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Abstract

We investigate the problem of joint statistical estimation of several parameters
for a stochastic differential equation driven by an additive fractional Brownian
motion. Based on discrete-time observations of the model, we construct an esti-
mator of the Hurst parameter, the diffusion parameter and the drift, which lies
in a parametrised family of coercive drift coefficients. Our procedure is based
on the assumption that the stationary distribution of the SDE and of its incre-
ments permits to identify the parameters of the model. Under this assumption,
we prove consistency results and derive a rate of convergence for the estimator.
Finally, we show that the identifiability assumption is satisfied in the case of a
family of fractional Ornstein-Uhlenbeck processes and illustrate our results with
some numerical experiments.
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MSC Classification: 60H10 , 60G22 , 60G10 , 62F12 , 37M25

1 Introduction

Consider the following Rd-valued stochastic differential equation

Yt = Y0 +

∫ t

0

bξ0(Ys)ds+ σ0Bt, (1)
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where B is an Rd-fractional Brownian motion (fBm) with Hurst parameter H0 ∈ (0, 1).
The goal in this work is to estimate simultaneously the parameter ξ0, the diffusion
coefficient σ0 and the Hurst parameter H0 from discrete observations of the process Y .
We will assume that the drift parameter ξ0 lies in a set Ξ of Rm and {bξ(·), ξ ∈ Ξ} is a
parametrised family of drift coefficients with bξ(·) : Rd → Rd, and σ0 is an invertible
Rd×d matrix. The unknown parameters are denoted by θ0 = (ξ0, σ0, H0) ∈ Rq+1,
where q = m+ d2.

In the framework of SDEs driven by fBm, many recent works have focused on the
parametric estimation of the drift, mostly assuming that the process Y is observed
continuously and that the parameters H and σ are known (see e.g Belfadli et al (2011);
Hu and Nualart (2010); Prakasa Rao (2010); Tudor and Viens (2007); Hu et al (2019)).
These works propose estimators of ξ0 which are strongly consistent, providing a rate
of convergence towards ξ0 and even sometimes a central limit theorem Hu and Nualart
(2010); Hu et al (2019). In these works, the drift function is of the form bξ(y) = −ξy,
i.e. a family of Ornstein-Uhlenbeck (OU) processes, or of the form bξ(y) = ξb(y) as in
Tudor and Viens (2007). In addition, the process Y is observed in continuous time. In
practical situations though, we only have access to discrete-time observations. Taking
into account this constraint, two recent papers Panloup et al (2020); Hu and Song
(2013) constructed estimators of ξ0 which were proven to be strongly consistent. Their
rate of convergence is studied and a central limit theorem is also proven in Hu and
Song (2013): while Hu and Song (2013) considers the fractional OU case, Panloup
et al (2020) treats general drift functions which satisfy a coercivity assumption.

The diffusion coefficient σ0 is usually estimated using the quadratic variations of Y ,
which is possible only when the process is either observed continuously or the step-size
goes to zero (i.e high frequency data), see Xiao et al (2011) and Berzin et al (2015). The
Hurst parameter H0 is also estimated using quadratic variations, see e.g. Kubilius and
Mishura (2012), or by a direct access to discrete observations of a fractional Brownian
motion path with a step-size that goes to zero as in Gloter and Hoffmann (2007).

When it comes to estimating all the parameters (ξ0, σ0, H0), we refer to Brouste and
Iacus (2013) where the observations are assumed to be made continuously, and Haress
and Hu (2021) which is, to the best of our knowledge, the only work which estimates all
the parameters of a fractional Ornstein-Uhlenbeck process in a discrete-time setting.

In this paper, we consider an ergodic setting that allows for (1) to have a station-
ary distribution for any θ0 ∈ Θ. We work with the assumption that the stationary
distribution of Y identifies the parameters, as initiated in Panloup et al (2020). How-
ever, as illustrated by the authors of Haress and Hu (2021), in the simple case of a
one-dimensional fractional OU process, this claim is false for more than one parameter
to estimate. In fact, the stationary distribution of Y is Gaussian and therefore dis-
tinguished by its mean (which does not depend on the parameters) and its variance.
In this case, the variance itself cannot identify the three parameters. In Haress and
Hu (2021), this issue is circumvented by considering the increments of Y ; the incre-
ments of the stationary solution are also Gaussian but have different variances. Thus,
adding two increments, the authors have access to three functions and show that these
functions are sufficient to estimate the parameters. We propose here to generalise the

2



approach presented in Haress and Hu (2021). We add q linear transformations of the
original process and assume that they are enough to identify the parameters. There-
fore, our assumption (which is detailed later) will be that the stationary distribution
of Y and its increments identify the parameters (ξ, σ,H).

Assume for simplicity that the observations are of the form (Y θ0kh )k=0,...,n+q and

consider q linear transformations {`i(Y θ0kh , . . . , Y
θ0
kh+ih)}k=0,...,n where i ∈ J1, qK. Hence,

we now have access to q + 1 paths, which we use to define the path of a higher-
dimensional process Xθ0 that we call the augmented process associated to the SDE
(1). With access to a path of Xθ0 , we construct the estimator of θ0 by

θ̂n = argmin
θ∈Θ

d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ

)
, (2)

where µθ is the stationary distribution of Xθ. We prove that θ̂n is a strongly consistent
estimator of θ0 and obtain a rate of convergence.

In Haress and Hu (2021), the authors provided numerical evidence of the identifia-
bility assumption (i.e the fact that the stationary distribution of Y and its increments
identify the parameters). We prove here that in the setting of Haress and Hu (2021),
i.e. of a fractional OU process, the aforementioned identifiability assumption holds.
Also, as in Panloup et al (2020), we consider two variations of this assumption, a weak
one which we will just call the identifiability assumption and a strong one. Moreover,
to construct an estimator of the drift parameter ξ, the authors of Panloup et al (2020)
proved beforehand results on the regularity of Y with respect to ξ. This is a natural
procedure, since the estimation method relies on minimizing a certain functional of
Y , by showing that it has enough regularity so that its minimum is attained at the
true parameter ξ0. Here, in view of estimating all the parameters, we will will study
the regularity of Y with respect to ξ, σ and H.

Since we are interested in ergodic estimators, we need the regularity of Y in all the
parameters to be uniform in time. In particular we need the regularity in H to hold
uniformly in t ≥ 0. To achieve this, the drift will be assumed to be contractive.

Let us mention that the sensitivity in the Hurst parameter has been studied in
various situations and is an important topic in modeling. The fBm is known to be
infinitely differentiable w.r.t its Hurst parameter (see Koch and Neuenkirch (2019)).
In addition, other functionals of the fBm were considered. In Jolis and Viles (2010,
2007), the law of the integral w.r.t the fBm is proven to be continuous in H; in Richard
(2015), the Hölder continuity in is obtained for generalised fractional Brownian fields;
and in Giordano et al (2020), the law of stochastic heat and wave equations with
additive fractional noise is proven to be continuous in H. Let us also mention that in
Richard and Talay (2022), the law of functionals of fractional SDEs is proven to be
Lipschitz continuous around its Markovian counterpart (H = 1

2 ), including irregular
functionals such as the law of the first hitting time (see also Richard and Talay (2017)
for a numerical approach and applications, in particular in neuroscience).
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In this work, new results on the Hurst regularity of fractional models were needed,
and they have been gathered in a separate paper Haress and Richard (2022).

In the formula (2), the stationary distribution µθ is generally unknown, except in
some simple cases like for Ornstein-Uhlenbeck processes. This means that the estima-
tor cannot be implemented. This problem can be solved by considering a numerical
approximation of µθ via an Euler scheme Y θ,γ of time-step γ > 0. Given N + q
simulated points of the form (Y θ,γkγ )k=0,...,N+q, we consider as before q linear transfor-

mations {`i(Y θ,γkγ , . . . , Y
θ,γ
kγ+iγ)}k=0,...,N , which we use to define a higher-dimensional

process Xθ,γ . We then define the estimator of θ0 by

θ̂N,n,γ = argmin
θ∈Θ

d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δXθ,γkγ

)
. (3)

We prove that θ̂N,n,γ is a strongly consistent estimator of θ0 and obtain a rate of
convergence.

Organisation of the paper.

In Section 2, we first detail the notations and some assumptions in Section 2.1. Then
in Section 2.2 we explain how to approximate the invariant measure via an Euler
scheme in order to implement the estimator (3). We present the main results for the
estimators (2) and (3) in Section 2.3. In Section 2.4, we show that our results can
be applied to the fractional Ornstein-Uhlenbeck process and to small perturbations
of this process. In Section 3, we prove the strong consistency of the estimator (2)
and its rate of convergence. In Section 4, we prove the strong consistency of the
estimator (3) and its rate of convergence. In Section 5.1 and 5.2, we prove that the
identifiability assumption holds in the case of a fractional Ornstein-Uhlenbeck process
for the estimation of two parameters, and in Section 5.3, we exhibit a more general
family of SDEs that verifies a stronger identifiability assumption for the estimation
of one parameter. We also implement our method and run numerical simulations in
Section 5.4. In the Appendix A, we recall some results from our companion paper
Haress and Richard (2022). In Appendix B, we prove continuity and tightness results
on Y and the solution of the Euler scheme associated to (1). Finally Appendix C is
dedicated to the proof of Proposition 2.4.

2 A general procedure

We first give some general notations. Then we state the assumptions on the coefficients
of (1) and define the estimator. At the end of this section, we give an almost sure
convergence for this estimator result as well as a convergence rate.
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2.1 Notation and assumptions

Notations.

Let M1(Rd) denote the set of probability measures on Rd. For any given p, we will
consider the p-Wasserstein distance, which is defined for every µ, ν in M1(Rd) as
follows:

Wp(µ, ν) = inf{(E|X − Y |p)
1
p ;L(X) = µ, L(Y ) = ν}.

We denote by Dp the set of distances dominated by the p-Wasserstein distance. As
in Panloup et al (2020), we will also work with the distance dCF,p ∈ D1 defined for
p > (d2 ∨ 1) as

dCF,p(L(X),L(Y )) =

(∫
Rd

(E[ei〈χ,X〉]− E[ei〈χ,Y 〉])2gp(χ)dχ

)1/2

, (4)

where gp is the integrable kernel given by

gp(χ) = cp(1 + |χ|2)−p, (5)

and cp = (
∫
Rd(1 + |χ|2)−pdχ)−1 is a normalizing constant.

We denote by N∗ the set N\{0} and by C a constant that can change from line to
line and that does not depend on time and the parameters ξ, σ,H. When we want to
make the dependence of C on some other parameter a explicit, we will write Ca.

The Rd-fBm will be denoted by B, or by BH if we need to emphasize on the Hurst
parameter H of the process. Whenever we compare, on the same probability space,
two fBm with different Hurst parameters BH1 and BH2 , it is assumed that they are
built from the same Brownian motion W by the Mandelbrot-Van Ness formula:

BHit =
1

Γ(Hi + 1
2 )

∫
R

(
(t− s)Hi−

1
2

+ − (−s)Hi−
1
2

+

)
dWs, t ≥ 0, i = 1, 2. (6)

Assumptions.

First, we assume that the number of unknown parameters q + 1 is such that q ≥ 1
(we have at least two unknowns), which is decomposed into m parameters for the
drift bξ0 , ξ0 ∈ Ξ ⊂ Rm, d2 parameters for σ ∈ Rd×d and the last one which is the
Hurst parameter. The next assumption states the compactness of the spaces where
the parameters lie.

A0. Ξ is compactly embedded in Rm for a given m ≥ 1. H0 belongs to H, a compact
subset of (0, 1). The diffusion matrix σ0 belongs to Σ a compact set of d×d-invertible
matrices.

Therefore, we have that Θ = Ξ × Σ × H is a compact subset of Rq+1. We will also
assume a coercivity assumption on the drift b.
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A1. b ∈ C1,1(Rd × Ξ;Rd) and there exist constants β,K, c > 0 and r ∈ N such that
(i) For every x, y ∈ Rd and ξ ∈ Ξ, we have

〈bξ(x)− bξ(y), x− y〉 ≤ −β|x− y|2 and |bξ(x)− bξ(y)| ≤ K|x− y|. (7)

(ii) For every x ∈ Rd and ξ1, ξ2 ∈ Ξ, the following growth bound is satisfied:

|bξ1(x)− bξ2(x)| ≤ c(1 + |x|r). (8)

For θ = (ξ, σ,H) ∈ Θ, we denote by Y θ the unique solution of the following equation

Y θt = Y0 +

∫ t

0

bξ(Y
θ
s )ds+ σBt, (9)

where Y0 ∈ Rd and B is an fBm of Hurst parameter H. Under A1, Hairer (2005) (see
also (Panloup et al, 2020, Remark 2.4) and the references therein) gives the existence
and uniqueness of the invariant measure to (9). We denote by Ȳ θ the unique stationary
solution and by νθ its marginal distribution. For each i ∈ J1, qK, let `i be a linear

transformation from
(
Rd
)i+1

to Rd.
Let us define the following processes for all i ∈ J1, qK:

Zi,θ. = `i(Y θ· , . . . , Y
θ
·+ih)

Z̄i,θ· = `i(Ȳ θ· , . . . , Ȳ
θ
·+ih)

Xθ
· = (Y θ· , Z

1,θ
· , . . . , Zq,θ· ) (10)

X̄θ
. · = (Ȳ θ· , Z̄

1,θ
· , . . . , Z̄q,θ· ). (11)

Typical linear transformations considered in applications (see the discussion in
Section 2.4) will be the simple increments

`i(Uθ0· , . . . , U
θ0
.+ih) = Uθ0.+ih − U

θ0
· , i = 1, . . . , q. (12)

Observe that for all θ ∈ Θ and i ∈ J1, qK, the processes Z̄i,θ and X̄θ are stationary.
Denote by µθ the law of X̄θ. For simplicity, we will not write the parameter θ on the
processes when θ is the true parameter θ0. The triangle inequality yields the following
inequalities for all θ, θ′ ∈ Θ and p > 0,

|Xθ
· |p ≤ Cp,q

(
q∑
i=0

|Y θ·+ih|p
)

|Xθ
· −Xθ′

· |p ≤ Cp,q

(
q∑
i=0

|Y θ·+ih − Y θ
′

·+ih|p
)

(13)

|Xθ
· − X̄θ

· |p ≤ Cp,q

(
q∑
i=0

|Y θ·+ih − Ȳ θ·+ih|p
)
,
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where Cp,q is a constant that do not depend on θ or θ′. More precisely, Cq,p ∼ 2pqpLp,
where L is the maximum of the Lipschitz constants of the applications `i for i ∈
J1, qK. This means that upper bounds on X will be obtained by bounding Y , and the
regularity of the process X will be studied through the regularity of the process Y .

As was highlighted previously in the introduction, the estimators are defined by
assuming that µθ characterizes θ. This weak identifiability hypothesis reads as follows:

Iw. For any θ in Θ,

µθ = µθ0 ⇐⇒ θ = θ0, (14)

where we recall that µθ is the stationary distribution of X̄θ.

Remark 2.1. A similar assumption is considered in Panloup et al (2020) based on
the stationary distribution of Ȳ : assume that νθ = νθ0 iff θ = θ0. Assumption Iw is
weaker, in the sense that it is satisfied in situations where the assumption from Panloup
et al (2020) is not (because we consider the process Xθ instead of Y θ). Indeed, let
θ, θ0 ∈ Θ such that µθ = µθ0 . This implies dCF,p(µθ, µθ0) = 0. Using the definition of
dCF,p, we have

for almost all χq ∈ R(q+1)d, E
[
ei〈χq,X̄

θ
t 〉
]

= E
[
ei〈χq,X̄

θ0
t 〉
]
,

which implies that

for almost all χ ∈ Rd, E
[
ei〈χ,Ȳ

θ
t 〉
]

= E
[
ei〈χ,Ȳ

θ0
t 〉
]
.

Hence, if the assumption from Panloup et al (2020) holds, one gets dCF,p(νθ, νθ0) = 0,
i.e. νθ = νθ0 , which then implies that θ = θ0. To see that Iw is strictly weaker, we
refer the reader to the example of the fractional OU process detailed in Section 2.4:
in dimension 1, the stationary measure is centred Gaussian and the variance, which
depends on the drift coefficient, the diffusion coefficient and H, is not sufficient to
identify all 3 parameters. However, considering the stationary measure of Y θ and its
increments permit to retrieve identifiability, see Proposition 2.11.

2.2 Approximation of the invariant measure µθ

To approximate µθ, we consider the Euler scheme of the stochastic process Y θ, solution
to (9). For a time-step γ > 0, the Euler scheme Y θ,γ is then defined by Y θ,γ0 = y0 ∈ Rd
and

Y θ,γ(k+1)γ = Y θ,γkγ + γbξ(Y
θ,γ
kγ ) + σ(B̂(k+1)γ − B̂kγ)

Y θ,γt = Y θ,γtγ = Y θ,γkγ for t ∈ [kγ, (k + 1)γ),
(15)

where tγ = γbt/γc and B̂ is a simulated fractional Brownian motion, which is a priori
different from the process B in (9), since B is unobserved. In practice, this means that
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we will not be able to compare pathwise the observed process and the simulated one.
When necessary, to mark the dependence of Y θ,γ· on B̂, we write Y θ,γ· (B̂). We will

say that
(
Ȳ θ,γt

)
t≥0

is a discrete stationary solution to (15) if it is a solution of (15)

satisfying(
Ȳ θ,γt1+kγ , . . . , Ȳ

θ,γ
tn+kγ

)
L
=
(
Ȳ θ,γt1 , . . . , Ȳ θ,γtn

)
∀ 0 < t1 < · · · < tn, ∀n, k ∈ N.

By (Panloup et al, 2020, Proposition 3.4), there exists γ0 > 0 such that for any
γ ∈ (0, γ0] and θ ∈ Θ, (15) admits a unique stationary solution Ȳ θ,γ . As in Section
2.1, we define the augmented Euler scheme Xθ,γ by

Xθ,γ
· =

(
Y θ,γ· , `1(Y θ,γ· , Y θ,γ·+h), . . . , `q(Y θ,γ· , . . . , Y θ,γ·+qh)

)
. (16)

Similarly, we write Xθ,γ
· (B̂) to insist on the dependence on B̂ when necessary. We also

define the stationary augmented Euler scheme X̄θ,γ and denote its distribution by µγθ

2.3 Main results

Assume that the solution Y is discretely observed at times {kh; k = 1, . . . , n+ q} for a
fixed time step h > 0. Under Assumption A1, we have the following lemma (the proof
is postponed to Section 3.2):
Lemma 2.2. For any d ∈ D2 and any θ ∈ Θ, we have

d

(
1

t

∫ t

0

δXθs ds, µθ

)
−→
t→+∞

0 a.s. ,

and

d

(
1

n

n−1∑
k=0

δXθkh , µθ

)
−→

n→+∞
0 a.s.

Remark 2.3. The integral
∫ t

0
δXsds is to be understood as the probability measure

which associates to each Borel set A the value
∫ t

0
δXs(A)ds.

Hence, for some observations Xθ0
0 , . . . , Xθ0

(n−1)h and under the identifiability

assumption Iw, the previous lemma justifies to use the estimator θ̂n defined in (2).

In practice, we want to implement the estimator θ̂n,N,γ defined in (3). The following
result, coupled with Proposition 4.2(i) justifies the use of this estimator.

Proposition 2.4. Let (Xθ,γ
kγ )k≥0 be the augmented Euler scheme with time-step γ.

Assume that A0 and A1 hold. Then for any distance d ∈ D2, there exists γ0 > 0 such
that for all θ ∈ Θ and γ ∈ (0, γ0], we have

lim
N→∞

d

(
1

N

N−1∑
k=0

δXθ,γkγ
, µγθ

)
= 0.
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The proof is postponed to Appendix C.
The first result (Theorem 2.5) states the strong consistency of the estimator (2)

under the assumptions A0, A1, Iw (see Section 3.3 for the proof).
Theorem 2.5. Assume that A0, A1, Iw hold. Consider a distance d on M1(Rd)
which belongs to D2. Then (θ̂n)n∈N defined in (2) is a strongly consistent estimator of
θ0 in the following sense:

lim
n→∞

θ̂n = θ0 a.s.

We also have strong consistency of the estimator (3) under the same assumptions.
Theorem 2.6. Assume that A0, A1, Iw hold. Consider a distance d on M1(Rd)
which belongs to D2. Assume that the exponent r in the sub-linear growth of bξ in (8)

satisfies r ≤ 1. Then the family {θ̂n,N,γ , (n,N, γ) ∈ N2 × R+} is a strong consistent
estimator of θ0 in the following sense:

lim
n→∞
N→∞
γ→0

θ̂n,N,γ = θ0 a.s.

We will also establish a rate of convergence of the estimators when d = dCF,p for
some p ∈ N∗, under the strong identifiability assumption:

Is. There exists a constant c1 > 0 and α ≥ 2, such that for every θ in Θ,

dCF,p(µθ, µθ0)α ≥ c1|θ − θ0|2.

Under this assumption, we obtain a rate of convergence for θ̂n and θ̂n,N,γ , which will
be proved in Section 3.4 and Section 4.3.

Theorem 2.7. Assume that A0 and A1 hold, and that Is holds for p > α+d(q+1)
2 .

Then limn→∞ θ̂n = θ0 a.s. and there exists a constant C > 0 such that for any n ∈ N∗,

E|θ̂n − θ0|2 ≤ Cn−α(1−(max(H)∨ 1
2 )).

Theorem 2.8. Assume that A0 and A1 hold and that Is holds for p > α+d(q+1)
2 .

Assume that the exponent r in the sub-linear growth of bξ in (8) satisfies r ≤ 1.

Then limn→∞,N→∞,γ→0 θ̂n,N,γ = θ0 a.s. Moreover, for any ε ∈ (0,min(H)) and $ ∈
(0, 1), there exists positive constants C, γ0 such that for any γ ∈ (0, γ0] and n,N ∈ N
satisfying Nγ ≥ 1, we have

E
∣∣∣θ̂n,N,γ − θ0

∣∣∣2 ≤ C(nα(−1+max(H)∨ 1
2 ) +Nα(−1+max(H)∨ 1

2 ) + γα(min(H)−ε)

+ (Nγ)−
$α2

2($α+2d)
(2−2 max(H)∨1)

)
.

Remark 2.9. We discuss here whether the above rate of convergence can be optimal.
Assume first that H ≤ 1

2 , d = 1 and α = 2 (that is the case for the fractional Ornstein-
Uhlenbeck (OU) process for example, see (Panloup et al, 2020, Lemma 6.2)). Then by
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Theorem 2.8, using that Nγ ≤ N , we have for ε ∈ (0, 1
2 )

(
E
∣∣∣θ̂n,N,γ − θ0

∣∣∣2) 1
2

≤ C
(
n−

1
2 + γmin(H)−ε + (Nγ)−

1
4 +ε
)
.

The term n−
1
2 corresponds to the convergence with respect to the sample size. It

matches the CLT rate and generalises (Haress and Hu, 2021, Theorem 4.5) where, for
the fractional OU process, the authors construct estimators of ξ, σ and H based on the
invariant measure and prove a CLT with respect to the sample size. Moreover, taking
N = γ−(4 min(H)+1), there is

(
E
∣∣∣θ̂n,N,γ − θ0

∣∣∣2) 1
2

≤ C
(
n−

1
2 + γmin(H)−ε

)
.

The term γmin(H)−ε corresponds to the convergence of the Euler scheme defined in (15)
and is known to be optimal optimal for strong errors. So the rate cannot be improved
in this situation.
Beyond the fractional OU process, we generalise the rate obtained in (Panloup et al,
2020, Theorem 2.13) to an estimation of all the parameters. Finally, the CLT obtained
in Haress and Hu (2021) holds for H ∈ (0, 3

4 ) while here the rate we obtained is slower
when H > 1

2 : for α = 2, the first L2 error term in the bound of Theorem 2.8 reads

n−1+max(H) � n−
1
2 .

Remark 2.10. The proofs of Theorem 2.7 and Theorem 2.8 rely on an upper bound
of E[d(µθ̂n , µθ0)α]. This involves bounding the quantities in the left-hand side of (13)
with p = α. In (13) the constant Cα,q is of order qαLα, where L is the biggest Lipschitz
constant of the linear transformations. Hence the constant C in Theorem 2.7 depends
on (`i)i=1,...,q as C ∼ qα+1Lα. This can be useful in practice when choosing (`i)i=1,...,q.

2.4 Application to fractional Ornstein-Uhlenbeck-type
processes

We first discuss the identifiability assumption for the fractional Ornstein-Uhlenbeck
(OU) process, then for a family of small perturbations of the fractional OU process.

Identifiability assumption.

Consider the family of one-dimensional fractional OU processes given by

dUθ = −ξUθdt+ σdB, Uθ0 = 0. (17)

It is known from the proof of (Hairer, 2005, Proposition 3.12) that the stationary
measure of Uθ follows the Gaussian distribution

N (0, σ2HΓ(2H)ξ−2H). (18)
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In particular, this distribution alone does not permit to identify simultaneously ξ, σ
and H. Hence the need to consider increments.
Here, ξ and σ are in compact subsets of (0,∞) and the linear transformation `1 takes
the form of an increment

`1(Uθ· , U
θ
.+h) = Uθ.+h − Uθ· .

We suppose here that θ is of dimension 2, i.e. only two of the three parameters (ξ, σ,H)
are unknown. In the following result, we establish that Iw is verified.
Proposition 2.11. Consider the fractional Ornstein-Uhlenbeck model defined by
equation (17) and assume that one of the parameters ξ, σ or H is known. Let p > 1
and let µθ denote the stationary measure of (Uθ· , U

θ
·+h−Uθ· ). Then there exists h0 > 0

such that for all h ∈ (0, h0), we have

∀θ1, θ2 ∈ Θ, dCF,p(µθ1 , µθ2) = 0 iff θ1 = θ2.

The proof is given in Section 5.1.

Strong identifiability assumption.

We show that Assumption Is holds for some specific examples of (9) and for the
distance d = dCF,p. Specifically, we consider a family Uλ,θ of real-valued processes
defined by

dUλ,θt =
(
−ξUλ,θt + λbξ(U

λ,θ
t )

)
dt+ σdBt. (19)

Under the assumption that the coefficient bξ is bounded altogether with its derivatives
with respect to ξ and y, one can check that the drift term b(·) = −ξ ·+λbξ(·) satisfies
A1 for λ small enough. Therefore, the equation has a unique invariant measure, which
is denoted by µλθ . The process Uλ,θ can be seen as a small perturbation of the fractional
Ornstein-Uhlenbeck process, since U0,θ = Uθ, where Uθ is the fractional OU process
defined in (17). For the fractional OU process, we simply write µθ for the invariant
measure. We make the following assumption on the parameters:

Ã0. Assume that ξ, σ and H are one-dimensional parameters and that

ξ ∈ [mΞ,MΞ], with 0 < mΞ < MΞ <∞
σ ∈ [mΣ,MΣ], with 0 < mΣ < MΣ <∞
H ∈ [mH,MH], with 0 < mH < MH < 1.

We shall prove that Uλ,θ satisfies assumption Is when only one parameter is unknown
(so either θ = ξ, θ = σ or θ = H). When referring to θ, we will write our assumption
above as θ ∈ [mΘ,MΘ].

The first lemma below states that Is is satisfied for Uθ := U0,θ.

11



Lemma 2.12. Let θ represent either ξ, σ or H. Assume that Ã0 holds and if θ = H,
assume further that

ξ > sup
H∈[mH,MH]

exp

(
Γ(2H) + 2HΓ′(2H)

2HΓ(2H)

)
or ξ < inf

H∈[mH,MH]
exp

(
Γ(2H) + 2HΓ′(2H)

2HΓ(2H)

)
.

(20)

Let p ≥ 1, then for all θ1, θ2 ∈ [mΘ,MΘ],

dCF,p(µθ1 , µθ2) ≥ c|θ1 − θ2|,

where c is a constant that does not depend on θ1 or θ2.

The previous lemma extends to the solution of Equation (19).
Proposition 2.13. Let Uλ,θ be the process defined by (19) where θ is either ξ, σ

or H, and let p > 3/2. Assume that Ã0 holds and that bξ, ∂ybξ, ∂ξbξ are bounded.
Moreover, if θ = ξ, assume that |∂2

y,ξbξ| ≤ 1 and if θ = H, assume that (20) holds.
Then there exists λ0 = λ0(mΘ,MΘ, p) > 0 and cmΘ,MΘ,p > 0 such that for any
λ ∈ (0, λ0) and any θ1, θ2 ∈ [mΘ,MΘ],

dCF,p(µ
λ
θ1 , µ

λ
θ2) ≥ cmΘ,MΘ,p|θ1 − θ2|.

The proofs of Lemma 2.12 and Proposition 2.13 are given in Section 5.3.

3 Strong consistency and rate of convergence of the
estimator θ̂n

To prove the almost sure convergence, we will use (Panloup et al, 2020, Proposition
4.3) that we recall in Proposition 3.1 below for the reader’s convenience. It concerns
the limiting property of a collection of real-valued processes {Lv(θ)}v indexed by a
generic v which lies in a topological space and converges to a generic v0. In this Section,
we always have v ≡ n ∈ N, and so limv→v0

is to be understood as limn→∞. In Section
4, we will take v ≡ (γ, n,N) with γ → 0 and n,N → ∞, and therefore limv→v0

will
be understood as limn→∞,N→∞,γ→0.
Proposition 3.1 ((Panloup et al, 2020, Proposition 4.3)). Let Θ be a compact set
and {θ ∈ Θ 7→ Lv(θ)}v a family of non-negative stochastic processes. Assume that

(i) Almost surely, limv→v0
Lv(θ) = L(θ) uniformly in θ.

(ii) θ 7→ L(θ) is deterministic and continuous in θ.
(iii) For any v, the set argmin{Lv(θ), θ ∈ Θ} is non-empty.

Let θv ∈ argminθ∈Θ Lv(θ). If A is a limit point of {θv}v, then A ∈ argminθ∈Θ L(θ).

In this Section, we always have Lv(θ) = d( 1
n

∑n−1
k=0 δXkh , µθ), with v ≡ n and

v0 ≡ ∞.

12



3.1 Continuity of θ 7→ d(µθ, µθ0)

First, we prove two lemmas that state the Lp(Ω)-continuity with respect to θ of the
solution to (9), and the exponential convergence of the law of Xθ (defined in (10))
towards its stationary distribution µθ. Then we deduce the continuity of the mapping
θ 7→ d(µθ, µθ0) in Proposition 3.4.
Lemma 3.2. Assume A0 and A1 are satisfied. Let T > 0 and p > 0. Let W be an
Rd-Brownian motion and for any H ∈ (0, 1), denote by BH the fBm with underlying
noise W (i.e. as in (6)). There exists a constant CT,p > 0 such that for any θ1, θ2 ∈ Θ,

‖Y θ1T − Y
θ2
T ‖Lp ≤ CT,p|θ1 − θ2|,

where Y θ1 (resp. Y θ2) is the solution to (9) with parameter θ1 (resp. θ2) and driving
fBm BH1 (resp. BH2), and both Y θ1 and Y θ2 start from the same initial condition.

Proof. Without any loss of generality, we assume p ≥ 2. Up to introducing pivot terms,
we can consider three different cases:

1) θ1 = (ξ, σ,H1) and θ2 = (ξ, σ,H2)

2) θ1 = (ξ, σ1, H) and θ2 = (ξ, σ2, H)

3) θ1 = (ξ1, σ,H) and θ2 = (ξ2, σ,H).

In the first case, where only H changes, we get from the definition of Y θ1t and Y θ2t
that for any t ∈ [0, T ],

Y θ1t − Y
θ2
t =

∫ t

0

(bξ(Y
θ1
t )− bξ(Y θ2t ))ds+ σ(BH1

t −B
H2
t ).

Since b is K-Lipschitz, we get

|Y θ1t − Y
θ2
t |2 ≤ 2

(∫ t

0

K|Y θ1t − Y
θ2
t |ds

)2

+ 2|σ|2|BH1
t −B

H2
t |2.

By Jensen’s inequality, we have

|Y θ1t − Y
θ2
t |2 ≤ 2K2t

∫ t

0

|Y θ1t − Y
θ2
t |2ds+ 2|σ|2|BH1

t −B
H2
t |2

By Grönwall’s lemma, we deduce that

|Y θ1t − Y
θ2
t |2 ≤ 2K2T

∫ t

0

|σ|2|BH1
s −BH2

s |2e2K2T (t−s)ds+ 2|σ|2|BH1
t −B

H2
t |2.

13



By Jensen’s inequality, there exists a constant Cp such that

|Y θ1t − Y
θ2
t |p ≤ Cp

(
2p/2KpT p−1

∫ t

0

|σ|p|BH1
s −BH2

s |peK
2Tp(t−s)ds+ |σ|p|BH1

t −B
H2
t |p

)
.

Since BH1
t − BH2

t is a Gaussian random variable, E|BH1
t − BH2

t |p is proportional to
(E|BH1

t −B
H2
t |2)p/2. Using (Haress and Richard, 2022, Proposition 2.1), the fractional

Brownian motion verifies

E|BH1
t −B

H2
t |p ≤ C

(
tpH1 ∨ tpH2

)
(log2(t) + 1)p/2 |H1 −H2|p.

Therefore,

E|Y θ1t − Y
θ2
t |p ≤ Cp|σ|p

(
2p/2KpT peK

2T 2p + 1
) (
T pH1 ∨ T pH2

)
(log2(T ) + 1)p/2|H1 −H2|p.

Since σ ∈ Σ, we conclude that

‖Y θ1t − Y
θ2
t ‖Lp ≤ Cp,σ,K(TeK

2T 2

+ 1)(1 + Tmax(H))(log2(T ) + 1)1/2|H1 −H2|.

In the second case, since b is K-Lipschitz, using Jensen’s inequality, we have

|Y θ1t − Y
θ2
t |2 =

(∫ t

0

[bξ(Y
θ1
t )− bξ(Y θ2t )]ds+ (σ1 − σ2)Bt

)2

≤ 2K2T

∫ t

0

|Y θ1s − Y
θs
t |2ds+ 2|σ1 − σ2|2|Bt|2.

By Grönwall’s lemma, we get

|Y θ1t − Y
θ2
t |2 ≤ |σ1 − σ2|2

(
|Bt|2 + 2K2T

∫ t

0

|Bs|2e2K2T (t−s)ds

)
.

Therefore, by Jensen’s inequality, there exists a constant Cp such that

|Y θ1t − Y
θ2
t |p ≤ Cp|σ1 − σ2|p

(
|Bt|p + 2p/2KpT p−1

∫ t

0

|Bs|peK
2Tp(t−s)ds

)
.

It follows that

‖Y θ1t − Y
θ2
t ‖Lp ≤ Cp|σ1 − σ2|(TH + T 1+HeK

2T 2

)

≤ Cp|σ1 − σ2|(1 + Tmax(H))(TeK
2T 2

+ 1).

Finally, in the third case, we have by (Panloup et al, 2020, Proposition 3.5) that
‖Y θ1t − Y

θ2
t ‖Lp ≤ CT,p|ξ1 − ξ2|, where it appears from the proof of (Panloup et al,

2020, Proposition 3.5) that CT,p does not depend on H or σ.
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Lemma 3.3. Assume A0 and A1 hold. Let d be a distance in Dp. Then there exists
a constant C > 0 such that for all θ ∈ Θ and for all t ≥ 0, we have

d(L(Xθ
t ), µθ) ≤ Ce−

1
C t. (21)

Proof. Since d ∈ Dp, it comes:

d(L(Xθ
t ), µθ) ≤ E(|Xθ

t − X̄θ
t |p)

1
p ≤ C

(
q∑
i=0

E(|Y θt+ih − Ȳ θt+ih|p)
1
p

)
.

Using A1,

d

dt
|Y θt − Ȳ θt |2 = 2〈Y θt − Ȳ θt , bξ(Y θt )− bξ(Ȳ θt )〉 ≤ −2β|Y θt − Ȳ θt |2.

It follows that |Y θt − Ȳ θt |2 ≤ |Y θ0 − Ȳ θ0 |2e−2βt. Hence for p ≥ 2,

‖Y θt − Ȳ θt ‖Lp ≤ ‖Y θ0 − Ȳ θ0 ‖Lpe−βt ≤ (‖Y θ0 ‖Lp + ‖Ȳ θ0 ‖Lp) e−βt. (22)

Moreover, by stationarity and Proposition B.1(i), we have

‖Ȳ θ0 ‖Lp = lim
t→∞

‖Y θt ‖Lp ≤ sup
t≥1

sup
θ∈Θ
‖Y θt ‖Lp <∞.

This concludes the proof.

We can now state the main continuity result of this section.
Proposition 3.4. Assume A0 and A1 hold and let d be a distance in Dp. Then the
mapping θ 7→ d(µθ, µθ0) is continuous on Θ.

Proof. Let now θ1, θ2 ∈ Θ. Then for t ≥ 0,

d(µθ1 , µθ2) ≤ CWp(µθ1 , µθ2) ≤ CWp(µθ1 ,L(Xθ1
t )) + CWp(µθ2 ,L(Xθ2

t )) + C‖Xθ1
t −X

θ2
t ‖Lp

≤ 2C sup
θ∈Θ
Wp(L(Xθ

t ), µθ) + C‖Xθ1
t −X

θ2
t ‖Lp .

Let ε > 0. By Lemma 3.3 there exists t0 such that

2C sup
θ∈Θ
W(L(Xθ

t0), µθ) ≤
ε

2
.

Now in view of (13) and Lemma 3.2, there exists a constant Ct0,p such that ‖Xθ1
t0 −

Xθ2
t0 ‖Lp ≤ Ct0,p|θ1 − θ2|. Let δ > 0 be such that Ct0,pδ ≤ ε/2. Then for |θ1 − θ2| ≤ δ,

we have

d(µθ1 , µθ2) ≤ ε,

and this proves the continuity of θ 7→ d(µθ, µθ0).
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3.2 Convergence of the contrast: proof of Lemma 2.2

Let θ = (ξ, σ,H) ∈ Θ. Recall that the Prokhorov distance is defined for any µ, ν ∈
M1(Rd) as

dP(µ, ν) = inf{ε > 0, µ(A) ≤ ν(Aε) + ε for any Borel set A},

where Aε is the ε-neighbourhood of A. Convergence in law is equivalent to convergence
with respect to the Prokhorov distance.

We will first prove that almost surely, the random measure 1
t

∫ t
0
δXθs ds converges in

law to µθ. This implies that 1
t

∫ t
0
δXθs ds converges to µθ in the Prokhorov distance. To

extend this result to distances d in D2 (i.e dominated by the 2-Wasserstein distance),
we use the fact that the 2-Wasserstein distance is dominated by the Prokorov distance
dP as follows (see (Gibbs and Su, 2002, Theorem 2)):

d

(
1

t

∫ t

0

δXθs ds, µθ

)
≤ Cp sup

t≥0

(
max

(
1

t

∫ t

0

|Xθ
s |2ds, E|X̄θ

t |2
)

+ 1

)
dP

(
1

t

∫ t

0

δXθs ds, µθ

)
.

(23)

By definition of the process Xθ, we have that

max

(
1

t

∫ t

0

|Xθ
s |2ds, E|X̄θ

t |2
)
≤ Cq

q∑
i=0

max

(
1

t

∫ t

0

|Y θs+ih|2ds, E|Ȳ θt+ih|2
)
. (24)

Therefore, we conclude thanks to Proposition B.1 that in the present case, the conver-
gence in law (i.e. in Prokhorov distance) implies the convergence for the 2-Wasserstein
distance. Let us now prove the convergence in law. The proof of the convergence in
law follows the same steps as (Panloup et al, 2020, Proposition 3.3) and relies on a

tightness argument. While we can show that the family { 1
t

∫ t
0
δXθs ds}t≥0 is tight, it is

not easy to identify the limit points. That is why we consider a family of probability
measures on the set of continuous functions for which the identification of the limit
is easier, namely {πθt = 1

t

∫ t
0
δXθs+.ds}t≥0. The criterion from (Billingsley, 1999, Corol-

lary p.83) ensures that {πθt ; t ≥ 0} is a.s. tight if for every positive T, η and ε, there
exists δ > 0 such that for all t0 ∈ [0, T ],

lim sup
t→+∞

1

t

∫ t

0

1

δ
1{supu∈[t0,t0+δ]|Xθs+u−Xθs+t0 |≥ε}

ds ≤ η a.s.

Moreover, the above inequality holds true if there exist some positive r and ρ such that

∀T > 0, ∃δ > 0, r > 0, ρ > 0 s.t. ∀t0 ∈ [0, T ],

lim sup
t→∞

1

t

∫ t

0

sup
u∈[t0,t0+δ]

|Xθ
s+u −Xθ

s+t0 |
rds ≤ Cr,T δ1+ρ a.s. (25)
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For T, r, δ > 0, by definition of Xθ and (13), there is

lim sup
t→∞

1

t

∫ t

0

sup
u∈[t0,t0+δ]

|Xθ
s+u −Xθ

s+t0 |
rds

≤
q∑
i=0

lim sup
t→∞

1

t

∫ t

0

sup
u∈[t0,t0+δ]

|Y θs+u+ih − Y θs+t0+ih|rds

≤
q∑
i=0

lim sup
t→∞

t+ ih

t

1

t+ ih

∫ t+ih

0

sup
u∈[t0,t0+δ]

|Y θs+u − Y θs+t0 |
rds

≤ Cq lim sup
t→∞

max
i∈J0,qK

1

t+ ih

∫ t+ih

0

sup
u∈[t0,t0+δ]

|Y θs+u − Y θs+t0 |
rds

≤ Cq lim sup
t→∞

1

t

∫ t

0

sup
u∈[t0,t0+δ]

|Y θs+u − Y θs+t0 |
rds.

By (Panloup et al, 2020, Eq A.19), we can further bound the right-hand side above
by Cδr−1 + Crδ

Hr. Choosing δ < 1 and r > max(2, 1
min(H) ), we get (25).

Hence, let (tn)n≥1 be an increasing sequence going to +∞ such that

{ 1
tn

∫ tn
0
δXθs+.ds}n≥1 converges (pathwise) to a probability measure γ. As in Appendix

A.2 of (Panloup et al, 2020, Proposition 3.3), we get that γ is stationary. Let us now
prove that γ is the law of X̄θ. A process xt = (yt, z

1
t , . . . , z

q
t ) has the law of Xθ if

y· − y0 −
∫ .

0

bξ(yu)du has the law of σB where B has Hurst parameter H;

zi· − `i
(∫ ·

0

bξ(yu)du, . . . ,

∫ .+ih

0

bξ(yu)du

)
has the law of σ`i(B·, . . . , B·+ih)

for all i ∈ J1, qK.

Let us define

G(x·) =


y· − y0 −

∫ .
0
bξ(yu)du

z1
· − `1

(∫ ·
0
bξ(yu)du,

∫ .+h
0

bξ(yu)du
)

...

zq· − `q
(∫ ·

0
bξ(yu)du, . . . ,

∫ .+qh
0

bξ(yu)du
)


and

B· = (σB·, . . . , σ`
q(B·, . . . , Bqh+·)) .

Hence we have to prove that γ ◦G−1 is the law of B·. This follows the same lines as
the end of Appendix A.2 of Panloup et al (2020) and we omit the details.
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The same analysis presented in this Section still holds if we replace 1
t

∫ t
0
|Xθ

s |pds
by 1

n

∑n−1
k=0 |Xθ

kh|p. This is mostly due to the fact that in Proposition B.1, we also

proved that the moments 1
n

∑n−1
k=0 |Xθ

kh|p are finite uniformly in n, and therefore the
right-hand side in (24) is finite even when the integral is replaced by a discrete sum.

3.3 Proof of Theorem 2.5

Let d be a distance that belongs to Dp. We want to apply Proposition 3.1 to v ≡ n and

Ln(θ) = d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ

)
.

In view of Lemma 2.2, we know that for each θ, Ln(θ) converges a.s. to L(θ) =
d(µθ0 , µθ). Besides, the continuity of L(θ) comes from Proposition 3.4. If we prove the
uniform convergence, then we can finally apply Proposition 3.1 to get that the limit
points of θ̂n are included in the set argmin{L(θ), θ ∈ Θ}, which under assumption Iw
is reduced to {θ0}.

Now to prove the uniform convergence, it is sufficient to show that the family{
θ 7→ d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ

)
, n ≥ 1, θ ∈ Θ

}

is equicontinuous. Actually, for any θ1 and θ2 in Θ, we have

∣∣∣∣∣d
(

1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ1

)
− d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ2

)∣∣∣∣∣ ≤ d(µθ1 , µθ2).

In view of Proposition 3.4, the term on the right-hand side goes to 0 as |θ1 − θ2| → 0.
This proves the equicontinuity and thus the uniform convergence.

3.4 Proof of Theorem 2.7

Since Is implies Iw and dCF,p ∈ D1 ⊂ D2, we can apply Theorem 2.5 to obtain the
strong consistency. For the rest of this section, d always refer to the distance dCF,p.
We recall that X = Xθ0 denotes the observed process with the true parameter θ0. In
view of the strong identifiability assumption Is, it suffices to bound Ed(µθ̂n , µθ0)α to

obtain a rate of convergence on E|θ̂n − θ0|2.
Our strategy is in line with the Section 5 of Panloup et al (2020), with adaptations

due to the estimation of σ and H. It is based on the following decomposition: since
θ̂n minimizes the function θ 7→ d( 1

n

∑n−1
k=0 δXkh , µθ0), we have

d(µθ̂n , µθ0) ≤ d

(
1

n

n−1∑
k=0

δXkh , µθ0

)
+ d

(
1

n

n−1∑
k=0

δXkh , µθ̂n

)
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≤ 2d

(
1

n

n−1∑
k=0

δXkh , µθ0

)
=: 2D(1)

n .

Lα(Ω) bound on D
(1)
n .

Following the proof of (Panloup et al, 2020, Section 5.1), we obtain a bound on D
(1)
n .

Lemma 3.5. Assume that Is holds with p and α satisfying p > α+d(q+1)
2 . There exists

a positive constant Cα,q such that for any n ∈ N,

E[|D(1)
n |α] ≤ Cα,q

(
n−α + n−

α
2 (2−2 max(H)∨1)

)
,

where we recall that q is the number of linear transformations added to construct the
augmented process Xθ0 .

Proof. Decompose D
(1)
n as D

(1)
n ≤ D(11)

n +D
(12)
n where

D(11)
n := d

(
µθ0 ,

1

n

n−1∑
k=0

E[δXkh ]

)
,

D(12)
n := d

(
1

n

n−1∑
k=0

E[δXkh ],
1

n

n−1∑
k=0

δXkh

)
.

The expectation of the random measure E[δXt ] is understood as a deterministic
measure given by E[δXt ](f) = E[f(Xt)] for any bounded measurable f .

As in the proof of (Panloup et al, 2020, Lemma 5.3), the bound on D
(11)
n relies

on the pathwise exponential convergence of Yt − Ȳt towards 0, which implies the
same exponential convergence of Xt − X̄t. For the Lipschitz function fχ(x) = ei〈χ,x〉,
following the aforementioned proof leads to∣∣∣∣∣ 1n

n−1∑
k=0

Efχ (Xkh)− µθ0(fχ)

∣∣∣∣∣ ≤ 1

n
‖fχ‖Lip

n−1∑
k=0

E
[∣∣Xkh − X̄kh

∣∣] ≤ Cq
n
‖fχ‖Lip (26)

and then

E[|D(11)
n |α] ≤ Cα,q

nα
. (27)

Let us now bound D
(12)
n . This is a concentration result inspired by (Varvenne, 2019,

Theorem 2.3). Namely, apply (Panloup et al, 2020, Lemma 5.5) to 1
n

∑n−1
k=0 fχ(Xkh)

to get

E

[∣∣∣∣∣ 1n
n−1∑
k=0

fχ(Xkh)− E(fχ(Xkh))

∣∣∣∣∣
α]
≤ Cα ‖fχ‖αLip n

−α2 (2−max(2H,1)),
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for some positive constant Cα that depends on α. Using the definition of dCF,p and
Jensen’s inequality, one gets

E[|D(12)
n |α] ≤

∫
Rd(q+1)

E

[∣∣∣∣∣ 1n
n−1∑
k=0

fχ(Xkh)− E(fχ(Xkh))

∣∣∣∣∣
α]

gp(χ)dχ.

As ‖fχ‖Lip ≤ |χ|, there is E[|D(12)
n |α] ≤ Cαn

−α2 (2−max(2H,1))
∫
Rd(q+1) |χ|αgp(χ)dχ, the

integral being finite since p > α+d(q+1)
2 . This bound with (27) yield the result.

4 Strong consistency and rate of convergence of the
estimator θ̂n,N,γ

In this section, the results on the estimator θ̂n,N,γ are proven: first, θ̂n,N,γ is shown
to be strongly consistent (Theorem 2.6), then the rate presented in Theorem 2.8 is
established under the strong identifiability assumption Is.

4.1 Proof of Theorem 2.6 and Theorem 2.8

First, using intermediary results that we shall prove in Section 4.2 and Section 4.3, we
provide a proof of the strong consistency and a rate of convergence for the estimator
θ̂n,N,γ defined in (3).

Proof of Theorem 2.6. We use again Proposition 3.1 with

Lv(θ) = d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δXθ,γkγ

)
,

this time with v = (n,N, γ). We will prove in Section 4.2 that the contrast Lv(θ)
converges uniformly as (n,N, γ) → (∞,∞, 0) to L(θ) = d(µθ, µθ0), by first proving
pointwise convergence and then using an equicontinuity argument. Since L(θ) is the
same as in Section 3, we have by Proposition 3.4 that L(θ) is continuous. Then we
apply Proposition 3.1 to conclude.

Proof of Theorem 2.8. Since Is implies Iw and dCF,p ∈ D1 ⊂ D2, we can apply
Theorem 2.6 to obtain the strong consistency. To prove the convergence above, we
proceed similarly to Section 3.4. We decompose the term Ed(µθ̂n,N,γ , µθ0)α slightly

differently. First we use the triangle inequality to get

d
(
µθ0 , µθ̂n,N,γ

)
≤ d

(
µθ0 ,

1

n

n−1∑
k=0

δ
X
θ0
kh

)
+ d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δ
X
θ̂n,N,γ,γ

kγ

)

+ d

(
1

N

N−1∑
k=0

δ
X
θ̂n,N,γ,γ

kγ

, µθ̂n,N,γ

)
.
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Now, since θ̂n,N,γ minimizes the function θ 7→ d
(

1
n

∑n−1
k=0 δXθ0kh

, 1
N

∑N−1
k=0 δXθ,γkγ

)
, we

can further bound d(µθ0 , µθ̂n,N,γ ) as

d
(
µθ0 , µθ̂n,N,γ

)
≤ d

(
µθ0 ,

1

n

n−1∑
k=0

δ
X
θ0
kh

)
+ d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

)

+ sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δXθ,γkγ
, µθ

)
. (28)

To allow pathwise comparison, let us define the following processes. For any θ ∈ Θ,
define Y θ,γ· (B), an Euler scheme of Y θ defined with the same fBm B. Namely, Y θ,γ· (B)

is defined by (15) where B̂ is replaced by B. As in Section 2.1, define Xθ,γ(B) by

Xθ,γ(B) =
(
Y θ,γ· (B), `1(Y θ,γ· (B), Y θ,γ·+h(B)), . . . , `q(Y θ,γ· (B), . . . , Y θ,γ·+qh(B))

)
.

We also define Y (B̂) which is the solution to (9) with the fBm B̂, and similarly we

define X(B̂). Now, we can do pathwise comparison between Xθ and Xθ,γ(B), and

between Xθ,γ and Xθ(B̂).

Bounding the second term in (28).

Split the second term in the right-hand side of (28) as follows

d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

)
≤ d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ0

)
+ d

(
µθ0 ,

1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

)

+ d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

)
.

(29)

Furthermore, split the last term above as

d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

)
≤ d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ (B)

)

+ d

(
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ (B)
, µθ0

)
+ d

(
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

, µθ0

)
.

Moreover,

d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

)
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≤ 2d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ (B)

)
+ d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

, µθ0

)

+ d

(
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

,
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

)
+ d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

, µθ0

)
.

Injecting the above bound into (29), we get

d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δ
L
θ0
kγ

)

≤ d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ0

)
+ 2d

(
µθ0 ,

1

N

N−1∑
k=0

δ
X
θ0
kγ

)
+ d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

, µθ0

)

+ 2d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ (B)

)
+ d

(
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ

,
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

)
.

(30)

Bounding the third term in (28).

Split the third term in (28) as follows

sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δXθ,γkγ
, µθ

)

≤ sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δXθ,γkγ
,

1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

)
+ sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

, µθ

)
.

(31)

Final bound on d
(
µθ0 , µθ̂n,N,γ

)
.

Using (30) and (31) in (28), we get

d
(
µθ0 , µθ̂n,N,γ

)
≤ 2d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ0

)
+ 2d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

, µθ0

)
+ d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

, µθ0

)

+ sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δXθkγ(B̂), µθ

)

+ 2 sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δXθkγ ,
1

N

N−1∑
k=0

δ
X
θ0,γ

kγ (B)

)
+ 2 sup

θ∈Θ
d

(
1

N

N−1∑
k=0

δXθ,γkγ
,

1

N

N−1∑
k=0

δXθkγ(B̂)

)
.

(32)
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The first three terms on the right-hand side can be bounded exactly as the term D
(11)
n

in the proof of Lemma 3.5, one thus gets

d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

, µθ0

)
≤ Cα,q

(
n−α + n−

α
2 (2−2 max(H)∨1)

)
(33)

d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ

, µθ0

)
≤ Cα,q

(
N−α +N−

α
2 (2−2 max(H)∨1)

)
(34)

d

(
1

N

N−1∑
k=0

δ
X
θ0
kγ(B̂)

, µθ

)
≤ Cα,q

(
N−α +N−

α
2 (2−2 max(H)∨1)

)
. (35)

Remark 4.1. For the term d
(

1
N

∑N−1
k=0 δ

X
θ0
kγ(B̂)

, µθ0

)
, notice that µθ0 is also the law

of X̄θ0,B̂, the stationary augmented process associated to (1) with the fBm B̂ instead
of B, so (26) in the proof of Lemma 3.5 still holds since we compare two solutions
with the same noise, and therefore we know that they converge exponentially to each
other as t→∞ by Proposition 3.3.

Let us define

D
(21)
N,γ (θ) := d

(
1

N

N−1∑
k=0

δXθkγ ,
1

N

N−1∑
k=0

δXθ,γkγ (B)

)

D
(22)
N,γ (θ) := d

(
1

N

N−1∑
k=0

δXθ,γkγ
,

1

N

N−1∑
k=0

δXθkγ(B̂)

)

D
(3)
N,γ(θ) := d

(
1

N

N−1∑
k=0

δXθkγ(B̂), µθ

)
.

(36)

In Section 4.3, we show how to bound the moments of

supθ∈ΘD
(21)
N,γ (θ), supθ∈ΘD

(22)
N,γ (θ) and supθ∈ΘD

(3)
N,γ(θ). Namely, we prove that for any

ε < αmin(H) and any $ ∈ (0, 1), there exist constants Cα,ε and Cα,ε,$ such that for
any N ≥ 1 and γ ≤ γ0 with Nγ ≥ 1, the following bounds hold:

E sup
θ∈Θ

∣∣∣D(21)
N,γ (θ)

∣∣∣α ≤ Cα,εγαmin(H)−ε (37)

E sup
θ∈Θ

∣∣∣D(22)
N,γ (θ)

∣∣∣α ≤ Cα,εγαmin(H)−ε (38)

E sup
θ∈Θ

∣∣∣D(3)
N,γ(θ)

∣∣∣α ≤ Cα,ε,$ (γαmin(H)−ε + (Nγ)−η̄
)
, (39)

with η̄ = $α2

2(α$+2d) (2 − (2 max(H) ∨ 1)). Injecting the bounds (33), (34), (35), (37),

(38) and (39) into the decomposition (32) concludes the proof.
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4.2 Proof of the uniform convergence of the contrast

In this section, we obtain the uniform convergence of the contrast

(n,N, γ) 7→ d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δXθ,γkγ

)

towards d(µθ0 , µθ), that is used in the proof of Theorem 2.6. First we prove that almost
surely, there is convergence as (n,N, γ)→ (∞,∞, 0) for each fixed θ. We have already

proven in Section 3.2 that d( 1
n

∑n−1
k=0 δXθ0kh

, µθ) converges to d(µθ0 , µθ) as n goes to

infinity. By Proposition 2.4, d( 1
N

∑N−1
k=0 δXθ,γkγ

, µγθ ) converges to 0 as N →∞. Finally,

we prove in Proposition 4.2(i) that d(µθ, µ
γ
θ ) converges to 0 as γ → 0. Therefore

d

(
1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δXθ,γkγ

)
−→

(n,N,γ)→(∞,∞,0)
d(µθ0 , µθ).

We extend the convergence result to a uniform convergence in θ in the following
Proposition.
Proposition 4.2. Let 0 < p ≤ 2 and d ∈ Dp. Under the assumptions A0, A1 and
Iw, there exists γ0 > 0 such that for all γ ∈ (0, γ0], the following assertions hold true.

(i) lim
γ→0

sup
θ∈Θ

d(µθ, µ
γ
θ ) = 0.

(ii) lim
N→∞

sup
θ∈Θ

d

(
1

N

N−1∑
k=0

δXθ,γkγ
, µγθ

)
= 0.

(iii) lim
γ→0

lim
n,N→∞

sup
θ∈Θ

∣∣∣∣∣d
(

1

n

n−1∑
k=0

δ
X
θ0
kh

,
1

N

N−1∑
k=0

δXθ,γkγ

)
− d(µθ0 , µθ)

∣∣∣∣∣ = 0.

Proof. Notice that (iii) is a simple consequence of the previous statements (i) and (ii).

Proof of (i).

By the triangle inequality,

d(µθ, µ
γ
θ ) ≤ d(µθ,L(Xθ

Nγ)) + d(µγθ ,L(Xθ,γ
Nγ)) + d(L(Xθ,γ

Nγ),L(Xθ
Nγ)).

Since d is bounded by the 2-Wasserstein distance, for all N ≥ 1 there is

d(µθ, µ
γ
θ ) ≤ W2(µθ,L(Xθ

Nγ)) +W2(µγθ ,L(Xθ,γ
Nγ)) +W2(L(Xθ,γ

Nγ),L(Xθ
Nγ))

=: W (1) +W (2) +W (3). (40)

As for W (1), we have

W (1) =W2(µθ,L(Xθ
Nγ)) ≤

(
E|Xθ

Nγ − X̄θ
Nγ |2

) 1
2 .
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By Lemma 3.3, the right-hand side term converges to 0 as N → ∞ uniformly in θ.
We now look at the second term:

W (2) =W2(µγθ ,L(Xθ,γ
Nγ)) ≤

(
E|X̄θ,γ

Nγ −X
θ,γ
Nγ |

2
) 1

2

≤ Cq
q∑
i=0

(
E|Ȳ θ,γNγ+ih − Y

θ,γ
Nγ+ih|

2
) 1

2

. (41)

By (Panloup et al, 2020, Equation (4.2)), we have for any k ∈ N,∣∣∣Ȳ θ,γkγ − Y
θ,γ
kγ

∣∣∣2 ≤ (1− 2γβ + γ2K2
)k ∣∣∣Ȳ θ,γ0 − Y θ,γ0

∣∣∣2 . (42)

Furthermore, for any i ∈ J0, qK, there exists j ∈ N such that Y θ,γNγ+ih = Y θ,γjγ and

Ȳ θ,γNγ+ih = Ȳ θ,γjγ . Therefore, the bound (42) holds for all the terms in (41). We conclude
that there exists γ0 > 0, such that for γ ≤ γ0, the second term goes to 0 uniformly
in θ when N → ∞. Now for the last term in (40), by definition of the Wasserstein
distance, we have

W (3) =W2(L(Xθ
Nγ),L(Xθ,γ

Nγ)) ≤
(
E|Xθ

Nγ −X
θ,γ
Nγ(B)|2

) 1
2

≤ Cq
q∑
i=0

(
E|Y θNγ+ih − Y

θ,γ
Nγ+ih(B)|2

) 1
2

.

In (Panloup et al, 2020, Proposition 3.7 (i)), it was proved that there exists positive
constants C and ρ that depend only the Lipschitz constant K from A1 such that for
any m ∈ N,

|Y θmγ − Y θ,γmγ (B)|2 ≤ C
m−1∑
j=0

φj(Y
θ,γ
jγ (B))e−ργ(m−j+1),

where φj(z) = γ3|bξ(z)|2 +
∫ γ

0
|Bjγ+t −Bjγ |2dt. This pathwise comparison is possible

because the two processes are defined with the same noise B. Since bξ is uniformly
sub-linear, it follows that

|Y θmγ − Y θ,γmγ (B)|2 ≤ C
m−1∑
j=0

(
γ3(1 + |Y θ,γjγ (B)|2r) +

∫ γ

0

|Bjγ+t −Bjγ |2dt
)
e−ργ(m−j+1).

(43)
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Now for i ∈ J0, qK and k ∈ N, since the process Y θ,γ is constant over intervals of size
γ, recalling the notation tγ = γb tγ c, we can always write

Y θkγ+ih − Y
θ,γ
kγ+ih(B) =

(
Y θ(kγ+ih)γ+εk,i

− Y θ(kγ+ih)γ

)
+
(
Y θ(kγ+ih)γ

− Y θ,γ(kγ+ih)γ
(B)
)
,

(44)

where
εk,i = kγ + ih− (kγ + ih)γ < γ.

For the first term in (44), using the sub-linear growth of b, we write

|Y θ(kγ+ih)γ+εk,i
− Y θ(kγ+ih)γ

|

≤ C

(∫ (kγ+ih)γ+ε

(kγ+ih)γ

(1 + |Y θs |r)ds+ |B(kγ+ih)γ+εk,i −B(kγ+ih)γ |

)
.

It follows from Jensen’s inequality that

|Y θj(kγ+ih)γ+εk,i
− Y θ(kγ+ih)γ

|2

≤ C

(
εk,i

∫ (kγ+ih)γ+εk,i

(kγ+ih)γ

(1 + |Y θs |2r)ds+ |B(kγ+ih)γ+εk,i −B(kγ+ih)γ |
2

)
.

(45)

The second term in (44) can be bounded using (43) with m ≡ (kγ+ih)γ
γ . Combining

this and (45) in (44), we get that for any k ∈ N,

q∑
i=0

|Y θkγ+ih − Y
θ,γ
kγ+ih(B)|2

≤ C
q∑
i=0

γ

∫ (kγ+ih)γ+εk,i

(kγ+ih)γ

(1 + |Y θs |2r)ds+ |B(kγ+ih)γ+εk,i −B(kγ+ih)γ |
2

+ C

q∑
i=0

b kγ+ih
γ c−1∑
j=0

(
γ2(1 + |Y θ,γjγ (B)|2r) + γ−1

∫ γ

0

|Bjγ+t −Bjγ |2dt
)
γe−ρ(b

kγ+ih
γ c−j+1).

(46)

Taking the expectation, using lim sup
n→∞
γ→0

γ

n∑
j=0

e−ρ(n−j+1) < +∞ and r ≤ 1, we get

sup
θ∈Θ,γ∈(0,γ0)

lim sup
k→∞

γ−2 max(H)

q∑
i=0

E
∣∣∣Y θNγ+ih − Y

θ,γ
Nγ+ih(B)

∣∣∣2
≤ C

(
1 + sup

θ∈Θ,γ∈(0,γ0)

lim sup
k→∞

E|Y θ,γkγ (B)|2r + sup
θ∈Θ

lim sup
t→∞

E|Y θt |2r
)
.
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Using Proposition B.2(i) and Proposition B.1(i), it follows that there exists γ0 such
that for γ ≤ γ0, the right-hand side is finite. This concludes the proof of (i).

Proof of (ii).

We already know that the convergence is true for fixed θ. In order to extend the result
to uniform convergence, we show that the family {θ 7→ d( 1

N

∑N
k=0 δXθ,γkγ

, µγθ );N ≥
1; θ ∈ Θ} is equicontinuous for a fixed γ ∈ (0, γ0]. For some θ1 and θ2 in Θ, there is∣∣∣∣∣d

(
1

N

N−1∑
k=0

δ
X
θ1,γ

kγ

, µγθ1

)
− d

(
1

N

N−1∑
k=0

δ
X
θ2,γ

kγ

, µγθ2

)∣∣∣∣∣
≤ d(µγθ1 , µ

γ
θ2

) + d

(
1

N

N−1∑
k=0

δ
X
θ1,γ

kγ

,
1

N

N−1∑
k=0

δ
X
θ2,γ

kγ

)
.

Decompose the second term to get

d

(
1

N

N−1∑
k=0

δ
X
θ1,γ

kγ

,
1

N

N−1∑
k=0

δ
X
θ2,γ

kγ

)2

≤ CW2

(
1

N

N−1∑
k=0

δ
X
θ1,γ

kγ

,
1

N

N−1∑
k=0

δ
X
θ2,γ

kγ

)2

≤ C 1

N

N−1∑
k=0

|Xθ1,γ
kγ −X

θ2,γ
kγ |

2

≤ Cq
q∑
i=0

1

N

N−1∑
k=0

|Y θ1,γkγ+ih − Y
θ2,γ
kγ+ih|

2.

Let $ ∈ (0, 1) and p ≥ 1. By Proposition B.3, there exists a random variable C with
finite moments of order p such that for all θ1, θ2 ∈ Θ,

1

N

N−1∑
k=0

|Y θ1,γkγ − Y θ2,γkγ |
2 ≤ C (1 ∧ |θ1 − θ2|$) .

These results still hold when replacing Y θ,γkγ by Y θ,γkγ+ih, since we compare two

piecewise constant processes. Thus d( 1
N

∑N−1
k=0 δ

X
θ1,γ

kγ

, 1
N

∑N−1
k=0 δ

X
θ2,γ

kγ

) goes to 0 as

|θ1−θ2| → 0 uniformly in N . The same goes for d(µγθ1 , µ
γ
θ2

) by taking the limit N →∞.
This concludes the proof of the equicontinuity and therefore the proof of (ii).

4.3 Proof of the bounds (37), (38) and (39)

We prove here the bounds (37), (38) and (39) on D
(21)
N,γ , D

(22)
N,γ and D

(3)
N,γ that were

defined in (36). In this section, d always refer to the distance dCF,p.
Proposition 4.3. Recall that α is the exponent in the strong identifiability assumption
Is. Assume that the exponent r in the sub-linear growth of bξ in (8) satisfies r ≤ 1.
For any ε ∈ (0, αmin(H)) and any $ ∈ (0, 1), there exist constants Cα,ε > 0 and
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Cα,ε,$ > 0 such that for all γ ∈ (0, γ0] and N ≥ 1 satisfying Nγ ≥ 1, the inequalities
(37), (38) and (39) hold.

Proof. First, observe that for both D
(21)
N,γ and D

(22)
N,γ we compare a solution of an SDE

with its respective Euler scheme, with both processes defined with the same noise B.

This allows to do a pathwise comparison. We only detail the bound on D
(21)
N,γ , the

bound on D
(22)
N,γ can be obtained similarly. Since dCF,p is an element of D1, there is

sup
θ∈Θ

D
(21)
N,γ (θ) ≤ 1

N

N−1∑
k=0

sup
θ∈Θ
|Xθ

kγ −X
θ,γ
kγ (B)|

≤ Cq
q∑
i=0

1

N

N−1∑
k=0

sup
θ∈Θ
|Y θkγ+ih − Y

θ,γ
kγ+ih(B)|.

Recall that α ≥ 2 in Is. Hence, an application of Jensen’s inequality gives

E sup
θ∈Θ

D
(21)
N,γ (θ)α ≤ Cq,α

q∑
i=0

E

[
sup
θ∈Θ

1

N

N−1∑
k=0

|Y θkγ+ih − Y
θ,γ
kγ+ih(B)|α

]

Define

I :=

q∑
i=0

sup
θ∈Θ

1

N

N−1∑
k=0

|Y θkγ+ih − Y
θ,γ
kγ+ih(B)|2.

We will first provide a bound on I. Using (46),

q∑
i=0

|Y θkγ+ih − Y
θ,γ
kγ+ih(B)|2

≤ C
q∑
i=0

(
γ

∫ (kγ+ih)γ+εk,i

(kγ+ih)γ

(1 + |Y θs |2r)ds+ |B(kγ+ih)γ+εk,i −B(kγ+ih)γ |
2

)

+ C

q∑
i=0

( b kγ+ih
γ c−1∑
j=0

(
γ2(1 + |Y θ,γjγ (B)|2r) + γ−1

∫ γ

0

|Bjγ+t −Bjγ |2dt
)
γe−ρ(b

kγ+ih
γ c−j+1)

)

=: C

q∑
i=0

(I1,k(i) + I2,k(i) + I3,k(i) + I4,k(i)) . (47)

Hence there is I ≤ Cq sup
θ∈Θ

q∑
i=0

1

N

N−1∑
k=0

(I1,k(i) + I2,k(i) + I3,k(i) + I4,k(i)). Let us pro-

vide uniform bounds in θ on the sum over k of the terms I1,k(i), I2,k(i), I3,k(i), I4,k(i).
First we have

1

N

N−1∑
k=0

I1,k(i) ≤ 1

N

∫ (Nγ+ih)γ

(ih)γ

γ(1 + |Y θs |2r)ds
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≤ γ

N

∫ Nγ+ih

ih

(1 + |Y θs |2r)ds+
γ

N

∫ ih

(ih)γ

(1 + |Y θs |2r)ds

≤ γ2

Nγ

∫ Nγ

0

(1 + |Y θs+ih|2r)ds+ 2γ21i 6=0

(
1

ih

∫ ih

0

(1 + |Y θs |2r)ds

)
.

(48)

For I3,k(i), write

1

N

N−1∑
k=0

I3,k(i) ≤ C γ
2

N
sup
θ∈Θ

bNγ+ih
γ c−1∑
k=0

(1 + |Y θ,γkγ (B)|2r)

≤ C γ

N
sup
θ∈Θ

∫ (Nγ+ih)γ−γ

0

(1 + |Y θ,γtγ (B)|2r)dt

≤ C γ

N
sup
θ∈Θ

∫ Nγ−γ

0

(1 + |Y θ,γtγ+ih
(B)|2r)dt+ C1i 6=0

γ

N
sup
θ∈Θ

∫ ih

0

(1 + |Y θ,γtγ (B)|2r)dt

≤ C γ2

Nγ
sup
θ∈Θ

∫ Nγ

0

(1 + |Y θ,γtγ+ih
(B)|2r)dt+ C

γ2

Nγ
1i 6=0 sup

θ∈Θ

1

ih

∫ ih

0

(1 + |Y θ,γtγ (B)|2r)dt.

(49)

For I4,k(i) we have

1

N

N−1∑
k=0

I4,k(i) ≤ 1

N

bNγ+ih
γ c−1∑
k=0

γ−1

∫ γ

0

|Bkγ+t −Bkγ |2dt

≤ γ−2

N

∫ Nγ+ih−γ

0

(∫ γ

0

|Bsγ+t −Bsγ |2dt
)
ds

≤ 1

Nγ

∫ ih

0

(
γ−1

∫ γ

0

|Bsγ+t −Bsγ |2dt
)
ds+

1

Nγ

∫ Nγ

0

(
γ−1

∫ γ

0

|Bsγ+ih+t −Bsγ+ih|2dt
)
ds.

(50)

Therefore, using (48), (49), (50) in (47), it comes

I ≤ C
q∑
i=0

(
sup
θ∈Θ

γ2

Nγ

∫ Nγ

0

(1 + |Y θs+ih|2r)ds+ 21i 6=0 sup
θ∈Θ

γ2 1

ih

∫ ih

0

(1 + |Y θs |2r)ds

+ C
γ2

Nγ
sup
θ∈Θ

∫ Nγ

0

(1 + |Y θ,γtγ+ih
(B)|2r)dt+ C

γ2

Nγ
1i6=0 sup

θ∈Θ

1

ih

∫ ih

0

(1 + |Y θ,γtγ (B)|2r)dt

+
1

Nγ

∫ ih

0

(
γ−1

∫ γ

0

sup
θ∈Θ
|Bsγ+t −Bsγ |2dt

)
ds+

1

Nγ

∫ Nγ

0

(
γ−1

∫ γ

0

sup
θ∈Θ
|Bsγ+ih+t −Bsγ+ih|2dt

)
ds

+
1

N

N−1∑
k=0

sup
θ∈Θ
|B(kγ+ih)γ+εk,i −B(kγ+ih)γ |

2

)
.
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Since Nγ ≥ 1 and εk,i < γ, using Jensen’s inequality (α/2 ≥ 1) and taking the
expectation, we get by applying (Haress and Richard, 2022, Proposition 3.5) that for
ε ∈ (0, αmin(H)),

E[Iα/2] ≤ Cq
q∑
i=0

(
E

[
sup
θ∈Θ

1

Nγ

∫ Nγ

0

(1 + |Y θs+ih|2r)ds

]α/2

+ 2γ21i 6=0E

[
sup
θ∈Θ

1

ih

∫ ih

0

(1 + |Y θs |2r)ds

]α/2

+ Cγ2E

[
1

Nγ
sup
θ∈Θ

∫ Nγ

0

(1 + |Y θ,γtγ+ih
(B)|2r)dt

]α/2

+ Cγ21i 6=0E

[
sup
θ∈Θ

1

ih

∫ ih

0

(1 + |Y θ,γtγ (B)|2r)dt

]α/2

+ γαmin(H)−ε +
1

Nγ

∫ Nγ

0

γαmin(H)−ε ds+
1

N

N−1∑
k=0

γαmin(H)−ε

)
.

It follows that

E[Iα/2] ≤ Cq
q∑
i=0

(
E

[
sup
θ∈Θ

1

Nγ

∫ Nγ

0

|Y θs+ih|2rds

]α/2

+ 2γ21i 6=0E

[
sup
θ∈Θ

1

ih

∫ ih

0

|Y θs |2rds

]α/2

+ Cγ2E

[
1

Nγ
sup
θ∈Θ

∫ Nγ

0

|Y θ,γtγ+ih
(B)|2rdt

]α/2

+ Cγ21i 6=0E

[
sup
θ∈Θ

1

ih

∫ ih

0

|Y θ,γtγ (B)|2rdt

]α/2
+ γα + γαmin(H)−ε

)
.

By Proposition B.1(iii), Proposition B.2(ii) and since r ≤ 1, we have that

E

[
sup
θ∈Θ

1

Nγ

∫ Nγ

0

|Y θs |2rds

]α/2
and E

[
1

Nγ
sup
θ∈Θ

∫ Nγ

0

|Y θ,γtγ (B)|2rdt

]α/2

are bounded uniformly in N and γ. One can check that the result still holds when
the process is shifted by ih since the shifted process is still solution of an SDE that
satisfies the necessary assumptions. Therefore, for ε ∈ (0, αmax(H)),

E[Iα/2] ≤ Cγαmin(H)−ε.
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We conclude by observing that by Jensen’s inequality

I ≥
q∑
i=0

(
sup
θ∈Θ

1

N

N−1∑
k=0

|Y θkγ+ih − Y
θ,γ
kγ+ih(B)|

)2

≥ C

(
q∑
i=0

sup
θ∈Θ

1

N

N−1∑
k=0

|Y θkγ+ih − Y
θ,γ
kγ+ih(B)|

)2

.

Hence

E sup
θ∈Θ

D
(21)
N,γ (θ)α ≤ CE[Iα/2] ≤ Cγαmin(H)−ε. (51)

Consider now D
(3)
N,γ(θ), which was defined in (36). Since µθ is also the stationary

law of the process Xθ(B̂), we drop the dependence on B̂ for the rest of the proof. We
first start with the following decomposition:

sup
θ∈Θ

D
(3)
N,γ(θ) ≤ sup

θ∈Θ
D

(31)
N,γ (θ) + sup

θ∈Θ
D

(32)
N,γ (θ),

where, noticing that 1
N

∑N−1
k=0 δXθkγ = 1

T

∫ T
0
δXθtγ

dt for T = Nγ,

D
(31)
N,γ (θ) = d

(
µθ,

1

T

∫ T

0

δXθt dt

)

D
(32)
N,γ (θ) = d

(
1

T

∫ T

0

δXθt dt,
1

T

∫ T

0

δXθtγ
dt

)
.

Bound on supθ∈ΘD
(32)
N,γ (θ).

Similar arguments as before lead to

E sup
θ∈Θ

D
(32)
N,γ (θ)α ≤ Cq,α

q∑
i=0

1

T

∫ T

0

sup
θ∈Θ
|Y θt+ih − Y θtγ+ih|α dt.

We will show how to bound the quantity above for i = 0. The same arguments can
be used for any value of i. Since Y θ is a solution of (9), it follows from using Jensen’s
inequality and integrating over t that

1

T

∫ T

0

|Y θt − Y θtγ |
α dt ≤ 2α−1γα−1 1

T

∫ T

0

∫ t

tγ

|bξ(Y θs )|α ds dt+ 2α−1|σ|α 1

T

∫ T

0

|Bt −Btγ |αdt.
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By Fubini’s theorem, we get that

1

T

∫ T

0

|Y θt − Y θtγ |
α dt ≤ 2α−1γα

1

T

∫ T

0

|bξ(Y θs )|αds+ 2α−1|σ|α 1

T

∫ T

0

|Bt −Btγ |αdt.

The drift term above is bounded thanks to the sublinear growth of bξ given by (8) and
the uniform bounds on the Lq moments of Y θt given in Proposition B.1 (ii). As for the
term |Bt −Btγ |, we have thanks to (Haress and Richard, 2022, Proposition 3.5) that
for all ε > 0,

E
(

sup
H∈H

|Bt −Btγ |α
)
≤ Cγαmin(H)−ε.

Hence, the two previous inequalities yield

E

(
sup
θ∈Θ

1

T

∫ T

0

|Y θt − Y θtγ |
αdt

)
≤ Cγαmin(H)−ε.

Bound on D
(31)
N,γ (θ).

The quantity D
(31)
N,γ (θ) can be handled the same way as D

(1)
n in the proof of Lemma

3.5. Namely, we get that

ED(31)
N,γ (θ)α ≤ Cα

(
T−α + T−

α
2 (2−max(2 max(H),1))

)
. (52)

Bound on supθ∈ΘD
(31)
N,γ (θ).

Let ϕ(θ) = d(µθ,
1
T

∫ T
0
δXθt dt). Let ε > 0 and Θ(ε) :=

{
θ

(ε)
i | 1 ≤ i ≤Mε

}
such that

Θ ⊂
⋃Mε

i=1B
(
θ

(ε)
i , ε

)
for some points θ

(ε)
i in Θ. Then, as in (Panloup et al, 2020, Eq.

(5.27)-(5.28)) and using (52), one gets

E sup
θ∈Θ

ϕ(θ)α ≤ Cα
(
E sup
θ∈Θ
|ϕ(θ)− ϕ(θε)|α +Mε

(
T−α + T−

α
2 (2−max(2 max(H),1)

))
,

where θε := argmin
θ′∈{θ(ε)

i }
|θ′ − θ|. Now |ϕ(θ)− ϕ(θε)| ≤ d(µθ, µθε) + d

(
1
T

∫ T
0
δXθt dt,

1
T

∫ T
0
δXθεt

dt
)

.

Since d belongs to D2, the second term in the right-hand side yields

d

(
1

T

∫ T

0

δXθt dt,
1

T

∫ T

0

δXθεt
dt

)
≤ Cq

q∑
i=0

1

T

∫ T

0

|Y θt+ih − Y
θε
t+ih|

2dt.
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For $ ∈ (0, 1), Proposition B.3 gives the existence of a random variable C with finite
moments such that

1

T

∫ T

0

|Y θt − Y
θε
t |2dt ≤ C|θ − θε|

$
2 .

This bound still holds if Yt is replaced by Yt+ih since

1

T

∫ T

0

|Y θt+ih − Y
θε
t+ih|

2dt ≤ T + ih

T

1

T + ih

∫ T+ih

0

|Y θt − Y
θε
t |2dt.

Overall, we get

d

(
1

T

∫ T

0

δXθt dt,
1

T

∫ T

0

δXθεt
dt

)
≤ CqC|θ − θε|

$
2 .

Hence we have obtained that

E sup
θ∈Θ

ϕ(θ)α ≤ Cα,q,$
(
ε
α$
2 +Mε

(
T−α + T−

α
2 (2−max(2 max(H),1))

))
.

Choosing Mε ≤ C
εd

and ε = T−χ for some χ > 0, it comes that

E sup
θ∈Θ

ϕ(θ)α ≤ Cα,q,$
(
T−χα

$
2 + T−

α
2 (2−max(2 max(H),1))+χd

)
.

Finally optimize over χ to get E supθ∈Θ ϕ(θ)α ≤ Cα,q,$T
−η̄, for η̄ = $α2

2(α$+2d) (2 −
(2 max(H) ∨ 1)).

5 Application to fractional Ornstein-Uhlenbeck
processes

In this section, we prove the results of Section 2.4 and provide numerical experiments
to illustrate the convergence of the estimators in the case of fractional Ornstein-
Uhlenbeck processes. We first prove the identifiability assumption for the fractional
Ornstein-Uhlenbeck (OU) process in Section 5.1 and Section 5.2, then for a family of
small perturbations of the fractional OU process in Section 5.3 and finally, in Section
5.4, we provide numerical results.

5.1 Identifiability assumption: proof of Proposition 2.11

The proof of Proposition 2.11 is based on the injectivity of a specific function, as
stated in the following Lemma (the proof is given in Section 5.2).
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Lemma 5.1. Assume one of the three cases θ = (ξ,H), θ = (ξ, σ) or θ = (σ,H), then
there exists h0 > 0 such that for h ∈ (0, h0), the function f defined by

f : θ 7→

(
σ2HΓ(2H)ξ−2H

σ2Γ(2H + 1) sin(πH)
π

∫∞
0

cos(hx)x
1−2H

ξ2+x2 dx

)
(53)

is one-to-one.
For the fractional OU process, recall that the stationary measure follows the Gaus-

sian distribution given by (18). Furthermore, the processes Ūθ.+ih are also Gaussian
with the same law. The correlation between these processes is given by (see (Cheridito
et al, 2003, Eq (2.2))):

E(Ūθt Ū
θ
t+ih) = σ2 Γ(2H + 1) sin(πH)

π

∫ ∞
0

cos(ihx)
x1−2H

ξ2 + x2
dx. (54)

Now for θ1, θ2 in Θ, there is

dCF,p(µθ1 , µθ2)2 =

∫
R2

(
Eei〈χ,(Ū

θ1
t ,Ū

θ1
t+h−Ū

θ1
t )〉 − Eei〈χ,(Ū

θ2
t ,Ū

θ2
t+h−Ū

θ2
t )〉
)2

gp(χ)dχ.

Since the process (Ūθ· , Ū
θ
·+h − Ūθ· ) is Gaussian and stationary, it comes:

dCF,p(µθ1 , µθ2) = 0 iff
E(Ūθ10 )2 = E(Ūθ20 )2

E
(
Ūθ10 (Ūθ1h − Ū

θ1
0 )
)

= E
(
Ūθ20 (Ūθ2h − Ū

θ2
0 )
)

which thus reads

dCF,p(µθ1 , µθ2) = 0 iff
E(Ūθ10 )2 = E(Ūθ20 )2

E
(
Ūθ10 Ūθ1h

)
= E

(
Ūθ20 Ūθ2h

) .
In view of (18) and (54), assumption Iw becomes equivalent to the injectivity of the
function f defined in (53), which is therefore given by Lemma 5.1.
Remark 5.2. In Haress and Hu (2021), the authors studied fractional OU processes
and proposed a similar estimator for (ξ, σ,H) simultaneously. Similarly to our case,
for a consistency argument to hold, they are left to study the injectivity of

f : (ξ, σ,H) 7→

 σ2HΓ(2H)ξ−2H

σ2Γ(2H + 1) sin(πH)
π

∫∞
0

cos(hx)x
1−2H

ξ2+x2 dx

σ2Γ(2H + 1) sin(πH)
π

∫∞
0

cos(2hx)x
1−2H

ξ2+x2 dx

 . (55)

The injectivity was not proven but numerical arguments were provided to support this
claim.
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5.2 Injectivity of f : proof of Lemma 5.1

The case θ = (σ,H).

Let (a, b) be in the range of f . We will show that the equation

a = σ2HΓ(2H)ξ−2H

b = σ2Γ(2H + 1)
sin(πH)

π
ξ−2H

∫ ∞
0

cos(ξhx)
x1−2H

1 + x2
dx,

(56)

has a unique solution in σ,H. First, thanks to the first equation, notice that we can

write σ2 = aξ2H

HΓ(2H) . Injecting this in the second equation we get

bπ = a sin(πH)

∫ ∞
0

cos(ξhx)
x1−2H

1 + x2
dx := ag(H).

We will show that the function g is injective. Since g is continuously differentiable, it
suffices to show that g′(H) > 0 for all H ∈ H. We have

g′(H) = π cos(πH)

∫ ∞
0

cos(ξhx)
x1−2H

1 + x2
dx− 2 sin(πH)

∫ ∞
0

cos(ξhx) log(x)
x1−2H

1 + x2
dx.

(57)

By (18) and (54), we have

E(Ūθt Ū
θ
t+0) = σ2 Γ(2H + 1) sin(πH)

π

∫ ∞
0

x1−2H

ξ2 + x2
dx = E(Ūθt )2 = σ2HΓ(2H)ξ−2H .

Using Γ(2H + 1) = 2HΓ(2H) and the change of variables y = x/ξ yields

sin(πH)

∫ ∞
0

x1−2H

1 + x2
dx =

π

2
.

By differentiating with respect to H, we get

π cos(πH)

∫ ∞
0

x1−2H

1 + x2
dx− 2 sin(πH)

∫ ∞
0

log(x)
x1−2H

1 + x2
dx = 0.

Subtracting this term to g′(H) in (57), we get

g′(H) =

∫ ∞
0

(1− cos(ξhx))(2 sin(πH) log(x)− π cos(πH))
x1−2H

1 + x2
dx.

Let βH = e
π cos(πH)
2 sin(πH) . Then

g′(H) =

∫ βH

0

(1− cos(ξhx))(2 sin(πH) log(x)− π cos(πH))
x1−2H

1 + x2
dx
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+

∫ ∞
βH

(1− cos(ξhx))(2 sin(πH) log(x)− π cos(πH))
x1−2H

1 + x2
dx.

For x ∈ (0, βH ], 2 sin(πH) log(x)− π cos(πH) ≤ 0. In addition, using 1− cos(x) ≤ x2

2
in the first integral and the change of variables y = hx in the second integral, we get

g′(H) ≥ ξ2h2

2

∫ βH

0

x2(2 sin(πH) log(x)− π cos(πH))
x1−2H

1 + x2
dx

+ h2H

∫ ∞
βHh

(1− cos(ξx))(2 sin(πH) log(x)− 2 sin(πH) log(h)

− π cos(πH))
x1−2H

h2 + x2
dx.

For x ≥ βHh, we have 2 sin(πH) log(x)− 2 sin(πH) log(h)−π cos(πH) ≥ 0. Assuming
h ≤ 1, it thus follows that

g′(H) ≥ ξ2h2

2

∫ βH

0

x2(2 sin(πH) log(x)− π cos(πH))
x1−2H

1 + x2
dx

+ h2H

∫ ∞
βH

(1− cos(ξx))(2 sin(πH) log(x)− 2 sin(πH) log(h)

− π cos(πH))
x1−2H

h2 + x2
dx

≥ ξ2h2

2

∫ βH

0

x2(2 sin(πH) log(x)− π cos(πH))
x1−2H

1 + x2
dx

+ h2H

∫ ∞
βH

(1− cos(ξx))(2 sin(πH) log(x)− π cos(πH))
x1−2H

1 + x2
dx

+ 2h2H | log(h)| sin(πH)

∫ ∞
βH

(1− cos(ξx))
x1−2H

h2 + x2
dx.

Since H ∈ H and ξ ∈ Ξ, we deduce that there exists C1, C2, C3 > 0 such that

g′(H) ≥ C1h
2H | log(h)|+ C2h

2H − C3h
2.

Therefore, there exists C > 0 and h0 > 0 such that for h ∈ (0, h0), we have

g′(H) ≥ Ch2H | log(h)| > 0. (58)

We have thus proved that f is one-to-one.
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The case θ = (ξ,H).

Let (a, b) be in the range of f . We prove that the following equation has a unique
solution in (ξ,H):

a = HΓ(2H)ξ−2H

b = 2HΓ(2H)ξ−2H sin(πH)

π

∫ ∞
0

cos(ξhx)
x1−2H

1 + x2
dx,

which is equivalent to solving

ξ =

(
a

HΓ(2H)

)− 1
2H

b = 2a
sin(πH)

π

∫ ∞
0

cos

((
a

HΓ(2H)

)− 1
2H

hx

)
x1−2H

1 + x2
dx.

For the rest of this section, we will focus on the function

ga(H) = sin(πH)

∫ ∞
0

cos

((
a

HΓ(2H)

)− 1
2H

hx

)
x1−2H

1 + x2
dx.

We will show that for all possible values of a, ga is a bijection and therefore there
exists a unique H such that ga(H) = πb

2a . For this H, ξ is then uniquely determined

by the equality ξ = ( a
HΓ(2H) )−

1
2H .

We plan to differentiate ga. For H > 1/2, the derivative in the H variable of the

function x 7→ cos(( a
HΓ(2H) )−

1
2H hx)x

1−2H

1+x2 is integrable and we get

g′a(H) = π cos(πH)

∫ ∞
0

cos

((
a

HΓ(2H)

)− 1
2H

hx

)
x1−2H

1 + x2
dx

− sin(πH)

[
H 7→ (

a

HΓ(2H)
)−

1
2H

]′
(H) h

∫ ∞
0

x sin

((
a

HΓ(2H)

)− 1
2H

hx

)
x1−2H

1 + x2
dx

− 2 sin(πH)

∫ ∞
0

cos

((
a

HΓ(2H)

)− 1
2H

hx

)
log(x)

x1−2H

1 + x2
dx

=: g′a,1(H) + g′a,2(H) + g′a,3(H).

(59)

Unfortunately when H ≤ 1/2, the integral that appears in g′a,2(H) is not defined in
Lebesgue’s sense. However, we have for any A > 1 that∫ A

1

sin(Cx)
x2−2H

1 + x2
dx =

∫ A

1

sin(Cx)x−2Hdx−
∫ A

1

sin(Cx)
x−2H

(1 + x2)
dx.
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The first integral in the right-hand side converges in Riemann’s sense as A → ∞
and the second one converges as a classical Lebesgue’s integral. Thus we get that
g′a,1(H) + g′a,2(H) + g′a,3(H) is well-defined even for H ∈ (0, 1/2], and then that the
equality (59) also holds for H ≤ 1/2.

Now notice that g′a,1(H)+g′a,3(H) is exactly the term g′(H) handled in the previous

case θ = (σ,H) with ξ ≡ ( a
HΓ(2H) )−

1
2H . We have shown in (58) that there exists

C1 > 0 and h0 > 0 such that for h ∈ (0, h0),

g′a,1(H) + g′a,3(H) > C1h
2H | log(h)|. (60)

We now prove an upper bound on the absolute value of g′a,2(H). Using the change of
variable y = hx, we have

|g′a,2(H)| (61)

≤ sin(πH)

∣∣∣∣∣
[
H 7→ (

a

HΓ(2H)
)−

1
2H

]′
(H)

∣∣∣∣∣h2H

∣∣∣∣∣
∫ ∞

0

sin

((
a

HΓ(2H)

)− 1
2H

x

)
x2−2H

h2 + x2
dx

∣∣∣∣∣ .
(62)

Let us show that the integral J = |
∫∞

0
sin(( a

HΓ(2H) )−
1

2H x)x
2−2H

h2+x2 dx| is bounded

uniformly in h ∈ (0, h0). Using that | sin(x)| ≤ x for x ≥ 0 we have for αH =
2π( a

HΓ(2H) )
1

2H that

J ≤
∫ αH

0

(
a

HΓ(2H)

)− 1
2H x3−2H

h2 + x2
dx+

∣∣∣∣∣
∫ ∞
αH

sin

((
a

HΓ(2H)

)− 1
2H

x

)
x2−2H

h2 + x2
dx

∣∣∣∣∣
≤
∫ αH

0

(
a

HΓ(2H)

)− 1
2H

x1−2Hdx

+

∣∣∣∣∣
∫ ∞
αH

sin

((
a

HΓ(2H)

)− 1
2H

x

)(
x2−2H

h2 + x2
− x2−2H

x2

)
dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ ∞
αH

sin

((
a

HΓ(2H)

)− 1
2H

x

)
x−2Hdx

∣∣∣∣∣ .
Hence bounding the sine function by 1 in the second integral and using the change of
variables y = ( a

HΓ(2H) )−
1

2H x in the third, we get

J ≤
(

a

HΓ(2H)

)− 1
2H α2−2H

H

2− 2H
+ h2

∣∣∣∣∣
∫ ∞
αH

sin

((
a

HΓ(2H)

)− 1
2H

x

)
x−2H

h2 + x2
dx

∣∣∣∣∣
+

(
a

HΓ(2H)

)− 2H−1
2H

∣∣∣∣∫ ∞
2π

sin(x)

x2H
dx

∣∣∣∣
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≤
(

a

HΓ(2H)

)− 1
2H α2−2H

H

2− 2H
+ h2

∫ ∞
αH

x−2−2Hdx+

(
a

HΓ(2H)

) 1−2H
2H

∣∣∣∣∫ ∞
2π

sin(x)

x2H
dx

∣∣∣∣
≤
(

a

HΓ(2H)

)− 1
2H 1

2− 2H
+ h2α

−1−2H
H

1 + 2H
+

(
a

HΓ(2H)

) 1−2H
2H

∣∣∣∣∫ ∞
2π

sin(x)

x2H
dx

∣∣∣∣ .
Writing

∫∞
2π

sin(x)
x2H dx as the sum of positive terms

∫ ∞
2π

sin(x)x−2Hdx =

∞∑
k=0

∫ (2k+1)π

2kπ

sin(x)

x2H
dx+

∫ (2k+2)π

(2k+1)π

sin(x)

x2H
dx

=

∞∑
k=0

∫ (2k+1)π

2kπ

sin(x)(
1

x2H
− 1

(x+ π)2H
)dx (63)

≤
∞∑
k=1

π

(2kπ)2H

(
1− 1

(1 + k−1)2H

)
,

we get that the last sum can be bounded uniformly for H ∈ H. Thus, J can be
bounded uniformly for H ∈ H by a constant C2 > 0. From (61), we thus get

|g′a,2(H)| ≤ C2 h
2H sin(πH)

∣∣∣∣[H 7→ (
a

HΓ(2H)
)−

1
2H ]′(H)

∣∣∣∣ .
Since the mapping H 7→ ( a

HΓ(2H) )−
1

2H is smooth on (0,+∞) and H is a compact

subset of (0, 1), we deduce that there exists a constant C̃2 > 0 such that

|g′a,2(H)| ≤ C̃2h
2H .

Combining this with (60), we conclude that for any h ∈ (0, h0),

g′a,1(H) + g′a,2(H) + g′a,3(H) ≥ C1h
2H | log(h)| − C̃2h

2H .

Hence, there exists C, h1 > 0 such that for any h ∈ (0, h1), we have

g′a,1(H) + g′a,2(H) + g′a,3(H) ≥ Ch2H | log(h)| > 0.

This proves that ga is a bijection.

The case θ = (ξ, σ).

As before, for (a, b) in the range of f , we need to show that (56) has a unique solution
in ξ, σ, for a given H. Notice that (56) is equivalent to

a = σ2HΓ(2H)ξ−2H

b = a
sin(πH)

π

∫ ∞
0

cos(ξhx)
x1−2H

1 + x2
dx =: a

sin(πH)

π
g̃(ξ).
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Thus, it is enough to show that g̃′(ξ) < 0 for all ξ. We have

g̃′(ξ) = −h
∫ ∞

0

sin(ξhx)
x2−2H

1 + x2
dx.

Let C be a constant that may depend only on Θ and may change from line to line.
We decompose g̃′(ξ) as

g̃′(ξ) = −h
∫ 1

0

sin(ξhx)
x2−2H

1 + x2
dx− h

∫ ∞
1

sin(ξhx)
x2−2H

1 + x2
dx.

Using | sin(x)| ≤ x in the first integral, we get

g̃′(ξ) ≤ Ch2 − h
∫ ∞

1

sin(ξhx)
x2−2H

1 + x2
dx

= Ch2 + h

∫ ∞
1

sin(ξhx)
x−2H

1 + x2
dx− h

∫ ∞
1

sin(ξhx)x−2Hdx.

Since ξ is in a compact, we use in the first integral that | sin(ξhx)| ≤ Chx. As for the
second integral, we use the change of variables y = ξhx to get

g̃′(ξ) ≤ Ch2 + Ch2

∫ ∞
1

x1−2H

1 + x2
dx− ξ2H−1h2H

∫ ∞
ξh

sin(x)x−2Hdx

≤ Ch2 + ξ2H−1h2H

∫ ξh

0

sin(x)x−2Hdx− ξ2H−1h2H

∫ ∞
0

sin(x)x−2Hdx.

Using the inequality | sin(x)| ≤ x and the fact that ξ is in a compact,

we have |ξ2H−1h2H
∫ ξh

0
sin(x)x−2Hdx| ≤ Ch2. As for the last term, we write∫∞

0
sin(x)x−2Hdx =

∫ 2π

0
sin(x)x−2Hdx +

∫∞
2π

sin(x)x−2Hdx. The second term is
positive by (63), therefore∫ ∞

0

sin(x)x−2Hdx ≥
∫ 2π

0

sin(x)x−2Hdx =

∫ π

0

sin(x)x−2Hdx+

∫ 2π

π

sin(x)x−2Hdx

=

∫ π

0

sin(x)(
1

x2H
− 1

(x+ π)2H
)dx > 0.

Since the last integral is continuous in H, it follows that
infθ∈Θ ξ

2H−1
∫∞

0
sin(x)x−2Hdx ≥ c > 0 and we get

g̃′(ξ) ≤ Ch2 − c h2H .

It follows that there exists h0 > 0 such that for any h < h0, we have g′(ξ) < 0.
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5.3 Strong identifiability assumption: proof of Lemma 2.12
and Lemma 2.13

In this section, we prove Lemma 2.12 and Lemma 2.13, that is the strong identifiability
assumption for the fractional Ornstein-Uhlenbeck process and small perturbations of
this process.

Proof of Lemma 2.12. The condition p ≥ 1 ensures that dCF,p is well-defined in dimen-
sion d = 1. When θ = ξ, this lemma was proved in (Panloup et al, 2020, Lemma
6.2).

Let us deal with the case θ = H. We have already seen that µθ =
N
(
0, σ2HΓ(2H)ξ−2H

)
. Taking into account the expression of dCF,p in (4) yields

dCF,p(µθ1 , µθ2)2 =

∫
R

(
exp

(
−σ

2H1Γ(2H1)

2ξ2H1
η2

)
− exp

(
−σ

2H2Γ(2H2)

2ξ2H2
η2

))2

gp(η)dη.

Let g(H, η) = exp(−σ
2HΓ(2H)

2ξ2H η2), then we have

dCF,p(µθ1 , µθ2)2 =

∫
R

(∫ H2

H1

∂Hg(H, η) dH

)2

gp(η)dη. (64)

We will show that ∂Hg(H, η) is bounded away from 0. We have

∂Hg(H, η) =
σ2η2

2ξ2H
exp

(
−σ

2HΓ(2H)

2ξ2H
η2

)
(Γ(2H) + 2HΓ′(2H)− 2HΓ(2H) log(ξ)) .

Under (20), we have |Γ(2H)+2HΓ′(2H)−2HΓ(2H) log(ξ)| > 0 for all H ∈ H. Hence,
there exists two positive constants c, C that depend only on Θ such that, we have

|∂Hg(H, η)| ≥ Cη2 exp(−cη2) for all H ∈ [mH,MH].

Using this in (64), it follows that

dCF,p(µθ1 , µθ2)2 ≥ C2|H1 −H2|2
∫
R
η2 exp(−2cη2)gp(η)dη.

A similar analysis can be done when θ = σ. In this case, one needs to show that

the derivative of g(σ) = exp(−σ
2HΓ(2H)

2ξ2H η2) is bounded away from 0. Since there is

g′(σ) = −2σHΓ(2H)

2ξ2H
η2 exp

(
−σ

2HΓ(2H)

2ξ2H
η2

)
,

and all the parameters live in compact sets that do not contain 0, there exists positive
constants C̃, c̃ such that all σ ∈ [mΣ,MΣ], we have g′(σ) < −C̃η2 exp(−c̃η2). Hence
we can conclude as in the previous case.
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Proof of Lemma 2.13. The case θ = ξ was considered in (Panloup et al, 2020, Propo-
sition 6.4) under the same assumptions. Our proof for θ = H or θ = σ will be very
similar. More specifically, we decompose dCF,p(µ

λ
θ1
, µλθ2) as

dCF,p(µ
λ
θ1 , µ

λ
θ2) ≥ I1/2

3 −
(
I

1/2
2 + I

1/2
11 + I

1/2
12

)
, (65)

where

I1j =

∫
R

(
E[exp(iηŪ

λ,θj
t )]− E[exp(iηU

λ,θj
t )]

)2

gp(η)dη, j = 1, 2,

I2 =

∫
R

(
E[exp(iηUλ,θ1t )]− E[exp(iηU0,θ1

t )− E[exp(iηUλ,θ2t )] + E[exp(iηU0,θ2
t )]

)2

gp(η)dη,

I3 =

∫
R

(
E[exp(iηU0,θ1

t )]− E[exp(iηU0,θ2
t )]

)2

gp(η)dη.

In the above definition of I1j , I2 and I3, t is an arbitrary large time to be determined
later. Our goal is to bound I3 from below and bound I2 and I1j from above.

Lower bound for I3.

We bound I3 from below as follows:

I3 ≥
1

3

∫
R

(
E[exp(iηŪ0,θ1

t )]− E[exp(iηŪ0,θ2
t )]

)2

gp(η)dη

−
(∫

R

(
E[exp(iηŪ0,θ1

t )]− E[exp(iηU0,θ1
t )]

)2

gp(η)dη

+

∫
R

(
E[exp(iηŪ0,θ2

t )]− E[exp(iηU0,θ2
t )]

)2

gp(η)dη

)
Now, by Lemma 2.12, there exists a constant c1 such that the first term is bounded
from below by c1|θ1 − θ2|2. In view of Proposition 3.3, the other terms are bounded
by Ce−ct. Choosing t large enough, we can thus bound I3 from below by

I3 ≥
c1
6
|θ1 − θ2|2.

Upper bound for I1j.

The term I1j also represents a distance between the solution of (19) and its stationary
version. Under the assumption that bξ, ∂ξbξ and ∂ybξ are bounded and λ is small
enough, the drift −ξ.+ λbξ(.) satisfies assumption A1. Theorefore by Proposition 3.3
we have I1j ≤ Ce−ct. Setting t large enough we get that

I1j ≤
c1
16
|θ1 − θ2|2.
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Upper bound for I2.

It was shown in (Panloup et al, 2020, Equation (6.17)) under p > 3/2 that

I2 ≤ CE

[(
|U0,θ2
t − U0,θ1

t |+ |∆R(Ut)|
)(
|Uλ,θ2t − U0,θ2

t |+ |∆R(Ut)|
)

+ |∆R(Ut)|

]
,

where ∆R(Ut) are the rectangular increments defined by

∆R(Yt) = Uλ,θ1t − U0,θ1
t − Uλ,θ2t + U0,θ2

t .

But ∆R(Ut) = 0 when θ = H or θ = σ. So I2 ≤ λ2CE(|U0,θ2
t − U0,θ1

t |2‖∂λUλ,θ‖2∞).
It was also proved in (Panloup et al, 2020, equation (6.18) and thereafter) that when
bξ and ∂ybξ are both bounded and λ ≤ mΞ(1 − ε), there is ‖∂λUλ,θ‖2∞ ≤ cmΞ,MΞ,ε.
Hence we deduce that

I2 ≤ CmΞ,MΞ,ελ
2E|U0,θ2

t − U0,θ1
t |2.

Now if θ = H, we get from the same computation as from the stationary case (see
(Haress and Richard, 2022, Lemma A.1)) that

E
∣∣∣U0,θ2
t − U0,θ1

t

∣∣∣2 ≤ C|θ2 − θ1|2,

where C does not depend on t. When θ = σ,

E
∣∣∣U0,θ2
t − U0,θ1

t

∣∣∣2 = E
(∫ t

0

(θ2 − θ1)e−t+udBu

)2

≤ C(θ2 − θ1)2.

Thus our bound on I2 becomes I2 ≤ CmΞ,MΞ,ελ
2|θ2 − θ1|2. Finally, choose λ small

enough so that

I2 ≤
c1
16
|θ1 − θ2|2.

To finish the proof, combine the bounds obtained for I1j , I2 and I3 into (65).

5.4 Numerical results

In this section, we provide numerical examples to illustrate the main results of this
paper. We only deal with the 1d OU model defined in (17) that starts from 0, as it
already raises numerous questions about the numerical implementation. We explain
at the end how one might extend our approach to more general SDEs of the form (1).
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Simulated data.

The fractional OU process cannot be simulated exactly. Therefore, we have chosen to
approximate it by the Euler scheme with very small time-step h (namely h = 10−3).
Recall that the L2-distance between the true SDE and the Euler scheme is of order
hH when both are defined with the same fBm. This result holds independently of the
time horizon when the drift is contractive, see e.g. (Panloup et al, 2020, Proposition
3.7 (i)). Recall also that the fBm can be simulated through the Davies-Harte method.
Therefore, up to the approximation of the true SDE, we now assume that we are
given a sequence (Ukh)k≥0, where (Ut)t≥0 is a solution to (17) with a given θ0. Then
we create from this path a subsequence of augmented observations (Xtk)k=1,...,n as
defined in (10). Here we consider the linear transformation to be the simple increments
as in (12). Furthermore, we consider the time-steps tk to be of the form tk = kh, which
means in particular that we assume h to be of the form k0h with k0 ∈ N∗ (namely
k0 = 100). Moreover, to compare the estimators (2) and (3), for γ = 0.1, we simulate
N of the Euler approximation Uθ,γ defined in (15) with bθ(x) = −θx. Then we create

from this path a subsequence of augmented Euler approximations (Xθ,γ
kγ )k=1,...,N as

defined in (16) taking again the linear transformations as simple increments. For the
rest of this section, we will use the following terminology:

• One-dimensional case: This is when we only use the first component of Xθ0 (i.e. Uθ0)
as observations. This means that we are only interested in estimating one parameter
(either the drift, the diffusion or the Hurst parameter) and we assume the other two
are known. There are thus three choices to consider.

• Two-dimensional case: This is when we want to estimate two parameters and there-
fore take the first two components of Xθ0 as observations. There are also three
choices to consider.

• Three-dimensional case: This is when we want to estimate all the parameters and
therefore consider all the components included in Xθ0 .

• In the simulations, we shall refer to the θ̂n as the oracle and θ̂n,N,γ as the estimate.

Computation of the distance between the empirical measures.

In practice, to implement the estimator (2), one needs to compute the distance d ∈ Dp
between the average of Dirac measures and the stationary distribution. If the observed
process is R-valued, and d is given by the Wasserstein distance, an explicit computation
is possible. However, as we explained in the introduction, using the observations of
Uθ0 only allows us to estimate one parameter. If we want to estimate more, we need to
add increments of the process into the observations. Unfortunately, the computation
of the Wasserstein distance in higher dimension requires approximation/optimization
methods that are highly expensive in terms of complexity and are not discussed in
this paper. In this context and as in Panloup et al (2020), it is simple to consider
an approximation of the distance dCF,p defined in (4), which we also worked with to
obtain the rate of convergence. More specifically, we want a discretisation technique
for the integral that appears in (4).
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Minimization of the distance with respect to θ.

To implement the estimators, we see the problem of computing the argmin in (2) as an
optimization problem. More specifically, in the Ornstein-Uhlenbeck case, we already
have an expression of the stationary distribution (18). Furthermore, we also know
how to express the covariance between the process and its increments (54). Since the
stationary distribution is µθ ∼ N(0,Σθ), we have all the information that is needed

to simulate it. In this case, to compute θ̂n defined in (2) we want to minimise

F : θ 7→ d
( 1

n

n−1∑
k=0

δ
X
θ0
tk

, µθ

)
. (66)

We adapt the technique described in (Panloup et al, 2020, Equations (7.5)-(7.6)).
Taking d = dCF,p, the idea is to write the functional F as

F (θ) = dCF,p(µ, µθ) = E[|µ(fΦ)− µθ(fΦ)|2]. (67)

where µ = 1
n

∑n−1
k=0 δXθ0tk

, fφ(x) = ei〈x,φ〉 and Φ is random variable that has gp as

density (see (5)). Writing F like this allows to perform a gradient descent algorithm.
In fact, an approximation of the gradient ∇F is formally obtained as

∇̂F :=
1

R

R∑
r=1

Λ(θ,Φr),

where (Φr)r=1,...,R is a sequence of i.i.d random variables with law gp and

Λ(θ, φ) = ∂θ
(
|µ(fφ)− µθ(fφ)|2

)
= 2

(
1

n

n−1∑
k=0

cos(〈φ,Xθ0
tk
〉)− e− 1

2φ
TΣθφ

)
∇
(
e−

1
2φ

TΣθφ
)

= −

(
1

n

n−1∑
k=0

cos(〈φ,Xθ0
tk
〉)− e− 1

2φ
TΣθφ

)
e−

1
2φ

TΣθφ∇
(
φTΣθφ

)
.

Hence the gradient algorithm reads

∀t ∈ {0, . . . , T}, θt+1 = θt − ηt
1

R

R∑
r=1

Λ(θt,Φ
r
t+1), (68)

where (ηt)t is a sequence of positive steps and at each gradient step t, (Φrt )t,r is a

sequence of i.i.d random variables with law gp. Moreover, to compute θ̂n,N,γ defined
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in (3), we want to minimise

F : θ 7→ d
( 1

n

n−1∑
k=0

δ
X
θ0
tk

,
1

N

N−1∑
k=0

δXθ,γtk

)
.

In this case, write F (θ) = E[|µ(fΦ) − 1
N

∑N−1
k=0 ei〈X

θ,γ
kγ ,Φ〉|2]. The gradient Λ can be

written as in (Panloup et al, 2020, Eq (7.6)):

Λ(θ, φ) = 2(µθ − µ) cos(〈φ, .〉) ρθ(− sin〈φ, .〉)
+ 2(µθ − µ) sin(〈φ, .〉) ρθ(cos〈φ, .〉),

where for any function g : R→ R, each component of ρθ(g(〈φ, .〉)) reads:

ρθ(g(〈φ, .〉))i =
1

N
g(〈φ,Xθ,γ

kγ̄ 〉)〈φ, ∂θiX
θ,γ
kγ̄ 〉.

Therefore, the question is how to simulate paths of the process ∂θiX
θ,γ
· . In Panloup

et al (2020) the authors handle the case when θi is the drift parameter ξ and explain
how the process can be simulated recursively as

∂ξU
θ,γ
(k+1)γ = ∂ξU

θ,γ
kγ + γ

(
∂ξbξ(U

θ,γ
kγ ) +∇bξ(Uθ,γkγ )∂ξU

θ,γ
kγ

)
.

The same technique can be used when θi is the diffusion parameter σ:

∂σU
θ,γ
(k+1)γ = ∂σU

θ,γ
kγ + γ∇bξ(Uθ,γkγ )∂σU

θ,γ
kγ +

(
B(k+1)γ −Bkγ

)
.

Finally, in order to compute (∂HUkγ)k=0,...,N in the same way, one needs to compute
∂HB, which is not an obvious task. For instance, using the Mandelbrot-Van Ness rep-
resentation (6), one cannot simply differentiate the integrand with respect to H to get
∂HB. In Koch and Neuenkirch (2019), it is shown that for all t ≥ 0, Bt is almost surely
infinitely differentiable with respect to H. But since we consider ergodic increments,
we need a result that states: almost surely, for all t ≥ 0, Bt is infinitely differentiable
with respect to H. In Haress and Richard (2022), it is shown that the solution to (9) is
(1− ε)-Hölder continuous in H. So in this case, one simply approximates the gradient
of θ 7→ F (θ) by a finite difference with step δ = 0.1. Denoting this approximation by

Λ̂(θ,Φ), the gradient algorithm reads as in (68) with Λ̂(θt,Φ
r
t ) in place of Λ(θt,Φ

r
t ).

Simulation of the variable Φ.

Since gp has a spherical form, Φ can be simulated using the spherical coordinates and
the inverse transform sampling method in any dimension (see e.g. (Panloup et al, 2020,
Section 7) for d = 2).
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Numerical illustrations.

Recall that we consider the process U given by (17) and we assume θ to be in a
compact interval. The assumptions A0 and A1 are clearly satisfied, where Iw follows
from Proposition 2.11. Moreover, Lemma 2.12 proves that Is is satisfied when we are
only interested in estimating one parameter. Using the strategy described before, we
get a discretely observed path of X and an Euler approximation Xθ,γ . We set the
following parameters:

θ0 = (ξ0, σ0, H0) = (2, 0.5, 0.7)

h = 10−3, q = 3, h = 10−1

n = 1000, N = 10000, γ = 10−1

R = 100, T = 100, p = 2.

Let us start with the one-dimensional case (Figure 1). We perform the gradient
descents described above over 100 realisations of the observations (Xθ0

kh)k=1,...,n and
plot a histogram highlighting the empirical mean obtained and the empirical vari-
ance. More precisely, we denote the empirical variance when estimating ξ0, σ0 and
H0 respectively by Varξ, Varσ and VarH . We use the same algorithm in the two-
dimensional case (Figures 2, 3 and 4) and the three-dimensional case (Figure 5)
and plot histograms for all the parameters we are interested in estimating. Take
θ0 = (ξ0 = 1, σ0 = 1, H0 = 0.5) as the initial point in the gradient descents.
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Fig. 1 Histograms for the estimation of each parameter separately. The filled vertical lines are for
the true parameters. The dash lines represent the empirical mean of θ̂n and the dash-dotted lines
the empirical mean of θ̂n,N,γ . Left: Varξ(θ̂n) ∼ 0.1, Varξ(θ̂n,N,γ) ∼ 0.1. Right: Varσ(θ̂n) ∼ 0.01,

Varσ(θ̂n,N,γ) ∼ 0.01. Bottom: VarH(θ̂n) ∼ 0.01, VarH(θ̂n,N,γ) ∼ 0.01.
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Fig. 2 Histograms for the estimation of the drift and the diffusion. The filled vertical lines are for
the true parameters. The dash lines represent the empirical mean of θ̂n and the dash-dotted lines
the empirical mean of θ̂n,N,γ . Left: Varξ(θ̂n) ∼ 0.1, Varξ(θ̂n,N,γ) ∼ 0.1. Right: Varσ(θ̂n) ∼ 0.01,

Varσ(θ̂n,N,γ) ∼ 0.01.
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Fig. 3 Histograms for the estimation of the drift and the Hurst parameter. The filled vertical lines
are for the true parameters. The dash lines represent the empirical mean of θ̂n and the dash-dotted
lines the empirical mean of θ̂n,N,γ . Left: Varξ(θ̂n) ∼ 0.1, Varξ(θ̂n,N,γ) ∼ 0.1. Right: VarH(θ̂n) ∼ 0.01,

VarH(θ̂n,N,γ) ∼ 0.01.
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Fig. 4 Histograms for the estimation of the diffusion and the Hurst parameter. The filled vertical
lines are for the true parameters. The dash lines represent the empirical mean of θ̂n and the dash-
dotted lines the empirical mean of θ̂n,N,γ . Left: Varσ(θ̂n) ∼ 0.01, Varσ(θ̂n,N,γ) ∼ 0.01. Right:

VarH(θ̂n) ∼ 0.01, VarH(θ̂n,N,γ) ∼ 0.01.

Discussion.

In the 1d case, we get accurate estimators of the parameters (see Figure 1). In the 2d
case, one observes a decrease in the accuracy of the estimates (see the left histogram
on Figure 3 and Figure 4 for instance), which is due to a higher bias, as the variances
of the estimators stay the same as in the 1d case. In the 3d case, one observes an
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Fig. 5 Histograms for the estimation of all the parameters. The filled vertical lines are for the true
parameters. The dash lines represent the empirical mean of θ̂n and the dash-dotted lines the empirical
mean of θ̂n,N,γ . Left: Varξ(θ̂n) ∼ 0.1, Varξ(θ̂n,N,γ) ∼ 0.1. Right: Varσ(θ̂n) ∼ 0.01, Varσ(θ̂n,N,γ) ∼
0.01. Bottom: VarH(θ̂n) ∼ 0.01, VarH(θ̂n,N,γ) ∼ 0.01.

increase in both the bias and the variances of the estimators (specially in the estimation
of the drift). Furthermore, observe that for N = 10000 and γ = 0.1, the estimator

θ̂n,N,γ behaves qualitatively like θ̂n. While θ̂n,N,γ is slow to compute, this ensures
that the error generated by replacing θ 7→ µθ by its approximation is not significant.
Finally, note that in practice in the 3d case, the oracle θ̂n is slow to compute. In
fact, computing θ 7→ µθ requires computing the integrals appearing in the right-hand
side of (55) which are slow to converge. Moreover, the error when approximating
these integrals can be significant as shown in Figure 4. Thus, even when the invariant
measure is known, it can be more efficient to compute θ̂n,N,γ than the oracle in higher
dimensions. In general, further exploration and in-depth analysis would be necessary to
enhance the integration of our statistical procedure with gradient descent algorithms.
In particular, going beyond the fractional Ornstein-Uhlenbeck model requires looking
into derivative-free methods to approximate ∇Λ(θ, φ) (e.g Flaxman et al (2005)) and
faster methods to compute the approximation of θ 7→ µθ. This aspect remains open
for future investigation.
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Appendix A Regularity in the Hurst parameter

In this section, we recall and adapt some results from our companion paper (Haress
and Richard, 2022, Sections 4 and 5) that state the regularity in the Hurst parameter
of continuous and discrete ergodic means. Recall that the fractional OU process is
defined by (17), and let us denote by Ū (1,σ,H) the stationary fractional OU process
with drift ξ = 1, diffusion matrix σ and Hurst parameter H.

In the whole Appendix, let H be a compact subset of (0, 1), Ξ be a compact
subset of Rm, Σ a compact subset of the space of d× d invertible matrices and denote
Θ = Ξ× Σ×H.
Lemma A.1. Let $ ∈ (0, 1) and p ≥ 1. Let W be an Rd-Brownian motion and for
any H ∈ (0, 1), denote by BH the fBm with underlying noise W (i.e. as in (6)). There
exists a random variable C with a finite moment of order p such that almost surely,
for any t ≥ 0, any θ1 = (ξ, σ,H1) ∈ Θ and θ2 = (ξ, σ,H2) ∈ Θ,

1

t+ 1

∫ t+1

0

∣∣Y θ1s − Y θ2s ∣∣2 ds ≤ C|H1 −H2|$,

where Y θ1 (resp. Y θ2) is the solution to (9) with parameter θ1 (resp. θ2), a drift bξ
satisfying A1 and driving fBm BH1 (resp. BH2), and Y θ1 and Y θ2 start from the same
initial condition.

Proof. For i = 1, 2, the process σ−1Y θi· is solution to the SDE

σ−1Y θit = σ−1Y0 +

∫ t

0

b̃ξ(σ
−1Y θis )ds+BHit ,

with b̃ξ(x) = σ−1bξ(σ·). We have b̃ξ ∈ C1,1(Rd × Ξ,Rd) and since σ lives in the

compact set Σ, b̃ξ still satisfies (7) and (8). We choose the stationary fractional OU

Ū (1,Id,H1) with the same noise BH1 as Y θ1 (similarly for Ū
(1,Id,H2)
s ). As in the proof

of (Haress and Richard, 2022, Theorem 4.5), a comparison between Y θ1s − Y θ2s and
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Ū (1,Id,H1) − Ū (1,Id,H2) gives

1

t+ 1

∫ t+1

0

∣∣σ−1(Y θ1s − Y θ2s )
∣∣2 ds ≤ C|Ū (1,Id,H1)

0 − Ū (1,Id,H2)
0 |2

+
1

t+ 1

∫ t+1

0

|Ū (1,Id,H1)
s − Ū (1,Id,H2)

s |2ds.

We can now apply (Haress and Richard, 2022, Proposition 4.2) with t′ = t = 0 and
(Haress and Richard, 2022, Proposition 4.4) with H ′ = K = K ′ and t′ = t to get that
there exists a random variable C1 (independent of ξ and σ) with a finite moment of
order p such that

1

t+ 1

∫ t+1

0

∣∣σ−1(Y θ1s − Y θ2s )
∣∣2 ds ≤ C1|H1 −H2|$.

Since
∣∣σ−1(Y θ1s − Y θ2s )

∣∣ ≥ |σ−1|
∣∣(Y θ1s − Y θ2s )

∣∣, dividing by |σ−1| and taking the
supremum over Σ, we get the desired result by setting C = |σ−1|−1C1.

Lemma A.2. Let H be a compact subset of (0, 1), $ ∈ (0, 1), and p ≥ 1. There
exists γ0 > 0 such that for γ ∈ (0, γ0), there exists a random variable Cγ with a finite
moment of order p such that almost surely, for all t, t′ ≥ 0 and all H1, H2 ∈ H,

1

t+ 1

∫ t+1

0

|Ū (1,Id,H1)
sγ − Ū (1,Id,H2)

sγ |2ds ≤ Cγ |H1 −H2|$,

where sγ denotes the leftmost point in a time-discretisation of step γ.

Proof. Apply (Haress and Richard, 2022, Proposition 5.1), with t′ = t and H ′ = K ′ =
K to get that

1

t+ 1

∫ t+1

0

|Ū (1,Id,H1)
sγ − Ū (1,Id,H2)

sγ |2ds ≤ Cγ |H1 −H2|$ + CE|Ū (1,Id,H1)
0 − Ū (1,Id,H2)

0 |2.

Now apply (Haress and Richard, 2022, Proposition 4.2) with t = t′ = 0 to get the
desired result.

Lemma A.3. Let H be a compact subset of (0, 1). Let $ ∈ (0, 1) and p ≥ 1. There
exists γ0 > 0 such that for γ ∈ (0, γ0], there exists a random variable Cγ with a finite
moment of order p such that almost surely, for any N ∈ N∗, any θ = (ξ, σ,H1) and
any θ2 = (ξ, σ,H2) ∈ Θ,

1

N

N∑
k=1

∣∣∣Y θ1,γkγ − Y θ2,γkγ

∣∣∣2 ≤ Cγ |H1 −H2|$,

where Y θ2,γ and Y θ2,γ are Euler schemes (15) with the same initial condition and
driven by fBm with the same underlying noise (see (6)).
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Proof. For any θ ∈ Θ, the process σ−1Y θ,γ· is solution to the SDE

σ−1Y θ,γt = σ−1Y0 +

∫ t

0

b̃ξ(σ
−1Y θ,γsγ )ds+BHt ,

with b̃ξ(x) = σ−1bξ(σ·). We have b̃ξ ∈ C1,1(Rd×Ξ,Rd) and since σ lives in the compact

set Σ, one can check that b̃ξ still satisfies (7) and (8). As in the proof of (Haress and
Richard, 2022, Eq. (5.5)), a comparison with the stationary fractional OU process Ū
gives

1

N

N∑
k=0

∣∣∣σ−1(Y θ1,γkγ − Y θ2,γkγ )
∣∣∣2

≤ C

(
1

N

N∑
k=0

∣∣∣Ū (1,Id,H1)
jγ − Ū (1,Id,H2)

jγ

∣∣∣2 +
∣∣∣Ū (1,Id,H1)

0 − Ū (1,Id,H2)
0

∣∣∣2
+

1

Nγ

∫ Nγ

0

∣∣∣U (1,Id,H1)
s − U (1,Id,H2)

s

∣∣∣2 ds).
The regularity of the second term in the right-hand side is given by (Haress and
Richard, 2022, Proposition 4.2) and the regularity of the third term is given by (Haress
and Richard, 2022, Theorem 4.5). To bound the first term, we apply Lemma A.2. To

conclude the proof, we notice that |σ−1(Y θ1,γkγ − Y θ2,γkγ )| ≥ |σ−1||(Y θ1kγ − Y
θ2
kγ )|, divide

by |σ−1| and take the supremum over Σ.

Appendix B Continuity and Tightness results

In Proposition B.1 and Proposition B.2, we prove that the solutions Y θ and Y θ,γ to
(9) and (15) and their ergodic means have finite moments uniformly in time and θ.
Finally, in Proposition B.3, we state a result on the regularity of the ergodic means
in θ.
Proposition B.1. Assume A0 and A1. Let Y θ be the unique solution of (9). Let
p > 1. Then the following inequalities hold true:

(i) sup
t≥0

sup
θ∈Θ

E|Y θt |p <∞.

(ii) E
(

sup
t≥0

sup
θ∈Θ

1

t

∫ t

0

|Y θs |2ds
)p

<∞.

(iii) E

(
sup
n∈N∗

sup
θ∈Θ

1

n

n−1∑
k=0

|Y θkh|2
)p

<∞.

Proof. Throughout the proof, C will denote a constant that do not depend on θ or
t and that may change from line to line. Observe that when the supremum is taken
only over ξ, the proof is already done in (Panloup et al, 2020, Proposition A.1). The
proofs of all three items are based on a comparison with fractional OU processes (17).
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For the proof of (i), by (Hairer, 2005, p.725), a comparison with the stationary
fractional OU process Ū (1,σ,H) yields that there exist constants c1, c2 > 0 independent
of ξ such that,

|Yt − Ū (1,σ,H)
t |p ≤ e−2c1t|Y0|p + c2

∫ t

0

e−2c2(t−s)(1 + |Ū (1,σ,H)
s |p)ds.

Moreover, since U (1,σ,H) is a Gaussian process, for any t ≥ 1, we have E|Ū (1,σ,H)
t |p .

(E|Ū (1,σ,H)
t |2)p/2. By (18), we know that E|Ū (1,σ,H)

t |2 = σ2HΓ(2H). Therefore

sup
t≥0

sup
θ∈Θ

E|Y θt |p ≤ C(1 + sup
t≥0

sup
θ∈Θ

E|Ū (1,σ,H)
t |p) <∞.

For the proof of (ii), we follow the steps of the proof of Proposition A.1 in Panloup
et al (2020) (see equation (A.6) and what follows), to get that for all t > 0,

sup
θ∈Θ

1

t

∫ t

0

|Y θs |2ds ≤ C sup
θ∈Θ

1

t

∫ t

0

|Uθs |2ds ≤ C sup
θ=(1,σ,H)∈Θ

1

t

∫ t

0

|σ||U (1,Id,H)
s |2ds.

It follows that

sup
θ∈Θ

1

t

∫ t

0

|Y θs |2ds ≤ C sup
H∈H

1

t

∫ t

0

|U (1,Id,H)
s |2ds

≤ C

(
sup
H∈H

1

t

∫ t

0

|U (1,Id,H)
s − U (1,Id,1/2)

s |2ds+
1

t

∫ t

0

|U (1,Id,1/2)
s |2ds

)
.

Moreover, by Lemma A.1 applied to Y θ ≡ U (1,Id,H) we have that for any $ ∈ (0, 1),
there exists a random variable C with a finite moment of order p such that for any
t ≥ 1,

1

t

∫ t

0

sup
θ∈Θ
|Y θs |2ds ≤ C

(
C sup
H∈H

|H − 1

2
|$ +

1

t

∫ t

0

|U (1,Id,1/2)
s |2ds

)
.

The ergodicity of U (1,Id,1/2) implies that 1
t

∫ t
0
|U (1,Id,1/2)
s |2ds converges as t → ∞. It

follows that

E
(

sup
t>0

sup
θ∈Θ

1

t

∫ t

0

|Y θs |2ds
)p

<∞.

The proof of (iii) can be done in the exact same way by transcribing all the integrals
to discrete sums and using Lemma A.2.

Proposition B.2. Assume A0 and A1. Let Y θ,γ· be the Euler scheme (15). Then
there exists γ0 > 0 such that for any p > 1, there is
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(i) sup
θ∈Θ,γ∈(0,γ0)

lim sup
N→∞

E
∣∣∣Y θ,γNγ

∣∣∣p <∞.

(ii) For γ ∈ (0, γ0], E

(
sup
θ∈Θ

sup
N≥1

1

N

N−1∑
k=0

|Y θ,γkγ |
2

)p
<∞.

Proof. Note that the same results are proven in (Panloup et al, 2020, Proposition
A.4) when Θ only represents the range of the parameter ξ. With this in mind, as in
Proposition B.1, the proof of (i) is based on comparisons with the discrete Ornstein-
Uhlenbeck process, which has finite moments uniformly in θ. The proof (ii) is the
same as the proof of (ii) in Proposition B.1 and is based on a comparison with the
discrete OU process and Lemma A.3.

Proposition B.3. Let the assumptions A0 and A1 hold. Assume also that the expo-
nent r in the sub-linear growth of bξ in (8) satisfies r ≤ 1. Let p ≥ 1 and $ ∈ (0, 1),
then there exists a positive random variable C that has a finite moment of order p,
such that almost surely for all θ1, θ2 ∈ Θ and for all t ≥ 1,

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤ C|θ1 − θ2|$, (B1)

where Y θ1 and Y θ2 are solutions to (9) with the same initial condition and driven by
an fBm with the same underlying noise (see (6)). Furthermore, there exists γ0 such
that for any γ ∈ (0, γ0], there exists a positive random variable Cγ that has a finite
moment of order p, such that almost surely, for any θ1, θ2 ∈ Θ and any N ≥ 1,

1

N

N∑
k=0

|Y θ1,γkγ − Y θ2,γkγ |
2ds ≤ Cγ |θ1 − θ2|$. (B2)

Proof. In the proof, we denote by C a constant independent of time and θ that may
change from line to line. Similarly, C will denote a positive random variable that has
a finite moment of order p, that does not depend on θ and may change from line to
line. Let us first focus on on the proof of (B1). Up to introducing pivot terms, we can
consider three different cases:

(1) θ1 = (ξ1, σ,H), θ2 = (ξ2, σ,H)

(2) θ1 = (ξ, σ,H1), θ2 = (ξ, σ,H2)

(3) θ1 = (ξ, σ1, H), θ2 = (ξ, σ2, H).

In the first case, we have by (Panloup et al, 2020, Eq. (5.32)) that

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤ C|ξ1 − ξ2|2
(

1 + sup
θ∈Θ

1

t

∫ t

0

|Y θs |2rds
)
,
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where r is the exponent in the sub-linear growth assumption on bξ. Since r ≤ 1,

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤ C|ξ1 − ξ2|2
(

1 + sup
θ∈Θ

1

t

∫ t

0

|Y θs |2ds
)
. (B3)

It follows from the uniform bound on the moments of Y θt in Proposition B.1(ii) that
there exists a random variable C with finite moment of order p such that

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤ C|ξ1 − ξ2|2.

The second case (2) is directly the result of Lemma A.1.
As for the third case (3), the idea is to compare the process Y with the fractional

OU processes U (1,σ1,H) and U (1,σ2,H) defined by (17) with the same initial condition
and the same driving fBm. For s ≥ 1, it comes

∂

∂s
|Y θ1s − Y θ2s −

(
U (1,σ1,H)
s − U (1,σ2,H)

s

)
|2

= 2〈Y θ1s − Y θ2s −
(
U (1,σ1,H)
s − U (1,σ2,H)

s

)
, b(Y θ1s )− b(Y θ2s ) +

(
U (1,σ1,H)
s − U (1,σ2,H)

s

)
〉

≤ −c1|Y θ1s − Y θ2s |2 − c2|U (1,σ1,H)
s − U (1,σ2,H)

s |2 + c3|Y θ1s − Y θ2s ||U (1,σ1,H)
s − U (1,σ2,H)

s |,

where the last inequality follows from A1. Next, apply Young’s inequality to get

∂

∂s
|Y θ1s − Y θ2s −

(
U (1,σ1,H)
s − U (1,σ2,H)

s

)
|2

≤ −c1|Y θ1s − Y θ2s |2 − c2|U (1,σ1,H)
s − U (1,σ2,H)

s |2 + c3|U (1,σ1,H)
s − U (1,σ2,H)

s |2

≤ −c1|Y θ1s − Y θ2s −
(
U (1,σ1,H)
s − U (1,σ2,H)

s

)
|2 + c2|U (1,σ1,H)

s − U (1,σ2,H)
s |2.

We can now apply Grönwall’s lemma to get

|Y θ1s − Y θ2s −
(
U (1,σ1,H)
s − U (1,σ2,H)

s

)
|2 ≤ C

∫ s

0

e−(s−u)|U (1,σ1,H)
u − U (1,σ2,H)

u |2du.

Jensen’s inequality yields that

|Y θ1s − Y θ2s −
(
U (1,σ1,H)
s − U (1,σ2,H)

s

)
|2 ≤ C

∫ s

0

e−(s−u)|U (1,σ1,H)
u − U (1,σ2,H)

u |2du.

Then, using Fubini’s theorem, it comes that

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤
C

t

∫ t

0

|U (1,σ1,H)
u − U (1,σ2,H)

u |2
∫ t

u

1[0,s]e
−(s−u)dsdu

+
C

t

∫ t

0

|U (1,σ1,H)
s − U (1,σ2,H)

s |2ds
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≤ C

t

∫ t

0

|U (1,σ1,H)
u − U (1,σ2,H)

u |2du. (B4)

Now, observe that U
(1,σ1,H)
s −U (1,σ2,H)

s = (σ1−σ2)U
(1,Id,H)
s . Since U

(1,Id,H)
s has finite

moments uniformly in θ (recall (18) and that U (1,Id,H) is a Gaussian process), it follows
that

1

t

∫ t

0

|Y θ1s − Y θ2s |2ds ≤ C|σ1 − σ2|2,

where C has a finite moment of order p. This concludes the proof of (B1).

The proof of (B2) is obtained using discrete analogues of the previous arguments.
More precisely, in the first case (1), similarly to (B3), we have from (Panloup et al,
2020, Proposition 3.8 (ii)) that

1

N

N∑
k=0

|Y θ1,γkγ − Y θ2,γkγ |
2 ≤ C|ξ1 − ξ2|2

(
1 + sup

θ∈Θ

1

N

N∑
k=0

|Y θ,γkγ |
2

)
.

While the dependence of the RHS on σ and H in Panloup et al (2020) is not explicit,
one can show that the upper bound they obtain in the continuous setting (i.e. (Panloup
et al, 2020, Eq. (5.32))) still holds if the integrals are replaced by discrete sums. Then
conclude using the uniform bound on the moments of Y θ,γ in Proposition B.2(ii).

The second case (2) is directly the result of Lemma A.3. In the third case (3),
similarly to (B4), via a comparison with the discrete fractional OU process Uθ,γ (that
solves (15) with bξ(·) = −ξ·), one can show that

1

N

N∑
k=0

|Y θ1,γkγ − Y θ2,γkγ |
2 ≤ C

N

N∑
k=0

|U (1,σ1,H),γ
kγ − U (1,σ2,H),γ

kγ |2.

Then we use the linearity of U (1,σ,H),γ in σ to conclude.

Appendix C Proof of Proposition 2.4

The proof follows the same steps as the proof of Lemma 2.2. Let θ = (ξ, σ,H) ∈ Θ.

We will first prove that almost surely, the random measure 1
t

∫ t
0
δXθ,γs ds converges in

law to µγθ as t→∞. This implies that 1
t

∫ t
0
δXθ,γs ds converges to µθ in the Prokhorov

distance. To extend this result to distances d in D2 (i.e dominated by the 2-Wasserstein
distance), we use the fact that the 2-Wasserstein distance is dominated by the Prokorov
distance dP as in (23):

d

(
1

t

∫ t

0

δXθ,γs ds, µθ

)
≤ Cp sup

t≥0

(
max

(
1

t

∫ t

0

|Xθ,γ
s |2ds, E|X̄

θ,γ
t |2

)
+ 1

)
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× dP
(

1

t

∫ t

0

δXθ,γs ds, µθ

)
.

By definition of the process Xθ,γ , we have that

max

(
1

t

∫ t

0

|Xθ,γ
s |2ds, E|X̄

θ,γ
t |2

)
≤ Cq

q∑
i=0

max

(
1

t

∫ t

0

|Y θ,γs+ih|
2ds, E|Ȳ θ,γs+ih|

2

)
.

Therefore, we conclude thanks to Proposition B.2 that in the present case, the con-
vergence in law is equivalent to the convergence for the 2-Wasserstein distance.
Similarly to Section 3.2, we consider a family of probability measures on the set
of càdlàg functions for which the identification of the limit will be easier, namely
{πN = 1

N

∑N−1
k=0 δXθ,γkγ+.

}N≥0. We first prove that the family is tight and then identify

the limit as the stationary law of the augmented process X̄θ,γ . Tightness in D(R+,Rd),
the space of functions that are right-continuous and have limits from the left is equiva-
lent to tightness in D([0, T ],Rd) for every T > 0. Thus by (Billingsley, 1999, Theorem
13.2), tightness is equivalent to the following two points that must hold for any T > 0:

(i) lim
a→∞

lim sup
N→∞

πN

(
x : sup

t∈[0,T ]

|xt| ≥ a
)

= 0.

(ii) Denote w′T (x, δ) = inf{ti}

{
maxi≤r sups,t∈[ti,ti+1) |xt − xs|

}
. Then for any η > 0,

almost surely,

lim sup
δ→0

lim sup
N→+∞

πN (x : w′T (x, δ) ≥ η) = lim sup
δ→0

lim sup
N→+∞

1

N

N−1∑
k=0

1{w′T (Xθ,γkγ+·,δ)≥η} = 0,

where the infimum runs over finite sets {ti}i=1,...,r , r ∈ N∗, satisfying

0 = t0 < t1 < · · · < tr = T and inf
i≤r

(ti − ti−1) ≥ δ.

Since the process has only jumps at times nγ with n ∈ N, w′T
(
Xθ,γ , δ

)
= 0 when

δ < γ, which implies that the second condition (ii) holds.
The first condition (i) is equivalent to tightness in the space of probability measures

on R of the sequence (µNT )N∈N∗ defined by

µNT =
1

N

N−1∑
k=0

δ{supt∈[0,T ]|Xθ,γkγ+t|}.

Recall that by definition of X we have |Xθ,γ
kγ |2 ≤ Cq

∑q
i=0 |Y

θ,γ
kγ+ih|2 ≤

Cq supi∈J0,qK |Y
θ,γ
kγ+ih|2. Hence, for V (x) = |x|2 and

µ̃NT =
1

N

N−1∑
k=0

δ{supt∈[0,T+qh]|Y θ,γkγ+t|},
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we deduce that µNT (V ) ≤ Cq µ̃
N
T (V ). From the last equation in the proof of (Cohen

and Panloup, 2011, Proposition 2), one has supN≥1 µ̃
N
T (V ) < +∞ almost surely, which

implies that (µNT )N≥1 is a.s. tight on R (see e.g. (Duflo, 1997, Proposition 2.1.6)).

Now let (tn)n≥1 be an increasing sequence going to +∞ and { 1
tn

∑tn−1
k=0 δXθ,γkγ+·

}n≥1

be a (pathwise) sequence with limiting distribution ρ. As in Appendix A.2 of (Panloup
et al, 2020, Proposition 3.3), we get that γ is stationary. Let us now prove that ρ is
the law of X̄θ,γ .

A process xt = (yt, z
1
t , . . . , z

q
t ) has the law of X̄θ,γ if xt = xkγ for t ∈ [kγ, (k+1)γ],

and

y· − y0 −
∫ ·γ

0

bξ(yu)du has the law of a σB·γ where B has Hurst parameter H;

zi· − `i
(∫ ·γ

0

bξ(yu)du, . . . ,

∫ (·+ih)γ

0

bξ(yu)du

)
has the law of σ`i(B·γ , . . . , B(·+ih)γ )

for all i ∈ J1, qK,

where for all t ≥ 0, tγ = γbt/γc. Now one can proceed as in the end of Section 3.2 to
deduce that ρ is the law of X̄θ,γ .
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