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1. Introduction 

Work-related musculoskeletal disorders (MSDs) pose 

significant challenges to society. To reduce the 

incidence of MSDs, current solutions rely on 

developing ergonomic workplaces or adapting work 

tasks. A promising alternative aims to compensate for 

MSD-causing efforts by using active exoskeletons. 

However, an accurate estimation of the operator's 

intention is crucial for providing timely and 

appropriate assistance (Bi et al. 2019). One potential 

method is to utilize electromyographic (EMG) signals 

for estimating joint torques and determining suitable 

assistance (Treussart et al. 2020). The present study 

aims to compare the ability of different EMG-to-torque 

models to estimate elbow torque. 

2. Methods  

2.1 Participants 

Ten healthy participants (3 F, 29.4±6.6y, 72.6±11.0 kg, 

175.7±4.4 cm) participated in this study and signed a 

written informed consent. The protocol was approved 

by an ethics committee (CER-PS-2021-048/A1). 

2.2 Material 

EMG signals were recorded from seven muscle heads 

at a frequency of 2 kHz (MiniWave, Cometa, Italy). 

Electrodes were placed following SENIAM 

recommendations on the lateral, medial, and long 

triceps, the long and short biceps, the brachialis, and 

the brachioradialis. The elbow axis of the ABLE upper 

limb exoskeleton (Garrec et al.  2008) was used in 

resistive mode, applying a viscous force field during 

flexion and extension movements to impose a torque 

perturbation on the elbow (based on a normalized 

subjective effort using a Borg scale). The participant 

was attached to the exoskeleton at wrist level through 

an adapted orthosis under which a 6-axis force/torque 

(FT) sensor allowed the measurement of the 

perturbation applied by the exoskeleton on the 

forearm. Kinematic data were recorded using an 

optoelectronic system (Qualisys, Sweden). Target 

trajectory and elbow angle visual feedback were 

projected onto a screen in front of the participant. 

2.3 Procedure 

EMG sensors were placed on the participant’s muscles, 

and maximal voluntary contraction (MVC) was 

performed after verifying sensor location. Reflective 

markers were placed on anatomical landmarks for limb 

measurement and kinematics. After being attached in 

the exoskeleton with their arm immobilized, the 

participant was asked to track a 30s randomized 

trajectory projected on the screen, implying elbow 

flexion and extension. Each participant performed ten 

trials. 

2.4 Data processing 

EMG signals were processed using a 20-450 Hz 

bandpass filter, a rectification, and a 3 Hz low pass 

filter (Lotti et al. 2022). They were then normalized 

with MVC. Interaction torque (𝜏𝑖) was computed using 

inverse dynamics from the exoskeleton's FT sensor. 

Dynamic torques of the forearm (𝜏𝑑𝑦𝑛, gravitational 

and inertial) were estimated using inertial data from 

anthropometric tables. The net human torque 𝜏ℎ is then 

𝜏ℎ = 𝜏𝑑𝑦𝑛 + 𝜏𝑖 and is the reference value. 

2.5 Model validation 

A cross-validation method was used to evaluate EMG-

to-torque models: they were each first calibrated on 

one trial and then used to estimate torques (i.e. 𝜏̂ℎ) on 

the other nine trials. A normalized root mean square 

error (NRMSE) was computed for each of the nine 

estimates, comparing 𝜏ℎ and 𝜏̂ℎ. This process was 

repeated for each of the ten trials in turn, with one 

serving as calibration and the others as validation. The 

mean NRMSE for each model was then computed. 

2.6 Statistical analysis 

Normality was first assessed (Shapiro-Wilk), and a 

repeated measures analysis of variance (RmANOVA) 

was performed to test model differences. A post hoc 

test was then performed using a Bonferroni correction. 

3. EMG-to-torque Models 

In the following section, EMG-to-torques models are 

described using 𝑘 muscles and 𝑗 degrees of freedom. 

Data matrices contain 𝑛 samples. Models were chosen 

based on common occurrences in literature. 

3.1 Multivariate linear regression 

The multivariate linear regression (MVLR) model was 

used as a baseline for comparison (Camardella et al. 

2021). It is a linear relationship between muscle 

excitations and torques: 

𝝉(𝑡) = 𝑪 ⋅ 𝒎(𝑡) 

where 𝑪 ∈ ℝ𝑗×𝑘 is the muscle mapping matrix, 𝝉 ∈ ℝ𝑗 

the torque vector and 𝒎 ∈ ℝ+
𝑘  the muscle excitation 

vector. The muscle mapping matrix is computed using 

multivariate regression on calibration data matrices 

𝑻𝒄 ∈ ℝ𝒋×𝑛  and 𝑴𝒄 ∈ ℝ+
𝑘×𝑛 containing respectively 

torque and muscle excitation sample vectors. 

3.2 Synergies  

Synergy-based models (SYN) are described as a 

coherent activation in space and time of groups of 

muscles (Delis et al. 2014). Spatial synergies can be 

extracted from muscle excitations using non-negative 

matrix factorization: 



𝑴𝒄 = 𝑾 ⋅ 𝑯𝒄 + 𝜺 

with 𝑯𝒄 ∈ ℝ+
𝑠×𝑛 the synergy activation matrix 

corresponding to the calibration data, and 𝑾 ∈ ℝ+
𝑘×𝑠  

the synergy matrix, mapping a synergy activation to a 

group of muscles. In this formulation, 𝑠 is the number 

of extracted synergies and 𝜺 ∈ ℝ𝑘×𝑛 is the matrix of 

factorization residuals. After factorization, the torque 

is computed in a similar way to the MVLR model: 

𝝉(𝑡) = 𝑪𝒔 ⋅ 𝑾+ ⋅ 𝒎(𝑡) 

with 𝑪𝒔 ∈ ℝ𝑗×𝑠  the synergy mapping matrix 

computed using multivariate regression on calibration 

data matrices 𝑻𝒄 and 𝑯𝒄, and ⋅+ is the pseudo inverse. 

This model was tested with two to seven synergies. 

3.3 Neuromusculoskeletal 

Neuromusculoskeletal (NMS) models combine 

musculoskeletal and Hill-type neuromuscular models. 

A generic OpenSim model (Holzbaur et al. 2005) is 

first scaled using kinematic data. Muscle activation 𝑎 

is then derived from excitations via a non-linear shape 

factor and each muscle force is computed from a Hill-

type model (Buchanan et al. 2004): 

𝐹𝑚 = 𝐹0 (𝑎𝑓𝐿(𝑙)𝑓𝑉(𝑣̃) + 𝑓𝑃𝐸(𝑙)) cos(𝛼) 

where 𝐹0 is the maximum isometric force, 𝑓𝐿 and 𝑓𝑉 

are respectively the force-length and force-velocity 

relationships, 𝑙 and 𝑣̃ are the normalized length and 

velocity of the muscle fiber, and 𝛼 is the muscle 

pennation angle. The passive elastic behavior of the 

muscle fiber is represented by 𝑓𝑃𝐸 . Finally, the joint 

torque 𝜏 was obtained by summing muscle forces 

weighted by the muscle’s moment arm projected on the 

joint axis. A genetic algorithm was used to optimize 

five parameters per muscle from calibration data: max 

isometric force, tendon slack length, optimal pennation 

angle, optimal fiber length, and shape factor. 

3. Results and discussion 

Calibration took an average of ten minutes for NMS 

and less than one second for MVLR and SYN. 

Estimation time was several milliseconds for NMS and 

less than one millisecond for MVLR and SYN. The 

NMS and MVLR models produced a mean NMRSE of 

7.35%±1.2 and 8.73%±1.4, respectively. SYN 

models ranged from 9.68%±2.5 to 8.69%±1.4. 

(Figure 1). Overall, the NMS model allowed for 

significantly (p<0.01) better torque reconstruction than 

any other model with a large effect size (Cohen’s 

d>0.8). MVLR and SYN models did not show 

significant differences. While the NMS model is more 

accurate than the other models, other criteria such as 

calibration and estimation times should be considered 

for application purposes (Bi et al. 2019). In this 

context, the performance of the NMS model may not 

be worth its computational cost against MVLR. To 

ensure applicability in industrial settings, it is crucial 

to expand these findings to multiple joints, considering 

the potential influence of biarticular muscles on the 

results. Additionally, it is important to investigate the 

impact of EMG signal degradation caused by factors 

such as sweat, fatigue, and electrode displacement. 

4. Conclusions 

In the present preliminary study, we compared three 

EMG-to-torque models using a specific in situ 

procedure. We showed that the NMS model was 

significantly more accurate than MVLR and SYN 

models. Future work will extend this study to include 

more degrees of freedom and criteria to guide the 

selection of models for real-time applications. 
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Figure 1 Mean normalized root mean square error of 

validation trials for each model. Error bars represent 

the 95% confidence interval. 
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