (3.17)
of the function Ψα,β are chosen so that they are the same as those of the tanh function in
the classical cases, aforementioned in §3.1 (rectangular and square symmetrical triangle), thus
allowing direct comparisons. Note that the prefactor geffk does not depend on β, it only depends
on the smallest angle α. We can deduce the function Ψα,β(ξ) by considering the numerical ratio

Ω2/[(sinα)K] = Ψα,β[K/(2 sinα)]. (3.18)

This result is depicted in figure 3.2(d).
From the numerical computations, we obtain the upper branches as well. They are char-

acterised by a cut-off frequency ωcut(N). For different angles α and β, the first three cut-off
frequencies are computed and shown in figures 3.3 (a,b). At fixed angle α, the cut-off frequency
is an increasing function of the angle β.
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Figure 3.3: For a fixed angle α and for different angles β (normally 2π−α > β ≥ α, but we will
even consider the case β ≤ α), dimensionless values of Ωcut(N) = ωcut(N)×

√
H/g, for N = 1, 2

and 3. (a) α = 15◦ and (b) α = 45◦.
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Figure 3.4: (a) V-shaped substrate: Numerical calculations of the first three dimensionless cut-off
frequencies Ωcut(N) = ωcut(N) ×

√
H/g for a given angle α. (b) L-shaped substrate: Numer-

ical calculations of Ωcut(N) (solid circles), together with a comparison with the experimental
measurements of ωexpe

cut (1) using different values of Heff (open squares, see text): in gray, we use
Heff = 2c2

eff/g, while in red, we use a smaller Heff = c2
eff/g, which yields a better agreement.

More specifically, we have performed the same calculations in the particular cases of V-
shaped and L-shaped substrates in order to relate them to our experiments (see figure 3.4). At
fixed depth, for both the V-shaped and L-shaped substrates, the cut-off frequencies ωcut(N) are
increasing functions of the angle α. In the limit α→ 0, the cut-off frequencies decrease linearly
towards zero: the less steep the channel, the slower the sloshing motion.
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3.3 Comparison with the experiments

In this section, we compare the cut-off frequencies found in the experimental spectra and the
numerical results.

In the case of the V-shaped substrate, the cut-off frequency shall scale as
√
g/H. The

larger the volume, the larger H, therefore the lower the cut-off frequency. For larger volumes
of liquid, the measurements of the cut-off frequencies become less accurate. Nevertheless, the
larger the volume, the more branches can be distinguished. For instance four sloshing branches
are visible at volume 80 mL in figure 2.2 (a). The value of their cut-off frequencies can be
extrapolated at k = 0: f expe

1 ' 5.5 Hz, f expe
2 ' 9.5 Hz, f expe

3 ' 13.3 Hz, f expe
4 ' 17.2 Hz. Their

ratios f expe
2 /f expe

1 ' 1.73, f expe
3 /f expe

2 ' 1.4, f expe
4 /f expe

3 ' 1.29 are in good agreement with the
numerical calculations which yield the following ratios: fnum

2 /fnum
1 ' 1.59 and fnum

3 /fnum
2 ' 1.43

and fnum
4 /fnum

3 ' 1.26 (see figure 3.4(a), where the first three frequencies are displayed).
In the case of the L-shaped substrate, we have performed a series of experiments at fixed

volume V = 35 mL with an angle α varying from 5◦ to 45◦, by 5◦ steps. First we must state
that because of the L-shaped geometry, in particular in the low-angle regime, sinuous modes are
penalised, for the steepest side of the substrate prevents the border of the interface from moving
laterally and keeping its width constant. We have measured the cut-off frequency of the first
visible upper branch ωexpe

cut (1).
From the experimental data, the dimensionless quantity ωexpe

cut (1)
√
Heff/g, where Heff is a

length, can be computed and compared to the numerical calculations of Ωcut(N). It is known
that for any triangle of height H, we have exactly c2

eff = gH/2 (see (3.10) in Pham et al. (2020)).
From the value of c2

eff of our drop, if we consider Heff = 2c2
eff/g, we do not find any agreement

between the numerical and the experimental results; the relative error is of 40%. If Heff = c2
eff/g

is chosen instead, the agreement becomes good and the data seem to correspond to the first
sloshing branch (see figure 3.4 (b)). The larger the angle, the larger the cut-off frequency.
Determining the exact value of Heff remains an open question; it can most likely be attributed
to the presence of the capillary cap on top of the wedge-shaped volume of water, which has an
effect on the experimental value of ωexpe

cut (1), while the sequence of the cut-off frequency ratios
may still be described by a sole wedge-shaped cross-section.

4 First dispersive contributions to the varicose modes
In §3, we have numerically calculated the shape function Ψα,β , which is not a linear function; its
linear behaviour is only true at vanishing wavenumbers. Therefore, dispersion is present in the
dispersion relation of the varicose waves even without taking into account the surface tension
effects. We will quantify the first dispersive corrections due to the nonlinear behaviour of Ψα,β

in §4.1.
Another source of dispersion is due to surface tension. As long as the interface remains

horizontal in the (y, z)-plane, in the case of a rectangular channel, it is straightforward to make
the substitution g 7→ g + σ

ρk
2 in the dispersion relation of the varicose modes. This substitution

yields the classical dispersion relation

ω2 =

(
gk +

σ

ρ
k3

)
tanh kH. (4.1)

When the interface in the transverse plane turns out to be curved, the substitution does not
hold any longer. In the following subsection §4.2 we present a toy model in order to explain and
estimate the renormalization effect on the surface tension observed in our experimental spectra,
as well as in the work of Perrard et al. (2015). As a consequence, in §4.3, we will estimate the
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effective Bond number of our system as well as the value of the critical Bond number at which
the transition between a capillary- and a gravity-dominated regime occurs.

4.1 Dispersive effects due to the shape function Ψα,β

From the numerical calculations presented in §3, we have evidenced the dispersion relation of
the varicose modes propagating along a wedge-shaped channel of angles α and β. It is given
by (3.15) and because the shape function Ψα,β is not a linear function, dispersive effects are
intrinsically present. A Taylor expansion of the shape function Ψα,β(ξ) at order 3 in ξ yields the
first dispersive correction of the dispersion relation at small wavenumbers k which reads

ω2 =
k→0

geffk

(
Weffk +

1

6
Ψ′′′α,β(0)W 3

effk
3

)
+ O(k6). (4.2)

This correction is given by Ψ′′′α,β(0). From the numerical calculations, its value can be numerically
deduced, insofar as Ψα,β(ξ) ∼ ξ and Ψα,β is an odd function, using the limit

6

ξ2

(
Ψα,β(ξ)

ξ
− 1

)
−→
ξ→0

Ψ′′′α,β(0). (4.3)

The results are depicted in figures 4.1 (a,b). The dependence in α and β is non-trivial. One can
note that for a fixed value of α, Ψ′′′α,β(0) does not vary significantly with β. This value is of great
importance because it sets the value of the critical Bond number at which the dispersion relation
starts above (purely convex dispersion relation) or below the non-dispersive dispersive relation
(non-convex dispersion relation) (see §4.3). We will refer to both these regimes as the capillary-
and the gravity-dominated regime respectively.

In figure 4.1 (c) are displayed the values of Ψ′′′α,β(0) in the particular cases of the V-shaped
and the L-shaped substrates. At angle α = π/4, we recover the value tanh′′′(0) = −2, whereas
for α→ 0, we have Ψ′′′α,β(0)→ −1. In the V-shape case, when α→ π/2, we have Ψ′′′α,β(0)→ −3.

4.2 An analytical estimation of σeff

We propose an estimation of σeff as a cross-sectional averaging of the hydrostatic pressure field,
by taking into account the non-uniform profile of curvature of the interface along the transverse
section of it, due to the presence of varicose modes. In short, we go one step further than the non-
dispersive calculation of Pham et al. (2020) and calculate the k4 contribution in the framework
of the Saint-Venant equations. Due to the length of the derivations, their technical details are
deferred to appendix B, where we first analytically compute the curvature of the interface of the
varicose modes using an adiabatic hypothesis on the sections. We then perform an estimation of
the averaged pressure gradient that yields σeff , through a toy model. This toy model is motivated
by a few statements on how dispersive effects due to surface tension can be taken into account
within the Saint-Venant formalism we used to study the non-dispersive regime of our sessile
cylinders (Pham et al., 2020). These statements are made in appendix A.

The main result of this study is that because of the non-flat interface, the perturbative
curvature profile along the interface when varicose perturbations are present is non-trivial. At
low angle α, the curvature is dominant at the drop tip, while at steep angle α, the maximum of
the curvature is reached about the top of the drop. The uneven distribution of curvature leads to
an effective reduced surface tension of about 57mN/m observed in our experiments, in both the
V-shaped and the L-shaped substrates. The comparisons with the experiments are summarised
in tables 4.1 and 4.2.

In the case of our V-shaped geometry, at a low angle α = 10◦, the fitting of the value of σeff

does not show much dependence on the volume, and so do the values yielded by the toy model,
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Figure 4.1: (a) Values of Ψ′′′α,β(0) for fixed values of α. (b) Same, for fixed values of β. (c)
Particular cases of the V-shaped and L-shaped substrates: Dependence of Ψ′′′α,β(0) on the angle
α. Note that for α = π/4 = 45◦, both situations are the same and we recover Ψ′′′α,β(0) =

tanh′′′(0) = −2. The curve of the L-shaped substrate has been symmetrized about α = 45◦; the
values of α > 45◦ actually are those of the corresponding angle β = 90◦ − α. In all cases, the
value of |Ψ′′′α,β(0)|/6 yields the critical Bond number (see §4.3).

V-shape volume V [mL] 35 40 60 80 100 120

α = 10◦ σexpe
eff [mN/m] 56 54 59 58 56 56

σtoy
eff [mN/m] 48.3 48.4 48.6 48.7 48.8 48.8

Table 4.1: Case of the V-shaped substrate. Experimental values of σeff found by fitting the
spectra, using (1.1), for different volumes V and comparison with the toy model. The agreement
is fair, with a relative error of 15%.

L-shape angle α [deg] 5 10 15 20 25 30 35 40 45

volume V [mL] 40 35 35 35 35 35 35 35 35

σexpe
eff [mN/m] 56 55 57 56 58 57 57 58 57

σtoy
eff [mN/m] 58.0 57.1 56.5 55.8 55.2 54.7 54.3 54.1 54.0

Table 4.2: Case of the L-shaped substrate. Comparison of the values of σeff between experiments
and toy model. The agreement is good, with an error of less than 10%.
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which undershoots the experimental value with an error of 15%. In the case of our L-shaped
substrate, the experimental values do not show any obvious dependence on the angle α, while
the toy model we used shows a small decrease in the values of σeff with increasing angles α. In
any case, we obtain a better agreement than in the V-shape case. The error is of 10% with the
experimental data.

4.3 Effective Bond number and critical value

From the general dispersion relation (1.1) and the Taylor expansion of Ψ(ξ) at order 3, we get,
at order k4,

ω2 = c2
effk

2 ·
[
1 + (Boeff − Boc) k

2W 2
eff

]
+ O(k6) (4.4)

with the effective Bond number and the critical Bond number defined as

Boeff =
σeff

ρgeffW
2
eff

, Boc =
|Ψ′′′(0)|

6
. (4.5)

In the V-shape and L-shape cases, both quantities depend strongly on the angle α. The difference
Boeff − Boc, as it can be seen in (4.4), ensures whether the dispersion relation is purely convex
(namely is always above its tangent), yielding the capillary-dominated regime, or starts like a
concave curve in the neighbourhood of the origin (the dispersion relation curve starts under
the line ω = ceffk). In both cases, the shape of the curve is convex at large wavenumbers k
(ω ∼

√
σeff/ρ k

3/2 ). For a given substrate of given angle α, may it be an L-shaped or a V-
shaped substrate, the larger the volume of water, the larger the effective width Weff and the
smaller the effective Bond number Boeff . Conversely, because of the presence of geff = g sinα,
Boeff can reach large numbers when the volume is small (yet larger than the Plateau–Rayleigh
threshold).

As it can be seen in figure 4.1 (c), the value of Ψ′′′(0) ranges from −1 at vanishing α, to −2
at α = π/4 for a V-shaped substrate, and down to −3 for α approaching π/2 when ignoring the
capillary cap. These results are valid in the absence of surface tension, or considering that the
interface remains horizontal. Now, let us compare the previous results with the experimental
results of §2 in terms of effective Bond number Boeff .

In the V-shape case with no surface tension, we have α = 10◦, Ψ′′′num(0) ' −1.061, so that
Boc ' 1/6 ' 0.167. The value of the effective surface tension σeff are given by fitting the
experimental spectra (see table 4.1). For a volume V = 35 mL, we find Boeff ' 1.00, whereas
for a larger volume V = 80 mL, we find Boeff ' 0.274. At volumes lower than V = 80 mL, the
dispersion relation curve remains convex and we can note that the curve is linear within a larger
range of small k as the volume increases. It seems that the transition occurs at the vicinity of
the volume V = 80 mL (see figure 2.2). Therefore, from our experiments, we can perform the
estimation Boc ' 0.274, so that Ψ′′′expe(0) ' −6× 0.274 ' −1.644. This result departs from the
case without surface tension because of the presence of the capillary cap on top of the triangular
wedge.

5 Beyond the linear dispersive regime: the Korteweg–
de Vries equation

In this part we will take into account the nonlinear effects and evidence the propagation of non-
linear constriction waves along our cylinders. To that end, we will draw an analogy between the
Saint-Venant equations and equations of nonlinear acoustics. This analogy will yield an ad-hoc
Korteweg–de Vries equation. Note that this formalism can be generalised to other constriction
waves such as solitary waves found in Plateau borders (§5.4).
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5.1 Linear part of the Korteweg–de Vries equation

We will start with the following statement: If we consider the first dispersive contribution of
the general dispersion relation (1.1), we obtain (4.4), which corresponds to a wave equation that
reads

ηtt − c2
eff

[
ηxx +W 2

eff(Boc − Boeff)ηxxxx
]

= 0. (5.1)

The linear part of the KdV equation (1.2) reads

ηt + ceff

[
ηx +

1

2
W 2

eff(Boc − Boeff)ηxxx

]
= 0. (5.2)

and this wave equation corresponds to travelling waves in the right direction.

5.2 Saint-Venant equations as nonlinear acoustics equations

In order to obtain the nonlinear contribution in (1.2), we will use the Saint-Venant equations
previously used in Part 1 of this work (Pham et al., 2020) and treat them as nonlinear acoustics
equations. The aim is to eliminate the averaged speed in the Saint-Venant equations and obtain
a nonlinear wave equation in the section variable only. The details of the derivation are deferred
to appendix A.3. It follows a calculation due to Earnshaw (1860), as presented by Whitham
(1999, §6.9). In this subsection, we will disregard the surface tension effects and suppose that
the transverse section of liquid has a flat horizontal free interface.

We start from the Saint-Venant equations

∂tS + ∂x(Sū) = 0, (5.3)

∂tū+ ū∂xū+
1

ρ
〈∂xP 〉 = 0, (5.4)

for a transverse section of the liquid S(x, t), a section-averaged velocity in the x-direction ū(x, t)
and a section-averaged hydrostatic pressure gradient 〈∂xP (x, t)〉 (see Pham et al. (2020)). In
the context of a section with a horizontal free interface, the section-averaged pressure gradient
reads 〈∂xP 〉 = ρg∂xH, where H(x, t) denotes the vertical position of the free interface. As we
want to eventually obtain an equation in the variable S only, we first write H as a function
of the cross-sectional area S and perform the symbolic substitution 1

ρ〈∂xP 〉 ≡ 1
S∂xΠ(S). The

Saint-Venant equations then become

∂tS + ∂x(Sū) = 0, (5.5)

∂tū+ ū∂xū+
1

S
∂xΠ(S) = 0, (5.6)

which is equivalent to the one-dimensional compressible Euler equations governing the dynamics
of a compressible isentropic gas of density %(x, t), velocity ū(x, t) and pressure field Π(x, t).

In the case of a polytropic gas, namely a system which has an equation of state that reads
Π(S) = κSγ , and in the case of a wave travelling in the right direction, ū can be eliminated in
(5.5) and we obtain the nonlinear wave equation

∂tS + c0

(
1 +

γ + 1

2

S − S0

S0

)
∂xS = 0. (5.7)

In the case of a rectangular section, we have γ = 2. In the case of triangular section, we have
γ = 3/2. Note that if the nonlinear terms are neglected, we recover the non-dispersive linear
regime.
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The linear waves in the variable S(x, t) actually follow the dispersion relation (5.2) at first
dispersive order. Taking into account both the first correction in nonlinearity and in dispersion
thus yields the following Korteweg–de Vries equation

∂tS + ceff

[
∂xS +

γ + 1

2

S − S0

S0
∂xS +

1

2
W 2

eff (Boc − Boeff) ∂xxxS

]
= 0. (5.8)

For a rectangular channel of width W and depth at rest H0, we have S(x, t) = WH(x, t),
ceff =

√
gH0. and γ = 2. Moreover, Ψ(ξ) = tanh(ξ) so that Ψ′′′(0) = −2 and Boc = 1/3. By

using η = H(x, t) −H0 as the variable, the standard Korteweg–de Vries equation is recovered,
which reads

∂tη +
√
gH0

[
∂xη +

3

2

η

H0
∂xη +

1

2
H2

0

(
1

3
− σ

ρgH2
0

)
∂xxxη

]
= 0. (5.9)

In the case of a wedge-shaped channel with a flat interface (surface tension is taken into
account but not the capillary cap) and of depth H0, we have ceff =

√
gH0/2 and Weff =

H0/(2 sinα). The variations of the cross-sectional area are related to the displacement of the
border of the interface, hence to the variations of the width of the interface, that will be denoted
W . The cross-sectional area S is proportional to W 2 so that the ratio (S − S0)/S0 becomes
2(W −W0)/W0 withW0 = sin(α+β)/(sinα sinβ)H0 = 2[sin(α+β)/ sinβ]Weff (see (3.14)). The
Korteweg–de Vries equation for a general triangle now reads, in terms of variable η = W −W0,
with W0 the width at rest

∂tη + ceff

[
∂xη +

(
5

4

sinβ

sin(α+ β)

)
η

Weff
∂xη +

1

2
W 2

eff(Boc − Boeff)∂xxxη

]
= 0. (5.10)

for angles α < β, with Boc = |Ψ′′′α,β(0)|/6 and Boeff = σ/(ρgW 2
eff).

In the L-shape case (α = π/2 − β) and for small values of α, the prefactor sinβ/ sin(α +
β) is close to 1 and can be ignored in this limit. We then have the approximation 5/4 ×
sinβ/sin(α+ β) ' 5/4. In contrast, in the V-shape case (α = β) and for a small angle α, the
sinusoidal prefactors add a factor 1/2 and we have 5/4× sinβ/sin(α+ β) ' 5/8.

In our experimental set-up, that will consist in an L-shaped triangle with a capillary cap on
top, the equation of state is no longer that of a polytropic gas, but rather that of a barotropic
gas. In this case, Π(S) is no longer a power law. The nonlinear wave equation can be formally
derived using the expression of Π(S), that could be computed after tedious calculations. Instead
of doing so, we assume that the geometrical ansatz of the cylinder cross-section as a triangle of
angle α and β (hence a polytropic exponent γ = 3/2) is relevant to yield the nonlinear term in
the nonlinear wave equation, so that the Korteweg–de Vries equation now reads in the variable
η = W −∆Ymax, where ∆Ymax is the width at rest

∂tη + ceff

[
∂xη +

(
5

2

Weff

∆Ymax

)
η

Weff
∂xη +

1

2
W 2

eff(Boc − Boeff)∂xxxη

]
= 0, (5.11)

with Weff = c2
eff/geff , Boc and Boeff given by (4.5), and the prefactor ν1 in front of the nonlinear

term here is

ν1 =
5

2

Weff

∆Ymax
. (5.12)

5.3 Experimental results

For a Korteweg–de Vries equation of the form

∂tη + ceff

[
∂xη +

ν1

Weff
η∂xη +

1

2
Weff

2(Boc − Boeff)∂xxxη

]
= 0, (5.13)
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the one-soliton solution reads

η(x, t) = A0 sech2

(
x− ct

∆

)
, (5.14)

with the following relationship between speed c, amplitude A0, and width ∆

c

ceff
= 1 +

ν1A0

3Weff
, (5.15)

∆

Weff
=

√
2

Boc − Boeff

c/ceff − 1
. (5.16)

In our experiments, we will study the propagation of large negative amplitude waves and see
if the relationship (5.15) is satisfied with ν1 given by (5.12). To that end, we will consider the
L-shaped substrate, tilted by a small angle α = 2◦, 3◦ or 4◦. We will use a volume of water
V = 40 mL, which is sufficiently small for the effective Bond number to be large compared to
the value of critical Bond number that lies somewhere in between 1/3 and 1/6 (see §4.3).

In order to generate a large amplitude soliton, we use a micro-pipette that injects a small jet
of water inside the sessile liquid cylinder. Because of the jet, a depression is locally created that
strongly disturbs the interface (see figure 5.1 (a) and movie as a supplementary material). A train
of fast waves and a hump of water are ejected and travel to the other end of the drop. Eventually,
a deep depression solitary wave emerges, propagating at a speed c slower than the speed of the
non-dispersive waves ceff . Note that contrary to their Leidenfrost counterpart, because of the
dissipation at the contact line, these depression waves damp in a shorter distance about half of
the drop.

We measure the propagation speed c of this solitary wave as well as its negative amplitude
A0. The results are shown in figure 5.1 (b) where the dimensionless ratio c/ceff is measured with
respect to the dimensionless ratio A0/3Weff . In this plot, we have added the results found by
Falcon et al. (2002) in experiments performed in mercury; they follow a line of slope ν1 = 3/2
in accordance with the rectangular geometry of the tank they use. The measurements in the
Leidenfrost case are plotted as well, and they follow a line of slope νexpe

1 ' 3 (Perrard et al.,
2015).

At volume V = 40mL and length L = 50 cm, the cross-sectional area is Stot = V/L =
80mm2; the value of the geometric parameter m yielding the analytical shape of the drop section
can then be analytically deduced, as well as the values of the width of the drop ∆Ymax and the
effective widthWeff = c2

eff/geff (see equations (3.44), (2.20) and (3.47) respectively, in Pham et al.
(2020)). At angles α = 2◦, 3◦ and 4◦, the prefactor ν1 given by (5.12) is then respectively equal
to 2.1, 2.03 and 1.99, which is very close to 2. In order to test this prediction, we have plotted
the line of slope ν1 = 2. From the experimental data points obtained with our superhydrophobic
substrate, the most significant points are those with the largest amplitudes and the lowest speeds,
since they are the easiest ones to characterise. Those points seem to follow a slope νexpe

1 slightly
larger than 2, which is in reasonable agreement with our prediction ν1 = 2.

5.4 Korteweg–de Vries solitons in Plateau borders

The method we have presented to derive the KdV equation is generic and it can be applied to
other free-interface systems with a cylinder-type geometry. As an illustration of the genericity
of the method, we will consider the case of Plateau borders, along which the observation of
the propagation of depression solitary waves has been reported in experiments using soap films
(Argentina et al., 2015; Bouret et al., 2016).

A Plateau border is a cylinder of liquid that corresponds to a geometric region bounded by
three tangent circles of radius R(x, t). The latter corresponds to the radius of curvature of the
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Figure 5.1: (a) Snapshots of the propagation of a KdV soliton. The deposited volume is equal to
40mL and the angle α is equal to 2◦. After a strong perturbation of the surface at the tip of the
cylinder, waves propagate ahead of a solitary depression that emerges (see arrows) and propagates
at a speed c lower than ceff , the propagation speed of the long-wavelength waves. Eventually, it
vanishes. (b) Renormalized propagation speed c/ceff versus renormalized amplitude A0/(3Weff).
The region c/ceff > 1 corresponds to the supersonic soliton regime (namely the gravity-dominated
regime where elevation solitons exist), whereas the region c/ceff < 1 corresponds to the subsonic
soliton regime (namely the capillary-dominated regime where depression solitons exist). The
data points (SH, for three different angles α) seem to follow a straight line of slope ν1 ' 2. As
a comparison, we have added the experimental data in mercury from Falcon et al. (2002) (in
gray, following the standard slope ν1 = 3/2, each symbol representing a given depth of mercury)
along with those obtained by Perrard et al. (2015) in Leidenfrost (open symbols, following a
slope νexpe

1 ' 3).

cylinder at the coordinate x and time t (see figure 5.2). The section of a Plateau border of radius
of curvature R is given by

S(R) =
(√

3− π

2

)
R2. (5.17)
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Figure 5.2: Transverse section of a Plateau border of radius of curvature R, centred at the origin
O. Its boundaries are defined as three tangent circle arcs (in blue). xi denotes the distance from
the center to the interface. The length |Cxi| is the radius of curvature R of the Plateau border,
C is the center of curvature of one of the three interfaces. The Plateau border is circumscribed
in a circle of radius R/

√
3, centred at origin.

Let C be one of the three centers of curvature. The distance from the origin to this center C is

OC(R) =
R

2
√

3
+R

√
3

2
=

2√
3
R. (5.18)

The distance from the origin to the interface is

Oxi(R) = |OC(R)| −R =

(
2√
3
− 1

)
R. (5.19)

Using the Laplace law, we can then deduce the pressure term, that reads

P (x, t) = +σ

[
− 1

R(x, t)
−
(

2√
3
− 1

)
∂xxR(x, t)

]
. (5.20)

It is uniform in the section so that we can apply the Saint-Venant formalism. After setting
R = R0[1 + ε exp[i(kx− ωt)]] and ū = εu0 exp[i(kx− ωt)], equations (5.3) and (5.4), at order 1
in ε, yield the dispersion relation

ω2 =
σ

2ρR0
k2

[
1 +

(
2√
3
− 1

)
R2

0k
2

]
. (5.21)

after elimination of u0 and ε. It would be interesting to validate this theoretical dispersion
relation experimentally. To our knowledge, the dispersion relations of waves along Plateau border
studied so far were related to the sinuous modes (Kosdogadan Acharige et al., 2014) and not to
the varicose modes.

From the nonlinear acoustics analogy (see appendix A.3), we can deduce the following equa-
tion of state

Π(S) =
σ

ρ

(√
3− π

2

)1/2
S1/2, (5.22)

which corresponds to a polytropic gas, with exponent γ = 1/2. The dispersion relation for linear
dispersive waves travelling to the right reads

ω = c0k

[
1 +

(
1√
3
− 1

2

)
R2

0k
2

]
, (5.23)
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with c0 =
√
σ/(2ρR0). The KdV equation in the S variable can then be derived from (5.8) as

∂tS + c0

[
∂xS +

3

4

S − S0

S0
∂xS −

1

2
R2

0

(
2√
3
− 1

)
∂xxxS

]
= 0. (5.24)

The KdV equation in the width variable r (R = R0 + r) then reads

∂tr + c0

[
∂xr +

3

2R0
r∂xr −

1

2
R2

0

(
2√
3
− 1

)
∂xxxr

]
= 0. (5.25)

We then have a soliton solution (5.14) that reads, for ν1 = 3/2 and v = c/ceff :

r(x, t) = 2(v − 1)R0 sech2 x− vc0t√
2(2/
√

3−1)
1−v R0

≡ A0 sech2 x− vc0t
2
√
β√

1−vR0

. (5.26)

Experimentally, Bouret et al. (2016) found 2
√
βexpe ' 0.4, whereas we have 2

√
β ≡

√
2(2/
√

3− 1) '
0.56, which yields a relative error of 40%, improving the model used by Argentina et al. (2015),

who found 2
√
β = 2

√
(2
√

3− π)/π ' 0.64, namely a relative error of 60%.

6 Conclusion
In Part 1 of this two-part article, we had shown that sessile cylinders on a flat superhydrophobic
substrate were not stable owing to the Plateau–Rayleigh instability. In contrast, placed upon a
wedge shaped superhydrophobic channel, they could be stable against varicose modes provided
their cross-sectional area is sufficiently large. We resorted to the Saint-Venant equations in order
to analytically compute the phase speed of varicose waves in the non-dispersive regime. We
showed that the cylinder section was equivalent to the superposition of a wedge-shaped section
of water with a capillary cap on top of it (Pham et al., 2020).

In this second part, we have studied the dispersive regime of the varicose waves using nu-
merical calculations. These calculations yielded the full spectra of the varicose and the sloshing
modes of a triangular channel of arbitrary shape, without considering the surface tension ef-
fects. We introduced the dispersive contribution of the surface tension using the Saint-Venant
formalism and evidenced an effective renormalization of the surface tension stemming from the
presence of a capillary cap which induces a non-trivial curvature profile along the free boundary
of the section of the cylinder submitted to varicose perturbations. These calculations allowed us
to estimate the transition between the capillary- and the gravity-dominated regime, depending
on the cross-sectional area of the cylinder. This transition crucially depends on the bathymetry
of the channel. Sinuous modes have been experimentally evidenced as well.

We have proposed a derivation of the KdV equation, adapted to our capillary cylinders. For
this purpose, we have calculated the first nonlinear corrections to our linear wave propagation,
by using a nonlinear acoustics analogy to the Saint-Venant equations. Coupled with a reduced-
gravity effect caused by the geometry of the substrate, the propagation of depression KdV solitons
of centimetre scale was evidenced. Experiments regarding elevation KdV solitons will be carried
to confirm the predictions.

Our derivation of the KdV equation was adapted to another physical system, Plateau borders,
and our predictions were in agreement with the experiments previously performed by Argentina
et al. (2015).

All the theoretical results regarding the dispersive regime were obtained using a number
of assumptions and approximations that reasonably capture the experimental properties of the
different modes. The presence of the capillary cap on top of the wedge-shaped section is of
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importance and must be taken into account in order to be fully accurate. To do so, numerical
simulations of the full hydrodynamics equations must be performed; they are left for future work.
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A Saint-Venant equations: dispersive and nonlinear
effects

We start this appendix by presenting the Saint-Venant equations. We will see to what extent this
Saint-Venant formalism can capture the dispersive effects and comparisons with the standard
rectangular tank dispersion relation will be made in §A.2. From these statements, a toy model
devoted to the estimation of the effective surface tension σeff measured in our experimental
spectra will follow in appendix B. §A.3 is specifically devoted to the derivation of the nonlinear
wave equation (5.7), by drawing an analogy between the Saint-Venant equations and nonlinear
acoustics equations.

A.1 Saint-Venant equations

The Saint-Venant equations are a set of hyperbolic equations that were proposed by the epony-
mous Saint-Venant (1871) in order to study flows in open-channels. Their derivation is based on
a long-wavelength expansion (shallow water limit k → 0) and the basic hypotheses are the fol-
lowing: (i) the flow is considered quasi-parallel in the x-direction; (ii) the pressure is hydrostatic.
Under these hypotheses, if one sets the following quantities

S(x, t), the transverse cross-sectional area of liquid, (A.1)

ū(x, t) =
1

S(x, t)

∫

S(x,t)
u(x, y, z, t) dy dz, the section-averaged velocity, (A.2)

P (x, y, z, t), the hydrostatic 3D pressure field, (A.3)

the inviscid Saint-Venant equations read

∂tS + ∂x(Sū) = 0, (A.4)

∂tū+ ū∂xū+
1

S(x, t)

∫

S(x,t)

1

ρ

∂

∂x
[P (x, y, z, t)] dy dz = 0. (A.5)

This set of equations is expressed in terms of section-averaged pressure gradient in the x-
coordinate and turns into 1D equations in space. For a complete derivation of these equations
(including viscous effects), one can read the article of Decoene et al. (2009). As we are interested
in the linear dispersion relation of varicose waves, we will study a linearised version of these
equations.
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A.2 Dispersion and Saint-Venant formalism

One particular case where Saint-Venant can capture a part of the dispersive contribution of
surface tension is when the interface remains strictly horizontal in the transverse plane (y, z),
that is, independent of the coordinate y. As an illustrative example, let us consider the varicose
mode of gravity waves in a rectangular channel of fixed width W0. This will show the limitations
of Saint-Venant formalism. The interface is supposedly horizontal and characterised by its height
H(x, t). At rest, the interface is flat, and H(x, t) = H0. The section S(x, t) reads W0H(x, t).
Here, the pressure field is hydrostatic and, taking into account the longitudinal curvature κl =
−∂xxH, it reads

P (x, y, z, t) = ρg[H(x, t)− z]− σ∂xxH(x, t), (A.6)

so that the linearised Saint-Venant equations become

W0∂tH +W0H0∂xu = 0, (A.7)

∂tu+
1

S

∫

S

1

ρ
∂xP (x, y, z, t) dydz = 0. (A.8)

For a section S(x, t) = {(y, z) | 0 < y < W0, 0 < z < H(x, t)}, knowing that the quantity
1
ρ∂xP = g∂xH(x, t)− σ

ρ∂xxxH(x, t) is independent of the coordinates y and z, we have

1

S

∫

S

1

ρ
∂x[P (x, t)] dydz =

[
1

ρ
∂xP

]

(x,t)

× 1

S

∫

S
1 dy dz =

[
1

ρ
∂xP

]

(x,t)

. (A.9)

The wave equation satisfied by H can be deduced as

∂ttH − gH0

(
∂xxH −

σ

ρg
∂xxxxH

)
= 0. (A.10)

Setting H(x, t) ∼ exp[i(kx− ωt)] yields the dispersion relation

ω2(k) = gH0

(
k2 + `2ck

4
)

=
k→0

gH0k
2
(
1 + `2ck

2
)
. (A.11)

In contrast, it is well known that the actual dispersion relation for varicose waves in a rectangular
channel reads

ω2 = gk
(
1 + `2ck

2
)

tanh(kH0) = gH0k
2
(
1 + `2ck

2
) [

1− 1

3
(kH0)2 + O

(
(kH0)4

)]
. (A.12)

Both give the same non-dispersive results at quadratic order, namely

ω2 ∼
kH0→0

gH0k
2. (A.13)

The Saint-Venant averaging yields the dispersive contribution related to the surface tension but
not that related to the finite depth H via the tanh function. It amounts to considering the tanh
function as a linear function (tanhx ≡ x) in the actual dispersion relation expression. The toy
model presented in appendix B will be based on this substitution.

A.3 Saint-Venant equations as nonlinear acoustics equations

In this subsection, we will treat the Saint-Venant equations as nonlinear acoustics equations
in order to obtain a nonlinear wave equation in the variable S, the cross-sectional area. We
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will neglect the surface tension contributions so that the transverse section of liquid has a flat
interface and the hydrostatic pressure field gradient in the x-direction reads

∂xP (x, y, z, t) = ρg∂xH(x, t). (A.14)

On the one hand, the section-averaged Saint-Venant equations are given by (A.4, A.5). On the
other hand, the dynamics of a compressible isentropic gas of density %(x, t), velocity v(x, t) and
pressure field Π(x, t) is governed by the one-dimensional compressible Euler equations that read

∂t%+ ∂x(%v) = 0, (A.15)

∂tv + v∂xv +
1

%
∂xΠ = 0. (A.16)

Let 〈∂xP 〉 denote the section-averaged pressure gradient in the x-coordinate of our hydrodynamic
system. When considering the non-dispersive regime, we can write 〈∂xP 〉 = ρg∂xH(x, t). As the
cross-sectional area S is monotonic in the height H, H can be considered as a function of S.
Hence, we can perform the symbolic substitution

〈
1

ρ
∂xP

〉
= g∂xH[S(x, t)] ≡ 1

S(x, t)
∂xΠ[S(x, t)], (A.17)

and the Saint-Venant equations turn into

∂tS + ∂x(Sū) = 0, (A.18)

∂tū+ ū∂xū+
1

S
∂xΠ(S) = 0. (A.19)

This set of equations is equivalent to the compressible Euler equations (A.15, A.16) provided that
the substitutions ū ↔ v, S ↔ % are carried out. (A.18) corresponds to the mass conservation
equation, while (A.19) corresponds to the momentum equation. In this situation, the equation
of state Π(S) corresponds to that of a barotropic gas.

At linear order (in the neighbourhood of the equilibrium density/section S0), we can eliminate
ū and obtain the d’Alembert wave equation

∂ttS − c2(S0)∂xxS = 0, (A.20)

with

c2(S) =
∂Π

∂S
(S), (A.21)

which yields a non-dispersive wave equation. In the following, c(S0) will be denoted c0.
As done in the field of nonlinear acoustics (see Whitham (1999, §6.9), following a calculation

due to Earnshaw (1860)), we can obtain the first nonlinear corrections to this wave equation by
expressing ū(x, t) as a function ū(S(x, t)) of the density/section S(x, t) and by eliminating it in
(A.18). To do so, we use the fact that ∂tū = (∂tS)(∂S ū) and ∂xū = (∂xS)(∂S ū); the continuity
equation (A.18) then turns into

∂tS + (∂xS)ū = −S(∂xS)(∂S ū), (A.22)

and the momentum equation (A.19), using (A.21), turns into

[∂tS + (∂xS)ū](∂S ū) +
1

S
(∂xS)c2(S) = 0. (A.23)
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Combining (A.22) and (A.23) yields the relationship

∂S ū = ±c(S)

S
, (A.24)

so that (A.22) now reads

∂tS + [ū(S)± c(S)]∂xS = 0. (A.25)

The speed of sound c(S) is given by the equation of state Π(S) using (A.21), and ū(S) can be
deduced from (A.24), which closes the equation.

Choosing the upper plus sign in (A.24) and (A.25) yields at linear order in (S − S0), ū(S) '
[c(S0)/S0](S−S0) and c(S) ' c0 + (∂2Π/∂S2)|S0(S−S0)/(2c0), so that, at first nonlinear order,

ū(S) + c(S) = c0

[
1 +

(
1 +

S0

2c2
0

∂2Π

∂S2

∣∣∣∣
S0

)
S − S0

S0

]
. (A.26)

In the end, the nonlinear wave equation (A.25), for a wave travelling in the right direction, reads

∂tS + c0

[
1 +

(
1 +

S0

2c2
0

∂2Π

∂S2

∣∣∣∣
S0

)
S − S0

S0

]
∂xS = 0. (A.27)

We will now focus on the particular case of a polytropic gas, the equation of state of which
reads

Π(S) = κSγ . (A.28)

The exponent γ is called the polytropic exponent. We have

c(S) = (κγ)
1
2S

γ−1
2 , (A.29)

and (A.24) yields

ū(S) =

∫ S

S0

c(s)

s
ds =

2

γ − 1
[c(S)− c(S0)] . (A.30)

We can then compute

ū(S) + c(S) =
γ + 1

γ − 1
[c(S)− c(S0)] + c(S0), (A.31)

=
γ + 1

2
c(S0)

S − S0

S0
+ c(S0) + O(S − S0), (A.32)

after linearization of the difference [c(S) − c(S0)] in the neighbourhood of S0, using (A.29).
Eventually, in the case of a wave travelling in the right direction, the nonlinear wave equation
(A.25) — with the upper plus sign — reads, for a barotropic gas,

∂tS + c0

(
1 +

γ + 1

2

S − S0

S0

)
∂xS = 0, (A.33)

at first nonlinear order, after using (A.32) in (A.25). Note that this equation only depends on
the polytropic exponent γ, regardless of the constant κ.

We will now consider the three following particular cases, encountered within this article :
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(i) For a rectangular section of constant width W0 and depth H(x, t), we have S(x, t) =
W0H(x, t), so that g∂xH = (g/W0)(∂xS). In order to satisfy (A.17), we then have

Π(S) =
gS2

2W0
, (A.34)

hence a polytropic exponent γ = 2.

(ii) For a triangular section of height H(x, t) and angles α and β (see Fig. 3.2(a)), S(x, t) =
λH(x, t)2 (with λ = (sin(α+β))/(2 sinα sinβ) given by (3.14)), so that g∂xH = gλ−1/2∂xS

1/2.
Therefore, in order to satisfy (A.17), we have

Π(S) =
gS3/2

3λ1/2
, (A.35)

hence a polytropic exponent γ = 3/2.

(iii) For a Plateau border, the pressure field is constant along the interface and is given by
(5.20). The second derivative in ∂xxR will be disregarded since, in the nonlinear acoustics
framework, only the non-dispersive terms are taken into account. Hence, we can express
the pressure P as a function of the cross-sectional area S and we have, because of (5.17),

P (x, t) = − σ

R(x, t)
= −σ

(√
3− π

2

)1/2

[S(x, t)]1/2
. (A.36)

The section-averaged value of ∂xP is given by

〈∂xP (x, t)〉 =
σ
(√

3− π
2

)1/2

2[S(x, t)]3/2
(∂xS), (A.37)

so that the equation of state can be deduced from (A.17). It reads

Π(S) =
σ

ρ

(√
3− π

2

)1/2
S1/2, (A.38)

which yields a polytropic exponent γ = 1/2.

B Estimation of the effective surface tension via a toy
model

In this appendix, in order to estimate the first dispersive corrections to the non-dispersive regime
due to the surface tension, we will use the idea of averaging the pressure field gradient presented
in appendix A. To that end, a toy model is proposed, based on the Saint-Venant equations pushed
to their limits, if not beyond.

B.1 Parameterization of the interface

In this article and in Pham et al. (2020), in the case of varicose modes, we make the following
strong hypothesis: at any coordinate x, at any time t, we will assume that the cross-section
shape (of area value S(x, t)) is adiabatically given by the equilibrium static shape calculated in
Pham et al. (2020), at that very value S(x, t), corresponding to a geometrical parameter m(x, t).
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z = 0

α β

O

Γ0(x, t)

φτ (φ)

M(x, φ, t)

S(x, φ, t)

ey

ez

Figure B.1: Schematic of the notations. At time t and coordinate x, the section S(x, t) is
determined by its interface Γ0(x, t). The latter can be parameterised, using the angle φ made
by its tangent τ with the horizontal, at the corresponding point M(x, φ, t). As an illustration,
here, α = 30◦, β = 75◦, µ = 10−2. For a V-shaped substrate, β = α, whereas for an L-shaped
substrate, β = π/2− α.

This assumption implies that the contact line is free to move on the superhydrophobic substrate,
with contact angle at the substrate kept constant at the value π. In the rest of this appendix,
we will set the parameter µ such that µ = 1−m.

Under this hypothesis, in the case of a V-shaped substrate of angle α, the shape of the free
interface Γ0(x, t), at the coordinate x and time t, can be parameterized in the (y, z)-plane by
the angle φ made with the horizontal by its tangent vector τ (see figure B.1). It can be viewed
as the set of points M(x, φ, t) such that

∀ t ∈ R, ∀x ∈ R, ∀φ ∈ [β = α, 2π − α], M(x, φ, t) = (x, η̃(x, φ, t), ζ̃(x, φ, t)) (B.1)

with

η̃(x, φ, t) =
`c
2

√
m(x, t)

∫ φ

π
dϕ

cosϕ√
1−m(x, t) sin2 ϕ

2

, (B.2)

ζ̃(x, φ, t) =
`c
2

√
m(x, t)

∫ φ

π
dϕ

sinϕ√
1−m(x, t) sin2 ϕ

2

+Htot(m(x, t)), (B.3)

with Htot that reads

Htot(m(x, t)) = `c
√
m(x, t)

tanα

4

∫ α

2π−α

cosϕ√
1−m(x, t) sin2 ϕ

2

dϕ

+
2`c√
m(x, t)

[√
1−m(x, t) sin2 α

2
−
√

1−m(x, t)

]
. (B.4)

In the case of an L-shaped substrate, using the same notations as in the V-shape case (see
figure B.1), the interface Γ0(x, t) can be parameterized in the (y, z)-plane by the angle φ and be
viewed as the points M(x, φ, t) such that

∀ t ∈ R, ∀x ∈ R, ∀φ ∈
[
β =

π

2
− α, 2π − α

]
, M(x, φ, t) = (x, η̃(x, φ, t), ζ̃(x, φ, t)), (B.5)
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knowing that the expressions of η̃(x, φ, t) and ζ̃(x, φ, t) read

η̃(x, φ, t) =
`c
2

√
m(x, t)

∫ φ

2π−α
dϕ

cosϕ√
1−m(x, t) sin2 ϕ

2

− η′bott, (B.6)

ζ̃(x, φ, t) =
`c
2

√
m(x, t)

∫ φ

2π−α
dϕ

sinϕ√
1−m(x, t) sin2 ϕ

2

− ζ ′bott, (B.7)

η′bott = +
`c
2

√
m(x, t) cosα

∫ 2π−α

π
2
−α

dϕ
sin(ϕ− π

2 + α)√
1−m(x, t) sin2 ϕ

2

, (B.8)

ζ ′bott = −`c
2

√
m(x, t) sinα

∫ 2π−α

π
2
−α

dϕ
sin(ϕ− π

2 + α)√
1−m(x, t) sin2 ϕ

2

. (B.9)

In both parameterizations, the origin O = (0, 0) is set at the bottom of the substrate.
The hydrostatic pressure field reads, at a given point M(x, y, z, t) in the liquid, taking the

Laplace law at the interface into account

p(x, y, z, t) = ρg
[
ζ̃(x, φ, t)− z

]
+ σκ, (B.10)

where the angle φ is such that η(x, φ, t) = y, whereas κ = 2H is twice the mean curvature H
and can be splitted into the sum κ = κt + κl with κt the transverse curvature κt (that is, in the
section) and κl the longitudinal curvature (in the x-direction).

From now on, the variable x will be expressed in `c unit and the wavenumber k will be
dimensionless. As we are dealing with the problem of linear waves, we will start from a static
situation corresponding to a parameter m0 and perturb this state by considering the following
parameter

m(x, t) = m0[1 + ε cos(kx− ωt)]. (B.11)

In the following, we will resort to the usual partial and complete elliptic integrals (for any
parameter m < 1) defined as

E(φ|m) =

∫ φ

0

√
1−m sin2 x dx, E(m) =

∫ π
2

0

√
1−m sin2 x dx, (B.12)

F(φ|m) =

∫ φ

0

dx√
1−m sin2 x

, K(m) =

∫ π
2

0

dx√
1−m sin2 x

. (B.13)

B.2 Curvatures in the V-shape case

In the case of a V-shaped substrate, at order 1 in ε, we have, after tedious calculations,

`cH(x, φ,m0, α, t) = H0(φ,m0) + ε cos(kx− ωt) ×
[
H1,0(φ,m0) +H1,1(φ,m0, α) k2

]
+ O(ε2). (B.14)

with

H0(φ,m0) =

√
1−m0 sin2 φ

2

m0
, H1,0(φ,m0) =

−1

2m0
3/2

√
1−m0 sin2 φ

2

. (B.15)
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The first term H0(φ) corresponds to the static curvature `c
2 κ

t(φ,m0) of the interface at rest. The
second term H1,0(φ) gives the non-dispersive contribution of the dispersion relation, namely the
function b(m) (with some prefactor) in Pham et al. (2020). Note that they are independent of
the angle α. The last quantity H1,1 will yield the first dispersive correction to the dispersion
relation. It reads

H1,1(φ,m,α) =
1

8m3/2(1−m)
[AV (φ,m,α) cosφ+ BV (φ,m,α) sinφ] , (B.16)

with

AV (φ,m,α) = 4(1−m)


 1√

1−m sin2 α
2

− 1√
1−m sin2 φ

2




+ tanα

{
(m− 2)m sinα√

1−m sin2 α
2

+ 2(1−m)

[
F

(
2π − α

2

∣∣∣m
)
− F

(α
2

∣∣∣m
)]

+ (2−m)

[
E
(α

2

∣∣∣m
)
− E

(
2π − α

2

∣∣∣m
)]}

, (B.17)

BV (φ,m,α) = 4(m− 1)

[
K(m)− F

(
φ

2

∣∣∣m
)]

+ 2(m− 2)

[
E

(
φ

2

∣∣∣m
)
− E(m)

]

+
(2m−m2) sinφ√

1−m sin2 φ
2

. (B.18)

We have the following asymptotics, for m→ 0 (nearly-circle section)

H1,1(φ,m,α) =
m→0

1

8
√
m

[
1− cosφ

cosα

]
+ O

(
m3/2

)
; (B.19)

and for m = 1− µ→ 1 (flattened section)

H1,1(φ,m = 1− µ, α) =
µ→0

1

4µ

[
| sinφ| − tanα cosφ

]
+ O

(
µ0
)
. (B.20)

The function H1,1 is depicted in figure B.2 for two different angles α and various parameters m
together with the asymptotic expressions (B.19) and (B.20).

In the limit m → 1, in the interval φ ∈ [α, π], the function H1,1 reaches its maximum at
φmax = π/2+α, hence its maximum is located in the upper neighbourhood of the tip of the drop
for low angles α, whereas it is located near the top of the drop for α approaching π/2. Last, we
have

H1,1(φmax ) =
1

4µ cosα
, H1,1(π) =

tanα

4µ
. (B.21)

B.3 Curvatures in the L-shape case

In the case of an L-shaped substrate, after even more tedious calculations, we can compute the
mean curvature of the interface H. Its expression is the same as in the V-shape case (B.14), with
H0 and H1,0 given by (B.15). As for H1,1, it reads

H1,1(φ,m,α) =
1

8m3/2
[AL(φ,m,α) cosφ− BL(φ,m,α) sinφ] , (B.22)
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(a) V-shape substrate, α = π/30

Asymptotics m→ 0 m = 6× 10−1

2π − α 2π − αα απ π

φ φ

m = 95× 10−2 Asymptotics m→ 1

2π − α 2π − αα απ π

φ φ

(b) V-shape substrate, α = 3π/8

Asymptotics m→ 0 m = 95× 10−2

2π − α 2π − αα απ π

φ φ

m = 995× 10−3 Asymptotics m→ 1

2π − α 2π − αα απ π

φ φ

Figure B.2: V-shaped channel case. Plots of H1,1(φ,m,α) for different m (arbitrary vertical
unit) with respect to angle φ ∈ [α, 2π − α]. (a) α = π/30. (b) α = 3π/8. As α approaches π/2,
the loci of the maxima approach π.

with

AL(φ,m,α) =
4√

1−m sin2 φ
2

+
√

2 sin2 α


 1√

1−m sin2 π−2α
4

− 1√
1−m sin2 α

2




+
2−m
1−m sin 2α

[
m

2


 cosα√

1−m sin2 π−2α
4

+
sinα√

1−m sin2 α
2




+ E

(
2π − α

2

∣∣∣m
)
− E

(
π − 2α

4

∣∣∣m
)]

− 2 sin 2α

[
F

(
π − 2α

4

∣∣∣m
)
− F

(
π − α

2

∣∣∣m
)]
, (B.23)
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and

BL(φ,m,α) =
2−m
1−m

{
m


− sin3 α√

1−m sin2 α
2

+
cos3 α√

1−m sin2 π−2α
4

− sinφ√
1−m sin2 φ

2




+ 2

[
−cos2 αE

(
π − 2α

4

∣∣∣m
)
− sin2 αE

(
π − α

2

∣∣∣m
)

+ E

(
φ

2

∣∣∣m
])}

+ sin 2α

[
m


− 2 sin2 π−2α

4√
1−m sin2 π−2α

4

+
2 sin2 α

2√
1−m sin2 α

2




+ 2

(
−
√

1−m sin2 π − 2α

4
+

√
1−m sin2 α

2

)]

+ 4

[
cos2 αF

(
π − 2α

4

∣∣∣m
)

+ sin2 αF

(
2π − α

2

∣∣∣m
)
− F

(
φ

2

∣∣∣m
)]

. (B.24)

We have the following asymptotics for m→ 0 (nearly-circle section)

H1,1(φ,m,α) =
m→0

1− sin(α+ φ)− cos(α+ φ)

8
√
m

+ O
(√
m
)

; (B.25)

and for m = 1− µ→ 1 (flattened section)

H1,1(ϕ,m = 1− µ, α) =
µ→0

1

4µ
[sin 2α cosϕ− (1± cos 2α)| sinϕ|] , for ϕ ≷ π. (B.26)

For both asymptotics, as expected, we recover the results of the V-shape case at angle α = π/4.
Figure B.3 are illustrations of the skewed distribution of the curvature H1,1 with respect to φ.
The skewness is strong at low angle α, as m→ 1.

B.4 Section-averaged pressure in the V-shape case

We now turn to the question of the pressure term. The Saint-Venant equations are based on an
averaging of the gradient of the hydrostatic pressure field. We will here focus on the V-shape
case.

As we need to compute

〈∂xp〉(x, t) =
1

S(x, t)

∫

S(x,t)
∂xp(x, y, z, t) dy dz, (B.27)

with p(x, y, z, t) given by (B.10), we will then start computing

∂xp(x, y, z, t) = ρg`c
∂

∂x

[
ζ̃[φ,m(x, t)]

`c
+ `cκ[φ,m(x, t)]

]
, (B.28)

using (B.3) and (B.4), with m(x, t) = m0[1 + ε cos(kx − ωt)] (we recall that, here, x is dimen-
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(a)

L-shape substrate, α = π/30

Asymptotics m→ 0 m = 9× 10−1 Asymptotics m→ 1
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2 − α π
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(b)

L-shape substrate, α = π/6

Asymptotics m→ 0 m = 9× 10−1 Asymptotics m→ 1

π
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Figure B.3: L-shaped channel. Plots of H1,1(φ,m,α) for different m, with respect to angle
φ ∈ [π/2− α, 2π − α] (arbitrary vertical unit) (a) Angle α = π/30. (b) Angle α = π/6.

sionless; it has been renormalized in `c unit), so that we find

ζ̃[φ,m(x, t)]

`c
+ `cκ[φ,m(x, t)] =

2

m
3/2
0

√
1−m0 sin2 α

2

+
tanα

2m
3/2
0

{
(2−m0)

[
F

(
2π − α

2

∣∣∣m0

)
− F

(α
2

∣∣∣m0

)]

− 2

[
E

(
2π − α

2

∣∣∣m0

)
− E

(α
2

∣∣∣m0

)]}

+ ε cos(kx− ωt)
[
beff(m0, α)

]

+ 2 ε k2 cos(kx− ωt)
[
H1,1(φ,m0, α)

]
+ O(ε2), (B.29)

with

beff(m0, α) =
−1

m
3/2
0

√
1−m0 sin2 α

2

+
tanα

4

[
(2−m0) sinα

m
1/2
0 (1−m0)

√
1−m0 sin2 α

2

+
(2−m0)

[
E(2π−α

2 |m0)− E(α2 |m0)
]

+ 2(1−m0)
[

F(α2 |m0)− F(2π−α
2 |m0)

]

(1−m0)m
3/2
0

]
. (B.30)

All the terms of order k0 are independent of the variable φ and remain the same after an averaging
in the section S(x, t). Those terms yield the non-dispersive dispersion relation found by Pham
et al. (2020).
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Figure B.4: Shape of half of the sessile drop on a V-shaped substrate, for µ = 5 × 10−5 and
α = 20◦ (in blue), along with the corresponding trapezoidal ansatz. We have D = 2`c(1 −√µ)
and W = Λc. The flat horizontal interface is travelled from the right to the left, for a parameter
φ ranging from α to π. The figure is scaled in `c unit.

We will now focus on the averaged value of H1,1 over the section S(x, t) and we will first
discuss its definition. The function H1,1 is a function that is not defined in the interior of S(x, t)
but along its free interface. The presence of the H1,1 term stems from the capillary pressure
term. Under the adiabatic hypothesis, the definition of the pressure field as a hydrostatic field is
actually ill-posed for it is multi-valued in the region of coordinates y where the interface has two
values (that is, in the neighbourhood of both tips of the section), because of the presence of the
longitudinal curvature κl ≡ H1,1/`c that differs at the two corresponding angles φ. By neglecting
H1,1 in the non-dispersive regime, this problem was circumvented in the article by Pham et al.
(2020) (see the discussion above equation (3.14) in the latter reference).

In the following, we will use the quantity Λc defined, in the µ = 1−m→ 0-limit, as

Λc(µ = 1−m) '
µ→0

`c[− logµ+ 4(log 2− 1)]. (B.31)

It corresponds to the wetting length of a sessile cylinder on a horizontal superhydrophobic sub-
strate. The height of such a cylinder is given by

D(µ) '
µ→0

2`c(1−
√
µ), (B.32)

(see Pham et al. (2020, p. 9)). Symbolically, the section-averaged term is supposed to be of the
form

〈H1,1〉 =
1

S(x, t)

∫∫

S(x,t)
H1,1 dy dz. (B.33)

As a relevant geometrical ansatz of the section S(x, t), we will consider the drop as two
trapezoidal parts, the free interface being flat, the capillary cap being a rectangle of width
W = Λc(µ) and heightD(µ) and the liquid part in contact with the substrate being a symmetrical
V-shape triangle of angle α and height (W tanα)/2. Because of the symmetry, we will only
consider half of the domain (see figure B.4). The interface will be travelled from the right to the
left, parameterised by the angle ϕ, from ϕ = α to α = π. Note that considering a simpler ansatz
only consisting of a sole triangular section would have eventually yielded results in complete
disagreement with the experimental measurements. The geometrical ansatz we chose to consider
contains the minimum features to account for the experimental results.
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Therefore, the section-averaged term reads

〈H1,1〉(µ, α) =
1

S(x, t)

∫ ϕ=π

ϕ=α
dϕ× {height of liquid at y(ϕ)} ×

{
H1,1(ϕ)

}
. (B.34)

which yields the following expression, when using (B.26)

〈H1,1〉(µ, α) =

[
1
2Λc(µ) tan2 α+ 1

2(π − α)Λc(µ) tanα+ 2`c(π − α)
(
1−√µ

)
(1 + 1

cosα)
]

[
Λc(µ) tanα+ 8`c

(
1−√µ

)]
(π − α)2µ

.

(B.35)

B.5 Effective surface tension in the V-shape case

Following the notations used in Pham et al. (2020), let us formally rewrite the dispersion relation
as

ω2 = aeff(m0, α)
[
beff(m0, α)k2 + deff(m0, α)`2ck

4
]
, (B.36)

with aeff stemming from the continuity equation and beff stemming from the momentum equation
and given by (B.30). Those two terms yield the non-dispersive term so that we have c2

eff =
aeffbeff . Last, deff = 2〈H1,1〉 yields the dispersive contributions. We know that the dispersion
relation reads ω2 =

(
geffk + σeff

ρ k
3
)

Ψ
(
c2eff
geff
k
)
. In the case of the Saint-Venant expansion we are

performing, the dispersion relation is an expansion the dispersion relation obtained by considering
Ψ(ξ) ≡ ξ, dropping the higher order terms, as stated in appendix A. This yields

ω2 = ceffk
2 +

c2
eff

geff

σeff

ρ
k4, (B.37)

so that we can identify σeff from (B.36) and (B.37) as

σeff = aeff(m0, α)deff(m0, α)
ρ

geffc
2
eff

`2c , (B.38)

while geff = g sinα, `2c = σ/(ρg) and c2
eff = aeff(m0, α)beff(m0, α). Therefore, we obtain

σeff =
2 sinα 〈H1,1〉
beff(m0, α)

σ. (B.39)

A few numerical values are given in table 4.1 and compared with the experimental results
obtained by fitting the spectra using the dispersion relation (1.1) (see figure 2.2). As it can be
seen in the case of the V-shaped substrate at different volumes, the values of σeff from our toy
model are slightly sensitive to the parameter µ. These values undershoot the experimental values
with an error of 15%, which is satisfactory, given the approximations we made.

Note that if, at fixed α and fixed µ, we had chosen a uniform distribution of curvature along
the interface, with the value of H1,1(φ) set at H1,1(φmax ) (see (B.21)), we would have obtained
σeff = σ = 72mN/m. Because of the non-uniform distribution of curvature along the curved
interface, we have a renormalization effect of the surface tension.

We have tested the dependence on the angle α at fixed µ = 10−6 and computed the numerical
value of σeff . The results can be found in table B.1. The effective surface tension value grows
with the angle α up to a value of 60.1mN/m, then, past 70◦, it slowly decreases. One would have
expected to find an monotonous behaviour, with σeff increasing up to 72mN/m as α approaches
90◦: the substrate resembles a substrate with vertical walls, the curvature is maximum almost at
the top of the drop. Moreover, the curvature is close to this maximum value in a wide region of
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Toy V-shape angle α [deg] 10 20 30 40 50 60 70 80

σtoy
eff [mN/m] 48.7 51.7 54.6 56.9 58.7 59.8 60.1 59.6

Table B.1: Estimation of the dependence on the angle α of the effective surface tension σeff via
the toy model, at fixed µ = 1 − m = 10−6, in the case of a V-shaped substrate. At angles α
approaching 90◦, one expects to recover the usual surface tension value σ = 72mN/m. The toy
model is only suited for small angles α.
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Figure B.5: Shape of the capillary cap in blue, in the case of an L-shaped substrate, with a tilt
angle α = 25◦ and a geometric parameter µ = 1−m = 10−5 in `c unit. The ansatz of the section
is given by a rectangle of width W = Λc(µ) and height D = 2`c(1−√µ), on top of an L-shaped
wedge of width W . The section can be partitioned into three trapezoids S1, S2 and S3. The
effective tension is calculated as the averaging of the values of the surface tension found in the
V-shape case (σVeff , see text).

almost flat interface. The averaged value of H1,1 should be really close to this maximum value.
The choice of our ansatz is not suited for such a situation but still yields a fair value, with an
error of 20%.

In order to be accurate, we need to solve the full hydrodynamics equations through numerical
calculations such as those based on the Ritz method (see Segel & Handelman (1987) and Bostwick
& Steen (2018), for instance). This will be left for future work.

B.6 Effective surface tension in the L-shape case

In our toy model, the effective surface tension is given by (B.39) in the V-shape case. It depends
on the section-averaged value of the curvature distribution H1,1 given by (B.26). In the L-shape
case, H1,1 is defined along two intervals [π/2−α, π] and [π, 2π−α], along which it has the shape
of a sinusoidal arch, as in the V-shape cases.

In the case of an L-shaped substrate, the shape of the capillary cap on the left-hand side
(ϕ ∈ [π, 2π−α]) corresponds to half a capillary cap in the V-shape case at angle α. In contrast,
the capillary cap shape on the right-hand side (ϕ ∈ [π/2−α, π]) corresponds to half a capillary cap
in the V-shape case at angle π/2−α. We will then use a geometrical ansatz of the actual system,
by considering the capillary cap as a rectangle of width W = Λc(µ) and height D = 2`c(1−√µ),
placed upon a wedge of angles with the horizontal equal to α and β = π/2−α. The domain will
then be splitted into three trapezoidal parts (see figure B.5).

In the following, instead of performing tedious calculations of 〈H1,1〉 and beff counterpart in
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the L-shape case, we will choose ad-hoc effective values of the surface tension at the free interface
of each part (Si)1≤i≤3. For the left-hand part S1, of horizontal width equal to W/2, the surface
tension will have the value σ1 = σVeff(α) given by our toy model for the same angle α in the
V-shape case. In the two other parts S2 and S3, we will chose the value of σ2 = σ3 = σVeff(β, µ)
for an angle equal to β = π/2−α (again in the V-shape case). The resulting value σLeff(α, µ) we
are looking for will be the averaged value with respect to the sections, namely :

σLeff(α, µ) =
A(S1)× σVeff(α, µ) +A(S2 ∪ S3)× σVeff(π2 − α, µ)

A(S1 ∪ S2 ∪ S3)
, (B.40)

where A denotes the sectional area of a part, so that

A(S1) =
1

2
W

(
D +

1

4
W tanα

)
, (B.41)

A(S1 ∪ S2 ∪ S3) = W

(
D +

1

4
W sin 2α

)
. (B.42)

A few numerical values are given in table 4.2 as a comparison with the experiments. The
experimental values were obtained by fitting the spectra with the dispersion relation (1.1) (see
figure 2.3). The agreement happens to be good, the error being less than 10%. Note that the
dependence on α of the experimental values of σeff are not monotonic, contrary to the values given
by the toy model. As in the V-shape case, some experimental variabilities were encountered, they
may be due to the aging of the substrate coating or the hysteresis of the contact angle.
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