%0 Conference Proceedings %T Can Synthetic Text Help Clinical Named Entity Recognition? A Study of Electronic Health Records in French %+ Université Paris-Saclay %+ Centre National de la Recherche Scientifique (CNRS) %+ Laboratoire Interdisciplinaire des Sciences du Numérique (LISN) %+ Sciences et Technologies des Langues (STL) %+ Département Intelligence Ambiante et Systèmes Interactifs (DIASI) %+ Semantic Analysis of Natural Language (SEMAGRAMME) %+ Sorbonne Université (SU) %A Hiebel, Nicolas %A Ferret, Olivier %A Fort, Karën %A Névéol, Aurélie %< avec comité de lecture %B EACL The 17th Conference of the European Chapter of the Association for Computational Linguistics %C Dubrovnic, Croatia %8 2023-05-02 %D 2023 %K Ethics %Z Computer Science [cs]/Document and Text ProcessingConference papers %X In sensitive domains, the sharing of corpora is restricted due to confidentiality, copyrights, or trade secrets. Automatic text generation can help alleviate these issues by producing synthetic texts that mimic the linguistic properties of real documents while preserving confidentiality. In this study, we assess the usability of synthetic corpus as a substitute training corpus for clinical information extraction. Our goal is to automatically produce a clinical case corpus annotated with clinical entities and to evaluate it for a named entity recognition (NER) task. We use two auto-regressive neural models partially or fully trained on generic French texts and fine-tuned on clinical cases to produce a corpus of synthetic clinical cases. We study variants of the generation process: (i) fine-tuning on annotated vs. plain text (in that case, annotations are obtained a posteriori) and (ii) selection of generated texts based on models' parameters and filtering criteria. We then train NER models with the resulting synthetic text and evaluate them on a gold standard clinical corpus. Our experiments suggest that synthetic text is useful for clinical NER. %G English %2 https://inria.hal.science/hal-04018935/document %2 https://inria.hal.science/hal-04018935/file/Exp_rience_reconnaissance_EN.pdf %L hal-04018935 %U https://inria.hal.science/hal-04018935 %~ CEA %~ CNRS %~ INRIA %~ INRIA_TEST %~ INRIA-LORRAINE %~ LORIA2 %~ INRIA-NANCY-GRAND-EST %~ TESTALAIN1 %~ CENTRALESUPELEC %~ DRT %~ UNIV-LORRAINE %~ INRIA2 %~ CEA-UPSAY %~ LORIA %~ LORIA-NLPKD %~ UNIV-PARIS-SACLAY %~ LIST %~ SORBONNE-UNIVERSITE %~ SORBONNE-UNIV %~ UNIVERSITE-PARIS-SACLAY %~ SU-TI %~ ANR %~ LISN %~ GS-COMPUTER-SCIENCE %~ ALLIANCE-SU %~ LISN-STL