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Different contact regimes between a spherical lens and a periodically patterned substrate are observed, when
they are pressed against each other. Top contact occurs when only the highest substrate sections touch the lens,
whereas mixed contact implies that both the highest and the lowest substrate sections come into contact with
the lens. In this paper, we study how the pattern density of the substrate, along with its physical properties
and those of the lens, determine the transition from top contact to mixed contact. Experiments and numerical
simulations had been performed, as complementary approaches to obtain data, and a theoretical analysis has
been developed to gain insight on the effect of the physical parameters on the contact transition. As a result, a
phase diagram is presented, in terms of the load and the contact radius, that combines the observations of the
three approaches (experimental, numerical, and theoretical), unveiling the boundaries of three contact regimes:
(1) deterministic-driven contact, (2) top contact, and (3) mixed contact.

DOI: 10.1103/PhysRevE.104.055007

I. INTRODUCTION

The problem of the contact of elastic bodies with nominally
flat surfaces is a classical problem of continuum mechanics,
which has been first proposed by Heinrich Hertz in a pa-
per submitted to the Berlin Physical Society in 1881 [1,2].
However, practical materials surfaces are not flat and present
roughnesses on a wide range of length scales. A consequence
of the roughness is that the real contact area between two sur-
faces is usually much smaller than the apparent contact area.
This imperfect contact has profound implications for trans-
mission of charge, heat and forces through the interface. In
particular, the reduction of the contact area allowed to explain
one of the nonintuitive Coulomb-Amontons laws of friction:
The friction coefficient between two solids is independent of
the normal load [3,4]. For metallic surfaces Bowden and Tabor
proposed that the contact between two metals could be deter-
mined by assuming a fully plastic deformation of the junction
asperities in contact [3]. Later, Archard [5], Greenwood and
Williamson [6], and Bush et al. [7] pioneered the development
of models for contact between complex elastic surfaces.

The case of the contact of surfaces presenting a self-affine
fractal character has been first developed by Tossati and Pers-
son [8], providing a good theoretical model to describe real
surfaces, since it is well supported by several experimental
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studies [9–12]. From this pioneering work several theoretical
developments have been done to describe different contact
properties [13–15], or to combine elastic and plastic defor-
mation [16,17]. A modern application of this complex contact
mechanics description is haptic systems, which allow users to
“feel” virtual objects in a simulated environment [18–20].

Nevertheless, more simple systems than fractal surfaces
have also been employed to understand the effect of rough-
ness on contact problems, for instance surfaces with periodic
patterns [21–26]. A potential application of these patterned
surfaces comes from the increasing interest to use them as
biomimetic surfaces [27–36]. From this point of view, one
of the important question is the contact formation, which
fixes the relationship between the measured adhesion and the
preload before detachment [29]. Additionally, the problem of
the dynamical impact of a solid sphere onto a textured elastic
surface has been studied [37], which is an example of other
related physical phenomena that have not yet been explored
in depth.

Remaining on the track of simple systems, the contact
between a spherical lens on a well-controlled patterned sur-
face made on elastomeric Polydimethylsiloxane (PDMS) with
periodic circular bumps or cylindrical pillars is an interesting
contact model. The geometry and elastic properties of the tex-
tured surface (array of bumps or pillars over a flat substrate),
and its effect on the contact formation, have been studied ex-
perimentally [23,38–41]. Interestingly, when the two surfaces
are pushed together, a transition from top contact (the lens
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touches only the top of the bumps or pillars) to full or mixed
contact (the lens gets in contact not only with the bumps or
pillars, but also with the underlying substrate in between the
patterns) has been observed. A clear experimental dependence
of the transition conditions on the bumps or pillars density, has
been found for this discrete contact phenomenon [38,40,41].

To describe their experiments, Verneuil et al. [38] de-
veloped an initial model based on a continuous Hertzian
distribution for the stress inside the contact region, allowing
them to determine a critical force Fc ∝ φ3, where φ is the
surface fraction covered by bumps or pillars. Poulard et al.
[40] complemented this model by including the coupling be-
tween pillars at small separation distances, which leads to a
better representation of the data for large values of φ. With
a theoretical approach, Ledesma-Alonso et al. [42] calculated
the exact stress distribution inside the discontinuous region
of contact, for any value of φ. Their results showed that
for φ → 1, a Hertzian-like stress distribution could be used
to describe the phenomenon due to small distance between
pillars, whereas for φ → 0, with the pillars being far apart, the
contribution of a Boussinesq-Cerruti-like stress distribution at
each pillar has to be considered.

In this paper, we study the transition from top contact to
mixed contact that occurs when a spherical lens and a pat-
terned surface (pillar lattice on a flat substrate), both being
elastic, are compressed against each other. We analyze the
parameters that provoke the transition phenomenon, focusing
on the force, contact radius and indentation. The effect of the
surface fraction (pillar density) on these parameters is stud-
ied by performing experiments and numerical simulations.
The results of these two approaches are compared, along
a wide range of the surface fraction values. Additionally, a
theoretical analysis is presented, from which small and large
contact radius approximations can be deduced. These limit
cases provide a good description of the general trends that
the experimental and numerical simulation results follow. The
theoretical expressions of the force, contact radius and inden-
tation, for the small and large contact radius approximations,
are considerably simple, despite the geometrical complexity
of the mechanical contact between the lens and the patterned
surface. Finally, a phase diagram of the contact regimes is
depicted in terms of the force and contact radius, valid for
different orders of magnitude of the surface fraction.

II. SYSTEM DESCRIPTION

Consider a lower spherical cap or lens of radius R and
a periodically rough substrate, composed by an hexagonal
lattice of cylindrical pillars, each one of diameter d and height
h, placed atop a flat semi-infinite body, and separated by a
pitch e between the center of two pillars. Hereafter, the part
of the substrate that is covered by the pillars will be called top
substrate, whereas the part of the substrate that is not covered
by the pillars will be called bottom substrate. The origin of
coordinates is placed below the lowest point of the lens, at a
target position atop the textured substrate, as it is depicted in
Fig. 1, with the x and y directions contained in the horizontal
plane and the z direction pointing upwards. For an hexagonal
lattice of pillars, we can define the fraction of the surface
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FIG. 1. Schema with the variables that represent the characteris-
tic dimensions of the physical system. The black cross (×) indicates
the target position and the origin of coordinates. The dotted line (......)
indicates the horizontal boundary of the lens for the top view, and the
upper boundary for the Section A–A′.

occupied by the pillars as:

� = π

2
√

3

(
d

e

)2

. (1)

As shown in Fig. 1, the initial position of the lens f ◦
l reads:

f ◦
l (x, y) = h + R −

√
R2 − (x2 + y2), (2)

whereas the initial shape of the textured substrate f ◦
s is de-

scribed by:

f ◦
s (r) = h

N∑
n=1

[
1 − H

(
rn − d

2

)]
. (3)

In the last expression, H is the Heaviside step function and rn

is a relative distance, given by:

rn(x, y) =
√

(xn − x)2 + (yn − y)2, (4)

measured between the coordinates (x, y) and the position of
the center of the nth pillar (xn, yn).

As usual, the elastic properties of the materials that con-
stitute the system must be considered, since the mechanic
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(a)

Top view

B B’

Section B–B’

(b)

Top view

C C’

Section C–C’

FIG. 2. Top and section view of the system with deformed ge-
ometries, due to the application of a force with different magnitudes,
leading to (a) top contact and (b) mixed contact. System layout is the
same as in Fig. 1. At the top view, dark gray indicates the contact
between the lens and the top of the pillars, for both top and mixed
contact, as observed in the Section B–B′ and Section C–C′ views. For
mixed contact, the circular gray region around the target position (×)
indicates the contact between the lens and the underlying substrate in
between the pillars, as observed in the Section C–C′ view.

interaction between the involved bodies depend on their mag-
nitudes. For each body i, being i = l for the lens and i = s for
the textured substrate, its Young’s elastic modulus Ei and its
Poisson’s ratio νi are evoked.

When the two bodies are compressed against each other
with a force F > 0, coupled with an indentation ζ > 0, the
contact region extends from the origin of coordinates to a
contact radius a, and the surfaces of both bodies suffer a
significant deformation inside and outside the contact region.
Depending on the magnitude of F , two different contact
regimes may occur: (1) top contact and (2) mixed contact, for
magnitudes smaller or larger than a threshold or critical load
Fc, respectively. Top contact implies that the lens touches only
the top of the pillars, whereas mixed contact implies that the
lens gets in contact not only with the pillars but also with the
underlying substrate in between the pillars. The corresponding
values of the contact radius and the indentation, associated
with the critical load Fc, are also defined as the critical contact
radius ac and the critical indentation ζc. Both regimes are
depicted in Fig. 2. Top contact consists in the contact between
the top substrate and the lens, within the contact region. Mixed
contact consists in a combination of top contact, within a large
region, and an additional contact between the lens and the
bottom substrate, within a small region close to the origin of
coordinates.

In this work, we are interested in the transition from top to
mixed contact, particularly on the threshold conditions: force,
contact radius, and indentation. To achieve this objective, an
experimental approach, a numerical method and a theoretical
formulation had been developed. In all cases, a top contact sit-
uation is initially considered, but the indentation is gradually
increased until the conditions for which the very first mixed
contact occur, i.e., a zero gap between the bottom substrate
and the lens at some localized positions (xc, yc) takes place,
just before the mixed contact interplays with the two bodies
deformation.

A. Starting from a top contact

For a top contact, the gap between the two surfaces is
obtained with the following expression:

�(x, y) = fl (x, y) − fs(x, y), (5)

where the position of the lower surface of the lens fl and that
of the upper surface of the textured substrate fs are given by:

fl (x, y) = f ◦
l (x, y) +

N∑
n=1

wl,n(x, y) − ζ , (6a)

fs(x, y) = f ◦
s (x, y) −

N∑
n=1

ws,n(x, y). (6b)

where wl,n and ws,n represent the displacement fields at the
surface of the lens and the textured substrate, respectively,
induced by the contact between the lens and the top of the
nth pillar, with a total of N pillars in contact. The indentation
is thus represented by ζ .

Consequently, the gap is given by:

�(x, y) = f ◦
l (x, y) − f ◦

s (x, y) + w(x, y) − ζ , (7)

where w is the total displacement field, which reads:

w(x, y) =
N∑

n=1

[wl,n(x, y) + ws,n(x, y)]. (8)

It is important to remark that within the contact region, which
corresponds to the top surface (either complete or partial) of
the pillars in contact with the lens, the gap is �(x, y) = 0.

The compression force is computed as follows:

F =
∫ 2π

0

∫ a

0
σ (r, θ ) r drdθ, (9)

where r =
√

x2 + y2 and θ = tan−1(y/x) are respectively the
radial and angular coordinates, and σ is the stress field over
the contact region, which is related to the total displacement
field w, and demarcated by the contact radius a. A relationship
between w and σ , which involves the elastic properties Ei and
νi of the lens and the substrate, is required in order to solve the
problem, leading finally to the identification of F and a for an
imposed indentation ζ .

B. Transition from top to mixed contact

For relatively small indentations only top contact is ob-
served, but when the indentation is increased, the transition
from top to mixed contact occurs when the critical indentation
ζc is reached. Above the critical value ζc, only mixed contact
takes place. In order to reach the precise value of ζc, a specific
compression force should be applied, known as the critical
load Fc. Besides the critical indentation and load, there is also
another value that arises during the transition, which is the
critical contact radius ac. Within the entire contact area de-
fined by the critical radius ac, top contact takes place, whereas
at some specific positions defined as (xc, yc), the mixed con-
tact is triggered. At the positions (xc, yc), the gap between the
bottom substrate and the lens becomes �(xc, yc) = 0.

Therefore, the transition from top to mixed contact is char-
acterized by the simultaneous occurrence of the critical values
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TABLE I. Geometric and elastic parameters of the lens.

Radius Poisson’s ratio Young’s modulus
R (μm) νl (1) El (MPa)

2200 0.5 2.0

Fc, ac, and ζc, and, as it happens for the Hertzian contact, the
three quantities are coupled and described by simple relation-
ships, as it will be detailed in the following section.

III. RESOLUTION APPROACHES

The values of the geometric and physical parameters of
the system, conformed by the spherical lens and the textured
substrate, that had been considered in this study, are presented
in Tables I and II. As it has been already mentioned, three ap-
proaches (experimental, numerical and theoretical) had been
developed to study the transition from top to mixed contact,
and to find the relations between the threshold conditions
(force, contact radius, and indentation).

A. Experiments

The experimental set-up is a modification of a previously
developed apparatus, which has been employed to perform
a typical JKR experiment [43]. A spherical lens is fixed
on the lower surface of a glass plate, which is coupled to
a motorized linear translation stage (MLTS), allowing the
vertical displacement of the lens. The displacement of the
MLTS is measured by a resistive displacement sensor. The
spherical lenses were made by moulding and crosslinking of
PDMS (Dow Corning, Sylgard 184, 10/1 w/w) using a well-
established technique [26]. In turn, a patterned substrate is
placed over the upper surface of a solid plate, that is connected
to a force sensor. Two different types of patterned substrates
were tested: (1) substrates made with the same cross-linked
PDMS elastomer as the lens, leading to the intermediate rel-
ative condition described in Table II and (2) Araldite 2020
covered with an absorbed PDMS layer (Sylgard 184 base
only), leading to the rigid relative condition described in Ta-
ble II.

The described experimental set-up allows us to quantify
the indentation and the compression force, once the contact
between the lens and the substrate is established. All data re-
ported below correspond to quasistatic approach experiments:
Small successive displacement steps of 1 μm are applied,
when the lens is pushed toward the substrate, waiting after
each step to fully attain the stationary conditions of contact ra-

dius and load. Additionally, a microscope, in communication
with a computer, is placed above the lens and substrate, and
aligned with the axis of symmetry of the lens. Since the glass
plate and the spherical lens are transparent, the microscope
configuration enables us to determine the radius of the contact
area.

As described in Table II, the height h and diameter d of the
cylindrical pillars that compose the hexagonal pattern at the
substrate has been fixed to a single value. The only variable
geometrical characteristic of the patterned substrate was the
pitch e between pillars. This quantity has been varied in the
range e ∈ [8 , 57] μm, which according to Eq. (1) leads to
experimental values of the surface fraction in the range φ ∈
(0.01 , 0.29). Nevertheless, the contact transition has not been
observed for e < 12.5 μm, which corresponds to φ > 0.21.

The normalized critical force Fcγint/(hd ), contact radius
ac/e and indentation ζc/h as functions of φ, obtained from
the retrieved experimental data, are shown in Fig. 3. The three
dependent variables show a trend to increase as the surface
fraction φ grows. Also, the values of the critical force, contact
radius and indentation for the rigid substrate experiments are
slightly higher than those of the intermediate substrate rigid-
ity.

B. Numerical simulations

The numerical technique, introduced in a previous study
[42], consists in an optimization method to determine the size
of the contact radius a and the discrete pressure distribution
σ over a mesh of square elements, each one subjected to a
constant stress [44,45]. The details of the numerical method,
employed to find a numerical solution for this discrete contact
problem, had been addressed in the same previous study [42],
including the estimation of F and a, for a given ζ . The sole
addition in the numerical method consisted in the implemen-
tation of an algorithm to progressively increase the indentation
ζ , until the gap �(x, y) between the lens and the bottom
substrate becomes zero at some localized positions (xc, yc),
indicating that the critical values of the indentation ζc has been
attained.

According to the system of coordinates depicted in
Fig. 1, the lowest point of the lens has been aligned

TABLE II. Geometric and elastic parameters of the textured substrate.

Height Diameter Poisson’s Young’s Relative
ratio modulus condition

h (μm) d (μm) νs (1) Es (MPa)

1000 Rigid
2.2 6.0 0.5 2.0 Intermediate

0.002 soft
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FIG. 3. (a) Critical force Fc, (b) contact radius ac, and (c) the
required indentation ζc to transit from top to mixed contact, as
functions of the surface fraction φ. Experimental (×, •) and numer-
ical simulation ( , ) results are depicted, for intermediate
(gray, ×, ) and rigid (black, •, ) conditions of the tex-
tured substrate, according to the parameters given in Tables I and
II. Simulations results are represented, corresponding to different
target positions δx atop the textured substrate. The arrows indicate
increasing values of δx from 0 to (

√
3/2)e. Analytic solutions are

also depicted for intermediate (gray) and rigid (black) conditions:
Dash-dotted curves ( ) are Eqs. (23a)–(23c), for a single pillar
(ac < e, in Sec. III C 1); dashed curves ( ) are Eqs. (27a)–(27c),
for N > 1 pillars (ac > e, in Sec. III C 2).

with a target position atop the textured substrate. Simula-
tions had been performed, for the reduced distances δx/e =
{0, 1/6, 1/3, 1/2, 2/3,

√
3/2} along the x axis, where δx cor-

responds to a displacement of the target position atop the
textured substrate. In other words, the target position has been
changed from the center of the 1st pillar up to the interme-
diate position between two adjacent pillars. This procedure
has been done to diminish the deterministic consequences of

the lens and textured substrate relative position, which are
significant for small values of the surface fractions φ.

From the simulation results, the normalized critical force
Fcγint/(hd ), contact radius ac/e and indentation ζc/h are re-
trieved as functions of φ, and presented in Fig. 3. As expected,
for small values of φ < 0.003, the numerical results depict
behaviors that are completely dependent of the relative posi-
tions of the lens and substrate, mainly observed as different
curves for the force and contact radius. For δx → 0, the
lens makes contact with the bottom substrate at a position
r � e, leading to relatively small values of the contact ra-
dius ac/e ∼ 0.01, whereas the critical force is Fc ∼ hd/γint .
For increasing values toward δx → (

√
3/2)e, the lens touches

the bottom substrate with progressively less effort, provoking
smaller values of the critical force Fc < hd/γint. The mixed
contact position, at which contact between the lens and the
bottom substrate occurs, is located very close to r = 0, but
the lens makes contact with the top of the off-center 1st pillar
at x ∼ δx, thus making ac ∼ δx. This deterministic disparity
weakens as φ increases and the different curves become indis-
tinguishable for φ � 0.01, as both variables Fc and ac increase
as φ becomes larger. In turn, the curves for the indentation are
almost identical regardless of the deterministic conditions, a
monotonic growth of ζ/h as φ increases is observed. For the
three aforementioned critical variables, the orders of magni-
tude and the trends of the numerical results are in very good
agreement with the experimental results.

C. Theoretical analysis

The theoretical approach is based on the Boussinesq-
Cerruti solution for uniform displacement over a circular
region [45,46] to describe the displacement fields due to a
single pillar-lens contact. Considering the nth pillar, the afore-
mentioned solution implies the combined displacement field
of the lens and the textured substrate:

wn(x, y) = wl,n(x, y) + ws,n(x, y)

=

⎧⎪⎨
⎪⎩

γintFn

d
if rn � d/2,

γextFn

d
arcsin

(
d

2rn

)
if rn > d/2,

(10)

with the introduction of the following parameters:

γint = 1 − ν2
l

El
+ 1 − ν2

s

Es
+ 4h

π Es d
, (11a)

γext = 2

π

(
1 − ν2

l

El
+ 1 − ν2

s

Es

)
. (11b)

Also in Eq. (10), the change of height of the pillar has been
approximated by the Hooke’s law, and Fn is the force mutually
exerted between the lens and the nth pillar. According to the
Boussinesq-Cerruti solution, we also know that:

Fn = πd2

2
σ (rn,0), (12)

where σ (rn,0) is the stress at the center of the nth pillar and
rn,0, obtained as rn,0 = rn(0, 0) in Eq. (4), its location relative
to the origin of coordinates.
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For this analysis, we consider that the target position is
placed over the center of the 1st pillar (see Fig. 1 and set
δx = 0), which makes (x1, y1) = (0, 0). Additionally, from
previous experience [42], we can imply that the stress distri-
bution should follow a Hertzian-like behavior:

σ (rn,0) = σ0

√
1 −

( rn,0

a

)2
, (13)

with σ0 being the stress at the center of the central pillar.
Considering all the quantities at the origin, (x, y) = (0, 0),

where the gap is always �(0, 0) = 0, we start by combin-
ing Eqs. (7) and (8). Injecting Eqs. (10)–(13), considering
that for large relative distances, i.e., rn,0 > d/2, the inverse
trigonometric function in each term can be approximated
by d/(2rn,0), introducing the constant η = [

√
3/(2π )]1/2 and

employing the definition of φ given in Eq. (1), leads to an
expression that relates the indentation, the center stress and
the contact radius:

ζ ≈ πdσ0

2

[
γint + γext η

√
φ G0

(a

e

)]
, (14)

where we define the auxiliary function G0, which reads:

G0

(a

e

)
=

N∑
n=2

⎡
⎣( e

rn,0

)√
1 −

(
rn,0

e

)2( e

a

)2
⎤
⎦. (15)

In turn, the total force is given by the superposition of the
individual forces mutually exerted between the nth pillar and
the lens:

F =
N∑

n=1

Fn = πd2σ0

2
G
(a

e

)
, (16)

with the auxiliary function G defined as:

G
(a

e

)
=

N∑
n=1

⎡
⎣
√

1 −
(

rn,0

e

)2( e

a

)2
⎤
⎦ . (17)

The auxiliary functions G0 and G have been defined in terms
of the distances rn,0 and a, both normalized by the pitch e,
which allows us to compute both functions only once. The
detailed development that leads to Eqs. (14) and (16), and
the behaviors of the corresponding auxiliary functions, are
presented in the Supplemental Material [47].

For indentations above ζH = d2/(4R) and its correspond-

ing force FH ∼
√

Rζ 3
H , which have been obtained considering

Hertzian contact with a contact radius equal to d/2, the con-
tact region spans over the whole lid of the central pillar, with
�(r � d/2) = 0, and beyond. Indentations and forces larger
than ζH and FH provoke either top or mixed contact situations,
depending on the coupled response of the lens and the textured
substrate.

Now, we assume that the mixed contact position (xc, yc)
takes place close to the 1st and central pillar, which is lo-
cated at (x1, y1) = (0, 0). Therefore, the following analysis
concerns positions (x, y) where a possible contact between
the lens and the bottom substrate may occur, for which r < e,
with the distance r = r1 =

√
x2 + y2 as in Eq. (4). We also

use an approximation to the second order of Eq. (2) around
r = 0, since r < e and e � R, and we further restrict (xc, yc)

to locations near the x axis (or their equivalent positions due
to the hexagonal symmetry of the system). Additionally, we
assume that r is small compared to rn,0. Once more, the
Hertzian-like behavior for the stress distribution is employed,
and let’s consider large relative distances rn > d/2 to the nth
pillar, allowing us to approximate the inverse trigonometric
function in Eq. (10) by d/(2rn). Even though these sim-
plifications makes us dismiss information about the precise
geometry of the deformed configuration of the lens and the
textured substrate, a good estimation of the mixed contact
conditions are expected.

Applying the aforementioned simplifications, after some
math, the employment of Taylor series up to the second order
in r, and the use of the cosine law to relate some distances, the
gap between the lens and the bottom substrate becomes

�(r) ≈ h + r2

2R
+ πd2σ0

4

{
γext

[
1

r

+
(

2η
√

φ

d

)3

G1

(a

e

) r2

2

]
− γint

}
, (18)

where the auxiliary function G1 is defined as:

G1

(a

e

)
=

N∑
n=2

{[
3

(
xn

e

)2( e

rn,0

)2

− 1

]

×
(

e

rn,0

)3
√

1 −
(

rn,0

e

)2( e

a

)2
⎫⎬
⎭. (19)

The detailed development that leads to Eqs. (18) and the be-
havior of the corresponding auxiliary function, are presented
in the Supplemental Material [47].

When the mixed contact is triggered, the gap becomes
�(rc) = 0, at the positions of first contact between the lens
and the bottom substrate rc. Under these circumstances, the
stress σ0, the contact radius a and the indentation ζ , displayed
in Eqs. (14) and (18), turn into their critical values σ0,c, ac,
and ζc, respectively. The mixed contact position (xc, yc) also
corresponds to a minimum, which is described by the zero
value of the derivative �r (rc) = 0. From Eq. (18) and its
derivative with respect to r, the system formed by �(rc) = 0
and �r (rc) = 0 must be solved in order to determine the
critical conditions, that is, the first mixed contact position
rc = √

x2
c + y2

c , the critical stress σ0,c and the critical contact
radius ac. The knowledge of these quantities allows the deter-
mination of the corresponding critical indentation ζc, through
Eq. (14). Unfortunately, this nonlinear system of equations
remains underdetermined, since an equation-of-state defining
the behavior of ac with the other critical conditions remains
unknown.

Nevertheless, playing around with both equations allows
us to find a polynomial in terms of the mixed contact distance
rc: [(

2η
√

φ

d

)3

G1

(ac

e

)
+ 2

Rhd

(
γint

γext

)]
r3

c

−
(

3

2Rh

)
r2

c − 1 = 0, (20)
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from which its value can be deduced, with the previous knowl-
edge of ac. As well, we find the following expression for the
critical force Fc:

Fc = 2r3
c

γextR

⎡
⎢⎢⎢⎣

G
(ac

e

)

1 −
(

2η
√

φ

d

)3

G1

(ac

e

)
r3

c

⎤
⎥⎥⎥⎦, (21)

which may be useful once σ0,c, rc, and ac are known.
In the next subsections, we make some hypothesis on the

magnitude of ac, in order to delimit some possible solutions
for rc and Fc.

1. Small contact radius ac < e

For ac < e, only the central pillar n = N = 1 is in contact
with the lens and, thus, the initial condition is that ac = d/2
before the mixed contact is observed. Moreover, the auxiliary
functions G0, G, and G1, set forth in Eqs. (14), (16), and (18)
to calculate the indentation ζ , the total force F , and the gap
�, respectively, take the values G0 = 0, G = 1, and G1 = 0.
With this assumptions, the introduction of the characteristic
distance Lc and ratio μc, defined as:

Lc =
[

Rhd

2

(
γext

γint

)]1/3

, μc = L2
c

2Rh
, (22)

and, from a first-order approximation around rc → Lc, the
critical values of the force Fc, contact radius ac = rc and
indentation ζc are estimated with the following expressions:

Fc ≈ hd

γint

(
1 + 3μc + O

{
μ2

c

})
, (23a)

ac ≈ Lc
(
1 + μc + O

{
μ2

c

})
, (23b)

ζc ≈ h
(
1 + 3μc + O

{
μ2

c

})
. (23c)

This solution describes the very first mixed contact con-
ditions as long as a single pillar interacts with the lens. This
requirement is fulfilled when the pitch e remains large enough,
which befalls if the surface fraction is

� � π

2
√

3

(
1

2
+

√
2Rh

d

)−2

. (24)

For the cases that are studied in this work, the single-pillar
solution seems to be valid for φ � 0.003. Equation (23) de-
scribe fixed values of Fc, ac, and ζc that do not depend on
φ, which are depicted in Fig. 3. The normalized critical force
Fcγint/(hd ) and indentation ζc/h appear as horizontal lines in
their corresponding graphs, which values are almost identical
to the numerical solution for φ < 0.003 and an aligned lens-
substrate configuration with δx = 0. Even though ac presents
a constant value in the small contact radius regime, the nor-
malized corresponding variable ac/e shows a dependence on√

φ due to the relationship described by Eq. (1).
Additionally, since the small contact radius condition also

corresponds to an axisymmetric problem, the theoretical con-
figuration for the single-pillar first contact between the lens
and the textured substrate is presented in Fig. 4. The three
substrate relative conditions (rigid, intermediate, and soft),

-0.5

0

0.5

1

-0.5

0

0.5

1

0 5 10 15

-0.5

0

0.5

1

FIG. 4. Deformation profiles for a single-pillar substrate (gray)
and lens (black). The Young’s modulus of the substrate Es varies,
leading to three different conditions: (a) rigid, (b) intermediate, and
(c) soft substrates. The three cases correspond to the geometric
parameters detailed in Tables I and II. Dashed curves ( ) depict
the configuration of the system at the initial top contact conditions
(single point contact at r = 0), whereas solid curves ( ) indicate
the configuration of the system at the critical contact conditions
(transition from top to mixed contact).

detailed in Table II, are given in order to compare their be-
havior. For the rigid substrate Es/El = 500, the deformation
is concentrated in the lens, and a relatively large critical force
Fc ∼ 10−5 N is required to achieve mixed contact. For the soft
substrate Es/El = 0.001, the deformation is concentrated in
the substrate, and a relatively small critical force Fc ∼ 10−8 is
observed. For the intermediate case Es/El = 1, the deforma-
tion is equally shared between the lens and the substrate, while
the critical force is in the same order of magnitude but smaller
than half the value of the rigid case. For the three cases, the
critical contact radius and indentation are in the same order of
magnitude, suffering a slight and almost uniform increase as
the rigidity of the substrate increases.

2. Large contact radius ac > e

For ac > e, there should be N > 1 pillars in contact, whose
positions are such that rn,0 � ac for n = 1, 2, . . . , N . Under
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this situation, the auxiliary functions G0, G, and G1 are fairly
described by the following linear, quadratic, and rational func-
tions:

G0

(ac

e

)
≈ C01

(ac

e
− 1

)
, (25a)

G
(ac

e

)
≈ 1 + C1

[(ac

e

)2
− 1

]
, (25b)

G1

(ac

e

)
≈ C11

(
1 − e

ac

)
, (25c)

respectively, with the coefficients C01 = 5.770, C1 =
2.421, and C11 = 5.519. Additionally, for ac � e, we assume
that the contact radius is a function of the surface fraction:

ac =
√

e2 + φRh, (26)

where we have also considered that ζc ∼ h. Additionally, the
previous expression indicates that for small values of φ, we
may find that ac ≈ e, whereas for large values of φ, the contact
radius should be ac ≈ √

φRζc, according to previous obser-
vations [42]. Now, considering a first-order approximation
around φ → 0, the critical values of the force Fc, contact
radius ac and indentation ζc are estimated with the following
expressions:

Fc ≈ hd

γint

(
1 + 3μc + O

{
μ2

c

})
× (1 + C1k2φ2 + O

{
φ7/2

})
, (27a)

ac ≈ e
√

1 + (kφ)2, (27b)

ζc ≈ h
(
1 + 3μc + O

{
μ2

c

})
× (1 + βk2φ5/2 + O

{
φ7/2

})
, (27c)

where k = 4η2Rh/d2 and β = ηC01γext/(2γint ). This solution
describes the very first mixed contact conditions for small
and intermediate values of the surface fraction φ, where a
significant number of pillars interact with the lens.

For the cases that are studied in this work, the solution for
large contact radius seems to be a good approximation in the
range 0.003 < φ � 0.2. Equations (27) describe the behaviors
of the load Fc, the contact radius ac and the indentation ζc as
functions of φ, all of them presenting a monotonic growth as
φ is increased, as it is depicted in Fig. 3. The aforementioned
large-area theoretical behaviors show good agreement for Fc

and ac, whereas the trend of ζc presents an important deviation
from the numerical results (overestimation), but still remain-
ing within the same order of magnitude, for surface fractions
around φ ∼ 0.1. An increase of the number of terms taken into
account in Eq. (27) may lead to a better approximation of ζc.

IV. DISCUSSION

A normalized load-contact radius diagram is shown in
Fig. 5, in which the top and mixed contact regimes are located.
The critical values of the load Fc and the contact radius ac,
obtained from the experiments, numerical simulations and
theoretical analyzes and presented in Fig. 3, are shown in
Fig. 5. Curves composed of the succession of critical coor-
dinates (Fc, ac) create a boundary between the two contact

FIG. 5. Phase diagram of the contact regime. The phase space is
given in terms of the normalized force Fγint/(hd ) and the reduced
contact radius a/e, for the parameters given in Tables I and II. The
top and mixed contact regions are bounded by the critical values
of the force Fc and the contact radius ac, which were obtained
experimentally (×,•) or numerically ( , ) for intermediate
(gray, ×, ) and rigid (black, •, ) conditions of the textured
substrate. The approximation described by Eqs. (23), dash-dotted
curves ( ), relates Fc and ac for geometric situations for which φ

is small, whereas the approximation given by Eq. (28), dashed curves
( ), corresponds to large values of φ. The black arrow indicates
the direction in which the displacement δx of the target atop the
substrate increases, from 0 to (

√
3/2)e. The dark gray arrows indicate

examples of evolution trends to attain the contact transition, for
small (φ = 0.001) and large (φ = 0.2) values of the surface fraction
occupied by pillars.

regimes. This boundary is blurry for the combination of val-
ues of the normalized force Fγint/(hd ) < 1 and the reduced
contact radius a/e < 1, where a deterministic regime dictates
the conditions of the transition from top to mixed contact,
behavior that comes from small surface fraction configura-
tions φ < 0.003. The boundary is sharper for larger values of
Fγint/(hd ) � 1 and, from Eqs. (27), one finds that the contact
regions are bounded by the curve given by:

ac

e
≈
[

1

C1(1 + 3μc)

(Fcγint

hd

)]1/2

. (28)

The experimental critical coordinates (Fc, ac) are close to the
theoretical findings, which allows us to continue the discus-
sion focusing on these trendlines.

At the deterministic region, since φ is small, the relative
position of the lens with respect to the textured substrate
will specify whether top contact or mixed contact occurs.
Let us consider a more precise condition such as δx/e = 0,
which corresponds to a textured substrate with its first pillar
aligned with the lens center. For a given surface fraction φ,
it is well-known that the contact radius is a function of the
force a = a(F ). Now, assume that a zero force condition
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F = 0 will start with top contact and a contact radius a = 0.
While increasing F , the overall deformation of the system
will increase and the contact radius will become a = d , which
will remain constant until other pillars are reached by the
lens, changing the contact radius to a/e ≈ 1. This intermittent
augmentation of the contact radius will continue as more
pillars come into contact, for instance taking the consecutive
values of a/e = {1,

√
3, 2,

√
7, 3, 2

√
3, . . . }. For small sur-

face fractions φ, this discontinuous process continues until the
critical force Fc is attained and the very first mixed contact
condition takes place. The case of φ = 0.001 is presented in
Fig. 5, where we can observe that the contact radius a = d
is generated for forces Fγint/(hd ) < 1. When the force in-
creases to F = Fc, given by Eq. (23), the very first mixed
contact occurs and the contact radius jumps to a = ac, given
by Eq. (23 b), according to the small contact radius ac < e
approximation. For large values of φ, a significant amount
of pillars join rapidly to the top contact and the dependence
of a on F becomes Hertzian-like, thus following the trend
a ∼ 3

√
RF until F → Fc, given by Eq. (27), and the transition

toward mixed contact happens, with a contact radius a = ac

given by Eq. (27 b). The general trend of the case φ = 0.2 is
presented in Fig. 5, where the contact radius increases roughly
as a ≈ 3

√
(3π/8)γextRF until the force reaches F = Fc and the

contact radius becomes a = ac, according to the large contact
radius ac > e approximation. Now, taking into consideration
an off-center situation with δx/e ∈ (0,

√
3/2] and a surface

fraction in the range φ ∈ (0.001, 0.2), depending on the pre-
cise value of δx, one of the above-mentioned transitions from
top to mixed contact may take place.

V. CONCLUSIONS

In the present work, the transition of the elastic contact
regime between a spherical lens and a textured substrate has
been studied in depth, performing experiments and numeri-
cal simulations, and developing a theoretical approach. The
substrate consists of a hexagonal lattice of pillars over a flat
substrate, with the pillars covering a surface fraction φ of the
substrate.

A top contact regime, defined as the contact only between
the lens and the top of the pillars, is observed when the
compression force F is relatively small. A mixed contact
regime, defined as the simultaneous occurrence of top contact
and the contact between the lens and the substrate at some
specific positions, is observed when F is relatively large. The
transition between the aforementioned contact regimes takes
place when a precise value of F is attained, which is the
critical force Fc for a given value of the surface fraction φ.
This critical condition is accompanied by a specific size of the

contact region, described by a critical contact radius ac, and a
particular magnitude of the indentation ζc.

With the use of reduced variables for the critical force
Fcγint/(hd ), contact radius ac/e and indentation ζc/h, the sys-
tem behavior and the dependence on the surface fraction φ

is straightforward. For φ � 0.003, the transition from top to
mixed contact is strongly dependent on the relative position
δx of the lens over the textured surface. When δx = 0, a
threshold force Fc ∼ hd/γint , given by the small contact radius
approximation, should be exceeded to observe a mixed con-
tact, whereas for δx = (

√
3/2)e it occurs spontaneously with

the application of a negligible force. When δx = 0, the contact
radius corresponds to the contact position between the sub-
strate and the lens, described by the single-pillar case or small
contact radius approximation, whereas for δx = (

√
3/2)e the

contact radius scales as ac ∼ δx. Intermediate values of δx
lead to behaviors between these two limit cases. For 0.003 <

φ < 0.2, all the results (experimental, numerical, and theo-
retical) collapse into general trends and the transition from
top to mixed contact only depends on φ. The critical force
behaves as Fc ∝ (1 + C1k2φ2), where C1 is a constant and k is
a product of geometric parameters of the pillars. In turn, the
contact radius behaves as ac ∝

√
1 + k2φ2 and the indentation

as ζc ∝ (1 + βk2φ5/2).
To summarize these results, a phase diagram is depicted

in Fig. 5 in which axes correspond to the reduced force
Fγint/(hd ) and the normalized contact radius a/e. The top
contact and mixed contact regions are shown, bounded by
critical curves that define the regime transition. Addition-
ally a deterministic regime appears for the quadrant where
Fγint/(hd ) < 1 and a/e, for which the relative position of the
lens and the textured substrate defines the transition process
from top to mixed contact. This deterministic regime is mainly
discernible for systems presenting small surface fractions φ <

0.003. For larger values in the range φ ∈ [0.003, 0.2], the
curves that define the transition from top to mixed contact
collapse into a single trend, which is fairly well described
by a large contact radius approximation, roughly given by
ac/e ∼ [Fcγint/(hd )]1/2.

Despite the insight gained with this analysis, the full un-
derstanding of the contact mechanics between rough surfaces
requires more research to be done. For instance, the mixed
contact between a lens and a textured surface has been studied
experimentally [23,38–41], under conditions for which ad-
hesion cannot be disregarded. Therefore, the next step is to
incorporate the role of adhesion to the numerical simulation
tools that we have developed and perform a rigorous paramet-
ric analysis. Our efforts are currently being focused on this
problem, and the corresponding methodology and analysis
will be presented in a future publication.

[1] H. Hertz, J. reine angew. math. 1882, 156 (1882).
[2] K. L. Johnson, Proc. Inst. Mech. Eng. 196, 363 (1982).
[3] F. Bowden and D. Tabor, The Friction and Lubrication of Solids

(Oxford University Press, Oxford, 1950).
[4] D. Dowson, History of Tribology (Longman, London, 1979).
[5] J. F. Archard, J. Appl. Phys. 24, 981 (1953).

[6] J. A. Greenwood and J. B. P. Williamson, Proc. R. Soc. A 295,
300 (1966).

[7] A. Bush, R. Gibson, and T. Thomas, Wear 35, 87 (1975).
[8] B. Persson and E. Tosatti, J. Chem. Phys. 115, 5597 (2001).
[9] J. Krim and J. O. Indekeu, Phys. Rev. E 48, 1576 (1993).

[10] G. Palasantzas, Phys. Rev. B 48, 14472 (1993).

055007-9

https://doi.org/10.1515/crll.1882.92.156
https://doi.org/10.1243/PIME_PROC_1982_196_039_02
https://doi.org/10.1063/1.1721448
https://doi.org/10.1016/0043-1648(75)90145-3
https://doi.org/10.1063/1.1398300
https://doi.org/10.1103/PhysRevE.48.1576
https://doi.org/10.1103/PhysRevB.48.14472


R. LEDESMA-ALONSO et al. PHYSICAL REVIEW E 104, 055007 (2021)

[11] E. Bouchaud, J. Phys.: Condens. Matter 9, 4319 (1997).
[12] T. Jacobs and A. Martini, Appl. Mech. Rev. 69, 060802 (2017).
[13] B. Persson, Eur. Phys. J. E 8, 385 (2002).
[14] B. Bhushan and M. Nosonovsky, Nanotechnology 15, 749

(2004).
[15] S. Dalvi, A. Gujrati, S. Khanal, L. Pastewka, A. Dhinojwala,

and T. Jacobs, Proc. Natl. Acad. Sci. USA 116, 25484 (2019).
[16] L. Pei, S. Hyun, J. Molinari, and M. Robbins, J. Mech. Phys.

Solids 53, 2385 (2005).
[17] L. Pastewka, N. Prodanov, B. Lorenz, M. H. Muser, M. O.

Robbins, and B. N. J. Persson, Phys. Rev. E 87, 062809
(2013).

[18] R. J. Adams and B. Hannaford, IEEE Trans. Robot. Autom. 15,
465 (1999).

[19] V. Hayward, O. Astley, M. Cruz-Hernandez, D. Grant, and G.
Robles-De-La-Torre, Sensor Rev. 24, 16 (2004).

[20] K. Salisbury, F. Conti, and F. Barbagli, IEEE Comput. Graph.
Appl. 24, 24 (2004).

[21] H. Westergaard, Trans. ASME, J. Appl. Mech. 6, 49 (1939).
[22] K. Johnson, J. Greenwood, and J. Higginson, Int. J. Mech. Sci.

27, 383 (1984).
[23] A. Crosby, M. Hageman, and A. Duncan, Langmuir 21, 11738

(2005).
[24] J. Block and L. Keer, J. Mech. Mater. Struct. 3, 1207 (2008).
[25] C. Jin, K. Khare, S. Vajpayee, S. Yang, A. Jagota, and C.-Y.

Hui, Soft Matter 7, 10728 (2011).
[26] C. Poulard, F. Restagno, R. Weil, and L. Légér, Soft Matter 7,

2543 (2011).
[27] A. Ghatak, L. Mahadevan, J. Chung, M. Chaudhury, and V.

Shenoy, Proc. R. Soc. A 460, 2725 (2004).
[28] C.-Y. Hui, N. Glassmaker, T. Tang, and A. Jagota, J. R. Soc.,

Interface 1, 35 (2004).
[29] M. Benz, K. Rosenberg, E. Kramer, and J. Israelachvili, J. Phys.

Chem. B 110, 11884 (2006).

[30] T. Kim and B. Bhushan, J. Vac. Sci. Technol., A 25, 1003
(2007).

[31] H. Zeng, N. Pesika, Y. Tian, B. Zhao, Y. Chen, M. Tirrell, K.
Turner, and J. Israelachvili, Langmuir 25, 7486 (2009).

[32] M. Varenberg and S. Gorb, Adv. Mater. 21, 483 (2009).
[33] M. Bartlett, A. Croll, D. King, B. Paret, D. Irschick, and A.

Crosby, Adv. Mater. 24, 994 (2012).
[34] S. Das, S. Chary, J. Yu, J. Tamelier, K. Turner, and J.

Israelachvili, Langmuir 29, 15006 (2013).
[35] D. Nguyen, S. Ramakrishna, C. Fretigny, N. Spencer, Y. Le

Chenadec, and A. Chateauminois, Tribol. Lett. 49, 135 (2013).
[36] D. Brodoceanu, C. Bauer, E. Kroner, E. andArzt, and T. Kraus,

Bioinspir. Biomim. 11, 051001 (2016).
[37] H. Maruoka, Phys. Rev. E 100, 053004 (2019).
[38] E. Verneuil, B. Ladoux, A. Buguin, and P. Silberzan, J.

Adhesion 83, 449 (2007).
[39] V. Hisler, M. Palmieri, V. Le Houerou, C. Gauthier, M. Nardin,

M. Vallat, and L. Vonna, Int. J. Adhes. Adhesiv. 45, 144 (2013).
[40] E. Degrandi-Contraires, A. Beaumont, F. Restagno, R. Weil, C.

Poulard, and L. Leger, Eur. Phys. Lett. 101, 14001 (2013).
[41] L. Dies, F. Restagno, R. Weil, L. Leger, and C. Poulard, Eur.

Phys. J. E 38, 130 (2015).
[42] R. Ledesma-Alonso, E. Raphael, L. Leger, F. Restagno, and P.

C., Proc. R. Soc. A 472, 20160235 (2016).
[43] M. Deruelle, H. Hervet, G. Jandeau, and L. Léger, J. Adhes. Sci.

Technol. 12, 225 (1997).
[44] A. E. H. Love, Phil. Trans. R. Soc. Lond. A 228, 377 (1929).
[45] K. Johnson, Contact Mechanics (Cambridge University Press,

Cambridge, UK, 1985).
[46] J. Harding and I. Sneddon, Math. Proc. Cambr. 41, 16 (1945).
[47] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.104.055007 for more details on the theoret-
ical analysis and the behavior of the auxiliary functions G0, G
and G1.

055007-10

https://doi.org/10.1088/0953-8984/9/21/002
https://doi.org/10.1115/1.4038130
https://doi.org/10.1140/epje/i2002-10025-1
https://doi.org/10.1088/0957-4484/15/7/006
https://doi.org/10.1073/pnas.1913126116
https://doi.org/10.1016/j.jmps.2005.06.008
https://doi.org/10.1103/PhysRevE.87.062809
https://doi.org/10.1109/70.768179
https://doi.org/10.1108/02602280410515770
https://doi.org/10.1109/MCG.2004.1274058
https://doi.org/10.1115/1.4008919
https://doi.org/10.1016/0020-7403(85)90029-3
https://doi.org/10.1021/la051721k
https://doi.org/10.2140/jomms.2008.3.1207
https://doi.org/10.1039/c1sm06367g
https://doi.org/10.1039/c0sm01099e
https://doi.org/10.1098/rspa.2004.1313
https://doi.org/10.1098/rsif.2004.0005
https://doi.org/10.1021/jp0602880
https://doi.org/10.1116/1.2435389
https://doi.org/10.1021/la900877h
https://doi.org/10.1002/adma.200802734
https://doi.org/10.1002/adma.201290037
https://doi.org/10.1021/la403420f
https://doi.org/10.1007/s11249-012-0052-3
https://doi.org/10.1088/1748-3190/11/5/051001
https://doi.org/10.1103/PhysRevE.100.053004
https://doi.org/10.1080/00218460701377529
https://doi.org/10.1016/j.ijadhadh.2013.04.006
https://doi.org/10.1209/0295-5075/101/14001
https://doi.org/10.1140/epje/i2015-15130-4
https://doi.org/10.1098/rspa.2016.0235
https://doi.org/10.1163/156856198X00074
https://doi.org/10.1098/rsta.1929.0009
https://doi.org/10.1017/S0305004100022325
http://link.aps.org/supplemental/10.1103/PhysRevE.104.055007

