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Abstract

This paper proposes a two-time scale neurodynamic duplex approach to solve distributionally robust

geometric joint chance-constrained optimization problems. The probability distributions of the row

vectors are not known in advance and belong to a certain distributional uncertainty set. In our

paper, we study three uncertainty sets for the unknown distributions. The neurodynamic duplex is

designed based on three projection equations. The main feature of our framework is to propose a

neural network-based method to solve distributionally robust joint chance-constrained optimization

problems that converges in probability to the global optimum without the use of standard state-

of-the-art solving methods. In the numerical Section, we apply the proposed approach to solve a

problem of shape optimization and a telecommunication problem.

Keywords: Dynamical neural network, Distributionally robust optimization, Joint chance

constraints, Particle swarm optimization, Two-timescale system.
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1. Introduction

Chance-constrained programming appears with the increased need to include uncertainty in com-

plex decision-making models. It was introduced for the first time by Charnes & Cooper [1]. Since

then, chance-constrained optimization has been widely studied, and the range of applications is very

large, e.g., resource allocation in communication and network systems [2, 3], information theory [4, 5],5

chemical engineering [6], computational finance [7, 8], metal cutting optimization [9], spatial gate siz-

ing [10], profit maximization [11] and biochemical systems [12], portfolio selection [13], energy systems

operations [14], water quality management [15] and transportation problems [16]. In this paper, we

study chance-constrained geometric programs. Liu et al. [17] propose some convex based approx-

imations to come up with lower and upper bounds for geometric programs with joint probabilistic10

constraints when the stochastic parameters are normally distributed and pairwise independent. Shi-

raz et al. [18] use a duality algorithm to solve fuzzy chance-constrained geometric programs. Tassouli

& Lisser [19] propose a neurodynamic approach to solve geometric programs with joint probabilistic

constraints with normally distributed coefficients and independent matrix row vectors. Liu et al. [20]
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propose convex approximation based algorithms to solve distributionally robust geometric programs15

with individual and joint chance constraints.

Geometric programming is a method for solving a class of nonlinear problems. It is used to

minimize functions that are in the form of posynomials subject to constraints of the same type. It was

introduced for the first time by Duffin et al. [21]. Since then geometric programming was employed to

solve several optimization problems, e.g, resource allocation in communication and network systems20

[2, 3], information theory [4, 5], chemical engineering [6], computational finance [7, 8], metal cutting

optimization [9], spatial gate sizing [10], profit maximization [11] and biochemical systems [12].

In this paper, we are interested in solving joint chance-constrained geometric optimization prob-

lems. We study the case where the distribution of the random parameters is unknown, aka distri-

butionally robust optimization. In fact, we may only know partial information about the statistical25

properties of the stochastic parameters. El Ghaoui & Lebret [22] use second-order cone program-

ming to solve least-squares problems where the stochastic parameters are not known but bounded.

Bertsimas & Sim [23] introduce a less conservative approach to solve linear optimization problems

with uncertain data. Bertsimas & Brown [24] propose a general scheme for designing uncertainty sets

for robust optimization. Wiesemann et al. [25] propose standardized ambiguity sets for modeling30

and solving distributionally robust optimization problems. Peng et al. [26] study one density-based

uncertainty set and four two-moments based uncertainty sets to solve games with distributionally

robust joint chance constraints. Cheng et al. [27] solve a distributionally robust quadratic knapsack

problem. Dou & Anitescu [28] propose a new ambiguity set tailored to unimodal and seemingly

symmetric distributions to deal with distributionally robust chance constraints. Li & Ke [29] ap-35

proximate a distributionally robust chance constraint by the worst-case Conditional Value-at-Risk.

Hanasusanto et al. [30] approximate two-stage distributionally robust programs with binary recourse

decisions. Georghiou et al. [31] propose a primal-dual lifting scheme for the solution of two-stage

robust optimization problems.

Recent papers have considered the use of distributionally robust approaches in transportation net-40

work optimization problems [32], multistage distribution system planning [33], portfolio optimization

problems [34, 35], planning and scheduling [36], risk measures [37], multimodal demand problems

[38], appointment scheduling [39], vehicle routine problems [40] and energy and reserve dispatch [41].

The use of neural networks to solve optimization problems has been actively studied since the 1980s

when the idea was first introduced by Tank & Hopfield [42]. Xia & Wang [43] present a recurrent45

neural network for solving nonlinear convex programming problems subject to nonlinear inequality

constraints. Wang [44] proposes a deterministic annealing neural network for convex programming.

Nazemi & Omedi [45] presents a neural network model for solving the shortest path problems. Tas-

souli & Lisser [19] propose a recurrent neural network to solve geometric joint chance-constrained

optimization problems.50

In addition to the significant accomplishments achieved by individual recurrent neural networks

(RNNs), it is important to note that one-time-scale RNNs have limitations when it comes to con-

strained global optimization problems and more general problem domains. The dynamic behaviors
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of one-time-scale RNNs can exhibit drastic changes and become unpredictable when dealing with

certain optimization problems. Neuroscience studies have provided evidence of the existence of two-55

time-scales in the brain, where different processes operate at different time scales [46]. Therefore,

a neurodynamic model with two-time-scales is considered more biologically plausible for emulating

brain functions than a model with only one-time-scale. This paper proposes a two-timescale duplex

neurodynamic approach for distributionally robust joint chance-constrained optimization problems,

which is formulated using a biconvex reformulation. Unlike other existing methods that give lower or60

upper bounds to this kind of problems, the proposed approach employs two recurrent neural networks

that operate collaboratively at two different timescales and converge almost surely to a global optimal

solution of the given distributionally robust optimization problem. The main contributions of our

work are threefold.

(i) On the formulation side, we derive the deterministic formulations of the distributionally robust65

initial problem of each uncertainty set. Then, we propose two neurodynamic approaches to

solve the resulting problems.

(ii) On the theoretical side, we show that the proposed neurodynamic approaches are stable and

convergent.

(iii) On the numerical side, we show that the proposed neurodynamic methods cover well the risk70

area induced by the distributionally robust chance constraints.

The rest of the paper is organized as follows. In Section 2, we study two uncertainty sets to solve a

distributionally robust geometric chance-constrained optimization problem and give four deterministic

equivalent problems. In Section 3, we propose a recurrent neural network to solve the first three

resulting problems and prove its convergence and stability. We consider in Section 4 a duplex of75

two two-timescale recurrent neural networks to solve the last deterministic problem and prove its

convergence almost surely to the global optimum. In Section 5, we evaluate the performances of the

proposed neurodynamic approaches by solving a shape optimization problem and a telecommunication

problem.

2. Problem statement and reformulation80

A general form of a geometric program is given as follows

min
t∈RM

++

I0∑
i=1

c0i

M∏
j=1

t
a0
ij

j , (1)

s.t

Ik∑
i=1

cki

M∏
j=1

t
ak
ij

j ≤ 1, k = 1, ....,K,

where cki , i = 1, ..., Ik, k = 0, ....,K are positive constants and the exponents akij , i = 1, ..., Ik, j =

1, ...,M, k = 0, 1, ...,K are real constants.
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In this paper, we consider the case where the coefficients ci are not known. Consequently, we

reformulate the optimization problem (1) as follows

min
t∈RM

++

sup
F0∈D0

EF0

 I0∑
i=1

c0i

M∏
j=1

t
a0
ij

j

 , (JCP)

s.t inf
F∈D

PF

 Ik∑
i=1

cki

M∏
j=1

t
ak
ij

j ≤ 1, k = 1, ....,K

 ≥ 1− ϵ,

where F0 is the probabilistic distribution of vector C0 = (c01, .., c
0
I0
)T , F is the joint distribution for

C1 = (c11, .., c
1
I1
)T , ..., Ck = (ck1 , .., c

k
Ik
)T , D0 is the uncertainty set for the probability distribution F0,

D is the uncertainty set for the probability distribution F and 1 − ϵ, ϵ ∈ (0, 0.5], is the confidence85

parameter for the joint constraint.

This paper considers the distributionally robust geometric programs (JCP) using two different

sets of uncertainty. The first set focuses on uncertainties in distributions, considering both known

and unknown first two order moments. The second set incorporates first order moments along with

nonnegative support constraints.90

2.1. Uncertainty Sets with First Two Order Moments

We first consider that the mean vector of Ck, k = 0, 1, ...,K lies in an ellipsoid of size γk
1 ≥ 0

with center µk and that the covariance matrix of Ck, k = 0, 1, ...,K lies in a positive semidefi-

nite cone of center Σk =
{
σk
i,j , i, j = 1, ..., Ik

}
. We define for every k = 0, 1, ...,K, D2

k(µk,Σk) =Fk

∣∣∣∣∣∣ (EFk
[Ck]− µk)

TΣ−1
k (EFk

[Ck]− µk) ≤ γk
1

COVFk
(Ck) ⪯ γk

2Σk

, where Fk is the probability distribution of Ck,95

γk
2 ≥ 0 and COVFk

is a covariance operator under probability distribution Fk of Ck.

Based on whether the row vectors Ck, k = 1, ..,K are mutually independent or dependent, we

have two cases.

2.1.1. Case (JCP) with Jointly Independent Row Vectors.

Assumption 1. We assume that D = {F|F = F1F2...FK}, where F is the joint distribution for100

mutually independent random vectors C1 , C2 , ..., CK with marginals F1, F2, ..., FK .

Theorem 1. Given Assumption 1, (JCP) is equivalent to

(JCPind ) min
t∈RM

++,y∈RK
+

I0∑
i=1

µ0
i

M∏
j=1

t
a0
ij

j +
√
γ0
1

√√√√ I0∑
i=1

I0∑
l=1

σ0
i,l

M∏
j=1

t
a0
ij+a0

lj

j , (2)

s.t

Ik∑
i=1

µk
i

M∏
j=1

t
ak
ij

j +
√
γk
1

√√√√ Ik∑
i=1

Ik∑
l=1

σk
i,l

M∏
j=1

t
ak
ij+ak

lj

j

+

√
yk

1− yk

√
γk
2

√√√√ Ik∑
i=1

Ik∑
l=1

σk
i,l

M∏
j=1

t
ak
ij+ak

lj

j ≤ 1, k = 1, ...,K, (3)

K∏
k=1

yk ≥ 1− ϵ, 0 < yk ≤ 1 , k = 1, ...,K. (4)
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Proof. As the row vectors Ck, k = 1, ...,K are mutually independent, (JCP) is written equivalently

by introducing K nonegative auxiliary variables yk as [19].

min
t∈RM

++

sup
F0∈D0

EF0

 I0∑
i=1

c0i

M∏
j=1

t
a0
ij

j

 ,

s.t inf
Fk∈Dk

PFk

 Ik∑
i=1

cki

M∏
j=1

t
ak
ij

j ≤ 1

 ≥ yk, , k = 1, ....,K,

K∏
k=1

yk ≥ 1− ϵ, 0 < yk ≤ 1 , k = 1, ...,K.

By Theorem 1 in [20], we conclude that (JCP) is equivalent to (JCPind ).

Problem (JCPind ) is not convex. By applying the logarithmic transformation rj = log(tj),

j = 1, ...,M and xk = log(yk), k = 1, ...,K, we have the following equivalent reformulation of105

(JCPind )

(JCPlog
ind ) min

r∈RM ,x∈RK

I0∑
i=1

µ0
i exp


M∑
j=1

a0ijrj

+
√

γ0
1

√√√√√ I0∑
i=1

I0∑
l=1

σ0
i,lexp


M∑
j=1

(a0ij + a0lj)rj

, (5)

s.t

Ik∑
i=1

µk
i exp


M∑
j=1

akijrj

+
√
γk
1

√√√√√ Ik∑
i=1

Ik∑
l=1

σk
i,lexp


M∑
j=1

(akij + aklj)rj


+
√
γk
2

√√√√√ Ik∑
i=1

Ik∑
l=1

σk
i,lexp


M∑
j=1

(akij + aklj)rj + log

(
exk

1− exk

) ≤ 1, k = 1, ...,K,

K∑
k=1

xk ≥ log(1− ϵ), xk ≤ 0 , k = 1, ...,K. (6)

Theorem 2. [20] If σk
i,l ≥ 0 for all i, l and k, problem (JCPlog

ind ) is a convex programming problem.

2.1.2. Case (JCP) with Jointly Dependent Row Vectors.

In this case, (JCP) is equivalent to [20]

(JCPdep ) min
t∈RM

++,y∈RK
+

I0∑
i=1

µ0
i

M∏
j=1

t
a0
ij

j +
√

γ0
1

√√√√ I0∑
i=1

I0∑
l=1

σ0
i,l

M∏
j=1

t
a0
ij+a0

lj

j , (7)

s.t

Ik∑
i=1

µk
i

M∏
j=1

t
ak
ij

j +
√
γk
1

√√√√ Ik∑
i=1

Ik∑
l=1

σk
i,l

M∏
j=1

t
ak
ij+ak

lj

j

+

√
yk

1− yk

√
γk
2

√√√√ Ik∑
i=1

Ik∑
l=1

σk
i,l

M∏
j=1

t
ak
ij+ak

lj

j ≤ 1, k = 1, ...,K, (8)

K∑
k=1

yk ≥ K − ϵ, 0 < yk ≤ 1 , k = 1, ...,K. (9)

As for the independent case, we obtain the following biconvex equivalent problem for (JCPdep )110
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(JCPlog
dep ) min

r∈RM ,x∈RK

I0∑
i=1

µ0
i exp


M∑
j=1

a0ijrj

+
√

γ0
1

√√√√√ I0∑
i=1

I0∑
l=1

σ0
i,lexp


M∑
j=1

(a0ij + a0lj)rj

, (10)

s.t

Ik∑
i=1

µk
i exp


M∑
j=1

akijrj

+
√

γk
1

√√√√√ Ik∑
i=1

Ik∑
l=1

σk
i,lexp


M∑
j=1

(akij + aklj)rj


+
√
γk
2

√√√√√ Ik∑
i=1

Ik∑
l=1

σk
i,lexp


M∑
j=1

(akij + aklj)rj + log

(
yk

1− yk

) ≤ 1, k = 1, ...,K,

K∑
k=1

yk ≥ K − ϵ, 0 < yk ≤ 1 , k = 1, ...,K. (11)

Theorem 3. [20] If ϵ ≤ 0.5 and σk
i,l ≥ 0 for all i, l and k, problem (JCPlog

dep ) is a convex programming

problem.

2.2. Uncertainty Sets with Known First Order Moment and Nonnegative Support

In this section, we consider uncertainty sets with nonnegative supports and known first-order

moments. The uncertainty sets for (JCP) can be formulated as follows115

D3
k(µk,Σk) =

{
Fk

∣∣∣∣ E[Ck] = µk

PFk
[Ck ≥ 0] = 1

}
, k = 0, 1, ...,K, where µk > 0.

2.2.1. Case (JCP) with Jointly Independent Row Vectors.

We first consider the case when the marginal distributions in the uncertainty set are jointly

independent. Using the strong duality [20], (JCP) can be reformulated as follows

(JCPind
NS ) min

t∈RM
++,λ,β,π

I0∑
i=1

µ0
i

M∏
j=1

t
a0
ij

j , (12)

s.t

K∏
k=1

yk ≥ 1− ϵ, 0 ≤ yk ≤ 1 , k = 1, ...,K, (13)

ykλ
−1
k − λ−1

k βkTµk ≤ 1, k = 1, ....,K, (14)

βk ≤ 0, 0 < λ ≤ 1, k = 1, ....,K, (15)

λ−1
k πk ≥ 1, k = 1, ....,K, (16)

(−βk)
−1πk

M∏
j=1

t
ak
ij

j ≤ 1, i = 1, ..., Ik, k = 1, ....,K, (17)
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(JCP) can be reformulated as a convex problem using a logarithmic transformation xj = log(yj),

tj = log(rj), λ̃k = log(λk), β̃k = log(−βk), π̃ = log(π). Problem (JCPNS ) becomes,

(JCPlog
NS−ind ) min

x,r,λ̃,β̃,π̃

I0∑
i=1

µ0
i exp


M∑
j=1

a0ijrj

 , (18)

s.t

K∑
k=1

xk ≥ log(1− ϵ), xk ≤ 0, k = 1, ...,K, (19)

exp(xk − λ̃k) +

Ik∑
i=1

exp
{
−λ̃k + β̃k

i + logµk
i

}
≤ 1, k = 1, ....,K,

λ̃k ≤ 0, k = 1, ....,K, (20)

λ̃k ≤ π̃k, k = 1, ....,K, (21)

π̃k +

M∑
j=1

akijrj − β̃k
i ≤ 0, i = 1, ..., Ik, k = 1, ....,K. (22)

2.2.2. Case (JCP) with Jointly Dependent Row Vectors.120

In the case where the constraints of (JCP) are jointly dependent, we have the following determin-

istic equivalent

(JCPdep
NS ) min

t∈RM
++,λ,β,π

I0∑
i=1

µ0
i

M∏
j=1

t
a0
ij

j , (23)

s.t

K∏
k=1

yk ≥ K − ϵ, 0 ≤ yk ≤ 1 , k = 1, ...,K, (24)

ykλ
−1
k − λ−1

k βkTµk ≤ 1, k = 1, ....,K, (25)

βk ≤ 0, 0 < λ ≤ 1, k = 1, ....,K, (26)

λ−1
k πk ≥ 1, k = 1, ....,K, (27)

(−βk)
−1πk

M∏
j=1

t
ak
ij

j ≤ 1, i = 1, ..., Ik, k = 1, ....,K, (28)

We apply a log transformation to convert (JCPlog
NS ) into a biconvex problem. We take tj = log(rj),

λ̃k = log(λk), β̃k = log(−βk), π̃ = log(π) and obtain

(JCPlog
NS−dep ) min

x,r,λ̃,β̃,π̃

I0∑
i=1

µ0
i exp


M∑
j=1

a0ijrj

 , (29)

s.t

K∏
k=1

yk ≥ K − ϵ, 0 ≤ yk ≤ 1 , k = 1, ...,K, (30)

ykexp(−λ̃k) +

Ik∑
i=1

exp
{
−λ̃k + β̃k

i + logµk
i

}
≤ 1, k = 1, ....,K,

λ̃k ≤ 0, k = 1, ....,K, (31)

λ̃k ≤ π̃k, k = 1, ....,K, (32)

π̃k +

M∑
j=1

akijrj − β̃k
i ≤ 0, i = 1, ..., Ik, k = 1, ....,K. (33)

7



3. A dynamical recurrent neural network for (JCPlog
dep ), (JCPlog

ind ) and (JCPlog
NS−ind )

Observe that (JCPlog
dep ), (JCPlog

ind ) and (JCPlog
NSind

) can be written in the following general form

min
r

f(z), (34)

s.t. g(z) ≤ 0,

where f and g are two convex functions.

For (JCPlog
ind ), z = (r, x)T , f(z) =

∑I0
i=1 µ

0
i exp

{∑M
j=1 a

0
ijrj

}
+
√
γ0
1

√
I0∑
i=1

I0∑
l=1

σ0
i,lexp

{∑M
j=1(a

0
ij + a0lj)rj

}

and g(z) =



I1∑
i=1

µ1
i exp

{∑M
j=1 a

1
ijrj

}
+

√
γ1
1

√√√√ I1∑
i=1

I1∑
l=1

σ1
i,lexp

{
M∑
j=1

(a1ij + a1lj)rj

}

+
√

ex1

1−ex1

√
γ1
2

√√√√ I1∑
i=1

I1∑
l=1

σ1
i,lexp

{
M∑
j=1

(a1ij + a1lj)rj

}
− 1

...

IK∑
i=1

µK
i exp

{
M∑
j=1

aKij rj

}
+

√
γK
1

√
IK∑
i=1

IK∑
l=1

σK
i,lexp

{∑M
j=1(a

K
ij + aKlj )rj

}
+

√
exK

1−exK

√
γK
2

√√√√ IK∑
i=1

IK∑
l=1

σK
i,lexp

{
M∑
j=1

(aKij + aKlj )rj

}
− 1

log(1− ϵ)−
∑K

k=1 xk

x1

...

xK



.

For (JCPlog
dep ), z = (r, x)T , f(z) =

∑I0
i=1 µ

0
i exp

{∑M
j=1 a

0
ijrj

}
+
√
γ0
1

√
I0∑
i=1

I0∑
l=1

σ0
i,lexp

{∑M
j=1(a

0
ij + a0lj)rj

}

and g(z) =



I1∑
i=1

µ1
i exp

{∑M
j=1 a

1
ijrj

}
+

√
γ1
1

√√√√ I1∑
i=1

I1∑
l=1

σ1
i,lexp

{
M∑
j=1

(a1ij + a1lj)rj

}

+
√

ex1

1−ex1

√
γ1
2

√√√√ I1∑
i=1

I1∑
l=1

σ1
i,lexp

{
M∑
j=1

(a1ij + a1lj)rj

}
− 1

...

IK∑
i=1

µK
i exp

{
M∑
j=1

aKij rj

}
+

√
γK
1

√
IK∑
i=1

IK∑
l=1

σK
i,lexp

{∑M
j=1(a

K
ij + aKlj )rj

}
+

√
exK

1−exK

√
γK
2

√√√√ IK∑
i=1

IK∑
l=1

σK
i,lexp

{
M∑
j=1

(aKij + aKlj )rj

}
− 1

log(K − ϵ)−
∑K

k=1 xk

x1

...

xK



.

For (JCPlog
NS−ind ), z = (r, x, λ̃, β̃, π̃)T , f(z) =

I0∑
i=1

µ0
i

∏M
j=1 t

a0
ij

j

8



and g(z) =



log(1− ϵ)−
K∑

k=1

xk

x1

...

xK

exp(x1 − λ̃1) +
I1∑
i=1

exp
{
−λ̃1 + β̃1

i + logµ1
i

}
− 1

...

exp(xK − λ̃K) +
IK∑
i=1

exp
{
−λ̃K + β̃K

i + logµK
i

}
− 1

λ̃1

...

λ̃1 − π̃1

...

λ̃K − π̃K

π̃1 +
∑M

j=1 a
1
ijrj − β̃1

i ≤ 0, i = 1, ..., I1
...

π̃K +
∑M

j=1 a
K
ij rj − β̃K

i ≤ 0, i = 1, ..., IK



.

We know that z∗ is an optimal solution of (34) if and only if the following Karush–Kuhn–Tucker

(KKT) conditions are satisfied.

∇f(z) +∇g(z)T γ = 0 (35)

γ ≥ 0, γT g(z) = 0 (36)

To solve problem (34), we propose a dynamical recurrent neural network driven by the following ODE

system

κ
dz

dt
= −

(
∇f(z) +∇g(z)T (γ + g(z))+

)
(37)

κ
dγ

dt
= −γ + (γ + g(z))+ (38)

where z(.) and γ(.) are two time-dependent variables, κ is a given convergence rate and (x)+ =

max(x, 0).

Theorem 4. If (z∗, γ∗) is an equilibrium point of (37)-(38) if and only if z∗ is an optimal solution125

of (34) where γ∗ is the corresponding Lagrange multiplier.

Proof. Let (z∗, γ∗) is an equilibrium point of (37)-(38), then dz∗

dt = 0 and dγ∗

dt = 0.

dz∗

dt
= 0 ⇔ ∇f(z∗) +∇g(z∗)T (γ∗ + g(z∗))+ = 0, (39)

dγ∗

dt
= 0 ⇔ −γ∗ + (γ∗ + g(z∗))+ = 0 (40)

Observe that γ∗ = (γ∗ + g(z∗))+ if and only if γ∗ ≥ 0, g(z∗) ≤ 0 and γ∗T g(z∗) = 0, we obtain then

(35) of the KKT system (35)- (36). Furthermore, we replace (γ∗ + g(z∗))+ by γ∗ in the right hand

9



side of (39) we obtain then ∇f(z∗)+∇g(z∗)T γ∗ = 0 which is equation (36) of the KKT system (35)-

(36). For the converse part of the theorem, it is straightforward that if z∗ is an optimal solution130

of (34) where γ∗ is the corresponding Lagrange multiplier, then (z∗, γ∗) is an equilibrium point of

(37)-(38).

Lemma 1. For any initial point (z(t0), γ(t0)), there exists a unique continuous solution (z(t), γ(t))

for (37)-(38).

Proof. The right-hand side of system (37)-(38) is locally Lipschitz continuous, given that ∇f , ∇g135

and (γ + g)+ are locally Lipschitz continuous. By applying the local existence theorem of ordinary

differential equations, we can conclude that there exists a unique continuous solution trajectory

(z(t), γ(t)) for (37)-(38).

Theorem 5. The neural network proposed in equations (37)-(38) exhibits global stability in the

Lyapunov sense. Furthermore, the dynamical network globally converges to a KKT point denoted140

(z∗, γ∗) where z∗ is the optimal solution of the problem (34).

Proof. Let ζ = (z, γ), we define U(ζ) =

− (
∇f(z) +∇g(z)T (γ + g(z))+

)
−γ + (γ + g(z))+

.
First, consider the following Lyapunov function

E(ζ) = ||U(ζ)||2+1

2
||ζ − ζ∗||, (41)

where ζ∗ = (z∗, γ∗) is an equilibrium point of (37)-(38).

dE(ζ(t))
dt = dU

dt

T
U +UT dU

dt + (ζ − ζ∗)T dζ
dt . Observe that dU

dt = dU
dζ × dζ

dt = ∇U(ζ)U(ζ). Without loss of

generality suppose that there exists p ∈ N such that (γ+g(z))+ = (γ1+g1(z)), ..., (γp+gp(z)), 0, ..., 0),

and we define gp = (g1, ..., gp).145

We have ∇U(ζ) =

− (
∇2f(z) +

∑p
i=1 ∇2gp(z) (γp + gp(z)) +∇g(z)T∇g(z)

)
−∇gp(z)T

∇gp(z) Sp

. where

Sp =

 Op×p Op×(N−p)

O(N−p)×q I(N−p)×(N−p)

, where N is the length of vector γ.

Since f and g are convex, then the Hessian matrices ∇2f and ∇2gp are positive semidefinite. Fur-

thermore ∇gT∇g is positive semidefinite, we conclude that ∇U is negative semidefinite.

Back to the expression of dE(ζ(t))
dt , we have dE(ζ(t))

dt = UT (∇U +∇UT )U︸ ︷︷ ︸
≤0 since ∇U is negative semidfinite

+(ζ − ζ∗)T (U(ζ)− U(ζ∗))︸ ︷︷ ︸
≤0 by Lemma 4 in [19]

≤150

0. Then, the neural network (37)-(38) is globally stable in the sense of Lyapunov. Next similarly

to the proof of Theorem 5 in [19], we prove that the dynamical neural network (37)-(38) is globally

convergent to (z∗, γ∗) where z∗ is the optimal solution of (34).

10



4. A two-time scale neurodynamic duplex for (JCPlog
NS−dep )155

(JCPlog
NS−dep ) can be written in the following general form

min
z,y

f(z), (42)

s.t. g(z, y) ≤ 0,

where f is a convex function and g is a biconvex function, z = (r, λ̃, β̃, π̃)T , f(z) =
I0∑
i=1

µ0
i

∏M
j=1 t

a0
ij

j

and g(z, y) =



K − ϵ−
K∏

k=1

yk

−y1
...

−yK

y1 − 1
...

yK − 1

y1exp(−λ̃1) +
I1∑
i=1

exp
{
−λ̃1 + β̃1

i + logµ1
i

}
− 1

...

yKexp(−λ̃K) +
IK∑
i=1

exp
{
−λ̃K + β̃K

i + logµK
i

}
− 1

λ̃1

...

λ̃1 − π̃1

...

λ̃K − π̃K

π̃1 +
∑M

j=1 a
1
ijrj − β̃1

i ≤ 0, i = 1, ..., I1
...

π̃K +
∑M

j=1 a
K
ij rj − β̃K

i ≤ 0, i = 1, ..., IK



.

We denote U = {z, y | g(z, y) ≤ 0} the feasible set of (42).The Lagrangian function of problem (42)

is defined as follows:

L(z, y, ω) = f(z) + ωT g(z, y). (43)

For any (z, y) ∈ U , the KKT conditions are stated as follows:

∇L(z, y, ω) = 0, (44)

ω ≥ 0, ωT g(z, y) = 0. (45)

Definition 1. Let (z, y) ∈ U , (z, y) is called a partial optimum of (42) if and only if

f(z) ≤ f(z̃),∀z̃ ∈ Uy, (46)

where Uy = {z | g(z, y) ≤ 0}.

11



Theorem 6. The KKT system (44)-(45) is equivalent to the following system

∇f(z) +∇zg(z, y)
T (ω + g(x, z))+ = 0 (47)

∇yg(z, y)
T (ω + g(z, y))+ = 0 (48)

(ω + g(x, z))+ − ω = 0 (49)

Proof. The proof of Theorem 6 follows the same lines as the proof of Theorem 4.

Based on the equations (47)-(49), we consider the following two-time-scale recurrent neural net-

work model

κ1
dz

dt
= −

(
∇f(z) +∇zg(z, y)

T (ω + g(x, z))+
)
, (50)

κ2
dy

dt
= −

(
∇yg(z, y)

T (ω + g(z, y))+
)
, (51)

κ2
dω

dt
= −ω + (λ+ g(z, y))+, (52)

where (z, y, ω) are now time-dependent variables and κ1 and κ2 are two time scaling constants with

κ1 ̸= κ2. We propose a duplex of two two-time-scale recurrent neural network (50)-(52) for solving

(34) one with κ1 > κ2 and the second with κ1 < κ2 as shown in Figure 1.160

Figure 1: A block diagram depicting a duplex neurodynamic system with a two-timescale configuration

Theorem 7. (z, y, ω) is an equilibrium point of (50)-(52) if and only if (z, y, ω) is a KKT point of

(42).

Proof. Let (z, y, ω) is an equilibrium point of (50)-(52). We have then

dz

dt
= 0 ⇔ −

(
∇f(z) +∇zg(z, y)

T (ω + g(x, z))+
)
= 0, (53)

dy

dt
= 0 ⇔ −

(
∇yg(z, y)

T (ω + g(z, y))+
)
= 0, (54)

dω

dt
= 0 ⇔ −ω + (λ+ g(z, y))+ = 0. (55)

12



We obtain system (47)-(49). By Theorem 6, the conclusion follows. The converse part of the Theorem

is straightforward.

The process begins by initializing the state variables of the neurodynamic models. Subsequently,

each model undergoes a precise local search based on its dynamics to optimize its performance.

Once all neurodynamic models have converged to their equilibria, the initial states of the recurrent

neural networks are optimized using the particle swarm optimization (PSO) updating rule. In this

context, we represent the position of the ith particle as Λi = (Λi1, ...,Λin)
T , and its velocity as

vi = (vi1, ..., vin)
T . The inertia weight w ∈ [0, 1] determines the extent to which the particle retains

its previous velocity. The best previous position that yielded the maximum fitness value for the ith

particle is denoted as Λ̃i = (Λ̃i1, ..., Λ̃in)
T , and the best position in the entire swarm that yielded the

maximum fitness value is represented by Λ̂ = (Λ̂1, ..., Λ̂n)
T . The initial state of each neurodynamic

model is updated using the PSO updating rule, as described in reference [47].

vi(j + 1) = wvi(j) + c1r1(Λ̃i − Λi(j)) + c2r2(Λ̂i − Λi(j)), (56)

Λi(j + 1) = Λi(j) + vi(j + 1). (57)

where the iterative index is represented by j, while the two weighting parameters are denoted as c1165

and c2 and r1 and r2 represent two random values from the interval [0, 1].

To achieve global convergence, the diversity of initial neuronal states is crucial. One approach to

enhance this diversity is by introducing a mutation operator, which generates a random Λi(j + 1).

This random generation of Λi(j + 1) helps increase the variation among the initial neuronal states.

To measure the diversity of these states, we employ the following function

d =
1

n

n∑
i=1

∥Λi(j + 1)− Λ̂(j)∥. (58)

We utilize the wavelet mutation operator proposed in [48], which is performed for the i-th particle if

d < ζ. The mutation operation is carried out as follows

Λi(j + 1) =

 Λi(j) + µ(hi − Λi(j)) , µ > 0

Λi(j) + µ(Λi(j)− li) , µ < 0
(59)

where hi and li are the upper and the lower bounds for Λi, respectively. ζ > 0 is a given threshold

and µ is defined using a wavelet function

µ =
1√
a
e−

ϕ
2a cos(5

ϕ

a
) (60)

When the value of µ goes to 1, the mutated element of the particle moves towards the maximum

value of Λi(j + 1). On the other hand, as µ approaches -1, the mutated element moves towards the

minimum value of xi(j+1). The magnitude of |µ| determines the size of the search space for xi(j+1),

with larger values indicating a wider search space. Conversely, smaller values of |µ| result in a smaller170

search space, allowing for fine-tuning.

To achieve fine-tuning, the dilation parameter a is adjusted based on the current iteration j

relative to the total number of iterations T . Specifically, a is set as a function of j/T , with a = e10
j
T .

Additionally, ϕ is randomly generated from the interval [−2.5a, 2.5a].
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The algorithm details are given in Algorithm 1 where Λ = (z, y, ω)175

Algorithm 1 The neurodynamic duplex

Initialize

- Let Λ1(0) and Λ2(0) randomly in the feasible region.

- Let the initial best previous position and best position

Λ̃(0) = Λ̂(0) = y = Λ(0).

- Set the convergence error ζ.

while ||Λ(j + 1)− Λ(j)||≥ ϵ do

Compute the equilibrium points Λ̄1(j) and Λ̄2(j) of RNN1 and RNN2.

if f(z̄1(j)) < f(z̃(j)) then

Λ̃(j + 1) = Λ̄1(j)

else

Λ̃(j + 1) = Λ̃(j)

end if

if f(z̄2(j)) < f(z̃(j)) then

Λ̃(j + 1) = Λ̄2(j)

else

Λ̃(j + 1) = Λ̃(j)

end if

if f(z̃(j)) < f(ẑ(j)) then

Λ̂(j + 1) = Λ̃(j + 1)

else

Λ̂(j + 1) = Λ̂(j)

end if

Compute the value of Λ(j + 1) following (56)-(57).

if d < ζ then

Perform the wavelet mutation (59).

end if

j=j+1

end while

Lemma 2. [49] Suppose that the objective function f is measurable, and the feasible region U

is a measurable subset, and for any Borel subset B of U with positive Lebesgue measure we have
∞∏
k=1

(1− Pk(B)) = 0. Let {y(k)}∞k=1 be a sequence generated by a stochastic optimization algorithm.

If {y(k)}∞k=1 is a nonincreasing sequence, then it converges in probability to the global optimum set.

Theorem 8. If the state of the neurodynamic model with a single timescale, described by the

14



following equations

κ
dz

dt
= −

(
∇f(z) +∇zg(z, y)

T (ω + g(x, z))+
)
, (61)

κ
dy

dt
= −

(
∇yg(z, y)

T (ω + g(z, y))+
)
, (62)

κ
dω

dt
= −ω + (λ+ g(z, y))+, (63)

converges to an equilibrium point, then the state of the neurodynamic model with two timescales, as180

described by equations (50)-(52), globally converges to a partial optimum of problem (42).

Proof. We recall the Lagrangian function of (42)

L(z, y, ω) = f(z) + ωT g(z, y). (64)

An equilibrium point (z∗, y∗, ω∗) of (61)-(63) corresponds to a KKT point of (42). We fix y∗, and

take z ∈ Uy∗ , (42) becomes a convex optimization problem and we have

L(z∗, y∗, ω∗) ≤ L(z, y∗, ω∗), (65)

which is equivalent to

f(z∗) + ω∗T g(z∗, y∗) ≤ f(z) + ω∗T g(z, y∗). (66)

As ω∗T g(z, y∗) ≤ ω∗T g(z∗, y∗) = 0, we have f(z∗) ≤ f(z). By Definition 1, (z∗, y∗) is a partial

optimum of 42.

Theorem 9. The duplex of two two-timescale neural networks in Figure 1 is globally convergent to

a global optimal solution of problem (34).185

Proof. By Theorem 8, the two-timescale neurodynamic models RNN1 and RNN2 are proven to con-

verge to a partial optimum. From Algorithm 1, the solution sequence is generated as follows

Λ̂(j + 1) = Λ̃(j + 1) if f(z̃(j)) < f(ẑ(j)),

Λ̂(j + 1) = Λ̂(j) else.

We observe that the generated solution sequence is monotonically increasing {f(Λ̃(j))}∞j=1. Let Mi,j

represent the supporting set of the initial state of RNNi at iteration j. According to equation (59),

the mutation operation ensures that the initial states of the recurrent neural networks are constrained

to the feasible region U . Therefore, for every iteration index J ≥ 1, the supporting sets satisfy the

following condition:

U ⊆ M =

J⋃
j=1

2⋃
i=1

Mi,j . (67)

Consequently, we have v(U) = v(M) > 0.

By Lemma 2, we have

lim
j−>∞

P(Λ̂(j) ∈ Φ) = 1 (68)

where Φ is the set of the global optimal solutions of (34). The conclusion follows.190
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5. Numerical experiments

We consider three geometric optimization problems to evaluate the performance of our neuro-

dynamic approaches. All the algorithms in this Section are implemented in Python. We run our

algorithms on Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz. The random instances are generated195

with numpy.random, and we solve the ODE systems with solve ivp of scipy.integrate. The determin-

istic equivalent programs are solved with the package gekko and the gradients and partial derivatives

are computed with autograd.grad and autograd.jacobian. For the following numerical experiments,

we set γk
1 = 2, γk

2 = 2 and the error tolerance for the neurodynamic duplex ζ = 10−4. In the second

subsection, we evaluate the quality of our neurodynamic duplex by comparing the obtained solutions200

with the ones given by the Convex Alternate Search (CAR) from [50]. The gap between the two

solutions is computed as follows GAP =
SolCAR−SolDuplex

SolCAR
, where SolCAR and SolDuplex are the so-

lutions obtained using the CAR and the neurodynamic duplex, respectively. For the neurodynamical

duplex, we take κ1

κ2
= 0.1 for the first dynmical neural network and κ1

κ2
= 10.0 for the second one.

5.1. Uncertainty Sets with First Two Order Moments205

5.1.1. A three-dimension shape optimization problem

We first consider a transportation problem involving the shifting of grain from a warehouse to

a factory. The grain is transported within an open rectangular box, with dimensions of length x1

meters, width x2 meters, and height x3 meters, as illustrated in Figure 2. The objective of the

problem is to maximize the volume of the rectangular box, given by the product of its length, width,210

and height (x1x2x3). However, two constraints must be satisfied. The first constraint relates to

the floor area of the box, and the second constraint relates to the wall area. These constraints are

necessary to ensure that the shape of the box aligns with the requirements of a given truck. In our

analysis, we assume that the wall area Awall and the floor area Afloor are random variables. We

Figure 2: 3D-box shape [51]

formulate our shape optimization problem as follows215
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Independent case Dependent case

Obj value CPU Time VS Obj value CPU Time VS

0.296 0.43 0 0.298 0.46 0

Table 1: Results of solving problem (69) when D = D2

Figure 3: Transient behaviors of the state variables

min
x∈R++

3
x−1
1 x−1

2 x−1
3 , (69)

s.t inf
F∈D

P
(

1

Awall
(2x3x2 + 2x1x3) ≤ 1,

1

Afloor
x1x2 ≤ 1

)
≥ 1− ϵ.

where F is the joint distribution for 1
Awall

and 1
Afloor

and D is the uncertainty set for the probability

distribution F . We solve problem (69) when the uncertainty set is equal to D2 using the dynamical

neural network (37)-(38). For the numerical experiments, we take the mean and the covariance

describing the uncertainty sets for 1
Awall

mwall = 0.05, σwall = 0.01, respectively and for 1
Afloor

mfloor = 0.5, σfloor = 0.1, respectively. We recapitulate the obtained results in Table 1. Columns220

one, two and three give the optimal value, the CPU time and the number of violated scenarios (VS)

in the independent case, respectively. Columns four, five and six show the optimal value, the CPU

time and the number VS in the dependent case, respectively. The dynamic neural network covers

well the risk region in both cases. Figure 3 show the convergence of the state variables.

5.1.2. Multidimensional shape optimization problem225

To further assess the performance of our dynamical neural network, we use the multidimensional

shape optimization problem with joint chance constraints from [20].

min
x∈RM

++

m∏
i=1

x−1
i ,

s.t inf
F∈D

PF

m−1∑
j=1

(
m− 1

Awallj

x1

m∏
i=1,i̸=j

xi),
1

Afloor

m∏
j=2

xj ≤ 1

 ≥ 1− ϵ, (70)

1

γi,j
xix

−1
j ≤ 1, 1 ≤ i ̸= j ≤ m.
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In our numerical experiments, we fixed the following parameters 1
γi,j

= 0.5 and ϵ = 0.15. The inverse

of floor’s area ( 1
Afloor

) and the inverse of wall area ( 1
Awallj

) for each j = 1, ...,m were considered as

random variables. We test the robustness of the different approaches by creating 100 random samples230

of the variables 1
Awallj

and 1
Afloor

. We then examine if the solutions meet the constraints of (70)

for all 100 cases for the Gaussian distribution, for example. If the solutions are not feasible for a

particular case, it is referred to as a violated scenario (VS).

We first solve (70) for m = 5 and when the uncertainty set is D2 in the independent case for

different initial points, we observe that the dynamical neural network (37)-(38) converges to the same235

final value independently from the starting value as shown in Figure 4.

Figure 4: Convergence of the dynamical neural network (37)-(38) for different initial points for (70).

Now we solve (70) for known first-order moments of 1
Afloor

and 1
Awallj

for both the dependent

and the independent case. We present the obtained results in Table 2. We observe again that the

dependent case is more conservative compared to the independent one.

m Independent case CPU Time Dependent case CPU Time

3 1.03 1.05 1.30 1.39

5 2.09 5.11 2.15 5.20

10 14.79 4.83 5.04 15.10

15 7.76 47.80 7.99 58.04

20 10.68 97.72 10.87 100.91

Table 2: Results for different values of m

5.2. Uncertainty Sets with Known First Order Moment and Nonnegative Support240

5.2.1. A generalized shape optimization problem

We solve (70) when the uncertainty set is D3 for both the independent and the dependent case.

For the numerical experiments, we take ϵ = 0.2. We solve problem (70) using the neurodynamic

duplex in the dependent case. We recapitulate the obtained results in Table 3. Column one gives the

number of variables m. Columns two, three and four give the objective value, the CPU time and the245

number of VS in the independent case, respectively. Columns five, six and seven give the objective
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m Independent case Dependent case

Obj value CPU Time VS Obj value CPU Time VS

3 0.204 2.28 3 0.491 10.12 0

5 1.03 6.25 2 1.82 98.68 0

10 6.99 15.26 2 9.79 86.35 0

15 18.43 23.84 3 23.45 201.13 0

20 32.09 94.76 5 38.71 744.26 0

30 42.37 100.23 3 51.56 1155.42 0

Table 3: (70) for different values of m for D = D3

value, the CPU time and the number of VS for the dependent case, respectively. We observe that the

problem with dependent variables is more conservative. Nevertheless, the solution, in this case, covers

well the risk area as the number of VS is equal to 0 for all the values of m. Now we additionally solve

problem (70) using the assumption that the random variables follow a normal distribution [19] for250

m = 5. In order to compare the solutions obtained with the stochastic and the robust approaches, we

evaluate the robustness of the solutions for different hypotheses on the true distribution of the random

parameters, i.e., the uniform distribution, the normal distribution, the log-normal distribution, the

logistic distribution and Gamma distribution. The obtained results are presented in Table 4 which

gives the number of violated scenarios for both the normal solutions and the robust ones and the255

objective value obtained by each solution. We can infer that the distributionally robust approaches

are a conservative approximation of the stochastic programs. We observe that the solutions obtained

by the nonnegative support are more conservative compared to the stochastic ones. Notice that the

distributionally robust solutions are more robust, i.e., the number of VS when the true distribution

is the Logistic distribution is equal to 23 and 19 for the nonnegative support solutions and is equal260

to 0 for the robust solutions.

Normal solutions Robust solutions

Independent Dependent Independent Dependent

Objective Value 0.86 0.99 2.43 4.14

Number Uniform distribution 22 15 0 0

of Normal distribution 18 11 1 0

violated Log-normal distribution 7 4 2 1

scenarios Logistic distribution 23 19 0 0

Gamma distribution 16 12 2 2

Table 4: Number of violated scenarios for the stochastic and the robust solutions
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5.2.2. Maximizing the worst user signal-to-interference noise ratio

We consider the problem of maximizing the worst user signal-to-interference noise ratio (SINR)

for Massive Multiple Input Multiple Output (MaMIMO) systems subject to antenna assignment and

multiuser interference constraints taken from [52] and given by

max
p∈IRK

++

min
i∈U

pi|gHi gi|2∑
j∈U,j ̸=i

pj |gHi gj |2+|σi|2
, (71)

s.t Pmin ≤ pi ≤ Pmax,∀i ∈ U , (72)

where pi is the power to be assigned for each user i ∈ U . gi ∈ CT×1, gHi ∈ C1×T and σ2
i are the

beam domain channel vector associated to user i ∈ U , its Hermitian transpose and Additive White

Gaussian Noise (AWGN), respectively.265

Let aij = |gHi gj |2|gHi gi|−2 and bi = |σi|2|gHi gi|−2, we derive a geometric reformulation of (71)-(72)

min
p∈IRK

++,w∈IR++

w−1, (73)

s.t
∑

j∈U,j ̸=i

aijpjp
−1
i w + bip

−1
i w ≤ 1,∀i ∈ U , (74)

Pmin ≤ pi ≤ Pmax,∀i ∈ U . (75)

We assume that the coefficients aij and bi are independent random variables and we propose the

following optimization problem with individual and joint chance constraints

min
p∈IRK

++,w∈IR++

w−1,

s.t inf
Fi∈D−i

PFi

 ∑
j∈U,j ̸=i

aijpjp
−1
i w + bip

−1
i w ≤ 1

 ≥ 1− ϵi,∀i ∈ U , (POI)

Pmin ≤ pi ≤ Pmax,∀i ∈ U .

and

min
p∈IRK

++,w∈IR++

w−1,

s.t inf
F∈D

PF

 ∑
j∈U,j ̸=i

aijpjp
−1
i w + bip

−1
i w ≤ 1,∀i ∈ U

 ≥ 1− ϵ, (POJ)

Pmin ≤ pi ≤ Pmax,∀i ∈ U .

We assume that the uncertainty set for the distributionally robust problems (POI) and (POJ) is D3.

We fix ϵ = 0.2. We first solve problem (POJ) for K = 10. Figure 5 shows the convergence of the270

power variables. Next, we solve (POI) and (POJ) for different values of the number of users K. Table

5 presents the obtained results. Column one gives the number of users K. Columns two and three

give the optimal value and the number of VS for (POI), respectively. Columns four and five show

the optimal value and the number of VS for (POJ), respectively. As observed in the previous section,

the use of joint constraints leads to a more conservative minimization problem but covers well the275

risk area compared to the problem with individual constraints since the number of VS is lower.
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Figure 5: Convergence of the power variables

K Individual constraints Joint constraints

Obj value VS Obj value VS

5 27.27 5 29.07 0

10 47.36 4 50.23 0

15 66.03 5 68.76 1

20 123.48 3 127.43 0

Table 5: Results for different values of K

6. Conclusion

This paper studies a distributionally robust joint-constrained geometric optimization problem for

two different moments-based uncertainty sets. We propose two neurodynamic approaches to solve the280

resulting optimization problems. To assess the performances of the proposed approaches, we solve a

problem of shape optimization and a telecommunication problem. We note that the performances of

our approaches can be significantly increased with the development of new ODE solvers mainly based

on machine learning techniques.
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[11] V. Kojić, Z. Lukač, Solving profit maximization problem in case of the cobb-douglas production

function via weighted ag inequality and geometric programming, in: 2018 IEEE International

Conference on Industrial Engineering and Engineering Management (IEEM), 2018, pp. 1900–320

1903. doi:10.1109/IEEM.2018.8607446.

[12] C.-S. Liu, G. Xu, , L. Wang, An improved geometric programming approach for optimization of

biochemical systems, Journal of Applied Mathematics 2014. doi:10.1155/2014/719496.

[13] Y. Han, P. Li, An empirical study of chance-constrained portfolio selection model, Procedia Com-

puter Science 122 (2017) 1189–1195, 5th International Conference on Information Technology325

and Quantitative Management, ITQM 2017. doi:https://doi.org/10.1016/j.procs.2017.

22

https://opg.optica.org/jocn/abstract.cfm?URI=jocn-9-10-889
https://opg.optica.org/jocn/abstract.cfm?URI=jocn-9-10-889
https://opg.optica.org/jocn/abstract.cfm?URI=jocn-9-10-889
http://dx.doi.org/10.1364/JOCN.9.000889
https://opg.optica.org/jocn/abstract.cfm?URI=jocn-9-10-889
https://proceedings.mlr.press/v108/posada20a.html
https://proceedings.mlr.press/v108/posada20a.html
https://proceedings.mlr.press/v108/posada20a.html
https://proceedings.mlr.press/v108/posada20a.html
http://dx.doi.org/10.1109/JSAC.2005.862406
https://www.sciencedirect.com/science/article/pii/S0890695598000273
https://www.sciencedirect.com/science/article/pii/S0890695598000273
https://www.sciencedirect.com/science/article/pii/S0890695598000273
http://dx.doi.org/https://doi.org/10.1016/S0890-6955(98)00027-3
https://www.sciencedirect.com/science/article/pii/S0890695598000273
http://dx.doi.org/10.1007/s00780-003-0114-3
https://www.sciencedirect.com/science/article/pii/S2211381911001238
https://www.sciencedirect.com/science/article/pii/S2211381911001238
https://www.sciencedirect.com/science/article/pii/S2211381911001238
http://dx.doi.org/https://doi.org/10.1016/j.sepro.2011.10.034
https://www.sciencedirect.com/science/article/pii/S2211381911001238
http://dx.doi.org/10.1109/TCAD.2007.913391
http://dx.doi.org/10.1109/IEEM.2018.8607446
http://dx.doi.org/10.1155/2014/719496
https://www.sciencedirect.com/science/article/pii/S1877050917327485
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.11.491
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.11.491
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.11.491


11.491.

URL https://www.sciencedirect.com/science/article/pii/S1877050917327485

[14] D. Huo, C. Gu, D. Greenwood, Z. Wang, P. Zhao, J. Li, Chance-constrained optimization for

integrated local energy systems operation considering correlated wind generation, International330

Journal of Electrical Power & Energy Systems 132 (2021) 107153. doi:https://doi.org/10.

1016/j.ijepes.2021.107153.

URL https://www.sciencedirect.com/science/article/pii/S0142061521003926

[15] A. Dhar, B. Datta, Chance constrained water quality management model for reservoir sys-

tems, ISH Journal of Hydraulic Engineering 12 (3) (2006) 39–48. doi:10.1080/09715010.335

2006.10514848.

[16] N. Sluijk, A. M. Florio, J. Kinable, N. Dellaert, T. Van Woensel, A chance-constrained two-

echelon vehicle routing problem with stochastic demands, Transportation Science 0 (0) (0) null.

doi:10.1287/trsc.2022.1162.

[17] J. Liu, A. Lisser, Z. Chen, Stochastic geometric optimization with joint probabilistic constraints,340

Operations Research Letters 44 (5) (2016) 687–691. doi:https://doi.org/10.1016/j.orl.

2016.08.002.

URL https://www.sciencedirect.com/science/article/pii/S0167637716300761

[18] R. K. Shiraz, M. Tavana, H. Fukuyama, D. D. Caprio, Fuzzy chance-constrained geometric pro-

gramming: the possibility, necessity and credibility approaches, Operational Research 17 (1)345

(2017) 67–97. doi:10.1007/s12351-015-0216-7.

URL https://ideas.repec.org/a/spr/operea/v17y2017i1d10.1007_s12351-015-0216-7.

html

[19] S. Tassouli, A. Lisser, A neural network approach to solve geometric programs with joint proba-

bilistic constraints, Mathematics and Computers in Simulation 205 (2023) 765–777. doi:https:350

//doi.org/10.1016/j.matcom.2022.10.025.

URL https://www.sciencedirect.com/science/article/pii/S0378475422004384

[20] J. Liu, A. Lisser, Z. Chen, Distributionally robust chance constrained geometric optimization,

Mathematics of Operations Research (2022) 0364–765Xdoi:10.1287/moor.2021.1233.

[21] R. J. Duffin, E. Peterson, C. Zener, Geometric Programming, Wiley, New York, 1967.355

[22] L. El Ghaoui, H. Lebret, Robust solutions to least-squares problems with uncertain data,

SIAM Journal on Matrix Analysis and Applications 18 (4) (1997) 1035–1064. doi:10.1137/

S0895479896298130.

[23] D. Bertsimas, M. Sim, The price of robustness, Operations Research 52 (1) (2004) 35–53.

URL http://www.jstor.org/stable/30036559360

23

http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.11.491
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.11.491
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.11.491
https://www.sciencedirect.com/science/article/pii/S1877050917327485
https://www.sciencedirect.com/science/article/pii/S0142061521003926
https://www.sciencedirect.com/science/article/pii/S0142061521003926
https://www.sciencedirect.com/science/article/pii/S0142061521003926
http://dx.doi.org/https://doi.org/10.1016/j.ijepes.2021.107153
http://dx.doi.org/https://doi.org/10.1016/j.ijepes.2021.107153
http://dx.doi.org/https://doi.org/10.1016/j.ijepes.2021.107153
https://www.sciencedirect.com/science/article/pii/S0142061521003926
http://dx.doi.org/10.1080/09715010.2006.10514848
http://dx.doi.org/10.1080/09715010.2006.10514848
http://dx.doi.org/10.1080/09715010.2006.10514848
http://dx.doi.org/10.1287/trsc.2022.1162
https://www.sciencedirect.com/science/article/pii/S0167637716300761
http://dx.doi.org/https://doi.org/10.1016/j.orl.2016.08.002
http://dx.doi.org/https://doi.org/10.1016/j.orl.2016.08.002
http://dx.doi.org/https://doi.org/10.1016/j.orl.2016.08.002
https://www.sciencedirect.com/science/article/pii/S0167637716300761
https://ideas.repec.org/a/spr/operea/v17y2017i1d10.1007_s12351-015-0216-7.html
https://ideas.repec.org/a/spr/operea/v17y2017i1d10.1007_s12351-015-0216-7.html
https://ideas.repec.org/a/spr/operea/v17y2017i1d10.1007_s12351-015-0216-7.html
http://dx.doi.org/10.1007/s12351-015-0216-7
https://ideas.repec.org/a/spr/operea/v17y2017i1d10.1007_s12351-015-0216-7.html
https://ideas.repec.org/a/spr/operea/v17y2017i1d10.1007_s12351-015-0216-7.html
https://ideas.repec.org/a/spr/operea/v17y2017i1d10.1007_s12351-015-0216-7.html
https://www.sciencedirect.com/science/article/pii/S0378475422004384
https://www.sciencedirect.com/science/article/pii/S0378475422004384
https://www.sciencedirect.com/science/article/pii/S0378475422004384
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2022.10.025
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2022.10.025
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2022.10.025
https://www.sciencedirect.com/science/article/pii/S0378475422004384
http://dx.doi.org/10.1287/moor.2021.1233
http://dx.doi.org/10.1137/S0895479896298130
http://dx.doi.org/10.1137/S0895479896298130
http://dx.doi.org/10.1137/S0895479896298130
http://www.jstor.org/stable/30036559
http://www.jstor.org/stable/30036559


[24] D. Bertsimas, D. B. Brown, Constructing uncertainty sets for robust linear optimization, Oper-

ations Research 57 (6) (2009) 1483–1495.

URL https://EconPapers.repec.org/RePEc:inm:oropre:v:57:y:2009:i:6:p:1483-1495

[25] W. Wiesemann, D. Kuhn, M. Sim, Distributionally robust convex optimization, Operations

Research 62 (6) (2014) 1358–1376. doi:10.1287/opre.2014.1314.365

[26] S. Peng, A. Lisser, V. V. Singh, N. Gupta, E. Balachandar, Games with distribution-

ally robust joint chance constraints, Optim. Lett. 15 (6) (2021) 1931–1953. doi:10.1007/

s11590-021-01700-9.

[27] J. Cheng, E. Delage, A. Lisser, Distributionally robust stochastic knapsack problem, SIAM

Journal on Optimization 24 (3) (2014) 1485–1506. doi:10.1137/130915315.370

[28] X. Dou, M. Anitescu, Distributionally robust optimization with correlated data from vector

autoregressive processes, Operations Research Letters 47 (4) (2019) 294–299. doi:https://

doi.org/10.1016/j.orl.2019.04.005.

[29] X. Li, J. Ke, Robust assortment optimization using worst-case cvar under the multinomial logit

model, Operations Research Letters 47 (5) (2019) 452–457. doi:https://doi.org/10.1016/j.375

orl.2019.07.010.

URL https://www.sciencedirect.com/science/article/pii/S016763771830169X

[30] G. A. Hanasusanto, D. Kuhn, W. Wiesemann, K-adaptability in two-stage distributionally robust

binary programming, Operations Research Letters 44 (1) (2016) 6–11. doi:https://doi.org/

10.1016/j.orl.2015.10.006.380

URL https://www.sciencedirect.com/science/article/pii/S0167637715001376

[31] A. Georghiou, A. Tsoukalas, W. Wiesemann, A primal–dual lifting scheme for two-stage robust

optimization, Operations Research 68 (2) (2020) 572–590. doi:10.1287/opre.2019.1873.

[32] Q. Dai, J. Yang, A distributionally robust chance-constrained approach for modeling demand

uncertainty in green port-hinterland transportation network optimization, Symmetry 12 (9).385

doi:10.3390/sym12091492.

URL https://www.mdpi.com/2073-8994/12/9/1492

[33] A. Zare, C. Y. Chung, J. Zhan, S. O. Faried, A distributionally robust chance-constrained milp

model for multistage distribution system planning with uncertain renewables and loads, IEEE

Transactions on Power Systems 33 (5) (2018) 5248–5262. doi:10.1109/TPWRS.2018.2792938.390

[34] R. J. Fonseca, W. Wiesemann, B. Rustem, Robust international portfolio management, Comput.

Manag. Sci. 9 (1) (2012) 31–62. doi:10.1007/s10287-011-0132-0.

[35] S. Wang, L. Pang, H. Guo, H. Zhang, Distributionally robust optimization with multivariate

second-order stochastic dominance constraints with applications in portfolio optimization, Opti-

mization 0 (0) (2022) 1–24. doi:10.1080/02331934.2022.2048382.395

24

https://EconPapers.repec.org/RePEc:inm:oropre:v:57:y:2009:i:6:p:1483-1495
https://EconPapers.repec.org/RePEc:inm:oropre:v:57:y:2009:i:6:p:1483-1495
http://dx.doi.org/10.1287/opre.2014.1314
http://dx.doi.org/10.1007/s11590-021-01700-9
http://dx.doi.org/10.1007/s11590-021-01700-9
http://dx.doi.org/10.1007/s11590-021-01700-9
http://dx.doi.org/10.1137/130915315
http://dx.doi.org/https://doi.org/10.1016/j.orl.2019.04.005
http://dx.doi.org/https://doi.org/10.1016/j.orl.2019.04.005
http://dx.doi.org/https://doi.org/10.1016/j.orl.2019.04.005
https://www.sciencedirect.com/science/article/pii/S016763771830169X
https://www.sciencedirect.com/science/article/pii/S016763771830169X
https://www.sciencedirect.com/science/article/pii/S016763771830169X
http://dx.doi.org/https://doi.org/10.1016/j.orl.2019.07.010
http://dx.doi.org/https://doi.org/10.1016/j.orl.2019.07.010
http://dx.doi.org/https://doi.org/10.1016/j.orl.2019.07.010
https://www.sciencedirect.com/science/article/pii/S016763771830169X
https://www.sciencedirect.com/science/article/pii/S0167637715001376
https://www.sciencedirect.com/science/article/pii/S0167637715001376
https://www.sciencedirect.com/science/article/pii/S0167637715001376
http://dx.doi.org/https://doi.org/10.1016/j.orl.2015.10.006
http://dx.doi.org/https://doi.org/10.1016/j.orl.2015.10.006
http://dx.doi.org/https://doi.org/10.1016/j.orl.2015.10.006
https://www.sciencedirect.com/science/article/pii/S0167637715001376
http://dx.doi.org/10.1287/opre.2019.1873
https://www.mdpi.com/2073-8994/12/9/1492
https://www.mdpi.com/2073-8994/12/9/1492
https://www.mdpi.com/2073-8994/12/9/1492
http://dx.doi.org/10.3390/sym12091492
https://www.mdpi.com/2073-8994/12/9/1492
http://dx.doi.org/10.1109/TPWRS.2018.2792938
http://dx.doi.org/10.1007/s10287-011-0132-0
http://dx.doi.org/10.1080/02331934.2022.2048382


[36] C. Shang, F. You, Distributionally robust optimization for planning and scheduling under uncer-

tainty, Computers & Chemical Engineering 110 (2018) 53–68. doi:https://doi.org/10.1016/

j.compchemeng.2017.12.002.

URL https://www.sciencedirect.com/science/article/pii/S009813541730426X

[37] K. Postek, D. den Hertog, B. Melenberg, Computationally tractable counterparts of distri-400

butionally robust constraints on risk measures, SIAM Review 58 (4) (2016) 603–650. doi:

10.1137/151005221.

[38] G. Hanasusanto, D. Kuhn, S. Wallace, S. Zymler, Distributionally robust multi-item newsvendor

problems with multimodal demand distributions, Mathematical Programming 152. doi:10.

1007/s10107-014-0776-y.405

[39] Y. Zhang, S. Shen, S. A. Erdogan, Distributionally robust appointment scheduling with moment-

based ambiguity set, Operations Research Letters 45 (2) (2017) 139–144. doi:https://doi.org/

10.1016/j.orl.2017.01.010.

URL https://www.sciencedirect.com/science/article/pii/S0167637717300688

[40] S. Ghosal, W. Wiesemann, The distributionally robust chance-constrained vehicle routing prob-410

lem, Operations Research 68 (3) (2020) 716–732. doi:10.1287/opre.2019.1924.

[41] C. Ordoudis, V. A. Nguyen, D. Kuhn, P. Pinson, Energy and reserve dispatch with distribu-

tionally robust joint chance constraints, Operations Research Letters 49 (3) (2021) 291–299.

doi:https://doi.org/10.1016/j.orl.2021.01.012.

URL https://www.sciencedirect.com/science/article/pii/S0167637721000213415

[42] D. W. Tank, J. J. Hopfield, Simple ’neural’ optimization networks: An a/d converter, signal

decision circuit, and a linear programming circuit, 1986.

[43] Y. Xia, J. Wang, A recurrent neural network for nonlinear convex optimization subject to nonlin-

ear inequality constraints, IEEE Transactions on Circuits and Systems I: Regular Papers 51 (7)

(2004) 1385–1394. doi:10.1109/TCSI.2004.830694.420

[44] J. Wang, A deterministic annealing neural network for convex programming, Neural Networks

7 (4) (1994) 629–641. doi:https://doi.org/10.1016/0893-6080(94)90041-8.

URL https://www.sciencedirect.com/science/article/pii/0893608094900418

[45] A. Nazemi, F. Omidi, An efficient dynamic model for solving the shortest path problem, Trans-

portation Research Part C: Emerging Technologies 26 (2013) 1–19. doi:https://doi.org/10.425

1016/j.trc.2012.07.005.

URL https://www.sciencedirect.com/science/article/pii/S0968090X12000964

[46] M. Spitmaan, H. Seo, D. Lee, A. Soltani, Multiple timescales of neural dynamics and integration

of task-relevant signals across cortex, Proceedings of the National Academy of Sciences 117 (36)

25

https://www.sciencedirect.com/science/article/pii/S009813541730426X
https://www.sciencedirect.com/science/article/pii/S009813541730426X
https://www.sciencedirect.com/science/article/pii/S009813541730426X
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2017.12.002
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2017.12.002
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2017.12.002
https://www.sciencedirect.com/science/article/pii/S009813541730426X
http://dx.doi.org/10.1137/151005221
http://dx.doi.org/10.1137/151005221
http://dx.doi.org/10.1137/151005221
http://dx.doi.org/10.1007/s10107-014-0776-y
http://dx.doi.org/10.1007/s10107-014-0776-y
http://dx.doi.org/10.1007/s10107-014-0776-y
https://www.sciencedirect.com/science/article/pii/S0167637717300688
https://www.sciencedirect.com/science/article/pii/S0167637717300688
https://www.sciencedirect.com/science/article/pii/S0167637717300688
http://dx.doi.org/https://doi.org/10.1016/j.orl.2017.01.010
http://dx.doi.org/https://doi.org/10.1016/j.orl.2017.01.010
http://dx.doi.org/https://doi.org/10.1016/j.orl.2017.01.010
https://www.sciencedirect.com/science/article/pii/S0167637717300688
http://dx.doi.org/10.1287/opre.2019.1924
https://www.sciencedirect.com/science/article/pii/S0167637721000213
https://www.sciencedirect.com/science/article/pii/S0167637721000213
https://www.sciencedirect.com/science/article/pii/S0167637721000213
http://dx.doi.org/https://doi.org/10.1016/j.orl.2021.01.012
https://www.sciencedirect.com/science/article/pii/S0167637721000213
http://dx.doi.org/10.1109/TCSI.2004.830694
https://www.sciencedirect.com/science/article/pii/0893608094900418
http://dx.doi.org/https://doi.org/10.1016/0893-6080(94)90041-8
https://www.sciencedirect.com/science/article/pii/0893608094900418
https://www.sciencedirect.com/science/article/pii/S0968090X12000964
http://dx.doi.org/https://doi.org/10.1016/j.trc.2012.07.005
http://dx.doi.org/https://doi.org/10.1016/j.trc.2012.07.005
http://dx.doi.org/https://doi.org/10.1016/j.trc.2012.07.005
https://www.sciencedirect.com/science/article/pii/S0968090X12000964
https://www.pnas.org/doi/abs/10.1073/pnas.2005993117
https://www.pnas.org/doi/abs/10.1073/pnas.2005993117
https://www.pnas.org/doi/abs/10.1073/pnas.2005993117


(2020) 22522–22531. doi:10.1073/pnas.2005993117.430

URL https://www.pnas.org/doi/abs/10.1073/pnas.2005993117

[47] M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidi-

mensional complex space, IEEE Transactions on Evolutionary Computation 6 (1) (2002) 58–73.

doi:10.1109/4235.985692.

[48] S. H. Ling, H. H. C. Iu, K. Y. Chan, H. K. Lam, B. C. W. Yeung, F. H. Leung, Hybrid particle435

swarm optimization with wavelet mutation and its industrial applications, IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics) 38 (3) (2008) 743–763. doi:10.1109/

TSMCB.2008.921005.

[49] S. Uryasev, P. Pardalos, Stochastic Optimization: Algorithms and Applications, Applied Opti-

mization, Springer US, 2013.440

URL https://books.google.fr/books?id=B_fiBwAAQBAJ

[50] P. F. Gorski Jochen, K. Kathrin, Biconvex sets and optimization with biconvex functions: a

survey and extensions, Mathematical Methods of Operations Research (2007) 373–467doi:10.

1007/s00186-007-0161-1.

[51] Geometric Programming, John Wiley and Sons, Ltd, 2009, Ch. 8, pp. 492–543. doi:https:445

//doi.org/10.1002/9780470549124.ch8.

[52] P. Adasme, A. Lisser, A stochastic geometric programming approach for power allocation in

wireless networks, Wireless Networksdoi:10.1007/s11276-023-03295-8.

26

http://dx.doi.org/10.1073/pnas.2005993117
https://www.pnas.org/doi/abs/10.1073/pnas.2005993117
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1109/TSMCB.2008.921005
http://dx.doi.org/10.1109/TSMCB.2008.921005
http://dx.doi.org/10.1109/TSMCB.2008.921005
https://books.google.fr/books?id=B_fiBwAAQBAJ
https://books.google.fr/books?id=B_fiBwAAQBAJ
http://dx.doi.org/10.1007/s00186-007-0161-1
http://dx.doi.org/10.1007/s00186-007-0161-1
http://dx.doi.org/10.1007/s00186-007-0161-1
http://dx.doi.org/https://doi.org/10.1002/9780470549124.ch8
http://dx.doi.org/https://doi.org/10.1002/9780470549124.ch8
http://dx.doi.org/https://doi.org/10.1002/9780470549124.ch8
http://dx.doi.org/10.1007/s11276-023-03295-8

	Introduction
	Problem statement and reformulation
	Uncertainty Sets with First Two Order Moments
	Case (JCP) with Jointly Independent Row Vectors.
	Case (JCP) with Jointly Dependent Row Vectors.

	Uncertainty Sets with Known First Order Moment and Nonnegative Support
	Case (JCP) with Jointly Independent Row Vectors.
	Case (JCP) with Jointly Dependent Row Vectors.


	A dynamical recurrent neural network for (JCP_dep^log ), (JCP_ind^log ) and (JCP_NS-ind^log ) 
	A two-time scale neurodynamic duplex for (JCP_NS-dep^log )
	Numerical experiments
	Uncertainty Sets with First Two Order Moments
	A three-dimension shape optimization problem
	Multidimensional shape optimization problem

	Uncertainty Sets with Known First Order Moment and Nonnegative Support
	A generalized shape optimization problem
	Maximizing the worst user signal-to-interference noise ratio


	Conclusion

