
HAL Id: hal-04069150
https://universite-paris-saclay.hal.science/hal-04069150

Submitted on 12 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental Improvements of Global Optimization
Algorithms for Lipschitz Functions

Perceval Beja-Battais, Gaëtan Serré, Sophia Chirrane

To cite this version:
Perceval Beja-Battais, Gaëtan Serré, Sophia Chirrane. Experimental Improvements of Global Opti-
mization Algorithms for Lipschitz Functions. Image Processing On Line, 2023, �10.5201/ipol�. �hal-
04069150�

https://universite-paris-saclay.hal.science/hal-04069150
https://hal.archives-ouvertes.fr

Experimental Improvements of Global

Optimization Algorithms for Lipschitz Functions

Perceval Beja-Battais, Gaëtan Serré and Sophia Chirrane

Centre Borelli, ENS Paris-Saclay
CentraleSupélec

{perceval.beja-battais, gaetan.serre}@ens-paris-saclay.fr
sophia.chirrane@student-cs.fr

Abstract

In this paper, we define an experimental context in which we tested the perfor-
mances of LIPO and AdaLIPO, two global optimization algorithms for Lipschitz
functions, introduced in [10]. We provide experimental proofs of the efficiency of
those algorithms, led numerical statistical analysis of our results, and suggested
two intuitive improvements from the vanilla version of the algorithms, referred
as LIPO-E and AdaLIPO-E. Within our test bench, these improvements allow
the algorithms to converge significantly faster and whenever they struggle to
find a better maximizer. Finally, we defined the scope of application of LIPO
and AdaLIPO. We show that they are very prone to the curse of dimensionality
and tend quickly to Pure Random Search when the dimension increases. We
provide source code for LIPO, AdaLIPO, and our enhanced versions here1.

Keywords: global optimization, Lipschitz applications, statistical analysis,
convergence rate bounds, numerical analysis

1 General context

Global optimization refers to any method whose aim is to find the global maxima of
a function over a set. This branch of applied mathematics is largely studied since nu-
merous real life problems require it. One of the major fields where global optimization
is widely used is shape optimization (Figure 1). Taking the example of optimizing the
shape of an aircraft wing or a car, we can define an objective function by weighting sev-
eral properties we desire (robustness, weight, wind penetration, etc.). The so defined
objective function is highly complex and often requires to launch a whole simulation
to be evaluated.

All authors have contributed equally to this work.
1https://github.com/gaetanserre/LIPO-E

https://github.com/gaetanserre/LIPO-E
https://github.com/gaetanserre/LIPO-E

Perceval Beja-Battais, Gaëtan Serré and Sophia Chirrane

Figure 1: Global optimization for shape optimization: some finite element methods
use global optimization algorithms to compute the updates [3].

Another major real life application of global optimization is hyperparameter tuning
(Figure 2). Often done using cross validation in machine learning, this task requires
the evaluation of very complex functions living in big dimensional space (according to
the chosen models), making the hyperparameter selection very difficult. Global opti-
mization methods can provide more clever ways to explore the space of hyperparameter
than Grid Search or Pure Random Search.

Figure 2: Global optimization for hyperparameters tuning. Traditional methods for
hyperparameters tuning consist in a grid search on which the function is evaluated at
every cross from the above graph. The resulting values of the objective function are
represented with colored level lines.

Global optimization has countless other applications such as protein structure pre-
diction, TSP, and object packing. These are challenging real-life applications that
would benefit from a quick resolution. Most of the time, we aim to optimize an un-
known function, living in a continuous space. We cannot assume strong properties
like differentiability or convexity, which considerably reduces the number of usable
algorithms. Furthermore, the evaluation of the studied function is often expensive:
the less the optimizing method evaluates the function, the better.

2

Experimental Improvements of Global Optimization Algorithms for Lipschitz Functions

The LIPO method and its adaptative variant AdaLIPO [10] aims at addressing all
these raised issues. This global optimization method address the problem of optimizing
a function f : X → R, with X ⊂ Rd a compact and convex set with non-empty interior
such that f is k-Lipschitz, i.e.

∃k ≥ 0, |f(x)− f(x′)| ≤ k∥x− x′∥2 ∀(x, x′) ∈ X 2.

The Lipschitz assumption controls how fast variations of a function can change. This
regularity constraint is enforced by the Lipschitz constant k. The bigger k is, the
less regular the function. As k can be potentially huge this assumption offers a not
too restrictive scope of application and thus can be posed in many real world problems.

In this paper we aim at providing a complete experimental analysis of LIPO and
AdaLIPO. First, in Section 3 we proposed a reference implementation of these algo-
rithms, fully reproducible and explained. Then, in Section 4 we designed experiments
to evaluate the theoretical properties of the method introduced in the paper and com-
pared LIPO with AdaLIPO and other methods. We, then, propose some improvements
of both LIPO and AdaLIPO based on empirical observations in Section 5. Finally, in
Section 6, we defined the application scope of LIPO.

Notations. We define some notations that we will use through this entire article.
Most are taken directly from [10]. Let X ⊂ Rd a compact and convex set with non-
empty interior. Let x∗ ∈ argmaxx∈X f(x) for f : X → R. Let B(x, r) = {x′ ∈ Rd :
∥x′−x∥2 ≤ r} the ball centered in x of radius r ≥ 0. For any bounded set X ⊂ Rd, let
rad(x) = sup{r > 0 : ∃x s.t. B(x, r) ⊂ X} its radius and diam(x) = supx,x′∈X ∥x−x′∥2
its diameter. We also define µ(X) its volume where µ(·) stands for the standard
Lebesgue measure or the counting measure if X is countable. Finally, let

Lip(k) =
{
f : X → R s.t. ∀x, x′ ∈ X 2, |f(x)− f(x′)| ≤ k∥x− x′∥2

}
the set of k-Lipschitz functions defined on X .

2 Related work

As stated in the introduction, global optimization is a very interesting field for solving
industrial problems, so one can find a lot of papers describing variants and merges of al-
gorithms or applications on new problems. One of the most known global optimization
algorithm is Simulated Annealing [7]. It is based on the Metropolis-Hastings algorithm
([12] and [5]) as it samples random configurations and accepts it in a exploration-
exploitation perspective. More generally, one can distinguish deterministic methods
from stochastic ones.
Deterministic methods provide theoretical guarantee that the returned solution is the
real global maximum. Cutting-plane methods [2] and branch and bounds methods [8]
are two extremely popular deterministic algorithms for solving discrete NP-hard prob-
lems. One can also cite [1], the state of the art algorithm based on real algebraic
geometry, also discrete.
On the other hand, stochastic methods are based on Monte-Carlo and can return in-
exact results. LIPO and AdaLIPO are stochastic methods, as Bayesian optimization

3

Perceval Beja-Battais, Gaëtan Serré and Sophia Chirrane

methods [11], that construct a gaussian process that best describes the function to be
optimized and samples the next evaluation point given this posterior distribution. As
LIPO and AdaLIPO, Bayesian optimization methods are advantageous when the func-
tion is difficult to evaluate. Another interesting stochastic algorithm is CMA-ES [4], it
samples next evaluation points using a multivariate gaussian distribution with mean
and covariance maximizing the likelihood of previous candidate solutions and search
steps. Finally, in 2018 [9] established a relationship between any continuous function
f on a compact set Ω ⊂ Rd and its global minima f ∗:∫

Ω

f(x)m(k)(x)µ(dx) −−−→
k→∞

f ∗ , where m(k)(x) =
e−kf(x)∫

Ω
e−kf(y)µ(dy)

.

Note that: ∫
Ω

m(k)(x)µ(dx) = 1 and lim
k→∞

m(k)(x) =

{
1

µ(X∗)
if x ∈ X∗

0 if x ∈ Ω/X∗

where X∗ ⊆ Ω is the set of minimizers. Thus, m(k) is a probability density function,
that one can think of as a kind of generalized softmax for infinite dimension, that
pointwise converges to a uniform distribution on X∗.

3 Methods

In this section we provide a reference implementation of LIPO and AdaLIPO. First,
we decided to use oriented object programming to define the objective function. We
thus defined a class Function which has two attributes and one method:

• bounds: The bounds of the definition space of the function for each dimension
(attribute)

• k: The Lipschitz constant of the function (attribute)

• call: The closed form of the objective function (method)

The two presented algorithms’ pseudo code are available in Section A.

3.1 LIPO

The LIPO algorithm improvement, compared to Pure Random Search, is that it eval-
uates the objective function only when a certain condition is verified:

min
i=1..t

(f (Xi) + k · ∥Xt+1 −Xi∥2) ≥ max
i=1...t

f (Xi) . (1)

The meaning of this condition can be understood in depth in [10], but it basically
means that we won’t explore a point for which, according to our observations, we can
be sure that the evaluation will be below one of our other observations, thus it can’t
be the maximum.
This condition is implemented as followed in Algorithm 1. Then, we define the LIPO
algorithm in Section A Algorithm 3.
With this algorithm, we have new confidence intervals on the value of the maximum,
described below.

4

Experimental Improvements of Global Optimization Algorithms for Lipschitz Functions

3.1.1 Naive LIPO Upper Bound

For any f ∈ Lip(k), any n ∈ N⋆ and δ ∈ (0, 1), we have with probability at least 1− δ,

max
x∈X

f(x)− max
i=1...n

f(Xi) ≤ k · diam(X) ·
(
ln(1/δ)

n

) 1
d

. (2)

3.1.2 Fast LIPO Bounds

When the following conditions are satisfied:

LIPO bounds conditions

1. the global optimizer x⋆ ∈ X is unique;

2. for some κ ≥ 1, cκ ≥ 0, for all x ∈ X :

f(x⋆)− f(x) ≥ cκ · ∥x− x⋆∥κ2 . (3)

we have faster rates for the same confidence intervals:

Fast LIPO Bounds: for any n ∈ N⋆ and δ ∈ (0, 1), we have with probability at
least 1− δ the following upper bound,

max
x∈X

f(x)− max
i=1...n

f(Xi) ≤k · diam(X)

×


exp
(
−Ck,κ · n ln(2)

ln(n/δ)+2(2
√
d)d

)
if κ = 1

2κ

2

(
1 + Ck,κ ·

n(2d(κ−1)−1)
2 ln(n/δ)+2(2

√
d)d

)− κ
d(κ−1)

if κ > 1

(4)

where Ck,κ = (cκ maxx∈X∥x− x⋆∥κ−1/8k)d, and the following lower bound:

cκ · rad(X)κ · e
−κ

d

(
n+
√

2n ln(1/δ)+ln(1/δ)
)
≤ max

x∈X
f(x)− max

i=1...n
f(Xi). (5)

3.2 AdaLIPO

The AdaLIPO algorithm is a variant for LIPO when the Lipschitz constant of the
objective function is unknown. AdaLIPO provides a way to estimate this constant
while optimizing the function. The estimated constant is given according to the Eq. 6:

k̂t ≜ inf

{
ki∈Z : max

i ̸=j

|f (Xi)− f (Xj)|
∥Xi −Xj∥2

≤ ki

}
. (6)

We can choose any series (ki)i∈Z ∈ R. In this paper, we choose to use one series
defined in [10]:

ki = (1 + α)i.

Thus,

k̂t = (1 + α)it , where it =

⌈
ln

(
max
i ̸=j

|f(Xi)− f(Xj)|
∥Xi −Xj∥2

)
1

ln(1 + α)

⌉
. (7)

5

Perceval Beja-Battais, Gaëtan Serré and Sophia Chirrane

The estimation of the Lipschitz constant of AdaLIPO ensures that the constant k can-
not be overestimated of more than one term in the series. For example, if ki < k < ki+1,
AdaLIPO ensures that k̂t ≤ ki+1.

The AdaLIPO algorithm is defined in Section A Algorithm 4.

For this algorithm, we also have ”naives” rates if conditions defined in 3.1.2 are not
satisfied.

Naive AdaLIPO Upper Bound:

max
x∈X

f(x)− max
i=1...n

f(Xi) ≤ ki⋆ × diamX

×
(
5

p
+

2 ln(δ/3)

p ln(1− Γ(f, ki⋆−1))

) 1
d

×
(
ln(3/δ)

n

) 1
d (8)

where Γ(f, ki∗−1) ≜ P
(

|f(X1)−f(X2)|
∥X1−X2∥2 > ki∗−1

)
> 0 and i⋆ = min{i ∈ Z : f ∈ Lip(ki)}.

When 3.1.2 are satisfied, we have a faster upper bound.

Fast AdaLIPO Upper Bound:

max
x∈X

f(x)− max
i=1...n

f(Xi) ≤ ki⋆ × diam(X)× exp

(
2 ln(δ/4)

p ln(1− Γ(f, ki⋆−1))
+

7 ln(4/δ)

p(1− p)2

)

×


exp
(
−Cki∗ ,κ ·

n(1−p) ln(2)

2 ln(n/δ)+4(2
√
d)d

)
if κ = 1,

2κ
(
1 + Cki∗ ,κ ·

n(1−p)(2d(κ−1)−1)
2 ln(n/δ)+4(2

√
d)d

)− κ
d(κ−1)

if κ > 1

(9)

where Cki⋆ ,κ = (cκmaxx∈X∥x− x⋆∥κ−1
2 /8ki⋆)

d.

4 Experimental analysis

The main purpose of this paper is to provide improvements through experimental
analysis for LIPO and AdaLIPO. We led several experiments on popular global opti-
mization benchmark functions.

4.1 Selected benchmark functions

As global optimization algorithms such as LIPO can be used for low dimensional
problems, we picked 2D functions for visualization purposes. Note that any of the
code can be executed on higher dimensional problems also. As our optimization aims
to find a global maximum here, some of the functions we selected are the opposite of
”classical” benchmark functions.

6

Experimental Improvements of Global Optimization Algorithms for Lipschitz Functions

4.1.1 Himmelblau function

This functions writes

f(x, y) = −(x2 + y − 11)2 − (x+ y2 − 7)2,∀x, y ∈ R. (10)

This function has 4 global maxima, at

• (3, 2)

• (−2.805118..., 3.131312...)

• (−3.779310,−3.283186...)

• (3.584428...,−1.848126...)

such that f = 0 at those 4 points. It has a Lipschitz constant of approximately 283
over [−4, 4]2, and does not satisfy the fast rate property 3.1.2.

4.1.2 Hölder table function

This functions writes

f(x, y) =

∣∣∣∣∣sin(x) cos(y) exp
(∣∣∣∣∣1−

√
x2 + y2

π

∣∣∣∣∣
)∣∣∣∣∣ ,∀x, y ∈ R. (11)

This function has 4 global maxima, at

• (8.05502, 9.66459)

• (−8.05502, 9.66459)

• (8.05502,−9.66459)

• (−8.05502,−9.66459)

such that f = 19.2085 at those 4 points. It has a Lipschitz constant of approximately
30 over [−10, 10]2, and does not satisfy the fast rate property 3.1.2.

4.1.3 Rastrigin function

This functions writes, in dimension n,

f(x1, ..., xn) = −10n−
n∑

i=1

(
x2
i − 10 cos(2πxi)

)
. (12)

This function has 1 global maximum, at (0, ..., 0), such that f = 0. In dimension 2, it
has a Lipschitz constant of approximately 96 over [−5.12, 5.12]2, and satisfies the fast
rate property 3.1.2, with k = 2, ck = 1 + 20π2.

7

Perceval Beja-Battais, Gaëtan Serré and Sophia Chirrane

(a) Himmelblau (b) Hölder table (c) Rastrigin

(d) Rosenbrock (e) Sphere (f) Square

Figure 3: Graphs of benchmark functions in 2D.

4.1.4 Rosenbrock function

This functions writes,

f(x, y) = −(1− x)2 − 100(y − x2)2. (13)

This function has 1 global maximum, at (1, 1), such that f = 0. It has a Lipschitz
constant of approximately 14607 over [−3, 3]2, and does not satisfy the fast rate prop-
erty 3.1.2.

4.1.5 Sphere function

This functions writes, in dimension n

f(x1, ..., xn) = −
√(

x− π

16

)2
+
(
y − π

16

)2
. (14)

This function has 1 global maximum, at (0, 0), such that f = 0. In dimension 2, it
has a Lipschitz constant of approximately 1.5 over [0, 1]2, and satisfies the fast rate
property 3.1.2, with k = 1, ck = 1.

4.1.6 Square function

This functions writes, in dimension n

f(x1, ..., xn) = −
n∑

i=1

x2
i = −∥x∥22. (15)

8

Experimental Improvements of Global Optimization Algorithms for Lipschitz Functions

This function has 1 global maximum, at (0, ..., 0), such that f = 0. In dimension
2, it has a Lipschitz constant of 20

√
2 over [−5.12, 5.12]2, and satisfies the fast rate

property 3.1.2, with k = 2, ck = 1.

4.2 Experiment setup

For both LIPO and AdaLIPO, we fixed a number of steps n = 2000 which represents
the maximum number of times we will evaluate the function. Remember that what is
supposed to be costly in this kind of problem is not the number of samples we draw,
but the evaluation of the function (typically a simulation, costing a lot of time to be
executed). We compared both algorithms with Pure Random Search (PRS) on the 6
functions defined in 4.1. For AdaLIPO, we set p = 0.5 and α = 0.01 (needed in Eq. 7).
Each algorithm is stopped when it reaches n iterations or when it gets close enough
to the known maximum. To evaluate the latter, we used a metric defined in [10]:

Stop at iteration i if f(Xi) ≥ ftarget(t) (16)

where

ftarget(t) = max
x∈X

f(x)−
(
max
x∈X

f(x)−
∫
x∈X

f(x)
dx

µ(X)

)
(1− t), ∀t ∈ [0, 1]. (17)

This condition allows us to stop the algorithm whenever we consider it is close enough
to the true maximum, given the parameter t. The bigger t, the closer the algorithm
must be to the true maximum. In our experiment, we fixed t = 0.99. To compute
Eq. 17, we need the value of the true maximum (which we know because we chose
the the benchmark functions accordingly), and the value of the integral, which we
estimated using a Monte-Carlo method with 106 samples.

4.3 Results

We ran 100 times the experiment for each algorithm on each benchmark function.
The results are shown in Table 1. As stated in the original paper, both algorithms are
way better than PRS and the AdaLIPO quickly converges to the same results as LIPO.

Himmelblau Hölder Rastrigin Rosenbrock Sphere Square

PRS 184 ± 185 1245 ± 686 1950 ± 236 13 ± 13 1811 ± 436 188 ± 152
LIPO 100 ± 86 508 ± 217 670 ± 183 11 ± 10 46 ± 10 43 ± 22

AdaLIPO 97 ± 77 319 ± 201 913 ± 297 12 ± 11 28 ± 8 62 ± 47

Table 1: Results of the numerical experiments. The table shows the total number
of function evaluations (mean ± standard deviation) required to meet the condition
stated in Eq. 16. We clearly see that LIPO and AdaLIPO outperform PRS. On some
functions, AdaLIPO converges faster than LIPO which can be due to an underestima-
tion of the Lipschitz constant around the maximum.

For each function, we observed the same behavior of LIPO and AdaLIPO. While
PRS simply tests uniformly the whole set, LIPO and AdaLIPO first sample uniformly

9

Perceval Beja-Battais, Gaëtan Serré and Sophia Chirrane

before sampling mostly in the region of interest. This behavior is even more pro-
nounced for AdaLIPO when we reduce the parameter p for exploration. However,
reducing p too much might be problematic for the algorithm to properly estimate the
Lipschitz constant of the function, as it won’t have a representation of the function’s
graph precise enough. A too large underestimation of the Lipschitz constant could lead
the LIPO’s condition (Eq. 1) to erase regions where the maximizers live. On the con-
trary, setting p close to 1 will make AdaLIPO behave like PRS. Figure 5 illustrates this
behavior on the Himmelblau function. Moreover, as we can see on Figure 6, AdaLIPO
tends to underestimate the real Lipschitz constants when p decreases. This is due to
the fact that the constants are estimated within local regions where the sparseness
is proportional to p. Within these regions, the functions can be more regular than
when considering the entire compact sets X . However, this behavior can lead to faster
convergence, as we only are interested in the neighborhood of x∗.

Thus, we need to find a good compromise between enough exploration to have a
good estimation of the Lipschitz constant and fast convergence through exploitation.

Figure 4: Lower and upper bounds estimation for the maximum value for Rastrigin
function through the evaluations given by Eqs. 2 and 4. Fast rates are here much
closer to the true value of the maximum (which is 0) than naive rates. The maximum
value is very close thus hidden by the LIPO lower bound curve.

10

Experimental Improvements of Global Optimization Algorithms for Lipschitz Functions

(a) PRS algorithm (b) LIPO algorithm

(c) AdaLIPO algorithm with p = 0.5 (d) AdaLIPO algorithm with p = 0.9

Figure 5: Visual comparison between each algorithm on the Himmelblau function.
As PRS (a) explores uniformly X , LIPO (b) and AdaLIPO (c & d) methods tend to
explore only the interesting areas to find the maximum. Also, we see the impact of
the exploration rate p from AdaLIPO: the higher p, the more we explore and the more
AdaLIPO will behave like PRS.

11

Perceval Beja-Battais, Gaëtan Serré and Sophia Chirrane

(a) Himmelblau (b) Hölder

(c) Rastrigin (d) Rosenbrock

(e) Sphere (f) Square

Figure 6: Examples of Lipschitz constant estimations of AdaLIPO with p = 0.1 and
p = 0.9 on the benchmark functions. The graphs represent the evolution of the esti-
mated Lipschitz constant during the optimization process. We observe that AdaLIPO
often tends to underestimate the Lipschitz constant, which can be explained because
the ”true” Lipschitz constant around the maximum is smaller than the one on X . The
bigger is p, the closer the estimate is to the real value.

4.3.1 Convergence analysis

We led statistical analysis on the convergence of both LIPO and AdaLIPO. Using
Eqs. 2, 4, and 9, we obtain for each function graphics showing the 95% confidence
interval in which f(x∗) should be. In most cases, when the conditions for Eq.4 are

12

Experimental Improvements of Global Optimization Algorithms for Lipschitz Functions

Figure 7: Number of samples with respect to the number of function evaluations for
LIPO on the Rastrigin function. The growth appears to be exponential, and in fact
is hyperbolic as the more we evaluate, the less we are likely to accept a new point (to
the point where we won’t accept any new point).

satisfied, we see in Figure 4 that the convergence of the confidence interval is way
faster than using the boundaries given by Eq.2.

5 Empirical improvements

5.1 Stopping criterion

While experimenting with both LIPO and AdaLIPO, we noticed, as expected, that
the number of samples drawn from a uniform law grows exponentially (in fact prob-
ably hyperbolically) with respect to the number of function evaluations as shown in
Figure 7. This makes us want to define a stopping criterion that is different from
while t < n with fixed n, because it might take a really long time to converge, or not
converge at all (as the condition Eq.1 will never be satisfied). The improvement we
propose in this paper consists in stopping the algorithm as soon as the slope of the
plot in Figure 7 exceeds a threshold γ. The bigger γ, the longer but the more precise
the result will be. In practice, we approximate γ with finite differences on several
iterations (because from the one to the other, there might be too much randomization
and a moment of bad luck can stop the algorithm too soon). The pseudocode for this
stopping criterion is described in 2.

13

Perceval Beja-Battais, Gaëtan Serré and Sophia Chirrane

5.2 Decreasing Bernoulli parameter for AdaLIPO

For AdaLIPO, as explained in Section 3, it has two possibilities at each iteration:
exploration or exploitation. The choice of the path it will take is given by the result
of a Bernoulli random variable B(p). By intuition and by experience, we can think
that exploring a lot at the beginning of the algorithm is a good way to approximate
correctly the Lipschitz constant k, whereas the exploitation phase is the one where we
will really use the observations we already have to find the maximum. That’s why we
propose to decrease progressively the parameter p during the optimization, for it to be
high enough in the beginning, and to be small enough at the end so we can focus on
exploiting our observations. In a way, one can think of this as a first phase where the
algorithm focuses on estimating the Lipschitz constant, and a second phase where it
basically applies LIPO to this estimated Lipschitz constant. Of course, the two phases
are not really separated (we propose a continuous decrease of p = p(t)), but that’s the
idea behind it.
For instance, we empirically suggest to take p(t) = min

(
1, 1

ln(t)

)
, with the convention

1
0
= +∞.

These two improvements resulted in new versions of LIPO and AdaLIPO, referred
to as LIPO-E and AdaLIPO-E in the following.

5.3 Empirical comparison

We decided to compare both versions of LIPO and AdaLIPO, with and without the
proposed improvements. Regarding the stopping criterion, we set γ = 800 and the
slope is computed over the 5 last number of samples. We ran the 4 algorithms on some
benchmark functions defined in Section 4.1. We fixed a maximum number of evalua-
tions for each function, depending on their difficulties. We removed the target stopping
condition defined in Eq. 16, therefore, the original version of LIPO and AdaLIPO ex-
hausted the maximum number of evaluations allowed. However, the enhanced versions
could stop earlier if the slope condition defined in Section 5.1 is reached. The other
hyperparameters of the experiment are the same as in Section 4.2, except that we ran
10 times the experiment instead of 100 times. The results are shown in Table 2. We
chose to display only the 3 benchmark functions where the slope stopping criterion is
met. We can see that, with significantly fewer iterations, the distances from the real
global maximum of our enhanced algorithms are in the same order of magnitude and
sometimes less than the original versions.
As expected, our stopping criterion allows to totally emancipate from the maximum
number of evaluations, which is an arbitrary parameter. Indeed, the original versions
of LIPO and AdaLIPO stop when they evaluate the function n times. However, sam-
pling a potential maximizer (a point verifying Eq. 1) can be very difficult; for instance
if the Lipschitz constant is small or if the algorithm already has a good approximation
of the maximum. Our stopping criterion ensures that, if the algorithm struggles too
much to sample a potential maximizer, it stops. One can run LIPO or AdaLIPO until
it met the slope stopping criterion, the resulting value will be the best value one can
obtain using the algorithm in a reasonable amount of time.

14

Experimental Improvements of Global Optimization Algorithms for Lipschitz Functions

Hölder Rastrigin Sphere
evals dmax # evals dmax # evals dmax

LIPO 2000 0.0018 1000 0.0512 25 0.0137
LIPO-E 1505 ± 104 0.0018 869 ± 34 0.1282 25 0.0395
AdaLIPO 2000 0.003 1000 0.4106 25 0.0227
AdaLIPO-E 719 ± 457 0.023 753 ± 133 0.0569 20 ± 5 0.0063

Table 2: Comparison between the original algorithms and our empirically improved
versions. # evals represents the number of function evaluations and dmax the distance
from the real maximum. For AdaLIPO-E, γ = 800. We can see that, with significantly
less evaluation, LIPO-E and AdaLIPO-E compete with the original version in terms
of distance to the real maximum.

We also compared AdaLIPO using only the decreasing Bernoulli parameter (re-
ferred as AdaLIPO-B) with LIPO and AdaLIPO in the exact same experimental setup
as in Section 4.2. The results are summarized in Table 3. As we can see, AdaLIPO-B
significantly outperforms the original AdaLIPO on this benchmark. It even succeeded
to beat LIPO on almost every problem. In the next section, we highlight how our
empirical improvements allows such a performance gain.

Himmelblau Hölder Rastrigin Rosenbrock Sphere Square

LIPO 100 ± 86 508 ± 217 670 ± 183 11 ± 10 46 ± 10 43 ± 22
AdaLIPO 97 ± 77 319 ± 201 913 ± 297 12 ± 11 28 ± 8 62 ± 47

AdaLIPO-B 65 ± 46 228 ± 136 616 ± 187 11 ± 10 22 ± 6 51 ± 36

Table 3: Empirical performance of our enhanced AdaLIPO. The table shows the total
number of function evaluations (mean ± standard deviation) required to meet the
condition stated in Eq. 16. AdaLIPO-B outperforms LIPO and AdaLIPO in almost
every problem.

5.4 Understanding the improvements’ contributions

This section aims at understanding the contribution of the two improvements in-
troduced in Section 2. Indeed, the enhanced version of AdaLIPO includes the two
improvements (decreasing Bernoulli parameter and Stopping criterion) and leads to
better performance for some benchmark functions, both in terms of the number of
evaluations and distance to the maximum (i.e. the difference between the real max-
imum value and our best observation). To understand better these results we need
to identify the separate contribution of the improvements. To this end, we conducted
an experiment where we compared the original AdaLIPO, AdaLIPO-E and two other
AdaLIPO versions one called AdaLIPO-B which includes only the Bernoulli param-
eter and AdaLIPO-slope which only includes the stopping criterion. We studied the
behavior of these 4 algorithms for 4 benchmark functions. We fixed the number of
evaluations to 2000 (except from Rastrigin function where we fixed this parameter to
1000) and ran 100 times each experiment. The results are summarized in Table 4. We
fixed the following hyperparameters: slope’s size to 5, maximum slope to γ = 1000
and p = 0.5.

15

Perceval Beja-Battais, Gaëtan Serré and Sophia Chirrane

On the one hand we observed that the Bernoulli parameter allows a better es-
timation of the function’s maximum while slightly degrading the Lipschitz constant
estimation compared to the classic AdaLIPO. This improvement also increases the
number of samples however, this step is not expensive. On the other hand, the stop-
ping criterion, as expected, reduced the number of function evaluations which is the
expensive step of the method. Combined these two improvements lead to AdaLIPO-
E. Thus, we can see that our version of this algorithm inherits the properties of the
two improvements. Indeed, the maximum estimation is better while having in general
a slightly worse Lipschitz constant estimation but proceeding to less evaluation. It
corroborates what we assumed in Section 4.3, i.e. underestimating the Lipschitz con-
stant can lead to faster convergence. We also provide with a visual illustration of the
improvements’ behaviors in Figure 8.

Himmelblau Hölder Rosenbrock Square Rastrigin

AdaLIPO

dmax 0.0188 ± 0.0188 0.0024 ± 0.0029 0.0529 ± 0.0487 0.0028 ± 0.0025 0.4066 ± 0.3439
samples 9846 ± 1286 133217 ± 61770 2793.01 ± 56.25 42806 ± 2753 21028 ± 9583

κ 224.9 ± 19.7 27.84 ± 2.36 13358.31 ± 671.16 28.1024 ± 0.00 94.46 ± 4.00
evals 2000 2000 2000 2000 1000

AdaLIPO-B

dmax 0.0061 ± 0.0058 0.0010 ± 0.0017 0.034 ± 0.034 0.001 ± 0.0008 0.0632 ± 0.0960
samples 22745 ± 3975 519322 ± 410188 3458 ± 119 113937 ± 9827 178520 ± 98026

κ 201.74 ± 20.09 26.36 ± 4.09 12151.9 ± 977.6 27.03 ± 1.26 90.8434 ± 4.0417
evals 2000 2000 2000 2000 1000

AdaLIPO-slope

dmax 0.0136 ± 0.0111 0.003 ± 0.003 0.0391 ± 0.0361 0.0029 ± 0.0027 0.4040 ± 0.3923
samples 9870 ± 1187 109004 ± 34252 2779 ± 58 42582 ± 2342 19086 ± 9630

κ 221.24 ± 18.98 28.08 ± 2.43 13358 ± 677.8 28.10 ± 0.00 95.6237 ± 3.7340
evals 2000 1976.22 ± 126.23 2000 2000 999.5400 ± 4.5769

AdaLIPO-E

dmax 0.0062 ± 0.0056 0.0027 ± 0.0041 0.0352 ± 0.0295 0.001 ± 0.0009 0.0825 ± 0.0819
samples 23596 ± 4171 168210 ± 66780 3463 ± 127 114184 ± 9295 72081 ± 16582

κ 199.52 ± 22.47 24.02 ± 5.84 12302 ± 1070 27.05 ± 1.26 90.2581 ± 4.3964
evals 2000 1399 ± 567 2000 2000 894.8700 ± 124.5155

Table 4: Empirical performance of the two proposed improvements of our enhanced
AdaLIPO. The table shows the contributions of each improvement by evaluating sev-
eral criteria. The total number of function evaluations (mean ± standard deviation),
the distance from the real maximum dmax, the estimation of the Lipschitz constant
κ and the number of samples. We see that AdaLIPO-B has the best maximum es-
timation in general while AdaLIPO-slope stops earlier but with a worse estimation.
AdaLIPO-E is a combination of the two improvements and has the best performance
in terms of maximum estimation and the number of function evaluations.

16

Experimental Improvements of Global Optimization Algorithms for Lipschitz Functions

(a) AdaLIPO (b) AdaLIPO-B

(c) AdaLIPO-slope (d) AdaLIPO-E

Figure 8: Visual understanding of the contributions of the proposed improvements.
Compared to AdaLIPO (a), AdaLIPO-B (b) tends to explore more the region of in-
terest (which can be seen with a higher number of evaluations at the center of X , in
yellow). AdaLIPO-slope (c) reduces its overall number of function evaluations, with-
out modifying its exploration-exploitation parameter, and AdaLIPO-E (d) combines
those two behaviors.

6 Application scope of LIPO

As many optimization algorithms, LIPO is subject to the curse of dimensionality. In
fact, we can show that in some sense, LIPO converges towards PRS in high dimension.
Indeed, if we want to optimize f on a ”non-small” subset X of Rd, by looking at
our algorithm 3, we will at iteration t + 1 erase from our search space, at best, the

17

Perceval Beja-Battais, Gaëtan Serré and Sophia Chirrane

ball B
(
xt+1,

α
k

)
with k being the Lipschitz constant of the objective function, and

α ≥ maxx∈X f(x)−minx∈X f(x). For LIPO to be efficient we need:

• to reduce the search space, so we need to have a control on k (for it not to be
too big);

• to have a control on µ(X) (for it not to be too big as well).

The main problem is that classical functions in high dimensions are usually defined
on quite big subspaces X , with high Lipschitz constants k. To summarize, in the best
case, we will have a search space of volume

Vt = µ(X)− t
πd/2αd

kdΓ(d
2
+ 1)

at iteration t+1. Thus, the probability to reject the point at iteration t+1 will be in
the best scenario:

P(Reject(xt+1)) = t
πd/2αd

kdΓ
(
d
2
+ 1
)
µ(X)

(18)

i.e., the probability for xt+1 to be in the erased space. Most of the time, t πd/2αd

kdΓ(d
2
+1)µ(X)

will be tiny.

To properly see it, let’s take a simple example. Define f as the square function 15.
Let’s take X ≜ [−1, 1]d which verifies µ(X) = 2d. For this subset, the Lipschitz
constant will be k = 2d as well, and α = d. Then, using 18, we will have

P(Reject(xt+1)) ≤ t
πd/2dd

(2d)dΓ
(
d
2
+ 1
)
2d

≜ tCd. (19)

For instance, the value of Cd is 0.78 for d = 2, 0.22 for d = 3, 4.9 × 10−4 for d = 5,
2.0× 10−20 for d = 10 etc.

Therefore, LIPO and, by extension, AdaLIPO, are not good choices of algorithms
for maximizing a high dimensional function.

7 Conclusion

In this paper, we provide a reproducible implementation of both LIPO and AdaLIPO
and we tested them on classical benchmark functions for global optimization. Through
numerical experiments, we also propose two intuitive improvements: a decreasing
exploration-exploitation parameter for AdaLIPO, and a stopping criterion based on
the number of rejected samples for both algorithms. We compared original and en-
hanced versions of both algorithms on our benchmark with respect to the number of
evaluations of the objective function and the distance to the real maximum. Those
experiments show significant improvements of the two methods (LIPO and AdaLIPO),
with respect to both criteria. The stopping criterion allows the algorithm to reduce the
number of evaluations of the function in exchange of a small decrease of the precision,

18

Experimental Improvements of Global Optimization Algorithms for Lipschitz Functions

whereas the progressive decrease of the Bernoulli parameter often increases precision
due to an evolving exploration-exploitation trade-off. We also discussed on the ap-
plication scope of LIPO and AdaLIPO, stating that these algorithms quickly tend
to PRS with respect to dimension. LIPO, AdaLIPO, and our enhanced versions are
not suitable for maximizing high dimensional functions in a reasonable amount of time.

Note that the benchmark functions we used in this paper are fast to evaluate, which
is not generally the case in the industry. This choice allowed us to perform a complete
statistical analysis of the algorithms, which required a lot of function evaluations to
be significant. However, these functions are as hard to optimize as most industrial
objective functions (e.g. [13], [6], [15], [14]). Thus, our results are fully extendable to
the latter case, without loss of generality.

In the future, it would be interesting to make a study of our versions of LIPO and
AdaLIPO within a complex industrial framework in order to assess the performance of
these algorithms in a more realistic problem. We also would like to develop a library
containing efficient implementations of these algorithms for making them usable by as
many people as possible, from all fields.

Image Credits

MrMambo (Wikipedia)2

Alexander Elvers (Wikipedia), CC-BY-SA3

References

[1] D. S. Arnon, G. E. Collins, and S. McCallum, Cylindrical algebraic de-
composition i: The basic algorithm, SIAM Journal on Computing, 13 (1984),
pp. 865–877. https://doi.org/10.1137/0213054.

[2] P. C. Gilmore and R. E. Gomory, A linear programming approach to the
cutting-stock problem, Operations Research, 9 (1961), pp. 849–859. https://doi.
org/10.1287/opre.9.6.849.

2https://commons.wikimedia.org/wiki/File:FAE_visualization.jpg
3https://commons.wikimedia.org/wiki/File:Hyperparameter_Optimization_using_Grid_

Search.svg

19

https://doi.org/10.1137/0213054
https://doi.org/10.1287/opre.9.6.849
https://doi.org/10.1287/opre.9.6.849
https://commons.wikimedia.org/wiki/File:FAE_visualization.jpg
https://commons.wikimedia.org/wiki/File:Hyperparameter_Optimization_using_Grid_Search.svg
https://commons.wikimedia.org/wiki/File:Hyperparameter_Optimization_using_Grid_Search.svg

Perceval Beja-Battais, Gaëtan Serré and Sophia Chirrane

[3] M. Girardi, C. Padovani, D. Pellegrini, and L. Robol, A finite element
model updating method based on global optimization, Mechanical Systems and
Signal Processing, 152 (2021), p. 107372.

[4] N. Hansen, The CMA evolution strategy: A comparing review, in Towards a
New Evolutionary Computation, Springer Berlin Heidelberg, 2006, pp. 75–102.
https://doi.org/10.1007/3-540-32494-1_4.

[5] W. K. Hastings, Monte carlo sampling methods using markov chains and their
applications, Biometrika, 57 (1970), pp. 97–109. https://doi.org/10.1093/

biomet/57.1.97.

[6] M. Hovd, A brief introduction to model predictive control, URL= http://www.
itk. ntnu. no/fag/TTK4135/viktig/MPCkompendium% 20HOvd. pdf, (2004).

[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by sim-
ulated annealing, Science, 220 (1983), pp. 671–680. https://doi.org/10.1126/
science.220.4598.671.

[8] A. H. Land and A. G. Doig, An automatic method of solving discrete pro-
gramming problems, Econometrica, 28 (1960), p. 497. https://doi.org/10.

2307/1910129.

[9] X. Luo, Minima distribution for global optimization, 2018. https://doi.org/

10.48550/arxiv.1812.03457.

[10] C. Malherbe and N. Vayatis, Global optimization of lipschitz functions, 2017.
https://doi.org/10.48550/arxiv.1703.02628.

[11] R. Martinez-Cantin, Bayesopt: A bayesian optimization library for nonlin-
ear optimization, experimental design and bandits, 2014. https://doi.org/10.

48550/arxiv.1405.7430.

[12] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, Equation of state calculations by fast computing machines, The
Journal of Chemical Physics, 21 (1953), pp. 1087–1092. https://doi.org/10.

1063/1.1699114.

[13] I. Papamichail and C. S. Adjiman, Global optimization of dynamic systems,
Computers & chemical engineering, 28 (2004), pp. 403–415.

[14] K. E. Parsopoulos and M. N. Vrahatis, Unified particle swarm optimiza-
tion for solving constrained engineering optimization problems, Lecture notes in
computer science, 3612 (2005), p. 582.

[15] R. Z. Ŕıos-Mercado and C. Borraz-Sánchez, Optimization problems in
natural gas transportation systems: A state-of-the-art review, Applied Energy,
147 (2015), pp. 536–555.

20

https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.2307/1910129
https://doi.org/10.2307/1910129
https://doi.org/10.48550/arxiv.1812.03457
https://doi.org/10.48550/arxiv.1812.03457
https://doi.org/10.48550/arxiv.1703.02628
https://doi.org/10.48550/arxiv.1405.7430
https://doi.org/10.48550/arxiv.1405.7430
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114

Experimental Improvements of Global Optimization Algorithms for Lipschitz Functions

A Algorithms

Algorithm 1 LIPO’s condition

Require:
x: the candidate point Xt+1

values: set of previous evaluated values f (Xi)
k: Lipschitz constant
points: set of previous point of evaluation Xi

max val← max(values) ▷ maxi=1...t f (Xi)
left min← min(values+ k · ∥x− points∥2) ▷ mini=1...t (f (Xi) + k · ∥Xt+1 −Xi∥2)
return left min ≥ max val

Algorithm 2 Stopping criterion for LIPO and AdaLIPO

Require:
K: the number of consecutive iterations to compute the slope with finite differences
nb samples: a list of the number of samples on K consecutive iterations
γ: threshold for the stopping criterion

slope← nb samples[K−1]−nb samples[0]
K

if slope > γ then return True
else return False
end if

21

Perceval Beja-Battais, Gaëtan Serré and Sophia Chirrane

Algorithm 3 LIPO

Require:
f : the objective function
n: The maximum number of iteration

Initialization
t← 1 ▷ iteration counter
nb samples← 0 ▷ sample counter to compute the difference between sampling and
iterating
X1 ∼ U(f.bounds) ▷ sample from a uniform distribution over the compact set
points← [X1] ▷ stored the points where f is evaluated, needed for condition
algorithm 1
values← [f(X1)] ▷ stored the evaluations of f , needed for condition algorithm 1

while t < n [and ¬(2)] do ▷ [optional stopping criterion].
Xt+1 ∼ U(f.bounds)
if condition(Xt+1, values, f.k, points) then ▷ apply the algorithm condition 1

points.append(Xt+1)
values.append(f(Xt+1)) ▷ evaluate the function only if the condition is valid
t← t+ 1 ▷ increase the iteration counter only when the function is

evaluated
end if

end while
return argmax(values) ▷ argmaxi=1...n f(Xi)

22

Experimental Improvements of Global Optimization Algorithms for Lipschitz Functions

Algorithm 4 AdaLIPO

Require:
f : The objective function
n: The maximum number of iteration
p: parameter of a Bernoulli distribution. A constant for AdaLIPO, a function of t for
AdaLIPO-E
α: Needed to compute Eq. 7
Initialization
t← 1 ▷ iteration counter
nb samples← 0 ▷ sample counter to compute the difference between sampling and
iterating
X1 ∼ U(f.bounds) ▷ sample from a uniform distribution
k̂ ← 0 ▷ initialized the estimation of the Lipschitz constant to 0
nb samples← nb samples + 1
points← [X1] ▷ stored the points where f is evaluated, needed for condition algorithm 1
value← f(X1)
values← [value] ▷ stored the evaluations of f , needed for condition algorithm 1

while t < n do
Bt+1 ∼ B(p)
if Bt+1 = 1 then

Xt+1 ∼ U(f.bounds)
nb samples← nb samples + 1
points.append(Xt+1)
value← f(Xt+1)

else
while f is not evaluated [and ¬(2)] do ▷ [optional stopping criterion].

Apply LIPO with the estimated Lipschitz constant
Xt+1 ∼ U(f.bounds)
nb samples← nb samples + 1
if condition(Xt+1, values, f.k, points) then ▷ Algo. 1

points.append(Xt+1)
value← f(Xt+1)

end if
end while

end if
values.append(value)
t← t+ 1 ▷ increase the iteration counter only when the function is evaluated

Update the estimated Lipschitz constant
ratios ← []
for i = 0 to i = t do

ratios.append
(

|value−values[i]|
∥Xt+1−points[i]∥2

)
▷ apply Eq. 6

end for
it ←

⌈
ln(maxi ratios)

ln(1+α)

⌉
k̂ ← (1 + α)it ▷ update the estimated Lipschitz as stated in Eq. 7

end while
return points, values, nb samples

23

	General context
	Related work
	Methods
	LIPO
	Naive LIPO Upper Bound
	Fast LIPO Bounds

	AdaLIPO

	Experimental analysis
	Selected benchmark functions
	Himmelblau function
	Hölder table function
	Rastrigin function
	Rosenbrock function
	Sphere function
	Square function

	Experiment setup
	Results
	Convergence analysis

	Empirical improvements
	Stopping criterion
	Decreasing Bernoulli parameter for AdaLIPO
	Empirical comparison
	Understanding the improvements' contributions

	Application scope of LIPO
	Conclusion
	Algorithms

