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Parametric estimation of several parameters in
discretely-observed Stochastic Differential Equations with

additive fractional noise

El Mehdi Haress ∗ Alexandre Richard†

April 4, 2023

Abstract

We investigate the problem of joint statistical estimation of several parameters for a
stochastic differential equations driven by an additive fractional Brownian motion. Based
on discrete-time observations of the model, we construct an estimator of the Hurst parameter,
the diffusion parameter and the drift in a parametrised family of coercive drift coefficients. Our
procedure is based on the assumption that the stationary distribution of the SDE and of its
increments permit to identify the parameters of the model. We prove consistency results and
derive a rate of convergence for the estimator under this assumption. Finally, we show that the
identifiability assumption is satisfied in the case of a family of fractional Ornstein-Uhlenbeck
processes and illustrate our results with some numerical experiments.

1 Introduction

Consider the following Rd-valued stochastic differential equation

Yt = Y0 +

∫ t

0

bξ0(Ys)ds+ σ0Bt, (1.1)

where B is an Rd-fractional Brownian motion (fBm) with Hurst parameter H0 ∈ (0, 1). The goal
in this work is to estimate simultaneously the parameter ξ0, the diffusion coefficient σ0 and the
Hurst parameter H0 from discrete observations of the process Y . We will assume that the drift
parameter ξ0 lies in a set Ξ of Rm and {bξ(·), ξ ∈ Ξ} is a parametrised family of drift coefficients
with bξ(·) : Rd → Rd, and σ0 is an invertible Rd×d matrix. The unknown parameters are denoted
by θ0 = (ξ0, σ0, H0) ∈ Rq+1, where q = m+ d2.

In the framework of SDEs driven by fBm, many recent works have focused on the parametric
estimation of the drift, mostly assuming that the process Y is observed continuously and that the
parameters H and σ are known (see e.g [1, 15, 16, 25, 29]). These works propose estimators of
ξ0 which are strongly consistent, providing a rate of convergence towards ξ0 and even sometimes
a central limit theorem is obtained [15, 16]. However there are restrictions on the drift function,
namely that it is of the form bξ(y) = −ξy, i.e. a family of Ornstein-Uhlenbeck (OU) processes,
or of the form bξ(y) = ξb(y) as in [29]. In practical situations though, we only have access to
discrete-time observations of the process Y . Taking into account this constraint, two recent papers
[17, 24] constructed estimators of ξ0 which were proven to be strongly consistent. Their rate of
convergence is studied and a central limit theorem is also proven in [17]: while [17] considers the
fractional OU case, [24] treats general drift functions which satisfy a coercivity assumption.

The diffusion coefficient σ0 is usually estimated using the quadratic variations, which is possible
only when the process is either observed continuously or the step-size goes to zero (i.e high frequency
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data), see [31] and [2]. The Hurst parameter H0 is also estimated using quadratic variations, see
e.g. [21], or by a direct access to discrete observations of a fractional Brownian motion path with
a step-size that goes to zero as in [11].

When it comes to estimating all the parameters (ξ0, σ0, H0), we refer to [4] where the obser-
vations are assumed to be made continuously, and [13] which is, to the best of our knowledge,
the only work which estimates all the parameters of a fractional Ornstein-Uhlenbeck process in a
discrete-time setting.

In this paper, we follow the approach of [24]. That is, we work with the assumption the
stationary distribution of Y identifies the parameters. Hence we will use the stationary distribution
of (1.1) to estimate the parameters. However, as illustrated by the authors of [13], in the simple
case of a one-dimensional fractional OU process, this claim is false for more than one parameter
to estimate. In fact, the stationary distribution of Y is Gaussian and therefore distinguished by
its mean (which does not depend on the parameters) and its variance. In this case, the variance
itself cannot identify the three parameters. In [13], this issue is circumvented by considering the
increments of Y ; the increments of the stationary solution are also Gaussian but have different
variances. Thus, adding two increments, the authors have access to three functions and show that
these functions are sufficient to estimate the parameters. We propose here a similar approach
that generalizes the one presented in [13]. We add q linear transformations of the original process
and assume that they are enough to identify the parameters. Therefore, our assumption (which
is detailed later) will be that the stationary distribution of Y and its increments identify the
parameters (ξ, σ,H).

Assume for simplicity that the observations are of the form (Y θ0kh )k=0,..,n+q and consider q

linear transformations {`i(Y θ0kh , . . . , Y
θ0
kh+ih)}k=0,..,n where i ∈ J1, qK. Hence, we now have access to

q + 1 paths, which we use to define one path of a higher-dimensional process Xθ0 that we call the
augmented process associated to the SDE (1.1). With access to a path of Xθ0 , we construct the

estimator of θ0 by θ̂n = argmin
θ∈Θ

d
(

1
n

∑n−1
k=0 δXθ0kh

, µθ

)
, where µθ is the stationary distribution of

Xθ. We prove that θ̂n is a strongly consistent estimator of θ0 and study its rate of convergence.

In [13], the authors do not prove the identifiability assumption but provide numerical exper-
iments to support their claim. We prove here that in the setting of [13], i.e. of a fractional OU
process, the aforementioned identifiability assumption holds. Also, as in [24], we consider tow
variations of this assumption, a weak one which we will just call the identifiability assumption and
a strong one. Moreover, to construct good estimators of the drift parameter ξ, the authors of [24]
proved beforehand results on the regularity of Y with respect to ξ. This is a natural procedure,
since the estimation method relies on minimizing a certain functional of Y , by showing that it has
the right regularity properties so that its true minimum is in fact the true parameter ξ. Here, in
view of estimating all the parameters, we will will study the regularity of Y with respect to σ and
H as well.

Since we are interested in ergodic estimators, we need the regularity of Y in all the parameters
to be uniform in time. In particular we need the regularity in H to hold uniformly in t ≥ 0. To
achieve this, the drift will be assumed to be contractive. Let us mention that the sensitivity in
the Hurst parameter has been studied in various situations and is an important topic in modeling:
in [20], the fractional Brownian motion is proven to be infinitely differentiable with respect to its
Hurst parameter for a fixed time; in [18, 19], the law of (multiple) integrals with respect to the
fBm are proven to be continuous in H; in [26], the Hölder continuity in H is studied for generalised
fractional Brownian fields (over compact index sets); and in [10], the laws of quasilinear stochastic
wave and heat equations with additive fractional noise are proven to be continuous in H. Finally in
[28], the difference between functionals of a fractional stochastic differential equation (SDE) and its
Markovian counterpart (H = 1

2 ) are proven to be of order |H − 1
2 |, both for the law of the solution

on a compact time interval and for the law of the first hitting time (see also [27] for a numerical
approach and applications, in particular in neuroscience). In this work, new results on the Hurst
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regularity of fractional models were needed, and they have been gathered in our separate paper [14].

Organisation of the paper. The paper is organized as follows. In Section 2, we first detail the
notations and some assumptions. Then, we describe how to construct the estimator and present
the main results. In Section 3, we prove the consistency result and the rate of convergence. In
Section 4, we show that our estimator can be practically implemented by estimating the stationary
distribution through an Euler scheme. We prove consistency and obtain a rate of convergence
with this additional layer of estimation. In Section 5.1, we prove the identifiability assumption for
the fractional Ornstein-Uhlenbeck process, and in Section 5.2, we construct a more general family
of SDEs that verifies the strong identifiability assumption. The construction is based on small
perturbations of the fractional Ornstein-Uhlenbeck model. We also implement our method and
run numerical simulations in Section 5.3. In the Appendix, we recall in Section A some results from
our companion paper [14]. In Section B, we prove continuity and tightness results on Y and the
solution of the Euler scheme associated to (1.1). Section C is dedicated to the proof of Proposition
4.1. Finally, in Section D, we obtain a crucial result for the proof of the identifiability assumption
for the fractional Ornstein-Uhlenbeck process.

2 A general procedure

We first give some general notation. Then we state the assumptions on the coefficients of (1.1)
and define the estimator. At the end of this section, we give an almost sure convergence for this
estimator result as well as a convergence rate.

2.1 Notation and assumptions

Notations. Let M1(Rd) denote the set of probability measures on Rd. We will consider the
p-Wasserstein distance, which is defined for every µ, ν in M1(Rd) as follows:

Wp(µ, ν) = inf{(E|X − Y |p)
1
p ;L(X) = µ, L(Y ) = ν}.

For any given p, we denote by Dp the set of distances dominated by the p-Wasserstein distance.
Mainly, we shall work with the distance dCF,p defined as

dCF,p(L(X),L(Y )) =

(∫
(E[ei〈χ,X〉]− E[ei〈χ,Y 〉])2gp(χ)dχ

)1/2

, (2.1)

where gp is an integrable kernel for p > (d2 ∨ 1) of the form

gp(χ) = cp(1 + |χ|2)−p, (2.2)

and cp = (
∫
Rd(1+ |χ|2)−pdχ)−1 is a normalizing constant. Finally, we denote by C a constant that

can change from line to line and that does not depend on time and the parameters ξ,H, σ. When
we want to make the dependence of C on some other parameter a explicit, we will write Ca.

Assumptions. First, we assume that the number of unknown parameters q + 1 is such that
q ≥ 1 (we have at least two unknowns), which is decomposed into m parameters for the drift bξ0 ,
ξ0 ∈ Ξ ⊂ Rm, d2 parameters for σ ∈ Rd×d and the last one which is the Hurst parameter. The
next assumption states the compactness of the spaces where the parameters lie.

A0. Ξ is compactly embedded in Rm for a given m ≥ 1. H0 belongs to H, a compact subset of
(0, 1). The diffusion matrix σ0 belongs to Σ a compact set of d× d-invertible matrices.

Therefore, we have that Θ = Ξ × Σ × H is a compact subset of Rq+1. We will also assume a
coercivity assumption on the drift b.
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A1. b ∈ C1,1(Rd × Ξ;Rd) and there exist constants β,K, c > 0 and r ∈ N such that
(i) For every x, y ∈ Rd and ξ ∈ Ξ, we have

〈bξ(x)− bξ(y), x− y〉 ≤ −β|x− y|2 and |bξ(x)− bξ(y)| ≤ K|x− y|. (2.3)

(ii) For every x ∈ Rd and ξ1, ξ2 ∈ Ξ, the following growth bound is satisfied:

|bξ1(x)− bξ2(x)| ≤ c(1 + |x|r). (2.4)

For θ = (ξ, σ,H) ∈ Θ, we denote by Y θ the unique solution of the following equation

Y θt = Y0 +

∫ t

0

bξ(Y
θ
s )ds+ σBt, (2.5)

where Y0 ∈ Rd and B is an fBm of Hurst parameter H. Under A1, [12] (see also [24, Remark 2.4]
and the references therein) gives the existence and uniqueness of the invariant measure to (2.5).
We denote by Ȳ θ the unique stationary solution. We also denote by νθ the stationary distribution

of Ȳ θ. For i ∈ J1, qK, let `i denote a linear transformation from
(
Rd
)i+1

to Rd, which we will
assume fixed for the rest of the paper.

Let us define the following processes for all i ∈ J1, qK:

Zi,θ. = `i(Y θ· , ..., Y
θ
·+ih)

Z̄i,θ· = `i(Ȳ θ· , ..., Ȳ
θ
·+ih)

Xθ
· = (Y θ· , Z

1,θ
· , ...., Zq,θ· ) (2.6)

X̄θ
. · = (Ȳ θ· , Z̄

1,θ
· , ...., Z̄q,θ· ). (2.7)

Observe that for all θ ∈ Θ and i ∈ J1, qK, the processes Z̄i,θ and X̄θ are stationary. Denote their
distribution by ηi,θ and µθ respectively. For simplicity, we will not write the parameter θ on the
processes when θ is the true parameter θ0. Also, denote by Xθ the augmented process associated
to the SDE (2.5). Simple triangle inequalities yield the following inequalities for all θ, θ′ ∈ Θ and
p > 0:

|Xθ
· |p ≤ Cp,q

(
q∑
i=0

|Y θ·+ih|p
)

|Xθ
· −Xθ′

· |p ≤ Cp,q

(
q∑
i=0

|Y θ·+ih − Y θ
′

·+ih|p
)

(2.8)

|Xθ
· − X̄θ

· |p ≤ Cp,q

(
q∑
i=0

|Y θ·+ih − Ȳ θ·+ih|p
)
,

where Cp,q is a constant that do not depend on θ or θ′. This means that upper bounds on X will
be obtained by upper bounding Y , and the regularity of the process X will be studied through the
regularity of the process Y .

As was highlighted previously in the introduction, the estimators are defined by assuming that
µθ characterizes θ. This weak indentifiability hypothesis reads as follows:

Iw. For any θ in Θ,

µθ = µθ0 ⇐⇒ θ = θ0, (2.9)

where we recall that µθ is the stationary distribution of X̄θ.

Remark 2.1. A similar assumption is considered in [24]. However, they work with the stationary
distribution of Ȳ . The assumption we make is weaker. In fact, assume that νθ = νθ0 iff θ = θ0.
Now, let θ, θ0 in Θ such that dCF,p(µθ, µθ0) = 0. Using the definition of dCF,p, we have

for almost all χ ∈ R(q+1)d, E
[
ei〈χ,X

θ〉
]

= E
[
ei〈χ,X

θ0 〉
]
,
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which implies that

for almost all χ ∈ Rd, E
[
ei〈χ,Ȳ

θ〉
]

= E
[
ei〈χ,Ȳ

θ0 〉
]
,

Hence, we have dCF,p(νθ, νθ0) = 0, which means that θ = θ0.

2.2 Construction of the estimator

Assume that the solution Y is discretely observed at some times {kh; k = 1, ..., n + q} for a fixed
time step h > 0. Under Assumption A1, we show the following lemma (the proof is postponed to
Section 3.2):

Lemma 2.2. For any d ∈ D2 and any θ ∈ Θ, we have

d

(
1

t

∫ t

0

δXθs ds, µθ

)
−→
t→+∞

0 a.s,

and

d

(
1

n

n−1∑
k=0

δXθkh , µθ

)
−→

n→+∞
0 a.s.

Remark 2.3. The integral
∫ t

0
δXsds is to be understood as the probability measure which associates

to each Borel set A the value
∫ t

0
δXs(A)ds.

Hence, under the identifiability assumption Iw, we define the estimator

θ̂n = argmin
θ∈Θ

d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ

)
, (2.10)

where d is a distance inM1(Rd). However, this means that we need to compute µθ which in most
cases is not explicitly known. We discuss a way to overcome this problem in Section 4.

2.3 Main results

The first result states the strong consistency of the estimator (2.10) under the assumptions A0,
A1, Iw. The proof of the theorem below is detailed in Section 3.3.

Theorem 2.4. Assume that A0, A1, Iw hold. Consider a distance d onM1(Rd) which belongs to

D2. Then (θ̂n)n∈N defined in (2.10) is a strongly consistent estimator of θ0 in the following sense:

lim
n→∞

θ̂n = θ0 a.s.

We will also establish a rate of convergence of this estimator when d = dCF,p for some p ∈ N∗,
under the strong identifiability assumption:

Is. There exists a constant c1 > 0 and α ≥ 2, such that for every θ in Θ,

dCF,p(µθ, µθ0)α ≥ c1|θ − θ0|2.

Under this assumption, we obtain a rate of convergence, which will be proved in Section 3.4.

Theorem 2.5. Assume that A0, A1, Is hold. There exists a constant C > 0 such that for all
n ∈ N,

E|θ̂n − θ0|2 ≤ Cn−α(1−(max(H)∨ 1
2 )).
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3 Proof of consistency of the estimator and rate of conver-
gence

To prove the almost sure convergence, we will use [24, Proposition 4.3] that we recall in Proposition
3.1 below for the reader’s convenience. It concerns the limiting property of a collection of real-
valued processes {Lr(θ)}r indexed by a generic r which lies in a topological space and converges
to a generic r0. In this Section, we always have r ≡ n ∈ N, and so limr→r0 is to be understood
as limn→∞. In Section 4, we will take r ≡ (γ, n,N) with γ → 0 and n,N → ∞, and therefore
limr→r0 will be understood as limn→∞,N→∞,γ→0.

Proposition 3.1. Let Θ be a compact set and {θ ∈ Θ 7→ Lr(θ)}r a family of non-negative
stochastic processes. Assume that

(i) With probability 1, limr→r0 Lr(θ) = L(θ) uniformly in θ.

(ii) θ 7→ L(θ) is non-random and continuous in θ.

(iii) For any r, the set argmin{Lr(θ), θ ∈ Θ} is non empty.

Let θr ∈ argminθ∈Θ Lr(θ). If A is a limit point of θr, then A ∈ argminθ∈Θ L(θ).

In this Section, we always have Lr(θ) = d( 1
n

∑n−1
0 δXkh , µθ), with r ≡ n and r0 ≡ ∞.

3.1 Continuity of θ 7→ d(µθ, µθ0)

First, we prove two lemmas that state the Lp-continuity with respect to θ of the solution to
(2.5), and the exponential convergence of the law of Xθ (defined in (2.6)) towards its stationary
distribution µθ. Then we deduce the continuity of the mapping θ 7→ d(µθ, µθ0) in Proposition 3.4.

Lemma 3.2. Assume A0 and A1 are satisfied. Let T > 0 and p > 0. There exists a constant
CT,p > 0 such that for any θ1, θ2 ∈ Θ,

‖Y θ1T − Y
θ2
T ‖Lp ≤ CT,p|θ1 − θ2|.

Proof. Without any loss of generality, we assume p ≥ 2. Up to introducing pivot terms, we can
consider three different cases:

1) θ1 = (ξ,H1, σ) and θ2 = (ξ,H2, σ)

2) θ1 = (ξ,H, σ1) and θ2 = (ξ,H, σ2)

3) θ1 = (ξ1, H, σ) and θ2 = (ξ2, H, σ).

In the first case, where only H changes, we get from the definition of Y θ1t and Y θ2t that for any
t ∈ [0, T ],

Y θ1t − Y
θ2
t =

∫ t

0

[bξ(Y
θ1
t )− bξ(Y θ2t )]ds+ σ(BH1

t −B
H2
t ).

Since b is K-Lipschitz, we get

|Y θ1t − Y
θ2
t |2 ≤ 2

(∫ t

0

K|Y θ1t − Y
θ2
t |ds

)2

+ 2|σ|2|BH1
t −B

H2
t |2.

By Jensen’s inequality, we have

|Y θ1t − Y
θ2
t |2 ≤ 2K2t

∫ t

0

|Y θ1t − Y
θ2
t |2ds+ 2|σ|2|BH1

t −B
H2
t |2
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By Grönwall’s lemma, we deduce that

|Y θ1t − Y
θ2
t |2 ≤ 2K2T

∫ t

0

|σ|2|BH1
s −BH2

s |2e2K2T (t−s)ds+ 2|σ|2|BH1
t −B

H2
t |2.

By Jensen’s inequality, there exists a constant Cp such that

|Y θ1t − Y
θ2
t |p ≤ Cp

(
2p/2KpT p−1

∫ t

0

|σ|p|BH1
s −BH2

s |peK
2Tp(t−s)ds+ |σ|p|BH1

t −B
H2
t |p

)
.

SinceBH1
t −B

H2
t is a Gaussian random variable, E|BH1

t −B
H2
t |p is proportional to

(
E|BH1

t −B
H2
t |2

)p/2
.

Using [14, Proposition 2.1], the fractional Brownian motion verifies

E|BH1
t −B

H2
t |p ≤ C

(
tpH1 ∨ tpH2

)
(log2(t) + 1)p/2 |H1 −H2|p.

Therefore,

E|Y θ1t − Y
θ2
t |p ≤ Cp|σ|p

(
2p/2KpT peK

2T 2p + 1
) (
T pH1 ∨ T pH2

)
(log2(T ) + 1)p/2|H1 −H2|p.

Since σ ∈ Σ, we conclude that

‖Y θ1t − Y
θ2
t ‖Lp ≤ Cp,σ,K(TeK

2T 2

+ 1)(TH1 ∨ TH2)(log2(T ) + 1)1/2|H1 −H2|

≤ Cp,σ,K(TeK
2T 2

+ 1)(1 + Tmax(H))(log2(T ) + 1)1/2|H1 −H2|.

In the second case, since b is K-Lipschitz, using Jensen’s inequality, we have

|Y θ1t − Y
θ2
t |2 =

(∫ t

0

[bξ(Y
θ1
t )− bξ(Y θ2t )]ds+ (σ1 − σ2)Bt

)2

≤ 2K2T

∫ t

0

|Y θ1s − Y
θs
t |2ds+ 2|σ1 − σ2|2|Bt|2.

By Grönwall’s lemma, we get

|Y θ1t − Y
θ2
t |2 ≤ |σ1 − σ2|2

(
|Bt|2 + 2K2T

∫ t

0

|Bs|2e2K2T (t−s)ds

)
.

Therefore, by Jensen’s inequality, there exists a constant Cp such that

|Y θ1t − Y
θ2
t |p ≤ Cp|σ1 − σ2|p

(
|Bt|p + 2p/2KpT p−1

∫ t

0

|Bs|peK
2Tp(t−s)ds

)
.

It follows that

‖Y θ1t − Y
θ2
t ‖Lp ≤ Cp|σ1 − σ2|(TH + T 1+HeK

2T 2

)

≤ Cp|σ1 − σ2|(1 + Tmax(H))(TeK
2T 2

+ 1)

Finally, in the third case, we have by [24, Proposition 3.5] that

‖Y θ1t − Y
θ2
t ‖Lp ≤ CT,p|ξ1 − ξ2|,

where it appears from the proof of [24, Proposition 3.5] that CT,p does not depend on H or σ.

Lemma 3.3. Assume A0 and A1 hold. Let d be a distance in Dp. Then there exists a constant
C > 0 such that for all θ ∈ Θ and for all t ≥ 0, we have

d(L(Xθ
t ), µθ) ≤ Ce−

1
C t. (3.1)
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Proof. Since d ∈ Dp, we have:

d(L(Xθ
t ), µθ) ≤ E(|Xθ

t − X̄θ
t |p)

1
p

≤ C

(
q∑
i=0

E(|Y θt+ih − Ȳ θt+ih|p)
1
p

)
.

Using A1, we have

d

dt
|Y θt − Ȳ θt |2 = 2〈Y θt − Ȳ θt , bξ(Y θt )− bξ(Ȳ θt )〉

≤ −2β|Y θt − Ȳ θt |2.

It follows that

|Y θt − Ȳ θt |2 ≤ |Y θ0 − Ȳ θ0 |2e−βt,

which leads to

E(|Y θt − Ȳ θt |p) ≤ |Y θ0 − Ȳ θ0 |pe−pβt.

Hence,

‖Y θt − Ȳ θt ‖Lp ≤ ‖Y θ0 − Ȳ θ0 ‖Lpe−βt

≤ (‖Y θ0 ‖Lp + ‖Ȳ θ0 ‖Lp) e−βt. (3.2)

Moreover, by Proposition B.1(i), we have(
E|Ȳ θ0 |

) 1
p

= lim
t→∞

(
E|Y θt |

) 1
p ≤ sup

t≥1
sup
θ∈Θ

(
E|Y θt |

) 1
p

<∞.

This concludes the proof.

We can now state the main continuity result of this section.

Proposition 3.4. Assume A0 and A1 hold and let d be a distance in Dp. Then the mapping
θ 7→ d(µθ, µθ0) is continuous on Θ.

Proof. Let now θ1, θ2 ∈ Θ. Then for t ≥ 0,

d(µθ1 , µθ2) ≤ CWp(µθ1 , µθ2) ≤ CWp(µ
θ1 ,L(Xθ1

t )) + CWp(µ
θ2 ,L(Xθ2

t )) + C‖Xθ1
t −X

θ2
t ‖Lp

≤ 2C sup
θ∈Θ
Wp(L(Xθ

t ), µθ) + C‖Xθ1
t −X

θ2
t ‖Lp .

Let ε > 0. By Lemma 3.3 there exists t0 such that

2C sup
θ∈Θ
W(L(Xθ

t0), µθ) ≤
ε

2
.

Now in view of (2.8) and Lemma 3.2, there exists a constant Ct0,p such that ‖Xθ1
t0 − X

θ2
t0 ‖Lp ≤

Ct0,p|θ1 − θ2|. Let δ > 0 be such that Ct0,pδ ≤ ε/2. Then for |θ1 − θ2| ≤ δ, we have

d(µθ1 , µθ2) ≤ ε,

and this proves the continuity of θ 7→ d(µθ, µθ0).
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3.2 Convergence of the contrast: proof of Lemma 2.2

Let θ = (ξ,H, σ) ∈ Θ. We will first prove that almost surely, the random measure 1
t

∫ t
0
δXθs ds

converges in law to µθ. This implies that 1
t

∫ t
0
δXθs ds converges to µθ in the Prokhorov distance.

To extend this result to distances d in D2 (i.e dominated by the 2-Wasserstein distance), we use
the fact that the 2-Wasserstein distance is dominated by the Prokorov distance dP as follows (see
[9, Theorem 2]):

d

(
1

t

∫ t

0

δXθs ds, µθ

)
≤ Cp sup

t≥0

(
max

(
1

t

∫ t

0

|Xθ
s |2ds ∨ E|X̄θ

t |2
)

+ 1

)
dP

(
1

t

∫ t

0

δXθs ds, µθ

)
.

By definition of the process Xθ, we have that(
1

t

∫ t

0

|Xθ
s |2ds ∨ E|X̄θ

t |2
)
≤ Cq

q∑
i=0

(
1

t

∫ t

0

|Y θs+ih|2ds ∨ E|Ȳ θt+ih|2
)
. (3.3)

Therefore, we conclude thanks to Proposition B.1 that in the present case, the convergence in
law (i.e. in Prokhorov distance) implies the convergence for the 2-Wasserstein distance. Let us
now prove the convergence in law. The proof of the convergence in law follows the same steps
as [24, Proposition 3.3] and relies on a tightness argument. While we can show that the family

{ 1
t

∫ t
0
δXθs ds}t≥0 is tight, it is not easy to identify the limit points. That is why we consider a

family of probability measures on the set of continuous functions for which the identification of the
limit is easier, namely {πt = 1

t

∫ t
0
δXθs+.ds}t≥0. A classical criterion (see e.g. [3, Corollary p.83])

ensures that {πθt ; t ≥ 0} is a.s. tight if for every positive T, η and ε, there exists δ > 0 such that
for all t0 ∈ [0, T ],

lim sup
t→+∞

1

t

∫ t

0

1

δ
1{supu∈[t0,t0+δ]|Xθs+u−Xθs+t0 |≥ε}

ds ≤ η a.s.

Moreover, the above inequality holds true as long as there exist some positive r and ρ such that

∀T > 0, ∃δ > 0, r > 0, ρ > 0 s.t ∀t0 ∈ [0, T ],

lim sup
t→∞

1

t

∫ t

0

sup
u∈[t0,t0+δ]

|Xθ
s+u −Xθ

s+t0 |
rds ≤ Cr,T δ1+ρ a.s. (3.4)

For T, r, δ > 0, by definition of Xθ and (2.8), we have

lim sup
t→∞

1

t

∫ t

0

sup
u∈[t0,t0+δ]

|Xθ
s+u −Xθ

s+t0 |
rds ≤

q∑
i=0

lim sup
t→∞

1

t

∫ t

0

sup
u∈[t0,t0+δ]

|Y θs+u+ih − Y θs+t0+ih|rds

≤
q∑
i=0

lim sup
t→∞

t+ ih

t

1

t+ ih

∫ t+ih

0

sup
u∈[t0,t0+δ]

|Y θs+u − Y θs+t0 |
rds

≤ Cq lim sup
t→∞

1

t+ ih

∫ t+ih

0

sup
u∈[t0,t0+δ]

|Y θs+u − Y θs+t0 |
rds

≤ Cq lim sup
t→∞

1

t

∫ t

0

sup
u∈[t0,t0+δ]

|Y θs+u − Y θs+t0 |
rds.

By [24, Eq A.19], we can further bound the right-hand side above by Cδr−1 + Crδ
Hr. Choosing

δ < 1 and r > max(2, 1
min(H) ), we get (3.4).

Hence, let (tn)n≥1 be an increasing sequence going to +∞ such that { 1
tn

∫ tn
0
δXθs+.ds}n≥1 con-

verges (pathwise) to a limiting distribution γ. We first show that γ is the law of a stationary
process. For any bounded functional F : C

(
[0,∞),Rd

)
→ R, we have

γ (F ◦ θT )− γ(F ) = lim
n→+∞

1

tn

∫ tn

0

F
(
Xθ
s+T+.

)
− F

(
Xθ
s+.

)
ds.

9



By a simple change of variables, we have

lim
n→+∞

1

tn

∫ tn

0

F
(
Xθ
s+T+.

)
−F

(
Xθ
s+.

)
ds = lim

n→+∞

1

tn

(∫ tn+T

tn

F
(
Xθ
s+.

)
ds−

∫ T

0

F
(
Xθ
s+.

)
ds

)
= 0.

We thus get that γ is stationary. Let us now prove that γ is the law of X̄θ. A process xt = (yt, z
1
t , .., z

q
t )

has the law of Xθ if

y· − y0 −
∫ .

0

bξ(yu)du has the law of σB where B has Hurst parameter H;

zi· − `i
(∫ ·

0

bξ(yu)du, . . . ,

∫ .+ih

0

bξ(yu)du

)
has the law of σ`i(B·, . . . , B·+ih) for all i ∈ J1, qK.

Let us define

G(x·) =



y· − y0 −
∫ .

0
bξ(yu)du

z1
· − `1

(∫ ·
0
bξ(yu)du,

∫ .+h
0

bξ(yu)du
)

.

.

.

zq· − `q
(∫ ·

0
bξ(yu)du, . . . ,

∫ .+qh
0

bξ(yu)du
)


and

B· = (σB·, . . . , σ`
q(B·, . . . , Bqh+·)) .

Hence we have to prove that

γ ◦G−1 is the law of B·.

Using that G is continuous for the u.s.c topology, we have

γ ◦G−1 = lim
n→∞

1

tn

∫ tn

0

δG(Xθs+.)
ds.

Let T > 0 and F : C([0, T ],Rd(q+1)) 7→ R be a bounded measurable function. We want to show
that

lim
n→∞

1

tn

∫ tn

0

F
(
G(Xθ

s+·)
)
ds = EF (B·) .

It is sufficient to check the convergence for the finite dimensional distributions. For any N ≥ 1,
{u1, . . . , uN} ∈ RN and a measurable and bounded f : Rd(q+1)N 7→ R, we want to show that

lim
n→∞

1

tn

∫ tn

0

f
(
G(Xθ

s+u1
), . . . , G(Xθ

s+uN )
)
ds = Ef (Bu1 , . . . ,BuN ) .

By construction, we have

G(Xs+.) =


σ(Bs+· −Bs)

σ`1(Bs+· −Bs, Bs+h· −Bs)
.
.
.

σ`q(Bs+· −Bs, . . . , Bs+qh+· −Bs)

 .
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Therefore, we can write

f(G(Xθ
s+u1

), . . . , G(Xθ
s+uN )) = f̃ ({Bs+u1+ih −Bs}i=0,...,q, . . . , {Bs+uN+ih −Bs}i=0,...,q)

f (Bu1 , . . . ,BuN ) = f̃ ({Bu1+ih}i=0,...,q, . . . , {BuN+ih}i=0,...,q) ,

where f̃ = f ◦ λ for some linear transformation λ, so f̃ is still a bounded measurable function. By
the ergodicity of the increments of the fractional Brownian motion [6, Eq 5], we have

lim
n→∞

1

tn

∫ tn

0

f
(
G(Xθ

s+u1
), . . . , G(Xθ

s+uN )
)
ds

= lim
n→∞

1

tn

∫ tn

0

f̃ ({Bs+u1+ih −Bs}i=0,...,q, . . . , {Bs+uN+ih −Bs}i=0,...,q) ds

= Ef̃ ({Bu1+ih}i=0,...,q, . . . , {BuN+ih}i=0,...,q) = Ef(Bu1 , . . . ,BuN ).

Hence, γ ◦G−1 has the law of B and we conclude that γ is the law of X̄θ.
The same analysis presented in this Section still holds if we replace 1

t

∫ t
0
|Xθ

s |pds by 1
n

∑n−1
k=0 |Xθ

kh|p.
This is mostly due to the fact that in Proposition B.1, we also proved that the moments 1

n

∑n−1
k=0 |Xθ

kh|p
are finite uniformly in n, and therefore the right-hand side in (3.3) is finite even when the integral
is replaced by a discrete sum.

3.3 Proof of Theorem 2.4

Let d be a distance that belongs to Dp. We want to apply Proposition 3.1 to r ≡ n and

Ln(θ) = d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ

)
.

In view of Lemma 2.2, we know that for each θ, Ln(θ) converges a.s. to L(θ) = d(µθ0 , µθ). Besides,
the continuity of L(θ) comes from Proposition 3.4. If we prove the uniform convergence, then

we can finally apply Proposition 3.1 to get that the limit points of θ̂n are included in the set
argmin{L(θ), θ ∈ Θ}, which under assumption Iw is reduced to {θ0}.

Now to prove the uniform convergence, it is sufficient to show that the family{
θ 7→ d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ

)
, n ≥ 1, θ ∈ Θ

}

is equicontinuous. Actually, for any θ1 and θ2 in Θ, we have

∣∣∣∣∣d
(

1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ1

)
− d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ2

)∣∣∣∣∣ ≤ d(µθ1 , µθ2).

In view of Proposition 3.4, the term on the right-hand side goes to 0 as |θ1 − θ2| → 0. This proves
the equicontinuity and thus the uniform convergence.

3.4 Proof of Theorem 2.5

For the rest of this section, d always refer to the distance dCF,p. In view of the strong identifiability

assumption Is, it suffices to bound Ed(µθ̂n , µθ0)α to obtain a rate of convergence on E|θ̂n−θ0|2. Our
strategy is in line with the Section 5 of [24], with adaptations due to the estimation of σ and H. It

is based on the following decomposition: since θ̂n minimizes the function θ 7→ d( 1
n

∑n−1
k=0 δXkh , µθ0),
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we have

d(µθ̂n , µθ0) ≤ d

(
1

n

n−1∑
k=0

δXkh , µθ0

)
+ d

(
1

n

n−1∑
k=0

δXkh , µθ̂n

)

≤ 2d

(
1

n

n−1∑
0

δXkh , µθ0

)
=: 2D(1)

n .

Lα bound on D
(1)
n . Following the proof of [24, Section 5.1], we obtain a bound on D

(1)
n .

Lemma 3.5. Assume that Is holds with p and α satisfying p > α+d
2 . There exist positive constants

Cα,q and Cα such that for any n ∈ N,

E[|D(1)
n |α] ≤ Cα,q

nα
+ Cα(n+ q)−

α
2 (2−2 max(H)∨1))),

where we recall that q is the number of linear transformations added to construct the augmented
process Xθ0 .

Proof. Decompose D
(1)
n as D

(1)
n ≤ D(11)

n +D
(12)
n where

D(11)
n := d

(
µθ0 ,

1

n

n−1∑
k=0

E[δ
X
θ0
kh

]

)
,

D(12)
n := d

(
1

n

n−1∑
k=0

E[δ
X
θ0
kh

],
1

n

n−1∑
k=0

δ
X
θ0
kh

)
.

The expectation of the random measure E[δXt ] is understood as a deterministic measure given by
E[δXt ](f) = E[f(Xt)] for any bounded measurable f .

Let us first bound D
(12)
n . Recall the concentration result [30, Theorem 2.3]: There exists a

constant C > 0 such that for dn(x, y) = 1
n

∑n−1
k=0 |xi−yi|, any Lipschitz functions F : ((Rd)n, dn)→

(R, | . |) and any r > 0,

P(FY − E(FY ) ≥ r) ≤ exp

(
−r

2n2−max(2H,1)

C ‖F‖2Lip

)
,

where FY = F (Yh, Y2h, ..., Ynh). Hence in view of E(Xα) =
∫∞

0
αxα−1P(X ≥ x)dx, we get that

E[|FY − E(FY )|α] ≤ Cα ‖F‖αLip n
−α2 (2−max(2H,1)),

for some positive constant Cα that depends on α. Using the definition of dCF,p, Jensen’s inequality
and the notation fχ(x) = ei〈χ,x〉, we get

E[|D(12
n )|α] ≤

∫
E

[∣∣∣∣∣ 1n
n−1∑
k=0

fχ(Xθ0
kh)− E(fχ(Xθ0

kh))

∣∣∣∣∣
α]

gp(χ)dχ.

Since ‖fχ‖Lip ≤ |χ|, we deduce by taking FY = F (Y θ0h , ..., Y θ0(n+q)h) = 1
n

∑n−1
k=0 fχ(Xθ0

kh) the follow-

ing bound on D
(12)
n :

E[|D(12)
n |α] ≤ Cα(n+ q)−

α
2 (2−max(2H,1))

∫
|χ|αgp(χ)dχ. (3.5)

The integral on the right-hand side is finite if we choose p > α+d
2 .
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We now bound D
(11)
n . Since Y θ converge exponentially fast to Ȳ θ as t→∞ (see (3.2)), and so

does Xθ towards X̄θ in view of (2.8), and since fχ is Lipschitz we have∣∣∣∣∣ 1n
n−1∑
k=0

Efχ
(
Xθ0
kh

)
− µθ0(fχ)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n−1∑
k=0

E
[
fχ

(
Xθ0
kh

)
− fχ

(
X̄θ0
kh

)]∣∣∣∣∣
≤ 1

n
‖fχ‖Lip

n−1∑
k=0

E
[∣∣∣Xθ0

kh − X̄
θ0
kh

∣∣∣] ≤ C

n
‖fχ‖Lip. (3.6)

Thus by the definition (2.1) of dCF,p, we get

d

(
µθ0 ,

1

n

n−1∑
k=0

E[δ
X
θ0
kh

]

)
≤ C

n
,

which leads to

E[|D(1,1)
n |α] ≤ C

nα
. (3.7)

We conclude the proof by combining the bounds (3.5) and (3.7).

4 A practical implementation of the estimators

In the formula (2.10), the stationary distribution is in general not known, except in some simple
cases like for Ornstein-Uhlenbeck processes. This means that the estimator cannot be computed in
practice. In this section, we solve this problem by considering numerical approximations of µθ. On
the other hand, this increases the complexity that is required to compute the estimator. However,
we still obtain similar results (consistency and rate of convergence).

4.1 Estimating the stationary distribution

To approximate µθ, we consider the Euler scheme of the stochastic process Y θ, solution to (2.5).

For a time-step γ > 0, the Euler scheme Y θ,γ is then defined by Y θ,γ0 = y0 ∈ Rd and

Y θ,γ(k+1)γ = Y θ,γkγ + γbθ(Y
θ,γ
kγ ) + σ(B̂(k+1)γ − B̂kγ)

Y θ,γt = Y θ,γtγ = Y θ,γkγ for t ∈ [kγ, (k + 1)γ),
(4.1)

where tγ = γbt/γc and B̂ is a simulated fractional Brownian motion, which is a priori different
from the process B in (2.5), since B is unobserved. In practice, this means that we will not be able
to compare pathwise the observed process and the simulated one. When necessary, to mark the

dependence of Y θ,γ· on B̂, we write Y θ,γ· (B̂). We will say that
(
Ȳ θ,γt

)
t≥0

is a discrete stationary

solution to (4.1) if it is a solution of (4.1) satisfying(
Ȳ θ,γt1+kγ , . . . , Ȳ

θ,γ
tn+kγ

)
L
=
(
Ȳ θ,γt1 , . . . , Ȳ θ,γtn

)
∀ 0 < t1 < · · · < tn, ∀n, k ∈ N.

By [24, Proposition 3.4], there exists γ0 > 0 such that for any γ ∈ (0, γ0] and θ ∈ Θ, (4.1) admits
a unique stationary solution Ȳ θ,γ . As in Section 2.1, we define the augmented Euler scheme Xθ,γ

by

Xθ,γ
· =

(
Y θ,γ· , `1(Y θ,γ· , Y θ,γ·+h), ...., `q(Y θ,γ· , ..., Y θ,γ·+qh)

)
.

Similarly, we write Xθ,γ
· (B̂) to insist on the dependence on B̂ when necessary. We also define

the stationary augmented Euler scheme X̄θ,γ and denote its distribution by µγθ . We construct the
estimator based on the following result (see Appendix C for the proof).

13



Proposition 4.1. Let (Xθ,γ
kγ )k≥0 be the augmented Euler scheme with time-step γ. Assume that

A0 and A1 hold. Then for any distance d ∈ D2, there exists γ0 > 0 such that for all θ ∈ Θ and
γ ∈ (0, γ0], we have

lim
N→∞

d

(
1

N

N−1∑
k=0

δXθ,γkγ
, µγθ

)
= 0.

In Proposition 4.5(i), we show that for any θ ∈ Θ, d(µθ, µ
γ
θ ) goes to 0 as γ → 0. This suggests

to define the estimator

θ̂N,n,γ = argmin
θ∈Θ

d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δXθ,γkγ

)
. (4.2)

4.2 Consistency and convergence results

Strong Consistency. The following result states the strong consistency of our estimators under
the assumptions A1, Iw and A0. We discuss its proof in this section and provide details in the
Appendix B.

Theorem 4.2. Consider a distance d onM1(Rd) which belongs to D2. Assume that the exponent r

in the sub-linear growth of bξ in (2.4) satisfies r ≤ 1. Then the family {θ̂N,n,γ , (n,N, γ) ∈ N2×R+}
is a strong consistent estimator of θ0 in the following sense:

lim
n→∞
N→∞
γ→0

θ̂N,n,γ = θ0 a.s.

To prove the strong consistency, we use again Proposition 3.1 with

Lr(θ) = d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δXθ,γkγ

)
,

this time with r = (N,n, γ). We will prove in Section 4.3 that the contrast Lr(θ) converges
uniformly as (n,N, γ) → (∞,∞, 0) to L(θ) = d(µθ, µθ0), by first proving pointwise convergence
and then using an equicontinuity argument. Since L(θ) is the same as in Section 3, we have by
Proposition 3.4 that L(θ) is continuous. Then we apply Proposition 3.1 to conclude.

Rate of Convergence. A rate of convergence is obtained for the estimators under the strong
identifiability assumption Is.

Theorem 4.3. Assume A1, A0 and Is for d = dCF,p with p > α+d
2 . Assume that the exponent

r in the sub-linear growth of bξ in (2.4) satisfies r ≤ 1. Let ε ∈ (0,min(H)) and let θ̂N,n,γ be the
estimator defined by (4.2). There exists positive constants C, γ0 such that for all γ ∈ (0, γ0] and
n,N ∈ N,

E
∣∣∣θ̂N,n,γ − θ0

∣∣∣2 ≤ C (n−1+max(H)∨ 1
2 +N−1+max(H)∨ 1

2 + γmin(H)−ε + (Nγ)−
βα2

2(βα+2d)
(2−2 max(H∨1))

)
.

Proof. To prove the convergence above, we proceed similarly as in Section 3.4. We decompose the
term Ed(µθ̂N,n,γ , µθ0)α slightly differently. First we use a triangle inequality to get the following

bound,

d
(
µθ0 , µθ̂N,n,γ

)
≤ d

(
µθ0 ,

1

n

n−1∑
k=0

δ
X
θ0
kh

)
+ d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δ
X
θ̂N,n,γ,γ

kγ

)

+ d

(
1

N

N−1∑
k=0

δ
X
θ̂N,n,γ,γ

kγ

, µθ̂N,n,γ

)
.
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Now, notice that since θ̂N,n,γ minimizes the function θ 7→ d
(

1
n

∑n−1
k=0 δXθ0kh

, 1
N

∑N−1
k=0 δXθ,γkγ

)
, we

can further bound d(µθ0 , µθ̂N,n,γ ) as

d
(
µθ0 , µθ̂N,n,γ

)
≤ d

(
µθ0 ,

1

n

n−1∑
k=0

δ
X
θ0
kh

)
+ d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

)

+ sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δXθ,γkγ
, µθ

)
. (4.3)

To allow pathwise comparison, let us define the following processes. For any θ ∈ Θ, define Y θ,γ· (B),

an Euler scheme of Y θ, computed with the same fBm B. Namely, Y θ,γ· (B) is defined by (4.1) where

B̂ is replaced by B. Similarly as in Section 2.1, we define Xθ,γ(B) by,

Xθ,γ(B) =
(
Y θ,γ· (B)., `1(Y θ,γ· (B), Y θ,γ·+h(B)), ...., `q(Y θ,γ· (B)., ..., Y θ,γ·+qh(B))

)
.

We also define Y (B̂) which is the solution to (2.5) with the fBm B̂, and similarly we define X(B̂).

Now, we can do pathwise comparison between Xθ and Xθ,γ(B), and between Xθ,γ and Xθ(B̂).

Bounding the second term in (4.3). We split the second term in the right hand side of (4.3)
as follows

d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

)
≤ d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ0

)
+ d

(
µθ0 ,

1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

)

+ d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

)
. (4.4)

Furthermore, we split the last term above as,

d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

)
≤ d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ (B)

)
+ d

(
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ (B)
, µθ0

)

+ d

(
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

, µθ0

)
.

Moreover,

d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

)
≤ 2d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ (B)

)
+ d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

, µθ0

)

+ d

(
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

,
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

)
+ d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

, µθ0

)
.

Injecting the above bound into (4.4), we get

d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δ
L
θ0
kγ

)
≤ d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ0

)
+ 2d

(
µθ0 ,

1

N

N−1∑
k=0

δ
X
θ0
kγ

)
+ d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

, µθ0

)

+ 2d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ (B)

)
+ d

(
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

,
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

)
.

(4.5)

15



Bounding the third term in (4.3). We split the third term in (4.3) as follows

sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δXθ,γkγ
, µθ

)
≤ sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δXθ,γkγ
,

1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

)
+ sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

, µθ

)
.

(4.6)

Final bound on d
(
µθ0 , µθ̂N,n,γ

)
. Using (4.5) and (4.6) in (4.3), we get

d
(
µθ0 , µθ̂N,n,γ

)
≤ 2d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ0

)
+ 2d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

, µθ0

)
+ d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

, µθ0

)

+ sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

, µθ

)

+ 2 sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ (B)

)
+ 2 sup

θ∈Θ
d

(
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

,
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

)
.

(4.7)

The first three terms on the right-hand side can be bounded exactly as the term D
(11)
n in the proof

of Lemma 3.5, we get

d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ0

)
≤ Cα, q

nα
+ Cα(n+ q)−

α
2 (2−2 max(H)∨1)) (4.8)

d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

, µθ0

)
≤ Cα, q

Nα
+ Cα(N + q)−

α
2 (2−2 max(H)∨1)) (4.9)

d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

, µθ0

)
≤ Cα, q

Nα
+ Cα(N + q)−

α
2 (2−2 max(H)∨1)). (4.10)

Remark 4.4. For the term d
(

1
N

∑N−1
k=0 δ

X
θ0
kγ(B̂)

, µθ0

)
, notice that µθ0 is also the law of X̄θ0,B̂,

the stationary augmented process associated to (1.1) with the fBm B̂ instead of B, so (3.6) in the
proof of Lemma 3.5 still holds since we compare two solutions with the same noise, and therefore
we know that they converge exponentially to each other as t→∞ by Proposition 3.3.

Let us define

D
(21)
N,γ (θ) := d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ (B)

)

D
(22)
N,γ (θ) := d

(
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

,
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

)

D
(3)
N,γ(θ) := d

(
1

N

N−1∑
k=0

δXθkγ(B̂), µθ

)
.

(4.11)

In Section 4.4, we show how to bound the moments of supθ∈ΘD
(21)
N,γ (θ), supθ∈ΘD

(22)
N,γ (θ) and

supθ∈ΘD
(3)
N,γ(θ). Namely, we prove that for any ε < αmin(H) and any $ ∈ (0, 1), there exist
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constants Cα,ε and Cα,ε,$ such that for any N and γ ≤ γ0, the following bounds hold:

E sup
θ∈Θ

∣∣∣D(21)
N,γ (θ)

∣∣∣α ≤ Cα,εγαmin(H)−ε (4.12)

E sup
θ∈Θ

∣∣∣D(22)
N,γ (θ)

∣∣∣α ≤ Cα,εγαmin(H)−ε (4.13)

E sup
θ∈Θ

∣∣∣D(3)
N,γ(θ)

∣∣∣α ≤ Cα,ε,$ (γαmin(H)−ε + T−η̄
)
, (4.14)

with η̄ = $α2

2(α$+2d) (2 − (2 max(H) ∨ 1)) and T = Nγ. Injecting the bounds (4.8), (4.9), (4.10),

(4.12), (4.13) and (4.14) into the decomposition (4.7) concludes the proof.

4.3 Proof of Theorem 4.2

As explained after Theorem 4.2, we just have to prove the uniform convergence of the contrast

(N,n, γ) 7→ d
(

1
n

∑n−1
k=0 δXθ0kh

, 1
N

∑N−1
k=0 δXθ,γkγ

)
towards d(µθ0 , µθ). First we prove that almost surely,

we have convergence as (n,N, γ)→ (∞,∞, 0) for each fixed θ. We have already proved in Section

3.2 that d( 1
n

∑n−1
k=0 δXθ0kh

, µθ) converges to d(µθ0 , µθ) as n goes to infinity. By Proposition 4.1, we

have that d( 1
N

∑N−1
k=0 δXθ,γkγ

, µγθ ) converges to 0 as N →∞. Finally, we prove in Proposition 4.5(i)

that d(µθ, µ
γ
θ ) converges to 0 as γ → 0. Therefore we conclude that

d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δXθ,γkγ

)
−→

(n,N,γ)→(∞,∞,0)
d(µθ0 , µθ).

We extend the convergence result to a uniform convergence in θ in the following Proposition.

Proposition 4.5. Let 0 < p ≤ 2 and d ∈ Dp. Under the assumptions A1, Iw, A0, there exists
γ0 > 0 such that for all γ ∈ (0, γ0], the following assertions hold true.

(i) lim
γ→0

sup
θ∈Θ

d(µθ, µ
γ
θ ) = 0.

(ii) lim
N→∞

sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δXθ,γkγ
, µγθ

)
= 0.

(iii) lim
γ→0

lim
n,N→∞

sup
θ∈Θ

∣∣∣∣∣d
(

1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δXθ,γkγ

)
− d(µθ0 , µθ)

∣∣∣∣∣ = 0.

Proof. Notice that (iii) is a simple consequence of the previous statements (i) and (ii).

Proof of (i). By the triangle inequality we have

d(µθ, µ
γ
θ ) ≤ d(µθ,L(Xθ

Nγ)) + d(µγθ ,L(Xθ,γ
Nγ)) + d(L(Xθ,γ

Nγ),L(Xθ
Nγ)).

Since d is bounded by the 2-Wasserstein distance, for all N ≥ 1 we have

d(µθ, µ
γ
θ ) ≤ W2(µθ,L(Xθ

Nγ)) +W2(µγθ ,L(Xθ,γ
Nγ)) +W2(L(Xθ,γ

Nγ),L(Xθ
Nγ))

=: W (1) +W (2) +W (3). (4.15)

As for W (1), we have

W (1) =W2(µθ,L(Xθ
Nγ)) ≤

(
E|Xθ

Nγ − X̄θ
Nγ |2

) 1
2 .
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By Proposition 3.3, the right-hand side term converges to 0 as N → ∞ uniformly in θ. We now
look at the second term:

W (2) =W2(µγθ ,L(Xθ,γ
Nγ)) ≤

(
E|X̄θ,γ

Nγ −X
θ,γ
Nγ |

2
) 1

2

≤ Cq
q∑
i=0

(
E|Ȳ θ,γNγ+ih − Y

θ,γ
Nγ+ih|

2
) 1

2

. (4.16)

By [24, Equation (4.2)], we have for any k ∈ N,∣∣∣Ȳ θ,γkγ − Y
θ,γ
kγ

∣∣∣2 ≤ (1− 2γβ + γ2K2
)k ∣∣∣Ȳ θ,γ0 − Y θ,γ0

∣∣∣2 . (4.17)

Furthermore, for any i ∈ J0, qK, there exists j ∈ N such that Y θ,γNγ+ih = Y θ,γjγ and Ȳ θ,γNγ+ih = Ȳ θ,γjγ .
Therefore, the bound (4.17) holds for all the terms in (4.16). We conclude that there exists γ0 > 0,
such that for γ ≤ γ0, the second term goes to 0 uniformly in θ when N → ∞. Now for the last
term in (4.15), by definition of the Wasserstein distance, we have

W (3) =W2(L(Xθ
Nγ),L(Xθ,γ

Nγ)) ≤
(
E|Xθ

Nγ −X
θ,γ
Nγ(B)|2

) 1
2

≤ Cq
q∑
i=0

(
E|Y θNγ+ih − Y

θ,γ
Nγ+ih(B)|2

) 1
2

.

In [24, Proposition 3.7 (i)], it was proved that there exists positive constants C and ρ that depend
only the Lipschitz constant K from A1 such that for any m ∈ N,

|Y θmγ − Y θ,γmγ (B)|2 ≤ C
m−1∑
j=0

φj(Y
θ,γ
jγ (B))e−ργ(m−j+1),

where

φj(z) = γ3|bξ(z)|2 +

∫ γ

0

|Bjγ+t −Bjγ |2dt.

Note that this pathwise comparison is possible because the two processes are defined with the same
noise B. Since bξ is uniformly sub-linear, it follows that

|Y θmγ − Y θ,γmγ (B)|2 ≤ C
m−1∑
j=0

(
γ3(1 + |Y θ,γjγ (B)|2r) +

∫ γ

0

|Bjγ+t −Bjγ |2dt
)
e−ργ(m−j+1). (4.18)

Now for i ∈ J0, qK and k ∈ N, since the process Y θ,γ is constant over intervals of size γ, we can
always write

Y θkγ+ih − Y
θ,γ
kγ+ih(B) =

(
Y θ(kγ+ih)γ+εk,i

− Y θ(kγ+ih)γ

)
+
(
Y θ(kγ+ih)γ

− Y θ,γ(kγ+ih)γ
(B)

)
, (4.19)

where
εk,i = kγ + ih− (kγ + ih)γ < γ.

For the first term in (4.19), using the sub-linear growth of b, we write

|Y θ(kγ+ih)γ+εk,i
− Y θ(kγ+ih)γγ

| ≤ C

(∫ (kγ+ih)γ+ε

(kγ+ih)γ

(1 + |Y θs |r)ds+ |B(kγ+ih)γ+εk,i −B(kγ+ih)γ |

)
.

It follows from Jensen’s inequality that

|Y θj(kγ+ih)γ+εk,i
− Y θ(kγ+ih)γγ

|2 ≤ C

(
εk,i

∫ (kγ+ih)γ+εk,i

(kγ+ih)γ

(1 + |Y θs |2r)ds+ |B(kγ+ih)γ+εk,i −B(kγ+ih)γ |
2

)
.

(4.20)
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The second term in (4.19) can be bounded using (4.18) with m ≡ (kγ+ih)γ
γ . Combining this and

(4.20) in (4.19), we get that for any k ∈ N,

q∑
i=0

|Y θkγ+ih − Y
θ,γ
kγ+ih(B)|2 ≤ C

q∑
i=0

γ

∫ (kγ+ih)γ+εk,i

(kγ+ih)γ

(1 + |Y θs |2r)ds+ |B(kγ+ih)γ+εk,i −B(kγ+ih)γ |
2

+ C

q∑
i=0

b kγ+ih
γ c−1∑
j=0

(
γ2(1 + |Y θ,γjγ (B)|2r) + γ−1

∫ γ

0

|Bjγ+t −Bjγ |2dt
)
γe−ρ(b

kγ+ih
γ c−j+1).

(4.21)

Taking the expectation, using

lim sup
n→∞
γ→0

γ

n∑
j=0

e−ρ(n−j+1) < +∞ and r ≤ 1,

we get

sup
θ∈Θ,γ∈(0,γ0)

lim sup
k→∞

γ−2 max(H)

q∑
i=0

E
∣∣∣Y θNγ+ih − Y

θ,γ
Nγ+ih(B)

∣∣∣2
≤ C

(
1 + sup

θ∈Θ,γ∈(0,γ0)

lim sup
k→∞

E|Y θ,γkγ (B)|2r + sup
θ∈Θ

lim sup
t→∞

E|Y θt |2r
)
.

Using Proposition B.2(i) and Proposition B.1(i), it follows that there exists γ0 such that for γ ≤ γ0,
the right-hand side is finite. This conclude the proof of (i).

Proof of (ii). We already know that the convergence is true for fixed θ. In order to extend the

result to uniform convergence, we show that the family {θ 7→ d( 1
N

∑N
k=0 δXθ,γkγ

, µγθ );N ≥ 1; θ ∈ Θ}
is equicontinuous for a fixed γ ∈ (0, γ0]. For some give θ1 and θ2 in Θ, there is∣∣∣∣∣d
(

1

N

N−1∑
k=0

δ
X
θ1,γ

kγ

, µγθ1

)
− d

(
1

N

N−1∑
k=0

δ
X
θ2,γ

kγ

, µγθ2

)∣∣∣∣∣ ≤ d(µγθ1 , µ
γ
θ2

)+d

(
1

N

N−1∑
k=0

δ
X
θ1,γ

kγ

,
1

N

N−1∑
k=0

δ
X
θ2,γ

kγ

)
.

Decompose the second term to get

d

(
1

N

N−1∑
k=0

δ
X
θ1,γ

kγ

,
1

N

N−1∑
k=0

δ
X
θ2,γ

kγ

)2

≤ CW2

(
1

N

N−1∑
k=0

δ
X
θ1,γ

kγ

,
1

N

N−1∑
k=0

δ
X
θ2,γ

kγ

)2

≤ C 1

N

N−1∑
k=0

|Xθ1,γ
kγ −X

θ2,γ
kγ |

2

≤ Cq
1

N

N−1∑
k=0

q∑
i=0

|Y θ1,γkγ+ih − Y
θ2,γ
kγ+ih|

2

≤ Cq
q∑
i=0

1

N

N−1∑
k=0

|Y θ1,γkγ+ih − Y
θ2,γ
kγ+ih|

2.

Let β ∈ (0, 1) and p ≥ 1. By Proposition B.3, we get that there exists a random variable C with
finite moments of order p such that for all θ1, θ2 ∈ Θ,

1

N

N−1∑
k=0

|Y θ1,γkγ − Y θ2,γkγ |
2 ≤ C

(
1 ∧ |θ1 − θ2|β

)
.
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These results still hold when we replace Y θ,γkγ by Y θ,γkγ+ih, since we compare two piecewise constant

processes. Therefore, we have that d( 1
N

∑N−1
k=0 δ

X
θ1,γ

kγ

, 1
N

∑N−1
k=0 δ

X
θ2,γ

kγ

) goes to 0 as |θ1 − θ2| → 0

uniformly in N . The same goes for d(µγθ1 , µ
γ
θ2

) by taking the limit N → ∞. This concludes the
proof of the equicontinuity and therefore the proof of (ii).

4.4 Proof of the bounds (4.12), (4.13) and (4.14)

We prove here the bounds (4.12), (4.13) and (4.14) on D
(21)
N,γ , D

(22)
N,γ and D

(3)
N,γ that were defined in

(4.11). In this Section, d always refer to the distance dCF,p.

Proposition 4.6. Recall that α is the exponent in the strong identifiability assumption Is. Assume
that the exponent r in the sub-linear growth of bξ in (2.4) satisfies r ≤ 1. For any ε ∈ (0, αmin(H))
and any $ ∈ (0, 1), there exists constants Cα,ε > 0 and Cα,ε,$ > 0 such that for all γ ∈ (0, γ0] and
N ≥ 1,

E sup
θ∈Θ

∣∣∣D(21)
N,γ (θ)

∣∣∣α ≤ Cα,εγαmin(H)−ε

E sup
θ∈Θ

∣∣∣D(22)
N,γ (θ)

∣∣∣α ≤ Cα,εγαmin(H)−ε

E sup
θ∈Θ

∣∣∣D(3)
N,γ(θ)

∣∣∣α ≤ Cα,ε,$ (γαmin(H)−ε + (Nγ)−
$α2

2(α$+2d)
(2−(2 max(H)∨1))

)
.

Proof. First, observe that in both the terms D
(21)
N,γ and D

(22)
N,γ we compare a solution of an SDE

with its respective Euler scheme, where both processes are defined with the same noise B. This

allows us to do a pathwise comparison. We only detail the bound on D
(21)
N,γ , the bound on D

(22)
N,γ

can be obtained in the same way. Since dCF,p is an element of D1, we have:

sup
θ∈Θ

D
(21)
N,γ (θ) ≤ 1

N

N−1∑
k=0

sup
θ∈Θ
|Xθ

kγ −X
θ,γ
kγ (B)|

≤ Cq
q∑
i=0

1

N

N−1∑
k=0

sup
θ∈Θ
|Y θkγ+ih − Y

θ,γ
kγ+ih(B)|.

Recall that α ≥ 2 in Is. Hence, an application of Jensen’s inequality gives

E sup
θ∈Θ

D
(21)
N,γ (θ)α ≤ Cq,α

q∑
i=0

E

[
sup
θ∈Θ

1

N

N−1∑
k=0

|Y θkγ+ih − Y
θ,γ
kγ+ih(B)|α

]
Define

I :=

q∑
i=0

sup
θ∈Θ

1

N

N−1∑
k=0

|Y θkγ+ih − Y
θ,γ
kγ+ih(B)|2.

We will first provide a bound on I. Using (4.21), we have

q∑
i=0

|Y θkγ+ih − Y
θ,γ
kγ+ih(B)|2

≤ C
q∑
i=0

(
γ

∫ (kγ+ih)γ+εk,i

(kγ+ih)γ

(1 + |Y θs |2r)ds+ |B(kγ+ih)γ+εk,i −B(kγ+ih)γ |
2

)

+ C

q∑
i=0

( b kγ+ih
γ c−1∑
j=0

(
γ2(1 + |Y θ,γjγ (B)|2r) + γ−1

∫ γ

0

|Bjγ+t −Bjγ |2dt
)
γe−ρ(b

kγ+ih
γ c−j+1)

)

=: C

q∑
i=0

(I1,k + I2,k + I3,k + I4,k) , (4.22)
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So we have

I ≤ sup
θ∈Θ

1

N

N−1∑
k=0

(I1,k + I2,k + I3,k + I4,k) .

Let us provide uniform bounds in θ on the sum over k of the terms I1,k, I2,k, I3,k, I4,k. First we
have

1

N

N−1∑
k=0

I1,k ≤
1

N

∫ (Nγ+ih)γ

(ih)γ

γ(1 + |Y θs |2r)ds

≤ γ

N

∫ Nγ+ih

ih

(1 + |Y θs |2r)ds+
γ

N

∫ ih

(ih)γ

(1 + |Y θs |2r)ds

≤ γ

N

∫ Nγ+ih

ih

(1 + |Y θs |2r)ds+ 2γ21i 6=0

ih

∫ ih

0

(1 + |Y θs |2r)ds

≤ γ2

Nγ

∫ Nγ

0

(1 + |Y θs+ih|2r)ds+ 2γ21i 6=0

ih

∫ ih

0

(1 + |Y θs |2r)ds. (4.23)

For I3,k, we write

1

N

N−1∑
k=0

I3,k ≤ C
γ2

N
sup
θ∈Θ

bNγ+ih
γ c−1∑
k=0

(1 + |Y θ,γkγ (B)|2r)

≤ C γ

N
sup
θ∈Θ

∫ (Nγ+ih)γ−γ

0

(1 + |Y θ,γtγ (B)|2r)

≤ C γ

N
sup
θ∈Θ

∫ Nγ−γ

0

(1 + |Y θ,γtγ+ih
(B)|2r) + C1i 6=0

γ

N
sup
θ∈Θ

∫ ih

0

(1 + |Y θ,γtγ (B)|2r)

≤ C γ

N
sup
θ∈Θ

∫ Nγ−γ

0

(1 + |Y θ,γtγ+ih
(B)|2r) + C1i 6=0

γ

N
sup
θ∈Θ

1

ih

∫ ih

0

(1 + |Y θ,γtγ (B)|2r)

≤ C γ2

Nγ
sup
θ∈Θ

∫ Nγ

0

(1 + |Y θ,γtγ+ih
(B)|2r) + C

γ2

Nγ
sup
θ∈Θ

1i6=0

ih

∫ ih

0

(1 + |Y θ,γtγ (B)|2r). (4.24)

For I4,k we have

1

N

N−1∑
k=0

I4,k ≤
1

N

bNγ+ih
γ c−1∑
k=0

γ−1

∫ γ

0

|Bkγ+t −Bkγ |2dt

≤ γ−2

N

∫ Nγ+ih−γ

0

(∫ γ

0

|Bsγ+t −Bsγ |2dt
)
ds

≤ 1

Nγ

∫ ih

0

(
γ−1

∫ γ

0

|Bsγ+t −Bsγ |2dt
)
ds+

1

Nγ

∫ Nγ

0

(
γ−1

∫ γ

0

|Bsγ+ih+t −Bsγ+ih|2dt
)
ds.

(4.25)

Therefore, using (4.23), (4.24), (4.25) in (4.22), we get

I ≤ C
q∑
i=0

(
sup
θ∈Θ

γ2

Nγ

∫ Nγ

0

(1 + |Y θs+ih|2r)ds+ 2 sup
θ∈Θ

γ21i 6=0

ih

∫ ih

0

(1 + |Y θs |2r)ds

+ C
γ2

Nγ
sup
θ∈Θ

∫ Nγ

0

(1 + |Y θ,γtγ+ih
(B)|2r) + C

γ2

Nγ
sup
θ∈Θ

1i 6=0

ih

∫ ih

0

(1 + |Y θ,γtγ (B)|2r)

+
1

Nγ

∫ ih

0

(
γ−1

∫ γ

0

sup
θ∈Θ
|Bsγ+t −Bsγ |2dt

)
ds+

1

Nγ

∫ Nγ

0

(
γ−1

∫ γ

0

sup
θ∈Θ
|Bsγ+ih+t −Bsγ+ih|2dt

)
ds

+
1

N

N−1∑
k=0

sup
θ∈Θ
|B(kγ+ih)γ+εk,i −B(kγ+ih)γ |

2

)
.
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Since Nγ ≥ 1 and εk,i < γ, Using Jensen’s inequality (α/2 ≥ 1) and taking the expectation, we
get by applying [14, Proposition 3.5] that for ε ∈ (0, αmin(H)),

E[Iα/2] ≤ Cq
q∑
i=0

(
E

[
sup
θ∈Θ

1

Nγ

∫ Nγ

0

(1 + |Y θs+ih|2r)ds

]α/2
+ 2γ2E

[
sup
θ∈Θ

1i 6=0

ih

∫ ih

0

(1 + |Y θs |2r)ds

]α/2

+ Cγ2E

[
1

Nγ
sup
θ∈Θ

∫ Nγ

0

(1 + |Y θ,γtγ+ih
(B)|2r)

]α/2
+ Cγ2E

[
sup
θ∈Θ

1i 6=0

ih

∫ ih

0

(1 + |Y θ,γtγ (B)|2r)

]α/2

+ γαmin(H)−ε +
1

Nγ

∫ Nγ

0

γαmin(H)−ε ds+
1

N

N−1∑
k=0

γαmin(H)−ε

)

≤ Cq
q∑
i=0

(
E

[
sup
θ∈Θ

1

Nγ

∫ Nγ

0

|Y θs+ih|2rds

]α/2
+ 2γ2E

[
sup
θ∈Θ

1i 6=0

ih

∫ ih

0

|Y θs |2rds

]α/2

+ Cγ2E

[
1

Nγ
sup
θ∈Θ

∫ Nγ

0

|Y θ,γtγ+ih
(B)|2r

]α/2
+ Cγ2E

[
sup
θ∈Θ

1i 6=0

ih

∫ ih

0

|Y θ,γtγ (B)|2r
]α/2

+ γα + γαmin(H)−ε

)
.

By Proposition B.1(iii), Proposition B.2(ii) and since r ≤ 1, we have that the quantities

E

[
sup
θ∈Θ

1

Nγ

∫ Nγ

0

|Y θs |2rds

]α/2
,E

[
1

Nγ
sup
θ∈Θ

∫ Nγ

0

|Y θ,γtγ (B)|2r
]α/2

,

are finite uniformly in N and γ. One can check that the result still holds when the process is shifted
by ih since the shifted process is still solution of an SDE that satisfies the necessary assumptions.
Therefore, for ε ∈ (0, αmax(H)),

E[Iα/2] ≤ Cγαmin(H)−ε.

We conclude by observing that by Jensen’s inequality

I ≥
q∑
i=0

(
sup
θ∈Θ

1

N

N−1∑
k=0

|Y θkγ+ih − Y
θ,γ
kγ+ih(B)|

)2

≥ C

(
q∑
i=0

sup
θ∈Θ

1

N

N−1∑
k=0

|Y θkγ+ih − Y
θ,γ
kγ+ih(B)|

)2

.

Hence

E sup
θ∈Θ

D
(21)
N,γ (θ)α ≤ CE[Iα/2] ≤ Cγαmin(H)−ε. (4.26)

Consider now D
(3)
N,γ(θ), which we recall is given by D

(3)
N,γ(θ) = d( 1

N

∑N−1
k=0 δXθkγ(B̂), µθ). Since

µθ is also the stationary law of the process Xθ(B̂), we drop the dependence on B̂ for the rest of the
proof. This quantity is the hardest to handle, due to the fact that we wish to achieve a uniform
bound in θ. We first start with the following decomposition:

sup
θ∈Θ

D
(3)
N,γ(θ) ≤ sup

θ∈Θ
D

(31)
N,γ (θ) + sup

θ∈Θ
D

(32)
N,γ (θ),
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where, noticing that 1
N

∑N−1
k=0 δXθkγ = 1

T

∫ T
0
δXθtγ

dt for T = Nγ,

D
(31)
N,γ (θ) = d

(
µθ,

1

T

∫ T

0

δXθt dt

)

D
(32)
N,γ (θ) = d

(
1

T

∫ T

0

δXθt dt,
1

T

∫ T

0

δXθtγ
dt

)
.

Bound on supθ∈ΘD
(32)
N,γ (θ). Similar arguments as before lead to

E sup
θ∈Θ

D
(32)
N,γ (θ)α ≤ Cq,α

q∑
i=0

1

T

∫ T

0

sup
θ∈Θ
|Y θt+ih − Y θtγ+ih|α dt.

We will show how to bound the quantity above for i = 0. The same arguments can be used for
any value of i. Since Y θ is a solution of (2.5), it follows by triangle inequality that

|Y θt − Y θtγ | ≤
∫ t

tγ

|bξ(Y θs )|ds+ |σ||Bt −Btγ |.

Moreover, using Jensen’s inequality and integrating over t, we have

1

T

∫ T

0

|Y θt − Y θtγ |
α dt ≤ γα−1 1

T

∫ T

0

∫ t

tγ

|bξ(Y θs )| ds dt+ |σ|α 1

T

∫ T

0

|Bt −Btγ |αdt.

Integrating over t first, we get that

1

T

∫ T

0

|Y θt − Y θtγ |
α dt ≤ γα 1

T

∫ T

0

|bξ(Y θs )|ds+ |σ|α 1

T

∫ T

0

|Bt −Btγ |αdt.

The drift term above is bounded thanks to the sublinear growth of bξ given by (2.4) and the
uniform bounds on the Lq moments of Y θt given in Proposition B.1 (ii). As for the term |Bt−Btγ |,
we have thanks to [14, Proposition 3.5] that for all ε > 0,

E
(

sup
H∈H

|Bt −Btγ |α
)
≤ Cγαmin(H)−ε.

From here, it is readily checked that

E

(
sup
θ∈Θ

1

T

∫ T

0

|Y θt − Y θtγ |
αdt

)
≤ Cγαmin(H)−ε.

Bound on D
(31)
N,γ (θ). The quantity D

(31)
N,γ (θ) can be handled the same way as D

(1)
n in the proof

of Lemma 3.5. Namely, we get that

ED(31)
N,γ (θ)α ≤ Cα

(
T−α + T−

α
2 (2−max(2 max(H),1)

)
. (4.27)

The hardest part is to obtain a bound on the supremum of D
(31)
N,γ (θ) over θ.

Bound on supθ∈ΘD
(31)
N,γ (θ). Let ϕ(θ) = d(µθ,

1
T

∫ T
0
δXθt dt). In order to obtain a bound for the

supremum over Θ, we discretise the parameter space Θ. Let ε > 0 and Θ(ε) :=
{
θ

(ε)
i | 1 6 i 6Mε

}
such that Θ ⊂

⋃Mε

i=1B
(
θ

(ε)
i , ε

)
for some points θ

(ε)
i in Θ. Then, for any θ ∈ Θ,

ϕ(θ) 6 |ϕ(θ)− ϕ (θε)|+ |ϕ (θε)| ,
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where θε := argmin
θ′∈

{
θ
(ε)
i

} |θ′ − θ|. Therefore

ϕ(θ) ≤ |ϕ(θ)− ϕ (θε)|+ max
1≤i≤Mε

∣∣∣ϕ(θ(ε)
i

)∣∣∣ .
Using (4.27), we have

E sup
θ∈Θ

ϕ(θ)α ≤ Cα
(
E sup
θ∈Θ
|ϕ(θ)− ϕ(θε)|α +Mε

(
T−α + T−

α
2 (2−max(2 max(H),1)

))
.

Let us split the quantity |ϕ(θ)− ϕ(θε)| in two terms:

|ϕ(θ)− ϕ(θε)| ≤ d(µθ, µθε) + d

(
1

T

∫ T

0

δXθt dt,
1

T

∫ T

0

δXθεt
dt

)
.

Since d belongs to D2, the second term in the right-hand side yields

d

(
1

T

∫ T

0

δXθt dt,
1

T

∫ T

0

δXθεt
dt

)
≤ Cq

q∑
i=0

1

T

∫ T

0

|Y θt+ih − Y
θε
t+ih|

2dt.

For $ ∈ (0, 1), Proposition B.3 yields that there exists a random variable C with finite moments
such that

1

T

∫ T

0

|Y θt − Y
θε
t |2dt ≤ C|θ − θε|

$
2 .

This bound still holds if Yt is replaced by Yt+ih since

1

T

∫ T

0

|Y θt+ih − Y
θε
t+ih|

2dt ≤ T + ih

T

1

T + ih

∫ T+ih

0

|Y θt − Y
θε
t |2dt.

Overall, we get

d

(
1

T

∫ T

0

δXθt dt,
1

T

∫ T

0

δXθεt
dt

)
≤ Cq|θ − θε|

$
2 ,

where Cq is a random variable that has a finite moments. By letting T go to infinity, we obtain a
similar bound for d(µθ, µθε). It follows that

d

(
1

T

∫ T

0

δXθt dt,
1

T

∫ T

0

δXθεt
dt

)α
≤ Cα

q |θ − θε|
α$
2 .

Hence we have obtained

E sup
θ∈Θ

ϕ(θ)α ≤ Cα,q,$
(
ε
α$
2 +Mε

(
T−α + T−

α
2 (2−max(2 max(H),1)

))
.

Choosing Mε ≤ C
εd

and ε = T−χ for some χ > 0, we have that

E sup
θ∈Θ

ϕ(θ)α ≤ Cα,q,$
(
T−χα

$
2 + T−

α
2 (2−max(2 max(H),1)+χd

)
.

Finally we optimize over χ to get

E sup
θ∈Θ

ϕ(θ)α ≤ Cα,q,$T−η̄,

for η̄ = $α2

2(α$+2d) (2− (2 max(H) ∨ 1)).
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5 Fractional Ornstein-Uhlenbeck processes

We first study the identifiability assumption for the fractional Ornstein-Uhlenbeck (OU) process
in Section 5.1, then a family of small perturbations of the fractional OU process in Section 5.2,
and finally, in Section 5.3 we provide some numerical experiments to illustrate our main results.

5.1 Identifiability assumption

In this section, we provide an example of equation (1.1) for which the crucial assumption Is is
satisfied. More specifically, we consider the one-dimensional fractional Ornstein-Uhlenbeck process
given by

dUθ = −ξUθdt+ σdB
Uθ0 = 0.

(5.1)

For simplicity reasons, we consider that the linear transformations `i are increments of the form

`1(Uθ· , ..., U
θ
.+ih) = Uθ.+ih − Uθ·

We suppose here that θ is of dimension 2, i.e. only two parameters are unknown. We prove the
following result.

Proposition 5.1. Consider the fractional Ornstein-Uhlenbeck model defined by equation (5.1) and
assume that one of the parameters ξ, σ or H is known. Let µθ denote the stationary measure of
(Uθ· , U

θ
·+h − Uθ· ), then there exists h0 > 0 such that for all h < h0, we have

∀θ1, θ2 ∈ Θ, d(µθ1 , µθ2) = 0 iff θ1 = θ2.

The proof is given in Section 5.1.1 and is based on proving the injectivity of a specific function.
This is stated in the following Lemma (the proof is given in Section 5.1.2 and Appendix D).

Lemma 5.2. Assume one of the three cases θ = (ξ,H), θ = (ξ, σ) or θ = (H,σ), then the function
f defined by

f : θ →

(
σ2HΓ(2H)ξ−2H

σ2Γ(2H + 1) sin(πH)
π

∫∞
0

cos(hx)x
1−2H

ξ2+x2 dx

)
(5.2)

is one-to-one.

The computations done in this Section to prove the Proposition above can be generalized to
the case when Uθ is a higher-dimensional fractional Ornstein-Uhlenbeck process with σ a multiple
of the identity matrix.

5.1.1 Simplification of the problem: proof of Proposition 5.1

For the fractional Ornstein-Uhlenbeck process, the stationary measure is known to be Gaussian
(see [5, Eq (2.2)]) and is given by

N (0, σ2HΓ(2H)ξ−2H). (5.3)

Furthermore, the processes Ūθ.+ih are also Gaussian with the same law. The interaction of such
processes is thus described by the covariance matrix, given by (see [5] for example):

E(Ūθt Ū
θ
t+ih) = σ2 Γ(2H + 1) sin(πH)

π

∫ ∞
0

cos(ihx)
x1−2H

ξ2 + x2
dx. (5.4)

Now for θ1, θ2 in Θ, there is

dCF,2(µθ1 , µθ2)2 =

∫
R2

(
Eei〈χ,(Ū

θ1
t ,Ū

θ1
t+h−Ū

θ1
t )〉 − Eei〈χ,(Ū

θ2
t ,Ū

θ2
t+h−Ū

θ2
t )〉
)2

g(χ)dχ.
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Since the process (Ūθ· , Ū
θ
·+h − Ūθ· ) is Gaussian and stationary, it comes:

dCF (µθ1 , µθ2) = 0 iff
E(Ūθ10 )2 = E(Ūθ20 )2

E
(
Ūθ10 (Ūθ1h − Ū

θ1
0 )
)

= E
(
Ūθ20 (Ūθ2h − Ū

θ2
0 )
)

which now reads

dCF (µθ1 , µθ2) = 0 iff
E(Ūθ10 )2 = E(Ūθ20 )2

E
(
Ūθ10 Ūθ1h

)
= E

(
Ūθ20 Ūθ2h

) .

In view of (5.3) and (5.4), assumption Iw becomes equivalent to the injectivity of the function
f defined in (5.2), which is therefore given by Lemma 5.2.

Remark 5.3. In [13], the authors studied fractional OU processes and proposed a similar estimator
for (H, ξ, σ) simultaneously. Similar to our case, for a strong consistency argument to hold, they
are left to study the injectivity of:

f : (ξ,H, σ)→

 σ2HΓ(2H)ξ−2H

σ2Γ(2H + 1) sin(πH)
π

∫∞
0

cos(hx)x
1−2H

ξ2+x2 dx

σ2Γ(2H + 1) sin(πH)
π

∫∞
0

cos(2hx)x
1−2H

ξ2+x2 dx

 is injective.

However, they did not prove the injectivity but provide numerical arguments that support their
claim. Although, in our case, we deal with an easier problem (we estimate only two parameters),
we manage to prove the injectivity of f .

5.1.2 Injectivity of f : proof of Lemma 5.2

When θ = (ξ,H) (only σ is known), the proof of the injectivity of f and therefore of the identi-
fiability assumption (2.9) is done in Appendix D (due to the length and technical details of the
proof). We know consider consider the cases θ = (H,σ) and θ = (ξ, σ) and prove the injectivity of
f .

The case θ = (H,σ). Let (a, b) in Im(f), we will show that the equation

a = σ2HΓ(2H)ξ−2H

b = σ2Γ(2H + 1)
sin(πH)

π
ξ−2H

∫ ∞
0

cos(ξhx)
x1−2H

1 + x2
dx,

(5.5)

has a unique solution in H,σ. First, notice that thanks to the first equation, we can write σ2 =
aξ2H

HΓ(2H) . Injecting this in the second equation we get:

bπ = a sin(πH)

∫ ∞
0

cos(ξhx)
x1−2H

1 + x2︸ ︷︷ ︸
:=g(H)

.

We will show that the function g is injective. For that, and since g is continuously differentiable,
we will show that g′(H) > 0 for all H ∈ H. We have:

g′(H) = π cos(πH)

∫ ∞
0

cos(ξhx)
x1−2H

1 + x2
dx

− 2 sin(πH)

∫ 1

0

cos(ξhx) log(x)
x1−2H

1 + x2
dx

− 2 sin(πH)

∫ ∞
1

cos(ξhx) log(x)
x1−2H

1 + x2
dx.
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Let us assume first that H > 1/2. Let ε > 0 and h small enough such that cos(ξhx) ≥ 1− ε
for all x ∈ (0, 1) (which is possible since ξ lives in a compact), then:

g′(H) ≥ −2 sin(πH)

∫ 1

0

log(x)
x1−2H

1 + x2
dx︸ ︷︷ ︸

:=g1(H)

−2ε sin(πH)

∫ 1

0

cos(ξhx) log(x)
x1−2H

1 + x2
dx

−2 sin(πH)

∫ ∞
1

cos(ξhx) log(x)
x1−2H

1 + x2
dx︸ ︷︷ ︸

:=g2(H)

+π cos(πH)

∫ ∞
0

cos(ξhx)
x1−2H

1 + x2
dx︸ ︷︷ ︸

:=g3(H)

.

Notice that since H ∈ H, the absolute value of 2ε sin(πH)
∫ 1

0
cos(ξhx) log(x)x

1−2H

1+x2 dx is bounded
from above by a constant εC1. Let us focus on the sum of g1, g2 and g3. Notice that g1(H) is
always positive. Bounding the term cos(ξhx) in g2 and g3 by 1 (in absolute value), we get

g1(H) + g2(H) + g3(H) > −2 sin(πH)

∫ 1

0

log(x)
x1−2H

1 + x2
dx

− 2 sin(πH)

∫ ∞
1

log(x)
x1−2H

1 + x2
dx

+ π cos(πH)

∫ ∞
0

x1−2H

1 + x2
dx.

Observe that HΓ(2H)ξ−2H = 2HΓ(2H) sin(πH)
π ξ−2H

∫∞
0

x1−2H

1+x2 dx. So by differentiating in H, the
right-hand side above is actually equal to 0. It follows that there exists a constant C2 such that

g1(H) + g2(H) + g3(H) ≥ C2.

So overall, we have

g′(H) ≥ C2 − εC1.

Choosing ε small enough (which means choosing h smaller than a theoretical h0), we get

g′(H) > 0.

We now assume that H < 1/2. We have

g′(H) = π cos(πH)

∫ 1

0

x1−2H

1 + x2
dx+ π cos(πH)

∫ 1

0

(cos(ξhx)− 1)
x1−2H

1 + x2
dx

+ π cos(πH)

∫ ∞
1

cos(ξhx)
x1−2H

1 + x2
dx

− 2 sin(πH)

∫ 1

0

log(x)
x1−2H

1 + x2
dx− 2 sin(πH)

∫ 1

0

(cos(ξhx)− 1) log(x)
x1−2H

1 + x2
dx

− 2 sin(πH)

∫ ∞
1

cos(ξhx) log(x)
x1−2H

1 + x2
dx.

It follows that

g′(H) > π cos(πH)

∫ 1

0

x1−2H

1 + x2
dx+ π cos(πH)

∫ ∞
1

cos(ξhx)
x1−2H

1 + x2
dx

− 2 sin(πH)

∫ 1

0

log(x)
x1−2H

1 + x2
dx− 2 sin(πH)

∫ ∞
1

cos(ξhx) log(x)
x1−2H

1 + x2
dx.
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Recalling that HΓ(2H)ξ−2H = 2HΓ(2H) sin(πH)
π ξ−2H

∫∞
0

x1−2H

1+x2 dx, we deduce that

π cos(πH)

∫ 1

0

x1−2H

1 + x2
dx = −π cos(πH)

∫ ∞
1

x1−2H

1 + x2
dx+

π2 cos(πH)

sin(πH)

−2 sin(πH)

∫ 1

0

log(x)
x1−2H

1 + x2
dx = 2 sin(πH)

∫ ∞
1

log(x)
x1−2H

1 + x2
dx− π2 cos(πH)

sin(πH)
,

where the second equation is obtained by differentiating with respect to H. Using this in our lower
bound of g′, we get

g′(H) > π cos(πH)

∫ ∞
1

[cos(ξhx)− 1]
x1−2H

1 + x2
dx− 2 sin(πH)

∫ ∞
1

[cos(ξhx)− 1] log(x)
x1−2H

1 + x2
dx.

Moving all the terms inside the integrals, we are left with

g′(H) >

∫ ∞
1

[1− cos(ξhx)][2 log(x) sin(πH)− π cos(πH)]
x1−2H

1 + x2
dx.

We split the integral by the sign of 2 log(x) sin(πH)− π cos(πH) as follows:

g′(H) >

∫ e
π cos(πH)
2 sin(πH)

1

[1− cos(ξhx)][2 log(x) sin(πH)− π cos(πH)]
x1−2H

1 + x2
dx

+

∫ ∞
e
π cos(πH)
2 sin(πH)

[1− cos(ξhx)][2 log(x) sin(πH)− π cos(πH)]
x1−2H

1 + x2
dx.

Since H lives in a compact set, we can choose h small enough so that the first term (the integral
on a bounded interval) is as small as we want it to be. The second term is clearly positive. This
is enough to conclude that there exists h0 such that for h < h0, we have

g′(H) > 0.

We have thus proved that f is one-to-one.

The case θ = (ξ, σ). As before, for (a, b) in the range of f , we need to show that (5.5) has a
unique solution in σ, ξ. Notice that (5.5) is equivalent to

a = σ2HΓ(2H)ξ−2H

b = a
sin(πH)

π

∫ ∞
0

cos(ξhx)
x1−2H

1 + x2
dx︸ ︷︷ ︸

:=g(ξ)

.

Thus, it is enough to show that g′(ξ) > 0 for all ξ. We have

g′(ξ) = h

∫ ∞
0

sin(ξhx)
x−2H

1 + x2
dx.

There is no problem differentiating with respect to ξ since using the Laplace transform one can

show that
∫∞

0
sin(x)
xα dx = Γ(α/2)Γ(1−α/2)

2Γ(α) for α ∈ (0, 2). Let us now show that g′(ξ) > 0. There is

g′(ξ) = h

(∫ 1/h

0

sin(ξhx)
x−2H

1 + x2
dx+

∫ ∞
1/h

sin(ξhx)
x−2H

1 + x2
dx

)

> h

(∫ 1/h

0

ξh
x−2H+1

1 + x2
dx−

∫ 1/h

0

ξ3h3

6

x−2H+3

1 + x2
dx−

∫ ∞
1/h

x−2H

1 + x2
dx

)

> h

(∫ ∞
0

ξh
x−2H+1

1 + x2
dx−

∫ ∞
1/h

ξh
x−2H+1

1 + x2
dx−

∫ 1/h

0

ξ3h3

6

x−2H+3

1 + x2
dx−

∫ ∞
1/h

x−2H

1 + x2
dx

)
.
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The idea is to keep the first term since it is positive and bound from above the absolute value of
the other terms. Since H and ξ both live in compact sets, we can find constants C1, C2, C3 and
C4 such that

g′(ξ) > h

(
C1h− C2h(1/h)−2H − C3h

3(1/h)−2H+2 − C4(1/h)−2H−1

)

> h

(
C1h− C2h

2H+1 − C3h
2H+1 − C4h

2H+1

)

> h2

(
C1 − C2h

2H − C3h
2H − C4h

2H

)
.

It follows that there exists h0 > 0 such that for h < h0, we have:

g′(ξ) > 0.

5.2 Strong Identifiability assumption for a small perturbation of the
fractional OU process

In this section, we check assumption Is for some specific examples of (2.5) and for the distance
d = dCF,p. Specifically, we shall consider a family Uλ,θ of real-valued processes defined by

dUλ,θt =
(
−ξUλ,θt + λbξ(Ut)

λ,θ
)
dt+ σdBt. (5.6)

The quantity λ is a small enough parameter which is assumed to be known. The process Uλ,θ can
be seen as a small perturbation of the fractional Ornstein-Uhlenbeck process, since U0,θ = Uθ,
where Uθ is the fractional OU process defined in (5.1). We also assume that ξ, σ and H are one
dimensional parameters and:

ξ ∈ [mΞ,MΞ], with 0 < mΞ < MΞ <∞
σ ∈ [mΣ,MΣ], with 0 < mΣ < MΣ <∞
H ∈ [mH,MH], with 0 < mH < MH < 1.

We shall prove that Y λ,θ satisfies assumption Is when only one parameter is unknown (so either
θ = ξ, θ = σ or θ = H). When referring to θ, we will write our assumption above as θ ∈ [mΘ,MΘ].

Let us start with the process Uθ := Y 0,θ, that is the fractional OU itself. In this case, assump-
tion Iw is satisfied as shown in the following lemma.

Lemma 5.4. Consider the fractional Ornstein-Uhlenbeck process Uθ. We call µθ its stationary
distribution, where θ represents either H, σ or ξ. Moreover, if θ = H, assume that

mΞ > sup
H∈[mH,MH]

e
Γ′(2H+1)
2Γ(2H+1) or MΞ < inf

H∈[mH,MH]
e

Γ′(2H+1)
2Γ(2H+1) . (5.7)

Then for all θ1, θ2 ∈ [mΘ,MΘ],

dCF,p(µθ1 , µθ2) ≥ c|θ1 − θ2|, (5.8)

where c is a constant that does not depend on θ1 or θ2.

Proof. When θ = ξ, this lemma has already been proved in [24, Lemma 6.2]. The fact that ξ is
bounded away from 0 is crucial in their proof.

Let us now deal with the case θ = H. We have already seen that µθ = N
(
0, σ2HΓ(2H)ξ−2H

)
.

Taking into account the expression of dCF,p in (2.1), this yields:

d2
CF,p(µθ1 , µθ2) =

∫
R

(
exp(−σ

2H1Γ(2H1)

2ξ2H1
η2)− exp(−σ

2H2Γ(2H2)

2ξ2H2
η2)

)2

gp(η)dη.
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Therefore, it is sufficient to show that the derivative of g(H) = exp(−σ
2HΓ(2H)

2ξ2H η2) is bounded
away from 0.

g′(H) = σ2η2 ξ
−2H

2
exp(−σ

2HΓ(2H)

2ξ2H
η2) (Γ′(2H + 1)− Γ(2H + 1) log(ξ)) .

Therefore, under (5.7), we either have g′(H) < 0 for all H ∈ [mH,MH], or g′(H) > 0 for all
H ∈ [mH,MH].

A similar analysis can be done when θ = σ. In this case, one needs to show that the derivative

of g(σ) = exp(−σ
2HΓ(2H)

2ξ2H η2) is bounded away from 0. Since there is

g′(σ) = −2σHΓ(2H)

2ξ2H
η2 exp(−σ

2HΓ(2H)

2ξ2H
η2),

and all the parameters live in compact sets that do not contain 0, it is clear that for all σ ∈
[mΣ,MΣ], we have g′(σ) < 0.

We now wish to extend Lemma 5.4 to the model given by equation (5.6). We will prove the
following proposition.

Proposition 5.5. Let Y λ,θ be the process defined by (5.6) where θ is either H, σ or ξ, and
consider p > 3/2. We assume θ ∈ [mΘ,MΘ] as in Lemma 5.4 and λ ∈ (0, λ0) with a small enough
λ0 = λ0(mΘ,MΘ, p). Also, assume without loss of generality that bξ, ∂ybξ, ∂ξbξ, ∂

2
y,ξbξ are all

bounded by 1. Moreover, if θ = H, assume that (5.7) holds. Then the following lower bound holds
true for any θ1, θ2 ∈ [mΘ,MΘ]:

dCF,p(µθ1 , µθ2) ≥ cmΘ,MΘ,p|θ1 − θ2|.

Remark 5.6. In Proposition 5.5, the assumption that ∂ξbξ and ∂2
ξ,ybξ are both bounded by 1 is

only needed when θ = ξ, that is, the case already handled by [24, Proposition 6.4].

Proof. Again, the case θ = ξ has already been handled in [24, Proposition 6.4]. Our proof for the
general case will be very similar. More specifically, we decompose dCF,p(µθ1 , µθ2) as

dCF,p(µθ1 , µθ2) ≥ I1/2
3 −

(
I

1/2
2 + I

1/2
11 + I

1/2
12

)
, (5.9)

where

I1j =

∫
R

(
E[exp(iηŪ

λ,θj
t )]− E[exp(iηU

λ,θj
t )]

)2

gp(η)dη, j = 1, 2,

I3 =

∫
R

(
E[exp(iηU0,θ1

t )]− E[exp(iηU0,θ2
t )]

)2

gp(η)dη,

I2 =

∫
R

(
E[exp(iηUλ,θ1t )]− E[exp(iηU0,θ1

t )− E[exp(iηUλ,θ2t )] + E[exp(iηU0,θ2
t )]

)2

gp(η)dη.

In our definition above, t is an arbitrary large time to be determined later. Our goal now is to
bound I3 from below and bound I2 and I1j from above.

Lower bound for I3. We bound I3 from below as follows:

I3 ≥
∫
R

(
E[exp(iηŪ0,θ1

t )]− E[exp(iηŪ0,θ2
t )]

)2

gp(η)dη

−
(∫

R

(
E[exp(iηŪ0,θ1

t )]− E[exp(iηU0,θ1
t )]

)2

gp(η)dη

+

∫
R

(
E[exp(iηŪ0,θ2

t )]− E[exp(iηU0,θ2
t )]

)2

gp(η)dη

)
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Now, by Lemma 5.4, there exists a constant c1 such that the first term is bounded from below by
c1|θ1 − θ2|2. In view of Proposition 3.3, the other terms are upper bounded by Ce−ct. Choosing t
large enough, we can thus bound I3 from below by

I3 ≥
c1
2
|θ1 − θ2|2.

Upper bound for I1j. The term I1j also represents a distance between the solution of (5.6)
and its stationary version, so we want to use Proposition 3.3 again. For that, we need the drift
−ξ.+ λbξ(.) to verify assumption A1. It was already checked in [24] that this is the case when bξ,
∂λbξ are bounded by 1, and λ is small enough (λ < mΘ(1− ε) for some ε > 0). So we clearly have
I1j ≤ Ce−ct. Setting t large enough we get that

I1j ≤
c1
16
|θ1 − θ2|2.

Upper bound for I2. We refer here to the upper bound for I2 from the proof of Proposition
6.4 in [24]. Namely, it was shown that (see equation (6.17) in [24]) that

I2 ≤ CE

[(
|U0,θ2
t − U0,θ1

t |+ |∆R(Ut)|
)(
|Uλ,θ2t − U0,θ2

t |+ |∆R(Ut)|
)

+ |∆R(Ut)|

]
,

where ∆R(Ut) are the rectangular increments defined by

∆R(Yt) = Uλ,θ1t − U0,θ1
t − Uλ,θ2t + U0,θ2

t .

Notice that when θ = H or θ = σ, we have ∆R(Ut) = 0. So we get

I2 ≤ λ2CE
(
|U0,θ2
t − U0,θ1

t |2‖∂λUθ‖2∞
)
.

It was shown in [24] that ‖∂λUθ‖2∞ ≤ cmΞ,MΞ,ε when bξ and ∂λbξ are both bounded by 1 and
λ ≤ mΞ(1− ε). We end up with

I2 ≤ CmΞ,MΞ,ελ
2E|U0,θ2

t − U0,θ1
t |2.

Now if θ = H, the increments of the stationary Ornstein-Uhlenbeck process are shown to be
bounded in [14, Lemma A.1]. Via a similar analysis for the non-stationary Ornstein-Uhlenbeck
process, one can show that

E
∣∣∣U0,θ2
t − U0,θ1

t

∣∣∣2 ≤ C|θ2 − θ1|2,

where C does not depend on t. When θ = σ, we have

E
∣∣∣U0,θ2
t − U0,θ1

t

∣∣∣2 = E
(∫ t

0

(θ2 − θ1)e−t+udBu

)2

≤ C(θ2 − θ1)2.

So, finally, our bound on I2 becomes

I2 ≤ CmΞ,MΞ,ελ
2|θ2 − θ1|2.

Finally, we choose λ small enough so that:

I2 ≤
c1
16
|θ1 − θ2|2.

To finish the proof, it remains to combine the bounds we obtained for I3,I2 and I1j into (5.9).
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5.3 Numerical results

In this section, we provide numerical examples to illustrate our main results. We only deal with
the one-dimensional Ornstein-Uhlenbeck model defined in (5.1) that starts from 0, as we think it
already raises numerous questions about the numerical implementation. We explain at the end
how one might extend our approach to more general SDEs of the form (1.1).

Simulated data. The fractional Ornstein-Uhlenbeck process can not be simulated exactly. There-
fore, we have chosen a discretization procedure thanks to a simple first order Euler scheme with
very small time-step γ (namely γ = 10−3) in order to get a good approximation of the process.

Let us recall that in the setting of equation (1.1), the simple Euler scheme converges strongly
to the true SDE. The same is tue for the augmented process Xθ0 , since we have:

|Xθ0
· −X

θ0,γ
· | ≤ C

q∑
i=0

|Y θ0.+ih − Y
θ0,γ

.+ih |,

and the right hand side is bounded from above thanks to [24, Proposition 3.7 (i)]. Furthermore,
taking the expectation in the previous result leads to a marginal control of the L2-distance between
the Euler scheme and the true SDE (with same fBm) of order γH (independently of the horizon).
This confirms that our approximation of the observations is reasonable when H is not too small.

Let us also recall that the fractional Brownian motion can be simulated through the Davies-
Harte method. Therefore, up to the approximation of the true SDE, we now assume that we are
given a sequence (Ykγ)k≥0, where (Yt)t≥0 is a solution to (1.1) with a given θ0. Then we create

from this path a subsequence of observations (Xtk)nk=1 as defined in (2.6). Here we take q = 2 and
consider the linear transformation to be the simple increments:

`i(Y θ0· , ..., Y θ0.+ih) = Y θ0.+ih − Y
θ0
· i = 1, 2.

Furthermore, we consider the time-steps tk to be of the form tk = kγ, which means in particular
that we assume γ to be of the form k0γ with k0 ∈ N∗ (namely k0 = 100). Recall that the

observations (Xθ0
tk

)nk=1 contain three observed paths (2.6).
For the rest of this section, we will use the following terminology:

• One-dimensional case: This is when we only use the first path of Xθ0 (i.e Y θ0) as observations.
This means that we are only interested in estimating one parameter (either the drift, the
diffusion or the hurst parameter) and we assume the other two known in advance. There are
thus three choices to consider.

• Two-dimensional case: This when we want to estimate two parameters and therefore take
the first two paths of Xθ0 as observations. There are also three choices to consider.

• Three-dimensional case: This when we want to estimate all the parameters and therefore
consider all the paths included in Xθ0 . Here, there is only one setting to consider.

Computation of the distance between the empirical measures. The theoretical construc-
tion of an estimator like (2.10) involves in practice the computation of the distance d between the
empirical measures of the observed process and the stationary distribution, for a distance d ∈ Dp.
We describe how to compute this kind of distance.

Whenever d is the Wasserstein distance, an explicit computation of the distance is possible if
the observed process is 1-dimensional. However, as we explained in Section 1, using the obser-
vations of Y θ0 only allows us to estimate one parameter. If we want to estimate more, we need
to add increments of the process into the observations. This gives birth to a augmented process
Xθ0 that lives in a higher dimension. Unfortunately, in higher dimensions, the computation of
the Wasserstein distance requires approximation/optimization methods that are highly expensive
complexity-wise and are out of the scope of this paper. In this context and as in [24], it seems to be
numerically simpler to work with an approximation of the distance dCF,p (defined in (2.1)), which
is also used for our analysis of the rate of convergence. Such an approximation can be obtained by
a standard discretization of the integral which appears in (2.1).
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Minimization of the distance with respect to θ. Eventually the implementation of our
estimation procedure relies on an optimization problem in order to compute the argmin in (2.10).
More specifically, in the Ornstein-Uhlenbeck case, we already have an expression of the stationary
distribution (5.3). Furthermore, we also know how to express the covariance between the process
and its increments (5.4). Since the stationary distribution is Gaussian µθ ∼ N(0,Σθ), we thus
have all the information we need to simulate it.

In this case, we want to minimize:

F : θ → d(
1

n

n−1∑
k=0

δ
X
θ0
tk

, µθ). (5.10)

In the one-dimensional case, the computation of F is quite fast, so we simply use the Python
library scipy.optimize to minimize F .

In higher dimensions, when we use more than one path of X, we adapt the same technique as
[24] described mainly in Equation (7.6). Taking d = dCF,p, the idea is to write the functional F
as:

F (θ) = dCF,p(µ, µθ) = E[|µ(fΦ)− µθ(fΦ)|2]. (5.11)

where µ = 1
n

∑n−1
k=0 δXθ0tk

, fφ(x) = ei〈x,φ〉 and Φ is random variable that has gp as density (see

(2.2)).
Writing F this way allows us to perform a stochastic gradient descent algorithm. In fact, the

gradient ∇F is formally obtained as:

∇F = EΛ(θ,Φ), (5.12)

where

Λ(θ, φ) = ∂θ
(
|µ(fφ)− µθ(fφ)|2

)
= 2

(
1

n

n−1∑
k=0

cos(〈φ,Xθ0
tk
〉)− e− 1

2φ
TΣθφ

)
∇
(
e−

1
2φ

TΣθφ
)

= −

(
1

n

n−1∑
k=0

cos(〈φ,Xθ0
tk
〉)− e− 1

2φ
TΣθφ

)(
e−

1
2φ

TΣθφ
)
∇
(
φTΣθφ

)
.

Thus, our gradient algorithm reads:

θn+1 = θn − ηnΛ(θn,Φn+1), (5.13)

where (ηn)n is a sequence of positive steps and (Ξn)n is a sequence of i.i.d random variables with
common distribution gp.

Simulation of the variable Φ. To perform a stochastic gradient descent, we want to replace
the expression of the gradient above by simply Λ(θ,Φ) where we recall that Φ has density

gp(φ) = cp(1 + |φ|2)−p.

Since gp has a spherical form, Φ can be simulated using the spherical coordinates and the inversion
method. More specifically, the simulation of Φ can be reduced to simulating independent one-
dimensional variables that either have a uniform distribution or if not, can be simulated through
the inverse method.

The two-dimensional case (i.e when we use the first two paths of Xθ0 as observations) is
described in [24, Section 7], basically Φ can be simulated as (R cos(Θ), R sin(Θ)) where R has

density qp(r) = 2(p−1)r
(1+r2)p and Θ has a uniform distribution on [0, 2π]. The reader can check that their

approach can be generalized to any dimension. For instance, in the three-dimensional case, Φ can

be simulated as [R cos(U) sin(V ), R sin(U) sin(V ), R cos(V )] where R has density q1
p(r) = c r2

(1+r2)p ,

V has density q2(v) = c sin(v) on [0, π] and U has uniform density on [0, 2π].
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Numerical Illustrations. Let us now turn to some numerical tests. We consider the process Y
given by (1.1) where the drift bξ(.) = −ξ. (i.e the OU process). We assume θ to sit in a compact
interval. The assumptions A0 and A1 are clearly satisfied, where Iw follows from Proposition 5.1.
Moreover, Lemma 5.4 proves that Is is satisfied when we are only interested in estimating one
parameter. Using the strategy described before, we get a discretely observed path of X with the
following parameters:

θ0 = (ξ0, H0, σ0) = (2, 0.5, 0.7)

γ = 10−3

γ = 10−1

n = 10000

q = 3.

We start with the one-dimensional case (Figure 1). In this case, we can use the Wasserstein distance
as its implementation is quite fast. We compute the functional F defined in (5.10) and minimize it
using the Python function minimize (from the scipy.optimize library). We compute the minimum
of F over many trials, which allows us to plot statistics like the mean and the variance.

We then move on to estimating two parameters, assuming the last one is known (Figure 2). In
this case, we implement the stochastic descent described above. We let our gradient descent run
until it reaches 1000 iterations. Since the parameters ξ,H and σ are not comparable, we decided
to plot the loss function

Loss(θ) =
1

3

3∑
i=1

|θi − θi0|
|θ0,i − θi0|

,

where θ0 denotes the initial point in our algorithm and θi is the i-th coordinate of θ.
Finally, we estimate all the parameters. In all experiments, we take θ0 = [ξ0 = 2, H0 = 0.7, σ0 =

0.5]. And in the last one, we test another initial point θ0
2 = [1, 0.5, 0.6].

Figure 1: Histograms for the estimation of each parameter separately. The true parameters are
highlighted in red and the empirical mean of the estimators in black. Left: estimation of σ, the
empirical variance is ∼ 10−5. Right: estimation of H, the empirical variance is ∼ 10−3. Bottom:
estimation of ξ, the empirical variance is ∼ 10−3.
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Figure 2: The evolution of the loss function with respect to the number of iterations in the gradient
descent, the size of the sample is fixed to 10000. The true parameters are ξ = 2, H = 0.7, σ = 0.5.
Left: the estimated parameters are H = 0.678, σ = 0.57. Right: the estimated parameters are
ξ = 1.82, H = 0.72. Bottom: the estimated parameters are ξ = 1.838, σ = 0.529.

0 20 40 60 80 100

0.5

1.0

1.5

2.0

2.5 Estimation of all parameters

Figure 3: The evolution of the loss function with respect to the number of iterations in the gradient
descent, the size of the sample is fixed to 10000. The true parameters are ξ = 2, H = 0.7, σ = 0.5.
The estimated parameters are ξ = 1.5, H = 0.8, σ = 0.4.

Discussion. In the one-dimensional case (see Figure 1), we manage to get reasonably accurate
estimators of the parameters. While the drift estimator seems to suffer from a slight bias, the mean
and variance of all the estimators over the hundred trials are satisfying. Notice that we always
have variance

mean . 0.01.
In the two-dimensional case (Figure 2), we used a mini-batch procedure. That is, in equation

(5.13), we replace the random simulated term Λ(θn,Φn+1) by an average over m = 100 simulations.
The mini-batch procedure is known to reduce the randomness of the algorithm. The results
displayed in Figure 2 show that our approach yields a good convergence of the estimate to the
true parameter θ. However, our simulations also reveal that the gradient gets flat near the true
parameter. Therefore the algorithm moves very slowly after a large number of iterations. This is
the reason why we decided to stop the algorithm after 1000 iterations. Also, we noticed that the
partial derivatives Λ(θ,Φ)i have different magnitudes and decided to adapt our steps ηn accordingly.

In the three-dimensional case (Figure 3), the gradient gets flat very soon and the algorithm
moves very slowly after a few iterations. Here, we stopped the algorithm after 100 iterations as
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the three-dimensional case is quite expensive complexity-wise.
Overall, these attempts to combine our statistical procedure with gradient descent algorithms

would certainly need to be enriched with deeper considerations. So this task is deferred to a
subsequent paper for the sake of conciseness.

Beyond the OU model. When the stationary distribution is unknown, one can approximate
µθ(fξ) in (5.11) by 1

N

∑N−1
k=0 f(Xθ,γ

kγ̄ ) for some large N and small γ̄ as we explained in Section 4.
In this case, we can write the gradient Λ as in [24, Eq (7.6)]:

Λ(θ, φ) = 2(µθ − µ) cos(〈φ, .〉) ρθ(− sin〈φ, .〉)
+ 2(µθ − µ) sin(〈φ, .〉) ρθ(cos〈φ, .〉), (5.14)

where for any function g : R→ R, each component of ρθ(g(〈φ, .〉)) reads:

ρθ(g(〈φ, .〉))i =
1

N
g(〈φ,Xθ,γ

kγ̄ 〉)〈φ, ∂θiX
θ,γ
kγ̄ 〉.

Therefore, the question is how to simulate paths of the process ∂θiX
θ,γ
· . In [24] the authors handle

the case when θi is the drift parameter ξ and explain how the process can be simulated recursively
as

∂ξY
θ,γ
(k+1)γ̄ = ∂ξY

θ,γ
kγ̄ + γ̄

(
∂ξbξ(Y

θ,γ
kγ̄ ) +∇zbξ(Y θ,γkγ̄ )∂ξY

θ,γ
kγ̄

)
.

The same technique can be used when θi is the diffusion parameter σ:

∂σY
θ,γ
(k+1)γ̄ = ∂σY

θ,γ
kγ̄ + γ̄∇zbξ(Y kγ̄θ,γ)∂σY

θ,γ
kγ̄ +

(
B(k+1)γ̄ −Bkγ̄

)
.

Finally, in order to compute ∂HZ· in the same way, one needs to compute ∂HB· which is not an
obvious task. For instance, using the representation of the fBm on an interval [23, Equation 5.8]

Bt =

∫ t

0

KH(t, s)dWs,

one cannot simply differentiate the kernel KH with respect to H to get ∂HB·. In [20], it is shown
that for all t ≥ 0, Bt is almost surely infinitely differentiable with respect to H. But since we
consider ergodic increments, we need a result that states: almost surely, for all t ≥ 0, Bt is
infinitely differentiable with respect to H. So maybe in this case, one should look into derivative-
free methods for optimization (e.g [8]), where one can perform a gradient descent without having
to compute the gradient. Or maybe the dCF,p distance is not appropriate and we should consider
other distances. This opens new potential problems when considering models beyond the fractional
Ornstein-Uhlenbeck, which we leave for future investigation.

A Regularity in the Hurst parameter

In this section, we borrow some results from our companion paper [14, Section 4 and Section 5]
that state the regularity in the Hurst parameters of continuous and discrete ergodic means. Recall
that the fractional OU process is defined by (5.1), and let us denote by Ūθ the stationary fractional
OU process.

Lemma A.1. Let H be a compact subset of (0, 1). For each H ∈ H, let Y H be the solution of
(2.5) with the drift b satisfying A1. Let $ ∈ (0, 1) and p ≥ 1. There exists a random variable C,
independent of ξ and σ, with a finite moment of order p such that almost surely, for any t ≥ 0 and
any θ1 = (ξ,H1, σ), θ2 = (ξ,H2, σ) ∈ H,

1

t+ 1

∫ t+1

0

∣∣Y θ1s − Y θ2s ∣∣2 ds ≤ C|H1 −H2|$.
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Proof. For any θ ∈ Θ, the process σ−1Y θ· is solution to the SDE

σ−1Y θt = σ−1Y0 +

∫ t

0

b̃ξ(σ
−1Y θs )ds+Bt,

with b̃ξ(x) = σ−1bξ(σ·). We have b̃ξ ∈ C1,1(Rd × Ξ,Rd) and since σ lives in the compact set Σ, on

can check that b̃ξ still satisfies (2.3) and (2.4). Looking through the proof of [14, Theorem 4.5], a
comparison with the stationary OU process Ū gives

1

t+ 1

∫ t+1

0

∣∣σ−1(Y θ1s − Y θ2s )
∣∣2 ds ≤ C|Ū (1,H1,Id)

0 − Ū (1,H2,Id)
0 |2

+
1

t+ 1

∫ t+1

0

|Ū (1,H1,Id)
s − Ū (1,H2,Id)

s |2ds.

We can now apply [14, Proposition 4.2] with t′ = t = 0 and [14, Proposition 4.4] with H ′ = K = K ′

and t′ = t to get that there exists a random variable C1 (independent of ξ and σ) with a finite
moment of order p such that

1

t+ 1

∫ t+1

0

∣∣σ−1(Y θ1s − Y θ2s )
∣∣2 ds ≤ C1|H1 −H2|$.

Since
∣∣σ−1(Y θ1s − Y θ2s )

∣∣ ≥ |σ−1|
∣∣(Y θ1s − Y θ2s )

∣∣, dividing by |σ−1| and taking the supremum over Σ,
we get the desired result by setting C = |σ−1|−1C1.

Lemma A.2. Let H be a compact subset of (0, 1), $ ∈ (0, 1), and p ≥ 1. There exists γ0 > 0
such that for γ ∈ (0, γ0), there exists a random variable C with a finite moment of order p such
that almost surely, for all t, t′ ≥ 0 and all H1, H2 ∈ H,

1

t+ 1

∫ t+1

0

|Ū (1,H1,Id)
sγ − Ū (1,H2,Id)

sγ |2ds ≤ C|H1 −H2|$,

where sγ denotes the leftmost point in a time-discretisation of step γ.

Proof. Apply [14, Proposition 5.1], with t′ = t and H ′ = K ′ = K to get that

1

t+ 1

∫ t+1

0

|Ū (1,H1,Id)
sγ − Ū (1,H2,Id)

sγ |2ds ≤ C|H1 −H2|$ + CE|Ū (1,H1,Id)
0 − Ū (1,H2,Id)

0 |2.

Now apply [14, Proposition 4.2] with t = t′ = 0 to get the desired result.

Lemma A.3. Let H be a compact subset of (0, 1). Let $ ∈ (0, 1) and p ≥ 1. There exists γ0 > 0
such that for γ ∈ (0, γ0], there exists a random variable C with a finite moment of order p such
that almost surely, for any N ∈ N∗ and any θ = (ξ,H1, σ), θ2 = (ξ,H2, σ) ∈ Θ,

1

N

N∑
k=1

∣∣∣Y θ1,γkγ − Y θ2,γkγ

∣∣∣2 ≤ C|H1 −H2|$.

Proof. For any θ ∈ Θ, the process σ−1Y θ,γ· is solution to the SDE

σ−1Y θ,γt = σ−1Y0 +

∫ t

0

b̃ξ(σ
−1Y θ,γsγ )ds+BHt ,

with b̃ξ(x) = σ−1bξ(σ·). We have b̃ξ ∈ C1,1(Rd × Ξ,Rd) and since σ lives in the compact set Σ,

one can check that b̃ξ still satisfies (2.3) and (2.4). Looking through the proof of [14, Eq (5.5)], a
comparison with the stationary OU process Ū gives

1

N

N∑
k=0

∣∣∣σ−1(Y θ1,γkγ − Y θ2,γkγ )
∣∣∣2 ≤ C( 1

N

N∑
k=0

∣∣∣Ū (1,H1,Id)
jγ − Ū (1,H2,Id)

jγ

∣∣∣2
+
∣∣∣Ū (1,H1,1)

0 − Ū (1,H2,Id)
0

∣∣∣2 +
1

Nγ

∫ Nγ

0

∣∣∣U (1,H1,Id)
s − U (1,H2,Id)

s

∣∣∣2 ds).
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The regularity of the second term in the right-hand side is given by [14, Proposition 4.2] and the
regularity of the third term is given by [14, Theorem 4.5]. To bound the first term, we apply

Lemma A.2. To conclude the proof, we notice that |σ−1(Y θ1,γkγ − Y θ2,γkγ )| ≥ |σ−1||(Y θ1kγ − Y
θ2
kγ )|,

divide by |σ−1| and take the supremum over Σ.

B Continuity and Tightness results

In Proposition B.1 and Proposition B.2, we prove that the solutions Y θ and Y θ,γ to (2.5) and (4.1)
and their ergodic means have finite moments uniformly in time and θ. Finally, in Proposition B.3,
we state a result on the the regularity of the ergodic means in θ.

Proposition B.1. Assume A0 and A1. Let Y θt be the unique solution of (2.5). Let p > 1. Then
the following inequalities hold true:

(i) sup
t≥0

sup
θ∈Θ

E
[
|Y θt |p

]
<∞.

(ii) E
(

sup
t≥0

sup
θ∈Θ

1

t

∫ t

0

|Y θs |2ds
)p

<∞.

(iii) E

(
sup
t≥0

sup
θ∈Θ

1

n

n−1∑
k=0

|Y θkh|2ds

)p
<∞.

Proof. Throughout the proof, C will denote a constant that do not depend on θ or t and that
may change from line to line. Observe that when the supremum is taken only over ξ, the proof
is already done in [24, Proposition A.1]. The proofs of all three items are based on a comparison
with fractional OU processes defined in (5.1).

For the proof of (i), by [12, p 725], a comparison with the stationary fractional OU process
U (1,H,σ) yields that there exist constants c1, c2 > 0 independent of ξ such that,

|Yt − Ū (1,H,σ)
t |p ≤ e−2c1t|Y0|p + c2

∫ t

0

e−2c2(t−s)(1 + |Ū (1,H,σ)
s |p)ds.

Moreover, since U (1,H,σ) is a Gaussian process, for any t ≥ 1, we have E|Ū (1,H,σ)
t |p . (E|Ū (1,H,σ)

t |2)p/2.

By (5.3), we know that E|Ū (1,H,σ)
t |2 = σ2HΓ(2H). Therefore

sup
t≥0

sup
θ∈Θ

E|Y θt |p ≤ C(1 + sup
t≥0

sup
θ∈Θ

E|Ū (1,H,σ)
t |p) <∞.

For the proof of (ii), we follow the steps of the proof of Proposition A.1 in [24] (see equation (A.6)
and what follows), to get that for all t ≥ 0,

1

t

∫ t

0

sup
θ∈Θ
|Y θs |2ds ≤ C

1

t

∫ t

0

sup
θ=(1,H,σ)∈Θ

|Uθs |2ds

≤ C 1

t

∫ t

0

sup
θ=(1,H,σ)∈Θ

|σ||U (1,H,Id)
s |2ds.

It follows that

1

t

∫ t

0

sup
θ
|Y θs |2ds ≤ C

1

t

∫ t

0

sup
H∈H

|U (1,H,Id)
s |2ds

≤ C

(
sup
H∈H

1

t

∫ t

0

|U (1,H,Id)
s − U (1,1/2,Id)

s |2ds+
1

t

∫ t

0

|U (1,1/2,Id)
s |2ds

)
.
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Moreover, by Lemma A.1 (applied for Y θ ≡ U (1,H,Id)), for any β ∈ (0, 1), there exists a random
variable C with a finite moment of order p such that for any t ≥ 1

1

t

∫ t

0

sup
θ
|Y θs |2ds ≤ C

(
C sup
H∈H

|H − 1

2
|βds+

1

t

∫ t

0

|Ū (1,1/2,Id)
s |2ds+ 1

)
,

We also know by [22, Section 1.3.2.2] that 1
t

∫ t
0
|Ū (1,1/2,Id)
s |2ds converges to E|Ū (1,1/2,Id)

0 |2 =
σ2HΓ(2H) as t goes to ∞. It follows that

E
(

sup
t≥0

1

t

∫ t

0

sup
θ
|Y θs |2ds

)p
<∞.

The proof of (iii) can be done in the exact same way by transcribing all the integrals to discrete
sums and using Lemma A.2.

Proposition B.2. Assume A0 and A1. Let Y θ,γ· be the unique solution of (4.1). Then there
exists γ0 > 0 such that for any p > 1 we have

(i) sup
θ∈Θ,γ∈(0,γ0)

lim sup
N→∞

E
∣∣∣Y θ,γNγ

∣∣∣p <∞.

(ii) For γ ∈ (0, γ0], E

(
sup
θ∈Θ

sup
N≥1

1

N

N−1∑
k=0

|Y θ,γkγ |
2ds

)p
<∞.

Proof. Note that the same results are proven in [24, Proposition A.4] when Θ only represents the
range of the parameter ξ. With this in mind, as in Proposition B.1, the proof of (i) is based on
comparisons with the discrete Ornstein-Uhlenbeck process, which has finite moments uniformly in
θ. The proof (ii) is the same as the proof of (ii) in Proposition B.1 and is based on a comparison
with the discrete OU process and Lemma A.3.

Proposition B.3. Let θ1 and θ2 in Θ, consider the respective solutions {Y θ1t }t and {Y θ2t }t of
(2.5). Assume hypothesis A0 and A1 are satisfied. And assume that the exponent r in the sub-
linear growth of bξ in (2.4) satisfies r ≤ 2. Let p ≥ 1, and $ ∈ (0, 1), there exists a positive random
variable C that has a finite p-moment, such that almost surely for all θ1, θ2 ∈ Θ and for all t ≥ 1,

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤ C (1 ∧ |θ1 − θ2|$) . (B.1)

Furthermore, there exists γ0 such that for γ ∈ (0, γ0] similar results hold for the occupation measures
of the Euler approximation Mθ, that is almost surely, for any θ1, θ2 ∈ Θ and any N ≥ 1,

1

N

N∑
0

|Y θ1,γkγ − Y θ2,γkγ |
2ds ≤ C

(
1 ∧ |θ1 − θ2|

$
2

)
. (B.2)

Proof. In the proof, we denote by C a constant independent of time and θ that may change from
line to line. Similarly, C will denote a positive random variable that has a finite p-moment and
that do not depend on θ and may change from line to line.

We will focus on the proof of (B.1). The proof of (B.2) can be obtained using the same tools,
plus some discrete computations and the discrete analogue of the results we borrow from [24] and
[14]. Up to introducing pivot terms, we can consider three different cases,

1) θ1 = (ξ1, H, σ), θ2 = (ξ2, H, σ)

2) θ1 = (ξ,H1, σ), θ2 = (ξ,H2, σ)

3) θ1 = (ξ,H, σ1), θ2 = (ξ,H, σ2).
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In the first case, we have by [24, Equation 5.32] that

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤ C|ξ1 − ξ2|2
(

sup
θ∈Θ

1

t

∫ t

0

|Y θs |2rds
)
,

where r is the exponent in the sub-linear growth assumption on bξ. Since r ≤ 1, we have

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤ C|ξ1 − ξ2|2
(

1 + sup
θ∈Θ

1

t

∫ t

0

|Y θs |2ds
)
,

It follows from the uniform bound on the moments of Y θt in Proposition B.1(ii) that there exists
a random variable C with finite moment of order p such that

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤ C|ξ1 − ξ2|2. (B.3)

In the second case, let $ ∈ (0, 1). By Lemma A.1, we get

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤ C|H1 −H2|$. (B.4)

In the third case, the idea here is to compare the process Y with the fractional OU processes
U (1,H,σ1) and U (1,H,σ2) defined by (5.1). For s ≥ 1, we have

∂

∂s
|Y θ1s − Y θ2s −

(
U (1,H,σ1)
s − U (1,H,σ2)

s

)
|2

= 2〈Y θ1s − Y θ2s −
(
U (1,H,σ1)
s − U (1,H,σ2)

s

)
, b(Y θ1s )− b(Y θ2s ) +

(
U (1,H,σ1)
s − U (1,H,σ2)

s

)
〉

≤ −c1|Y θ1s − Y θ2s |2 − c2|U (1,H,σ1)
s − U (1,H,σ2)

s |2 + c3|Y θ1s − Y θ2s ||U (1,H,σ1)
s − U (1,H,σ2)

s |,

where the last inequality follows from A1. Next, we apply Young’s inequality to get

∂

∂s
|Y θ1s − Y θ2s −

(
U (1,H,σ1)
s − U (1,H,σ2)

s

)
|2

≤ −c1|Y θ1s − Y θ2s |2 − c2|U (1,H,σ1)
s − U (1,H,σ2)

s |2 + c3|U (1,H,σ1)
s − U (1,H,σ2)

s |2

≤ −c1|Y θ1s − Y θ2s −
(
U (1,H,σ1)
s − U (1,H,σ2)

s

)
|2 + c2|U (1,H,σ1)

s − U (1,H,σ2)
s |2.

We can now apply Grönwall’s lemma to get

|Y θs − Y θs −
(
U (1,H,σ1)
s − U (1,H,σ2)

s

)
|2 ≤ C

∫ s

0

e−(s−u)|U (1,H,σ1)
u − U (1,H,σ2)

u |2du.

Jensen’s inequality yields that:

|Y θ1s − Y θ2s −
(
U (1,H,σ1)
s − U (1,H,σ2)

s

)
|2 ≤ C

∫ s

0

e−(s−u)|U (1,H,σ1)
u − U (1,H,σ2)

u |2du,

and therefore

|Y θ1s − Y θ2s |2 ≤ C

(
|U (1,H,σ1)
s − U (1,H,σ2)

s |2 +

∫ s

0

e−(s−u)|U (1,H,σ1)
u − U (1,H,σ2)

u |2du

)
.

Then, using Fubini’s theorem, it comes that

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤
C

t

∫ t

0

|U (1,H,σ1)
u − U (1,H,σ2)

u |2
∫ t

u

1[0,s]e
−(s−u)dsdu

+
1

t

∫ t

0

|U (1,H,σ1)
s − U (1,H,σ2)

s |2ds

≤ C

t

∫ t

0

|U (1,H,σ1)
u − U (1,H,σ2)

u |2du.
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Now, observe that

U (1,H,σ1)
s − U (1,H,σ2)

s = (σ1 − σ2)U (1,H,Id)
s .

Since U
(1,H,Id)
s has finite moments uniformly in θ (recall (5.3) and that U (1,H,Id) is a Gaussian

process), it follows that

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤ C|σ1 − σ2|2.

where C has a finite moment of order p.

C Proof of Proposition 4.1

The proof follows the same steps as the proof of Lemma 2.2. Let θ = (ξ,H, σ) ∈ Θ. We will

first prove that almost surely, the random measure 1
t

∫ t
0
δXθ,γs ds converges in law to µγθ as t→∞.

This implies that 1
t

∫ t
0
δXθ,γs ds converges to µθ in the Prokhorov distance. To extend this result

to distances d in D2 (i.e dominated by the 2-Wasserstein distance), we use the fact that the 2-
Wasserstein distance is dominated by the Prokorov distance dP as follows (see [9, Theorem 2]):

d(
1

t

∫ t

0

δXθ,γs ds, µθ) ≤ Cp sup
t≥0

(
max(

1

t

∫ t

0

|Xθ,γ
s |2ds ∨ E| ¯

Xθ,γ
t |2) + 1

)
dP (

1

t

∫ t

0

δXθ,γs ds, µθ)

By definition of the process Xθ,γ , we have that(
1

t

∫ t

0

|Xθ,γ
s |2ds ∨ E| ¯

Xθ,γ
t |2

)
≤ Cq

q∑
i=0

(
1

t

∫ t

0

|Y θ,γs+ih|
2ds ∨ E|Ȳ θ,γs+ih|

2

)
(C.1)

Therefore, we conclude thanks to Proposition B.2 that in the present case, the convergence in
law is equivalent to the convergence for the 2-Wasserstein distance. Similarly to Section 3.2, we
consider a family of probability measures on the set of càdlàg functions for which the identification
of the limit will be easier, namely {πt = 1

N

∑N−1
k=0 δXθ,γkγ+.

}t≥0. We first prove that the family is

tight and then identify the limit as the discretely stationary law of the augmented process X̄θ,γ .
For tightness, we have to prove the following two points (see e.g [3, Theorem 13.2]

1. ∀T > 0, (µ
(N)
T ) defined by

µNT =
1

N

N−1∑
k=0

δ{supt∈[0,T ]|Xθ,γkγ+t|}

is a.s. a tight sequence.

2. For every η > 0,

lim sup
δ→0

lim sup
n→+∞

1

N

N−1∑
k=0

δ{ω′T (Xθ,γkγ+·,δ)≥η} = 0 a.s.

with

w′T (x, δ) = inf
{ti}

{
max
i≤r

sup
s,t∈[ti,ti+1)

|xt − xs|

}
where the infimum extends over finite sets {ti} satisfying:

0 = t0 < t1 < · · · < tr = T and inf
i≤r

(ti − ti−1) ≥ δ.
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Since the process has only jumps at times nγ with n ∈ N, ω′T
(
Xθ,γ , δ

)
= 0 when δ < γ. It follows

that the second point is obvious. Then, let us prove the first point. By definition of X̂, for k ≥ N ,
we get

|Xθ,γ
kγ |

2 ≤ Cq
q∑
i=0

|Y θ,γkγ+ih|
2.

In the proof of [24, Proposition 2], we have

sup
t∈[0,T ]

|Y θ,γkγ+t|
2 = sup

k∈{N,...,N+bT/γc}
|Ŷkγ |2 ≤ |Y θ,γNγ |

2 + C

1 +

N+bT/γc−1∑
l=N

|B̂(l+1)γ − B̂lγ |2
 .

Thus, if V (x) = |x|2, we deduce that

µNT (V ) ≤ Cq

 1

n

n∑
k=0

|Y θ,γkγ |
2 + 1 +

1

N

N−1∑
k=0

k+bT/γc−1∑
l=k

|B̂(l+1)γ − B̂lγ |2


≤ Cq

 1

n

n∑
k=0

|Y θ,γkγ |
2 + 1 + bT

γ
c sup
n≥1

1

n

n+bT/γc−1∑
k=0

|B̂(k+1)γ − B̂kγ |2
 .

Using Proposition B.2 and [24, Eq (15)], we conclude that supN≥1 µ
(N)
T (V ) < +∞ a.s, which

implies that (µ
(N)
T )N≥1 is a.s. tight on Rd (see e.g. [7, Proposition 2.1.6]).

Now, let (tn)n≥1, be an increasing sequence going to +∞ and { 1
tn

∑tn−1
k=0 δXθ,γkγ+·

}n≥1 be a

(pathwise) sequence with limiting distribution ρ. We first show that ρ is the law of a stationary
process. Let M ≥ 1, (u1, . . . , uM ) ∈ RM and f : RM(q+1)) 7→ R, then for all T > 1

1

tn

tn−1∑
k=0

(
f
(
Xθ,γ
u1+kγ , . . . , X

θ,γ
uM+kγ

)
− f

(
Xθ,γ
uM+kγ+Tγ , . . . , X

θ,γ
uM+kγ+Tγ

))
=

1

tn

(
T−1∑
k=0

(f
(
Xθ,γ
u1+kγ , . . . , X

θ,γ
uM+kγ

)
−
tn+T−1∑
k=tn

(f
(
Xθ,γ
u1+kγ , . . . , X

θ,γ
uM+kγ

))
.

The last term converges to 0 when tn → ∞ a.s since f is bounded. Therefore, ρ is the law of a
stationary process. Let us now prove that ρ is the law of X̄θ,γ .

A process xt = (yt, z
1
t , .., z

q
t ) has the law of X̄θ,γ if xt = xkγ for t ∈ [kγ, (k + 1)γ], and

y· − y0 −
∫ ·γ

0

bξ(yu)du has the law of a σB·γ where B has Hurst parameter H;

zi· − `i
(∫ ·γ

0

bξ(yu)du, . . . ,

∫ (·+ih)γ

0

bξ(yu)du

)
has the law of σ`i(B·γ , . . . , B(·+ih)γ ) for all i ∈ J1, qK,

where for all t ≥ 0, tγ = γbt/γc. Let us define

Gγ(x·) =



y· − y0 −
∫ ·γ

0
bξ(yu)du

z1
· − `1

(∫ ·γ
0
bξ(yu)du,

∫ (·+h)γ
0

bξ(yu)du
)

.

.

.

zq· −
(∫ ·γ

0
bξ(yu)du, . . . ,

∫ (·+qh)γ
0

bξ(yu)du
)


,
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and

B· =
(
σB·γ , . . . , σ`

q(B·γ , . . . , B(·+qh)γ )
)
.

In other words, we have to prove that

γ ◦G−1
γ is the law of B·,

Since Gγ is continuous for the u.s.c topology, we have

γ ◦G−1
γ = lim

n→∞

1

tn

∫ tn

0

δGγ(Xθ,γs+·)
ds.

Let T > 0 and F : C([0, T ],Rd(q+1)) 7→ R be a bounded measurable function. We want to show
that

lim
n→∞

1

tn

∫ tn

0

F
(
Gγ(Xθ,γ

s+·)
)
ds = EF (B·).

It is sufficient to check the convergence for the finite dimensional distributions. For any N ≥ 1,
{u1, . . . , uN} ∈ RN and measurable and bounded f : Rd(q+1)N 7→ R, we want to show that

lim
n→∞

1

tn

∫ tn

0

f(Gγ(Xθ,γ
s+u1

), . . . , G(Xs+uN ))ds = Ef (Bu1
, . . . ,BuN ) .

By construction, we have

Gγ(Xθ,γ
s+.) =


σ(B(s+·)γ −Bsγ )

σ`1(B(s+·)γ −Bsγ , B(s+h+·)γ −Bsγ )
.
.
.

σ`q(B(s+·)γ −Bsγ , . . . , B(s+qh+·)γ −Bsγ )

 .

Therefore, we can write

f(Gγ(Xθ,γ
s+u1

), . . . , Gγ(Xθ,γ
s+uN )) = f̃

(
{B(s+u1+ih)γ −Bsγ}i=0,...,q, . . . , {B(s+uN+ih)γ −Bsγ}i=0,...,q

)
f (Bu1

, . . . ,BuN ) = f̃
(
{B(u1+ih)γ}i=0,...,q, . . . , {B(uN+ih)γ}i=0,...,q

)
,

where f̃ = f ◦ λ for some linear transformation λ, so f̃ is still a bounded measurable function. By
the ergodicity of the increments of the fractional Brownian motion ([6, Eq 5]), we have

lim
n→∞

1

tn

∫ tn

0

f(Gγ(Xθ,γ
s+u1

), . . . , Gγ(Xθ,γ
s+uN ))ds

= lim
n→∞

1

tn

∫ tn

0

f̃
(
{B(s+u1+ih)γ −Bs}i=0,...,q, . . . , {B(s+uN+ih)γ −Bsγ}i=0,...,q

)
ds

= Ef̃
(
{B(u1+ih)γ}i=0,...,q, . . . , {B(uN+ih)γ}i=0,...,q

)
= Ef(Bu1

, . . . ,BuN ).

Hence, ρ ◦G−1
γ has the law of B.

D Proof of Lemma 5.2 when θ = (ξ,H)

D.1 The case H > 1/2

We will prove that f : Θ ×H → Im(f) is bijective for h smaller than a theoretical h0. Let (a, b)
be a vector belonging to Im(f). We will show that the following equation has a unique solution
in (θ,H):

a = HΓ(2H)ξ−2H

b = 2HΓ(2H)ξ−2H sin(πH)

π

∫ ∞
0

cos(ξhx)
x1−2H

1 + x2
dx
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which is equivalent to solving:

ξ = (
a

HΓ(2H)
)−

1
2H

b = 2a
sin(πH)

π

∫ ∞
0

cos((
a

HΓ(2H)
)−

1
2H hx)

x1−2H

1 + x2
dx,

For the rest of this section, we will focus on the function

ga(H) = sin(πH)

∫ ∞
0

cos((
a

HΓ(2H)
)−

1
2H hx)

x1−2H

1 + x2
dx,

and we will show that for all possible values of a, ga is bijective and therefore there exists a unique
H such that ga(H) = πb

2a , which implies the uniqueness of ξ by the equation θ = ( a
HΓ(2H) )−

1
2H .

Now let us differentiate ga. For all H > 1/2

g′a(H) = π cos(πH)

∫ ∞
0

cos((
a

HΓ(2H)
)−

1
2H hx)

x1−2H

1 + x2
dx︸ ︷︷ ︸

:=g′a,1(H)

− sin(πH)[(
a

HΓ(2H)
)−

1
2H ]′h

∫ ∞
0

x sin((
a

HΓ(2H)
)−

1
2H hx)

x1−2H

1 + x2
dx︸ ︷︷ ︸

g′a,2(H)

−2 sin(πH)

∫ ∞
0

cos((
a

HΓ(2H)
)−

1
2H hx) log(x)

x1−2H

1 + x2
dx︸ ︷︷ ︸

g′a,3(H)

.

(D.1)

Remark D.1. In the expression above of g′a, we see that we need H > 1/2 for the integral∫∞
0
x sin(( a

HΓ(2H) )−
1

2H hx)x
1−2H

1+x2 dx to be absolutely convergent. For the case H < 1/2, we need to

check the convergence of
∫∞

0
sin(Cx)
xα for 1 < α < 1 if we want to differentiate ga.

We will show that for any H > 1/2, g′a(H) > 0 which proves that ga is bijective since it is

continuous. Let us first handle the term g′a,2. Notice that H → ( a
HΓ(2H) )−

1
2H is C1(H,R) and

therefore is bounded and has a bounded derivative. So we can bound g′a,2 in absolute value by a
C1h.

Let us now handle the term g′a,3, we first split the integral between [0, 1] and [1,∞).

g′a,3(H) = −2 sin(πH)

∫ 1

0

cos((
a

HΓ(2H)
)−

1
2H hx) log(x)

x1−2H

1 + x2
dx

− 2 sin(πH)

∫ ∞
1

cos((
a

HΓ(2H)
)−

1
2H hx) log(x)

x1−2H

1 + x2
dx.

Notice that for h small enough, the first term in g′a,3 is positive. In fact, we will rely on this
term to compensate all the negative terms in our lower-bound of g′a. For all ε, there exists h1 such
that for h ≤ h1, we have:

g′a,3(H) ≥ −2 sin(πH)

∫ 1

0

(1− ε) log(x)
x1−2H

1 + x2
dx

− 2 sin(πH)

∫ ∞
1

cos((
a

HΓ(2H)
)−

1
2H hx) log(x)

x1−2H

1 + x2
dx.

Since H ∈ H, a compact set, we can further lower bound g′a,3 by

g′a,3(H) ≥ −εC2 − 2 sin(πH)

∫ 1

0

log(x)
x1−2H

1 + x2
dx

− 2 sin(πH)

∫ ∞
1

cos((
a

HΓ(2H)
)−

1
2H hx) log(x)

x1−2H

1 + x2
dx.
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For the moment, the lower-bound we have on g′a is composed of the following terms

g′a(H) ≥ −hC1 − εC2 + g′a,1

−2 sin(πH)

∫ 1

0

log(x)
x1−2H

1 + x2
dx︸ ︷︷ ︸

=:g′31(H)

−2 sin(πH)

∫ ∞
1

cos((
a

HΓ(2H)
)−

1
2H hx) log(x)

x1−2H

1 + x2
dx︸ ︷︷ ︸

=:g′a,32(H)

.

The idea is to show that the sum of the terms g′31, g
′
a,32 and g′a,1 is positive so that we can

choose h0 such that the sum of all terms stays positive. For all H ∈ H with H > 1/2, we have

| − sin(πH)

∫ ∞
1

cos((
a

HΓ(2H)
)−

1
2H hx) log(x)

x1−2H

1 + x2
dx| < sin(πH)

∫ ∞
1

log(x)
x1−2H

1 + x2
dx,

and

|π cos(πH)

∫ ∞
0

cos((
a

HΓ(2H)
)−

1
2H hx)

x1−2H

1 + x2
dx| < −π cos(πH)

∫ ∞
0

x1−2H

1 + x2
dx.

Therefore, the sum of the terms g′31, g
′
a,32 and g′a,1 is strictly lower-bounded by

g′31(H) + g′a,32(H) + g′a,1(H) > −hC1 − εC2 +−2 sin(πH)

∫ 1

0

log(x)
x1−2H

1 + x2
dx

− 2 sin(πH)

∫ ∞
1

log(x)
x1−2H

1 + x2
dx

+ π cos(πH)

∫ ∞
0

x1−2H

1 + x2
dx.

(D.2)

Recall that HΓ(2H)ξ−2H = 2HΓ(2H) sin(πH)
π ξ−2H

∫∞
0

x1−2H

1+x2 dx. Thus we have
∫∞

0
x1−2H

1+x2 dx =
π

2 sin(πH) and
∫∞

0
−2 log(x)x

1−2H

1+x2 dx = −π2 cos(πH)
2(sin(πH))2 (by differentiating). Therefore, the lower bound

in (D.2) is actually equal to 0.
In conclusion, we have shown that for all H ∈ H satisfying H > 1/2,

g′a(H) ≥ −hC1 − εC2 + C3, (D.3)

where C1, C2, C3 > 0. Choose h and ε small enough such that −hC1 − εC2 + C3 > 0 to conclude
the proof.

D.2 The case H < 1/2

Using the Laplace transform, one can show that
∫∞

0
sin(x)
xα dx = Γ(α/2)Γ(1−α/2)

2Γ(α) for α ∈ (0, 2). So

we can now differentiate ga even for H < 1/2.
The arguments used to obtain the lower-bound (D.1) on g′a are still valid even when H < 1/2.

The difference here is that the term “cos(πH)” in g′a,1 is positive and therefore we want to bounde
g′a,1 from below.
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For H ∈ H with H < 1/2, we write as in Section D.1:

g′a(H) = π cos(πH)

∫ ∞
0

cos((
a

HΓ(2H)
)−

1
2H hx)

x1−2H

1 + x2
dx︸ ︷︷ ︸

=:g′a,1(H)

− sin(πH)[(
a

HΓ(2H)
)−

1
2H ]′h

∫ ∞
0

x sin((
a

HΓ(2H)
)−

1
2H hx)

x1−2H

1 + x2
dx︸ ︷︷ ︸

=:g′a,2(H)

−2 sin(πH)

∫ ∞
0

cos((
a

HΓ(2H)
)−

1
2H hx) log(x)

x1−2H

1 + x2
dx︸ ︷︷ ︸

=:g′a,3(H)

.

As in Section D.1, we have g′a,2 ≥ −hC. But now, we need different bounds on g′a,1 and g′a,3. We
split the two integrals in g′a,1 and g′a,3 between (0, 1) and (1,∞). Notice that on (0, 1), the term

cos(( a
HΓ(2H) )−

1
2H hx) goes to 1 as h→ 0 uniformly in x. So for ε ∈ (0, 1), there exists h1 such that

for h ≤ h1, we have

g′a,1(H) + g′a,2(H) + g′a,3(H) ≥ −hC − εC + π cos(πH)

∫ 1

0

x1−2H

1 + x2
dx− 2 sin(πH)

∫ 1

0

log(x)
x1−2H

1 + x2
dx

+ π cos(πH)

∫ ∞
1

cos((
a

HΓ(2H)
)−

1
2H hx)

x1−2H

1 + x2
dx

− 2 sin(πH)

∫ ∞
1

cos((
a

HΓ(2H)
)−

1
2H hx) log(x)

x1−2H

1 + x2
dx.

Recall that
∫∞

0
x1−2H

1+x2 dx = π
2 sin(πH) and

∫∞
0
−2 log(x)x

1−2H

1+x2 dx = −π2 cos(πH)
2(sin(πH))2 (by differentiating).

Therefore, we can simplify the previous bound as

g′a,1(H) + g′a,2(H) + g′a,3(H) ≥ −hC − εC + π cos(πH)

∫ ∞
1

[cos((
a

HΓ(2H)
)−

1
2H hx)− 1]

x1−2H

1 + x2
dx

− 2 sin(πH)

∫ ∞
1

[cos((
a

HΓ(2H)
)−

1
2H hx)− 1] log(x)

x1−2H

1 + x2
dx.

Moving all the terms inside the integrals, we are left with:

g′a,1(H) + g′a,2(H) + g′a,3(H) ≥ −hC − εC +

∫ ∞
1

[1− cos((
a

HΓ(2H)
)−

1
2H hx)]

× [2 log(x) sin(πH)− π cos(πH)]
x1−2H

1 + x2
dx.

We split the integral by the sign of 2 log(x) sin(πH)− π cos(πH) as follows:

g′a,1(H) + g′a,2(H) + g′a,3(H)

≥ −hC − εC +

∫ e
π cos(πH)
2 sin(πH)

1

[1− cos((
a

HΓ(2H)
)−

1
2H hx)][2 log(x) sin(πH)− π cos(πH)]

x1−2H

1 + x2
dx

+

∫ ∞
e
π cos(πH)
2 sin(πH)

[1− cos((
a

HΓ(2H)
)−

1
2H hx)][2 log(x) sin(πH)− π cos(πH)]

x1−2H

1 + x2
dx.

Since H lives in a compact set, we can choose h small enough so that the first integral (the
integral on a bounded interval) is as small as we want it to be. The second term is clearly positive.

Altogether, we have shown that for all ε > 0, there exists h2 such that for all h < h2, for all
H ∈ H satisfying H < 1/2, we have

g′a(H) > −hC1 − εC2 + C3, (D.4)

where C1, C2, C3 > 0. This proves the existence of h0, such that for all h ≤ h0, we have g′a(H) > 0,
and thus concludes on the injectivity of f when H < 1/2.
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