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The flavoenzyme glycolate oxidase oxidizes glycolic acid to glyoxylate and

the latter, more slowly, to oxalate. It is a member of an FMN-dependent

enzyme family that oxidizes L-2-hydroxy acids to keto acids. There has been

a controversy concerning the chemical mechanism of substrate oxidation by

these enzymes. Do they proceed by hydride transfer, as observed for NAD-

dependent enzymes, or by initial formation of a carbanion that transfers the

electrons to the flavin? The present work describes a comparison of the reac-

tivity of glycolate, lactate and trifluorolactate with recombinant human gly-

colate oxidase, by means of rapid-kinetics experiments in anaerobiosis. We

show that trifluorolactate is a substrate for glycolate oxidase, whereas it is

known as an inhibitor for NAD-dependent enzymes, as is trifluoroethanol

for NAD-dependent alcohol dehydrogenases. Unexpectedly, it was observed

that, once reduced, a flavin transfers an electron to an oxidized flavin, so that

the end species is a flavin semiquinone, whatever the substrate. This phenom-

enon has not previously been described for a glycolate oxidase. Altogether,

considering that another member of this flavoenzyme family (flavocyto-

chrome b2, a lactate dehydrogenase) has also been shown to oxidize trifluoro-

lactate (Lederer F et al. (2016) Biochim Biophys Acta 1864, 1215–21), this
work provides another important piece of evidence which is hardly compati-

ble with a hydride transfer mechanism for this flavoenzyme family.

The peroxisomal flavoenzyme glycolate oxidase

(EC1.1.3.15, isozyme A, also called short-chain

hydroxy acid oxidase or HAOX1) is present in plants

and animals. The tetrameric enzyme catalyses the oxi-

dation of glycolate to glyoxylate at the expense of oxy-

gen and, more slowly, of hydrated glyoxylate to

oxalate [1,2]. In plant leaves, it is involved in the

photorespiratory cycle. Among plant glycolate oxidases,

the spinach one (sGOX) has been the best studied at

the molecular level, with kinetic characterizations of the

wild-type and variant enzymes, and determination of

crystal structures with and without inhibitors [3-8]. In

humans, it is expressed primarily in the liver [9].

Glyoxylate, a toxic compound, can be detoxified to

glycine by alanine-glyoxylate transaminase (AGT) in

the peroxisome; in the cytosol, it can be reduced back

to glycolate by glyoxylate-hydroxy pyruvate reductase

(GR/HPR) or oxidised to oxalate by an NAD+-

dependent lactate dehydrogenase. Genetic deficiencies

of AGT or GR/HPR lead to primary hyperoxaluria

type I and type II, respectively, diseases characterized

by the accumulation of calcium oxalate stones, in the

kidneys in particular [10]. In mammals, the pig liver

enzyme [11-14] and the one from human liver as well

as its recombinant form (hGOX) were characterized at

the molecular level [15-20].
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Glycolate oxidase is a member of the family of

FMN-dependent L-2-hydroxy acid-oxidizing enzymes.

Other well-characterized members include its isozyme

B (long-chain hydroxy acid oxidase, LCHAO or

HAOX2), as well as microbial lactate oxidase (LOX)

and lactate monooxygenase (LMO); dehydrogenases-

electron transferases such as flavocytochrome b2 (Fcb2,

an L-lactate cytochrome c oxido-reductase) and mande-

late dehydrogenases (MDH) have also been character-

ized. Crystal structures of these enzymes show a well-

conserved β8α8 barrel with FMN bound at its C-

terminal end [3,4,5,7,21,22,23,24,25]. Active site resi-

dues are also well conserved, with a few substitutions

due to different substrate specificity. As loop 4,

between β-strand 4 and α-helix 4, is flexible, the full

loop is not always visible in crystal structures. Depend-

ing on the ligand in the active site, or even between

subunits in the same crystal unit, the visible length can

be different or have a different conformation

[16,17,22,23,24,25,26,27,28,29,30,31,32,33]. These struc-

tures, combined with results from solution studies [30-

37], show that loop 4 contributes to catalysis. A few

residues in or close to the active site pocket also dis-

play mobility, such as W110 in hGOX [16] and its

homologue W108 in sGOX [6] or invariant R164 in

sGOX [7] and its homologue R289 in Fcb2 [38]

(Fig. 1). This mobility does not facilitate understanding

the side chains mechanistic role. The case of W110

(108) is particularly interesting. This residue, which is

unique to glycolate oxidases at this position in the

family, is close to the active site. The W108S variant of

sGOX had a 500-fold lower kcat and a strikingly higher

Km for glycolate compared to the WT [6]. It was con-

cluded that this residue may play a role in substrate

specificity. Indeed, for the spinach and the human

enzyme, crystal structures of complexes with several

inhibitors showed an adaptation of the side-chain con-

formation which in some cases even induced move-

ments of other residues extending to loop 4 [7,16].

Three possible chemical mechanisms were considered

for the oxidation of a carbon–hydrogen bond by these

enzymes, namely a hydride transfer mechanism, a pro-

ton/electron mechanism and a carbanion mechanism

[39,40]. Experimental evidence in favour of the sub-

strate α-hydrogen abstraction as a proton, followed by

electron transfer from the carbanion to the flavin, had

been proposed early on for LMO [41]. When the first

crystal structures became available, the active site base

was identified as a histidine (H260 in hGOX and H373

in Fcb2) (Fig. 1). Substrate modelling, starting from

the pyruvate molecule orientation in Fcb2 crystals [21]

suggested two possible substrate-binding modes

[42,43]. In the first one, the C2 hydrogen was pointing

towards the catalytic histidine N3, ready for abstrac-

tion as a proton, with formation of a carbanion

(Fig. S1A); in the second one, obtained by a 40° rota-

tion of the substrate C1–C2 bond, the catalytic histi-

dine N3 was hydrogen bonded to the substrate

hydroxyl group, orienting the lactate C2 hydrogen

towards flavin N5 for a hydride transfer (Fig. S1B).

Numerous studies have tried to understand the role

of active site residues in catalysis and to solve the mech-

anistic issue, using combinations of site-directed muta-

genesis, kinetic studies (with a variety of substrates and

inhibitors) including solvent and pH effects, primary

kinetic isotope effects as well as crystallography. MD

and QM/MM computations were also carried out on a

minimal model of the Fcb2 active site [44], on its whole

flavodehydrogenase domain [45] and on LCHAO [46].

In some cases, experimental results led to ambiguous

conclusions. But in other cases, pieces of evidence were

provided that are hardly compatible or even incompati-

ble with a hydride transfer mechanism [43,47,48,49,50,

51,52,53,54,55,56,57].

Fig. 1. hGOX active site with bound glyoxylate, drawn from the

crystal structure (Protein Data Bank 2RDU). Atom colouring: red for

oxygen, blue for nitrogen, yellow for the flavin carbon atoms and

green for the other amino acids and glyoxylate. The side chains in

the figure are conserved in other family members, except for Y26

(phenylalanine in LCHAO) and, importantly, for W110 which is

specific to GOX; in other family members, it is replaced by a variety

of residues. The hydrogen bonds and other close interaction are

shown by dotted lines, as described in [16]. Glyoxylate is here in its

unhydrated form and can be considered as playing the role of an

inhibitor. In the Fcb2 crystal structure with bound pyruvate (Protein

Data Bank 1FCB), the hydrogen bonding interactions are identical to

those shown here, with the exception that here mobile hGOX R167

is in the so-called proximal position and interacts with the ligand car-

boxylate, while its Fcb2 homologue R289 is in the so-called distal

position (Fig. S1), interacting with D292, an invariant residue in the

family [21]. In the 1FCB Fcb2 structure, the flavin is in the semiqui-

none state [21,62] in agreement with the evidence that pyruvate sta-

bilizes the flavin semiquinone [63].
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In this work, we analyse the reactivity of trifluoro-

lactate (F3Lac) with hGOX, and compare it to that of

lactate and glycolate. It is expected that electron

attraction by the three fluorine atoms will impede the

C2 hydrogen removal as a hydride ion. Indeed, F3Lac

has been shown not to be a substrate but an inhibitor

of NAD-dependent lactate dehydrogenases from four

different species [58-61]. We recently showed that

F3Lac is a substrate for Fcb2 [49]. Here, we show that

F3Lac is also a substrate for glycolate oxidase, another

piece of evidence pointing to a carbanion mechanism.

Results

We have compared the reactivity of hGOX with three

α-hydroxy acids, glycolate, L-lactate and trifluorolac-

tate (F3Lac). The latter had never been tested with this

enzyme and the present work demonstrates that it is a

substrate. This has important mechanistic conse-

quences. Moreover, for the three substrates, we report

a phenomenon which had never been observed previ-

ously, namely the formation of a flavin semiquinone

by an electron transfer between a reduced and an oxi-

dized flavin during the reduction process.

Unexpected flavin semiquinone formation after

reduction

The time course of flavin reduction by glycolate,

L-lactate and DL-F3Lac was monitored over several hun-

dred seconds using a diode array stopped-flow spectro-

photometer under anaerobic conditions, as detailed in

Materials and methods. For the three substrates, the ini-

tial absorption spectrum was consistent with that of the

oxidized flavin form (Fig. 3). Analysis of the absorbance

changes versus time at 451 and 367 nm (close to the two

maxima of the oxidized flavin spectrum) pointed out at

least two kinetic phases. At 451 nm, the absorbance

started decreasing with time in a nearly monoexponen-

tial mode (Fig. 2, left; Figs S2 and S3 for glycolate and

lactate); at longer times, from a few seconds for glyco-

late to a few dozen seconds for DL-F3Lac, a second

increasing phase of low amplitude appeared. At 367 nm

(Fig. 2, right; Figs S2 and S3), the initial phase of

decreasing absorbance corresponding to flavin reduc-

tion was followed by an absorbance increase of higher

amplitude. This second phase, ascribed to formation of

a flavin semiquinone, suggested a one-electron transfer

from a reduced flavin to an oxidized one. In other

words, the flavin reduced form was not the final product

of the reaction, but an intermediate. Altogether, the end

spectrum was not that of reduced flavin, but that of the

anionic flavin semiquinone (Fig. 3).

Determination of rate constants

For determining the rate constants, in order to avoid

simplifying approximations, we globally fitted the total

time course of the transients from a few milliseconds

to several hundred seconds using numerical data anal-

ysis. This provided the evaluation of the dependence

on substrate concentration of all the rate constants

involved in the formation of the flavin semiquinone.

For each substrate, the spectra of the different species

were averaged over the spectra derived from the global

fit, regardless of the substrate concentration.

The question was whether the interflavin electron

transfer was taking place within a tetramer or between

Fig. 2. Evolution of the absorbance at 451 nm (left) and 367 nm (right) upon hGOX reduction by DL-F3Lac (3.9 mM). Similar traces were

obtained with glycolate and lactate (Figs S2 and S3). For more details, see Materials and methods.
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tetramers. Each dataset was fitted by distinct mecha-

nisms assuming an electron transfer either between two

different tetramers or between two subunits in the same

tetramer. Whatever the substrate and its concentration,

for mechanisms involving an inter-tetramers electron

transfer, the quality of the fits was better than for those

involving intra-tetramer electron transfer. In the follow-

ing, only the results obtained by fitting the data with the

inter-tetramers mechanism are presented and discussed.

In the Supporting Information, Figs S5–S7 compare the

fits assuming either an intra-tetramer or an inter-

tetramers electron transfer for the three substrates.

For lactate and F3Lac, the inter-tetramers mecha-

nism A was used as the kinetic model to globally fit

the datasets.

Mechanism A

FMNoxþ Sred >
k1

k2
Step1

FMNox-Sred >
k3

kr3
Step2

FMNredþSox

FMNoxþFMNred !k4
Step3

2FMNsq

The reversibility of the flavin reduction step (step 2)

had to be introduced in order to enable the formation of

a flavin semiquinone at long times in combination with

flavin reduction. Indeed, the absence of reversibility in

step 2 favours the accumulation of the reduced form

over time, limiting flavin semiquinone formation

(Fig. S4). This reversibility is supported by the examina-

tion of the residuals which clearly showed that the model

without reversibility was not appropriate and did not

allow to fit the data (Fig. S5A). The introduction of

reversibility in step 2 significantly decreased the value of

the AIC criterion (definition in Materials and methods)

and improved the quality of the global fit resulting in

small, evenly distributed residuals (Fig. S5B). The intro-

duction of reversibility is supported by published results

showing that Fcb2, when reduced in anaerobiosis by lac-

tate in excess, can reduce ketoacids such as halogeno

pyruvates [48,50] (Scheme S1). This capacity was con-

firmed for hGOX (unpublished experiments) and

LCHAO [64]. Similarly, it was shown that reduced

MDH from Pseudomonas putida can reduce its normal

product benzoylformate [27,55].

Mechanism A enabled an accurate description of the

data obtained with F3Lac (Fig. S5) and lactate

(Fig. S6). In contrast, it failed to provide good fits for

glycolate (Fig. S7). In this case, the reactions of the

inter-tetramers mechanism B were used as the kinetic

model for the global analysis.

Mechanism B

For this substrate, an additional reversibility step

had to be added for the dissociation of the FMNred-

Fig. 3. First and last spectra recorded during enzyme reduction by 3.9 mM DL-F3Lac, 5 mM L-lactate and 5 mM glycolate.

FMNoxþ Sred >
k1

k2
Step 1

FMNox-Sred >
k3

kr3
Step 2

FMNred-Sox >
k5

kr5
Step 3

FMNredþ Sox

FMNoxþ FMNred !k4
Step 4

2FMNsq
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Sox complex; this suggests that this product of the

physiological substrate has a higher affinity for the

active site than have the products of lactate and

F3Lac oxidation. This is supported by the crystalliza-

tion of an hGOX-glyoxylate complex when the enzyme

was mixed with glycolate under proper conditions [16].

The introduction of an intermediate species in the

kinetic model clearly improves the residuals, and

mechanism B satisfactorily matches the data (Fig. S7).

The decrease in AIC value (see definition in Materials

and methods), in spite of the increase in the number of

parameters to be fitted, underlines the significant

improvement in the quality of the fit to mechanism B

for glycolate compared to mechanism A.

Altogether, the fact that the data are better fitted

with the inter-tetramers than with the intra-tetramer

mechanism is consistent with the fact that the distance

between the flavin N5 atoms in adjacent subunits is on

the order of 45 Å, a distance which makes the intra-

tetramer electron transfer less likely. The dependence

of the estimated kinetic parameters on substrate con-

centration for an electron transfer between tetramers is

shown in Fig. 4 for F3Lac and in Figs S8 and S9 for

glycolate and lactate respectively. Flavin reduction (k3)

follows the expected saturation curve; kr3 also reaches

a plateau at high substrate concentrations. The derived

enzymatic parameters for flavin reduction and semiqui-

none formation are given in Table 1. Altogether,

F3Lac is about 10-fold slower than lactate, and 3- to 4-

fold less efficient. But lactate itself is a 30-fold slower

reductant than glycolate, and is 1.4 × 103-fold less effi-

cient. The rate of FMNsq formation (k4) increases line-

arly with substrate concentration and is 10-fold slower

for F3Lac than for lactate. This parameter appears to

depend essentially on the rate of FMNred formation.

The global fit allowed to reconstruct the shape of the

absorption spectra of the three species involved (Fig. 5;

Figs S10 and S11). It was checked that the shape of

these spectra did not depend significantly on substrate

concentration. Within experimental error, they corre-

spond satisfactorily to the experimental ones, as well as

to those reported in the literature. In particular, the

reconstituted flavin semiquinone spectrum shows the

same slight red shift in the 360–370 nm region com-

pared to the low-wavelength maximum of the oxidized

species; it also has the shoulder in the 480–500 nm

region, typical of the flavin anionic semiquinone spec-

trum (Fig. 3). This spectrum is similar to that of sGOX

produced by photoreduction [65] and of the pig liver

GOX produced by coulometric titration [14].

Discussion

By characterizing the reactivity of F3Lac as a substrate

for GOX, this work provides important mechanistic

information concerning the oxidation of L-2-hydroxy

acids by glycolate oxidase, information which can be

extended to other members of its family, as will be dis-

cussed later. But this work also describes the unex-

pected formation of a flavin semiquinone, which will be

discussed first.

Flavin semiquinone formation

Under our reaction conditions (anaerobiosis at pH 7

and 30 °C), the semiquinone was formed by electron

transfer between a reduced flavin and an oxidized one,

whatever the substrate. This phenomenon has never

been reported for the physiological substrate glycolate.

It was not observed with the spinach enzyme, at pH

Fig. 4. Dependence of the kinetic parameters on F3Lac concentration. The experiments were carried out with the racemic F3Lac but the

results are expressed in terms of the L-stereoisomer concentration. Error bars represent the standard deviations (SD).
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8.3 and 4 °C after 10 min in a diode array spectropho-

tometer [65]. Using a 100 mM phosphate buffer but at

pH 7 and 30 °C as in the present work, Pennati and

Gadda [19] did not identify the phenomenon when

monitoring hGOX reduction over 1 s at 450 nm. The

existence of a slow phase of small amplitude at the

end of their observation time can possibly be inter-

preted as indicating incipient semiquinone formation.

In itself, the phenomenon suggests that the redox

potential values of the E.FMNred/E.FMNsq and

E.FMNsq/E.FMNox couples are close. For the pig liver

enzyme at pH 7.1 and 10 °C in 100 mM phosphate

buffer, they were determined to be – 30 mV and

−17 mV respectively [14]. There is about 92%

sequence identity between the pig liver and the human

enzyme; the crystal structure of the latter (Protein

Data Bank 2NZL for ex.) indicates that all the substi-

tutions are located on the surface, except one which is

not close to the flavin. Thus, one may assume that the

human enzyme has similar redox potentials at the

same pH in our 50 mM phosphate buffer at 30 °C.

About the chemical mechanism of substrate

oxidation

Our experimental results show that replacing the lac-

tate CH3 group by the electron attracting CF3 groupT
a
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Fig. 5. Reaction with DL-F3lactate: calculated spectra of the three

redox states resulting from the global analysis of the experimental

data. For the reactions with glycolate and lactate, the spectra are

given in Figs S10 and S11. Error bars represent the standard devia-

tions (SD).
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does not prevent F3Lac from being a substrate for

glycolate oxidase. This is in stark contrast with the

fact that F3Lac is an inhibitor for several NAD-

dependent lactate dehydrogenases [58-61]. Similarly,

trifluoroethanol is known as an inhibitor of NAD-

dependent alcohol dehydrogenases [66-69]. Numerous

studies with these enzymes from horse liver and yeast

have used this compound in solution as a ligand and

inhibitor [70-73]. Another example of the negative

effect of the CF3 group in a hydride transfer mecha-

nism is that of trifluoroalanine, which was co-

crystallized with D-amino acid oxidase as an inhibitor,

while alanine is a substrate for this enzyme [74,75]. In

contrast, the facilitating effect of the fluorines in the

formation of a carbanion is illustrated by the case of

mandelate racemase. For this enzyme, lactate is an

inhibitor, while F3Lac is a substrate and can be race-

mized [76,77].

In view of this facilitating effect of the fluorine

atoms in a carbanion mechanism, a faster rate and a

higher catalytic efficiency for F3Lac compared to lac-

tate could have been expected (Table 1). In our previ-

ous work with Fcb2 for the same lactate/F3Lac

comparison [49], the difference between the two sub-

strates was much larger (about four orders of magni-

tude for the rate). But in that case, the F3Lac catalytic

efficiency was still higher than that of mandelate, a

very poor Fcb2 substrate [43,49]. The F3Lac low rate

and efficiency can possibly arise from several factors: a

steric problem due to the replacement of the methyl

group by the trifluoromethyl group (lactate itself is a

poor substrate compared to glycolate, Table 1), a pos-

sible distortion of substrate binding or transition state

geometry due to potential halogen bonds and, impor-

tantly, a higher redox potential of the F3Lac/F3Pyr

couple compared to the lactate/pyruvate couple. The

Lac/Pyr couple redox potential is −190 mV, that of

the glycolate/glyoxylate couple is −87 mV at pH 7 [78]

and that of the F3Lac/F3Pyr couple is on the order of

−60 mV [49]. Thus, the redox potential differences

between hGOX (Em = −68 mV for the pig liver

enzyme [14]) and those substrates suggest that the driv-

ing force for reduction by F3Lac is less than that for

lactate. This may counteract the favourable effect of

the fluorines on C2 proton abstraction. Another

important but unpredictable factor is the role of side

chains mobility, in particular that of W110, and of

loop 4, as observed in several crystal struc-

tures [7,16,17] (see Introduction).

The literature provides several other pieces of evi-

dence in favour of the carbanion mechanism for this

enzyme family, evidence that cannot be rationalized

by a hydride transfer mechanism [79]. One example is

the formation by LMO of a catalytically competent

covalent intermediate between FMN and glycolate

[53,54], formed by attack of a carbanion on the

electron-deficient oxidized flavin N5. No catalytic

adduct has been detected with other family members;

it could be that the formation of covalent intermedi-

ates during the oxidation of normal substrates is steri-

cally difficult. With MDH, another important piece of

evidence (among others) in favour of a carbanion

mechanism is the formation, on the way to flavin

reduction by the substrate at low temperature, of a

transient spectral intermediate formed between an

electron-rich donor (such as a carbanion) and electro-

philic FMNox [55].

Another example is the different reactivity of man-

delate for enzymes of the family. Modelling studies on

the Fcb2 active site of its very slow substrate mande-

late suggest that it can only bind as for a hydride

mechanism due to steric interference, in particular by

A198 (hGOX A81) and L230 (hGOX W110)

[42,43,80]. Thus, when both lactate and mandelate

appear to bind well to Fcb2 for hydride transfer, why

is mandelate such a poor substrate for this enzyme?

Variants with smaller residues at these positions and at

homologous ones in family members increase the man-

delate oxidation rate significantly [31,51,81,82,83].

Moreover, bona fide mandelate dehydrogenases have

smaller residues at these positions and increasing their

size decreases the activity for mandelate [84,85].

Further evidence in favour of a carbanion mecha-

nism is provided by the dehydrohalogenation reaction

of β-halogenated substrates catalysed by several family

members (LMO, Fcb2 and LCHAO) [41,64,86]. This

reaction does not in itself constitute an absolute proof.

Indeed, it was suggested that halogen elimination

could occur after enzyme reduction, when a hydride

would displace the halogen from the normal keto acid

product, as has been shown for D-amino acid oxidase

[87]. However, a number of studies on Fcb2 WT and

variant forms provided significant mechanistic infor-

mation. These studies, carried out under transhydro-

genation conditions (details in Scheme S1) between,

for example, lactate and bromopyruvate, showed an

isotope transfer from 2-(2H)-lactate or 2-(3H)-lactate

to the products bromolactate and pyruvate

[42,50,57,88]. An inverse deuterium isotope effect was

determined for bromide elimination by the WT enzyme

and several variant forms [42,50,56,57]. This can only

result from an intermediate carbanion partitioning

between isotope-insensitive elimination and isotope-

sensitive protonation (Scheme S1). This inverse isotope

effect is totally incompatible with a bromide displace-

ment by a hydride from reduced flavin N5H.
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Still more evidence is provided by the different reac-

tivity of β-acetylenic substrates [89-94] or nitroethane

[95-97] between GOX family members and D-amino

acid oxidase, which works by hydride transfer [98,99].

In spite of all the evidence briefly summarized here

(more evidence is discussed in [79]), hydride transfer

was proposed in recent years on the basis of kinetic

isotope effects on Fcb2 variant forms [100,101], of the

interpretation of crystal structures [83,100,102] and of

the results of QM and QMM studies on Fcb2 [44,45]

and on LCHAO [46]. A critical analysis of the validity

of the interpretations in several of these papers can be

found in [22,49,52,79].

Altogether, after the demonstration brought by the

present results added to those obtained on Fcb2 with

F3Lac [49], plus all the evidence briefly recalled above

for other members of the family, can one still object to

a carbanion mechanism for the FMN-dependent

enzymes that oxidize L-2-hydroxy acids?

Materials and methods

Materials

DL-Trifluorolactate (DL-F3Lac) was obtained by chemical

reduction of commercial ethyl-trifluoropyruvate with

NaBH4, followed by hydrolysis of the ethyl ester [103]. The

compound purity and structure were analysed by gas chro-

matography, mass spectrometry and nuclear magnetic reso-

nance. The concentration of stock solutions was

determined on an HPLC cation exchange column (AMI-

NEX HPX 87H; BioRad, Hercules, CA, USA) developed

at 30 °C with 5 mM sulfuric acid at 0.3 mL�min−1. The elu-

tion profile was monitored at 210 nm. The same system

was used for identifying the oxidation product, trifluoro-

pyruvic acid, by comparison with a commercial sample.

The L-lactate lithium salt, trifluoropyruvic acid, protoca-

techuate dioxygenase and protocatechuic acid were pur-

chased from Sigma (St. Louis, MO, USA). All other

chemicals were of analytical grade. Recombinant hGOX

was expressed and purified as described [15]. It was used

without cleavage of the His-tag at the N terminus.

Methods

The enzyme concentration was determined in terms of its

flavin content (ε452 = 8.6 mM
−1�cm−1) [15]. The working

buffer was 50 mM Na+/K+ phosphate buffer pH 7. For

experiments in anaerobiosis, buffers and substrate solutions

were purged by bubbling with argon from which oxygen

had been scrubbed by an Alltech Big Oxygen Trap. The

concentrated enzyme was separately ventilated without

bubbling, and finally, diluted with the relevant deaerated

buffer. A small volume (~ 1%) of 40 mM protocatechuate

was added to the solutions during deaeration. Before intro-

ducing enzyme and reagents into the stopped-flow spectro-

photometer, a small volume (~ 1%) of protocatechuate

dioxygenase (6.10−3 units�mL−1) was added to the solu-

tions, as proposed by Patil and Ballou [104]. After mixing

with substrate, the enzyme concentration was on the order

of 5–6 μM. The absorption spectra and their evolution over

time were followed with an Applied Photophysics SX20

(Applied Photophysics Limited, Leatherhead, UK)

stopped-flow spectrophotometer equipped with a diode

array detector.

Global fit analysis

Prior to the analysis of the selected absorption spectra, a

baseline correction was performed in order to eliminate the

instrumental drift over time. The kinetics of absorbance

evolution over time were analysed at 19 wavelengths

between 340 and 520 nm, at intervals of 10 nm. Each data-

set consisting of these 19 series of traces was globally fitted

according to mechanisms A, B, IntraA and IntraB. The

associated differential rate laws are given in the Supporting

Information. The global analysis was performed using

MATHEMATICA software (Version 13.0, 2021; Wolfram

Research, Inc., Champaign, IL, USA). The MultiNonli-

nearModelFit function was used to fit the data by numeri-

cally solving the differential equations and sharing the

different wavelength-independent rate constant parameters,

while the molar extinction coefficients of the different spe-

cies were estimated for each wavelength. The initial values

of all parameters were chosen arbitrarily, except for the

rate constants k1 and k2 associated with step 1 of the

FMNox-Sred complex formation (see equations in Results

and, in Supporting Information, Global fit analysis and

equations section). They were set to k1 = 30.106 M
−1�s−1

and k2 = 450 s−1 for glycolate and k1 = 156.103 M
−1�s−1

and k2 = 200 s−1 for lactate and DL-F3Lac. The substrate

concentration was introduced as an initial parameter. We

assumed that the FMNox and FMNox-Sred species exhib-

ited the same absorption spectrum. The quality of the fit

was judged by the visual inspection of the plots of resid-

uals. Furthermore, in order to evaluate the suitability of

the different kinetic models in describing the data and to

identify the one that led to the best compromise between

the quality of the fit and the number of parameters to be

fitted, we used the Akaike information criterion (AIC). As

the number of degrees of freedom (i.e. the number of

parameters) are different between the kinetic models, AIC

allows to compare the models and to estimate the relevance

of the improvement of the fit following an increase in the

number of parameters. The value of AIC was estimated

according to the following equation

AIC ¼ N � ln SSQ

N

� �
þ 2 � pþ 1ð Þ,
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where N designates the number of data points, SSQ the

sum of squares and p the number of parameters to be

fitted. For each dataset, the best kinetic model chosen will

be the one with the lowest AIC value.

For each substrate concentration, all rate constants pre-

sented in this work are an average value of the rate con-

stants estimated from the global analysis of at least three

datasets.
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D, Lederer F, et al. Crystal structure analysis of

recombinant rat kidney long-chain α-hydroxy acid

oxidase. Biochemistry. 2005;44:1521–31.
23 Sukumar N, Xu Y, Gatti DL, Mitra B, Mathews FS.

Structure of an active soluble mutant of the

membrane-associated (S)-mandelate dehydrogenase.

Biochemistry. 2001;40:9870–8.
24 Leiros I, Wang E, Rasmussen T, Oksanen E, Repo H,

Petersen SB, et al. The 2.1 Å structure of Aerococcus
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