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Abstract:
This paper introduces a new neurodynamic duplex approach to address distributionally robust joint chance-
constrained optimization problems. We assume that the constraints’ row vectors are independent, and their
probability distributions belong to a specific distributional uncertainty set that is not known beforehand. Within
our study, we examine two uncertainty sets for these unknown distributions. Our framework’s key feature is the
use of a neural network-based method to solve distributionally robust joint chance-constrained optimization
problems, achieving an almost sure convergence to the optimum without relying on standard state-of-the-art
solving methods. In the numerical section, we apply our proposed approach to solve a profit maximization
problem, demonstrating its performance and comparing it against existing state-of-the-art methods.

1 INTRODUCTION

Chance-constrained programming appears with the
increased need to include uncertainty in complex
decision-making models. It was introduced for
the first time by Charnes & Cooper (Charnes and
Cooper, 1959). Since then, chance-constrained op-
timization has been widely studied, and the range
of applications is very large. In this paper, we are
interested in solving joint chance-constrained opti-
mization problems. We study the case where the
distribution of the random parameters is unknown,
aka distributionally robust optimization. In fact, we
may only know partial information about the statis-
tical properties of the stochastic parameters.

El Ghaoui & Lebret (El Ghaoui and Lebret,
1997) use second-order cone programming to solve
least-squares problems where the stochastic param-
eters are not known but bounded. Bertsimas &
Sim (Bertsimas and Sim, 2004) introduce a less
conservative approach to solve linear optimization
problems with uncertain data. Bertsimas & Brown
(Bertsimas and Brown, 2009) propose a general
scheme for designing uncertainty sets for robust op-
timization. Wiesemann et al. (Wiesemann et al.,
2014) propose standardized ambiguity sets for mod-
eling and solving distributionally robust optimiza-
tion problems. Peng et al. (Peng et al., 2021)
study one density-based uncertainty set and four
two-moments based uncertainty sets to solve games
with distributionally robust joint chance constraints.
Cheng et al. (Cheng et al., 2014) solve a distribu-
tionally robust quadratic knapsack problem. Dou &

Anitescu (Dou and Anitescu, 2019) propose a new
ambiguity set tailored to unimodal and seemingly
symmetric distributions to deal with distributionally
robust chance constraints. Li & Ke (Li and Ke,
2019) approximate a distributionally robust chance
constraint by the worst-case Conditional Value-at-
Risk. Hanasusanto et al. (Hanasusanto et al., 2016)
approximate two-stage distributionally robust pro-
grams with binary recourse decisions. Georghiou et
al. (Georghiou et al., 2020) propose a primal-dual
lifting scheme for the solution of two-stage robust
optimization problems.

Recent papers have considered the use of distri-
butionally robust approaches in transportation net-
work optimization problems (Dai and Yang, 2020),
multistage distribution system planning (Zare et al.,
2018), portfolio optimization problems (Fonseca
et al., 2012; ?), planning and scheduling (Shang
and You, 2018), risk measures (Postek et al., 2016),
multimodal demand problems (Hanasusanto et al.,
2014), appointment scheduling (Zhang et al., 2017),
vehicle routine problems (Ghosal and Wiesemann,
2020) and energy and reserve dispatch (Ordoudis
et al., 2021).

The neurodynamic system approach represents a
significant methodology for addressing optimization
problems. By employing artificial recurrent neu-
ral networks, optimization problems can be trans-
formed into dynamic systems described by first-
order differential equations. These dynamic systems
are expected to converge to static states or equi-
librium points, which correspond to the solutions
of the original optimization problems, starting from



given initial points. Moreover, neural networks de-
signed for optimization purposes can be readily im-
plemented in hardware using integrated circuits, al-
lowing for easy deployment. Neural networks of-
fer two compelling advantages when applied to opti-
mization problems: parallel information processing
and hardware implementability. Neural networks
possess inherent parallel processing capabilities, en-
abling the simultaneous evaluation of multiple in-
puts and the computation of the corresponding out-
puts. This parallelism facilitates efficient and con-
current information processing, leading to faster op-
timization performance compared to sequential al-
gorithms. Additionally, neural networks can be im-
plemented using specialized hardware, such as inte-
grated circuits or dedicated processing units. This
hardware implementation leverages the parallel na-
ture of neural networks, further enhancing compu-
tational speed and efficiency. By utilizing hardware
resources, neural networks can be deployed in real-
time applications or embedded systems, enabling
efficient and rapid optimization across various do-
mains. Over the past few decades, recurrent neural
networks (RNNs) have received extensive attention
for solving optimization problems. A notable early
breakthrough in this field was achieved by Hopfield
and Tank in 1985 (Hopfield and Tank, 1985), where
they introduced a linear programming neural net-
work specifically designed for online optimization
applications. Since then, numerous RNN architec-
tures have been proposed to address constrained op-
timization problems. Xia & Wang (Xia and Wang,
2004) present a recurrent neural network for solving
nonlinear convex programming problems subject
to nonlinear inequality constraints. Wang (Wang,
1994) proposes a deterministic annealing neural net-
work for convex programming. Nazemi & Omedi
(Nazemi and Omidi, 2013) presents a neural net-
work model for solving the shortest path problems.
Tassouli & Lisser (Tassouli and Lisser, 2023) pro-
pose a recurrent neural network to solve geometric
joint chance-constrained optimization problems.

In this paper, we introduce a novel two-timescale
duplex neurodynamic approach for distributionally
robust joint chance-constrained optimization prob-
lems, which is formulated using a biconvex reformu-
lation. Unlike other existing methods that give lower
or upper bounds to this kind of problem, the pro-
posed approach employs two recurrent neural net-
works that operate collaboratively at two different
timescales and converge almost surely to an opti-
mal solution value of the given distributionally ro-
bust optimization problem. The main contributions
of our work are threefold.

(i) On the formulation side, we reformulate the dis-
tributionally robust initial problem as a nonlin-
ear biconvex problem for each uncertainty set.
Then, we propose a duplex of two recurrent neu-
ral networks to solve the resulting problems. To
the best of our knowledge, distributionally ro-

bust joint chance-constrained optimization prob-
lems have not been addressed using dynamical
neural networks.

(ii) On the theoretical side, we show that our neu-
rodynamic duplex converges almost surely to a
global optimum of the optimization problem.

(iii) On the numerical side, we show that our neuro-
dynamic duplex gives robust solutions to the ini-
tial problem and outperforms the state-of-the-art
solving methods.

The rest of the paper is organized as follows. In
Section 2, we study two uncertainty sets to solve a
distributionally robust chance-constrained optimiza-
tion problem and give the optimality conditions of
the obtained deterministic programs. We propose
in Section 3 a duplex of two two-timescale neuro-
dynamic systems that converges to a global optimal
solution of the initial problem. We study the con-
vergence analysis in Section 4. Section 5 introduces
a profit maximization problem to evaluate the pro-
posed approach.

2 PROBLEM STATEMENT AND
OPTIMALITY CONDITIONS

In this paper, we are interested in the optimization
problem of the form.

min
x∈IRn

+

supF0∈D0
EF0

[
ζ̃0

T
x
]
, (1)

s.t inf
F ∈D

PF

(
ζ̃kx ≤ bk,k = 1, ...,K

)
≥ α. (2)

where ζ̃0 ∈ IRn is an uncertain parameter,
[ζ̃1, ζ̃2, ...ζ̃K ]

T is a K × n set of pairwise inde-
pendent random vectors in IRn and b ∈ IRK is a
deterministic vector. We consider the case where the
probability distribution F0 of ζ̃0 belongs to a certain
uncertainty set D0 and the probability distributions
Fk of ζ̃k, k = 1, ...,K are not completely known and
belong to Dk. Thus, we take the worst-case where
constraints (2) are jointly satisfied for all possible
distributions in a given distributional uncertainty
set D with a given probability level α. Based on
the pairwise independence between the vectors
(ζ̃k)k∈{1,..,K}, we introduce nonnegative auxiliary
variables zk, k = 1, ...,K and rewrite constraint (2)
as 

inf
Fk∈Dk

PFk

(
ζ̃kx ≤ bk

)
≥ α

zk ,k = 1, ...,K

K

∑
k=1

zk = 1,

zk ≥ 0,k = 1, ...,K.

(3)

In this section, we propose two uncertainty sets
to solve (1)-(2) using two moments-based uncer-
tainty sets to define Dk, k = 1, ...,K.



We first assume that we know the mean vector
µk and the covariance matrix Σk of ζ̃T

k . We define for
every k = 0,1, ...,K

D1
k (µk,Σk)=

{
Fk

∣∣∣∣ E[ζ̃T
k ] = µk

E[(ζ̃T
k −µk)(ζ̃

T
k −µk)

T ] = Σk

}
,

where Fk is a probability distribution of ζ̃T
k . In

this case, we have the following deterministic
reformulation for the distributionally robust joint
chance constraint (2) in (Cheng et al., 2014).

µT
k x+

√
αzk

1−αzk
||Σ

1
2
k x||≤ bk,k = 1, ...,K

K

∑
k=1

zk = 1,

zk ≥ 0,k = 1, ..,K.

(4)

We obtain the following deterministic equivalent
problem for (1)-(2).

min µT
0 x, (5)

s.t. µT
k x+

√
αzk

1−αzk
||Σ

1
2
k x||≤ bk,k = 1, ...,K (6)

K

∑
k=1

zk = 1,x ≥ 0, (7)

zk ≥ 0,k = 1, ..,K. (8)

Lemma 1. The function z 7→
√

αz

1−αz , with 0 < α <

1 is convex ∀z > 0.

Proof. Let z > 0 and 0 < α < 1, we have
√

αz

1−αz =

exp
{ 1

2 (zlog(α)− log(1−αz))
}

. We have z 7→ αz is
a convex function and the function z 7→ log(1− z)
is non-increasing and concave, there follows that
z 7→ log(1 − αz) is concave. We have that z 7→
1
2 (zlog(α)− log(1−αz)) is convex as an addition of
two convex functions. Furthermore, z 7→ ez is a non-
increasing convex function. Then we conclude that
z 7→ exp

{ 1
2 (zlog(α)− log(1−αz))

}
is convex.

Corollary 2. Problem (5)-(8) is biconvex on (x,z)

Now we consider that the mean of ζ̃k lies
in an ellipsoid of size γk1 ≥ 0 with center µk

and that the covariance matrix of ζ̃k lies in a
positive semidefinite cone of center Σk. We
define for every k = 0,1, ...,K, D2

k (µk,Σk) ={
Fk

∣∣∣∣ (EFk [ζ̃
T
k ]−µk)

T Σ
−1
k (EFk [ζ̃

T
k ]−µk)≤ γk1

COVFk(ζ̃
T
k )⪯ γk2Σk

}
,

where γk2 ≥ 0 and COVFk is a covariance operator
under probability distribution Fk. The deterministic
reformulation for the distributionally robust joint
chance constraint (2) in this case is given in (Peng

et al., 2021) as follows.

µT
k x+

(√
αzk

1−αzk

√
γk2 +

√
γk1

)
||Σ

1
2
k x||≤ bk,k = 1, ...,K

K

∑
k=1

zk = 1,

zk ≥ 0,k = 1, ..,K.

(9)

We can formulate the objective function as (Liu
et al., 2022)

min
x∈IRn

+

µT
0 x+

√
γ01||Σ

1
2
0 x||. (10)

The constraints set (9) is biconvex and the objective
function (10) is convex.
To study the optimality conditions of the robust joint
chance-constrained problem. We give the equivalent
deterministic problem for each uncertainty set in a
general form as follows.

min f (x), (11)
s.t. gk(x,z)≤ 0,k = 1, ...,K, (12)

h(z)≤ 0, (13)
l(x)≤ 0, (14)

where, f (x)=

{
µT

0 x, if Dk = D1
k

µT
0 x+

√
γ01||Σ

1
2
0 x||, if Dk = D2

k

,

h(z) = (
K
∑

k=1
zk − 1,1 −

K
∑

k=1
zk,−z1,−z2, ...,zK)

T ,

l(x) = −x and gk(x,z) = µT
k x+

√
α

zk
1−α

zk ||Σ
1
2
k x||−bk, if Dk = D1

k

µT
k x+(

√
α

zk
1−α

zk

√
γk2 +

√
γk1)||Σ

1
2
k x||−bk, if Dk = D2

k

.

Definition 1. Let U the feasible set of (11)-(14), we
define Ux = {z | gk(x,z) ≤ 0,h(z) ≤ 0,k = 1, ...,K}
and Uz = {x | gk(x,z) ≤ 0, l(x) ≤ 0,k = 1, ...,K}.
(x∗,z∗) is a partial optimum of (11)-(14) if f (x∗) ≤
f (x), ∀x ∈ Uz∗ .
Definition 2. Let U the feasible set of (11)-(14) and
(x∗,z∗) ∈ U. If there exists β(1), β(2), γ and λ such
that (x∗,z∗) verifies

∇x f (x)+β
(1)T

∇xg(x,z)+λ
T

∇xl(x) = 0, (15)

λ ≥ 0,λT l(x) = 0,β(1) ≥ 0,β(1)T
g(x,z) = 0,

(16)

β
(2)T

∇zg(x,z)+ γ
T

∇zh(z) = 0, (17)

β
(2) ≥ 0,β(2)T

g(x,z) = 0,γ ≥ 0,γT h(z) = 0, (18)

where g(x,z) = (g1(x,z), ...,gK(x,z)) and (x)+ =
max(0,x). Then (x∗,z∗) is called a partial KKT point
of (11)-(14).



Theorem 3. The partial KKT system (15)-(18) is
equivalent to the following system

∇x f (x)+∇xg(x,z)T (β(1)+g(x,z))++∇xl(x)(λ+ l(x))+ = 0

∇zg(x,z)T (β(2)+g(x,z))++∇zh(z)T (γ+h(z))+ = 0

(β(1)+g(x,z))+−β(1) = 0

(β(2)+g(x,z))+−β(2) = 0 (19)
(λ+ l(x))+−λ = 0
(γ+h(z))+− γ = 0

Proof. By (β(1)+g(x,z))+ = β(1) and (λ+ l(x))+ =
λ, we have(

∇x f (x)+∇xg(x,z)T (β(1)+g(x,z))++∇xl(x)(λ+ l(x))+ = 0
)

⇔(
∇x f (x)+β(1)T

∇xg(x,z)+λT ∇xl(x) = 0
)
.

We obtain the equation (18) of the partial KKT sys-
tem.

Furthermore, observe that

• (β(1)+g(x,z))+−β(1)= 0 if and only if β(1)≥ 0,
g(x,z)≤ 0 and β(1)T

g(x,z) = 0,
• (λ+ l(x))+−λ = 0 if and only if λ ≥ 0, l(x)≤ 0

and λT l(x) = 0,

which leads to the equation (16) of the partial KKT
system. We obtain the remaining equations follow-
ing the same lines. The converse part of the theorem
is straightforward.

Definition 3. Let (x∗,z∗) a feasible point of (11)-
(14). If x∗ ≥ 0, h(z∗) ≤ 0 and there exists (x̄, z̄)
such that g(x∗, z̄) ≤ 0 and g(x̄,z∗) ≤ 0, then (11)-
(14) satisfies partial Slater constraint qualification at
(x∗,z∗).

The following theorem gives the optimality condi-
tions of problem (11)-(14).

Theorem 4. If partial Slater constraint qualification
hold for (11)-(14) at (x∗,z∗), then (x∗,z∗) is a par-
tial optimum of (11)-(14) if and only if (x∗,z∗) is
a partial KKT point of (11)-(14). Furthermore, if
β(1) = β(2) then (x∗,z∗) is a KKT point of (11)-(14).

Remark 5. The proof of Theorem 4 follows the
lines of Theorem 1 in (Shen et al., 2020).

3 A NEURODYNAMIC DUPLEX

Based on the system (19), we propose a duplex of
two two-time-scale recurrent neural network models
for solving (11)-(14). Every recurrent neural net-
work of the duplex is driven by the following ODE

system.

κ1
dx
dt

=−
(
∇x f (x)+∇xg(x,z)T (β+g(x,z))++∇xl(x)(λ+ l(x))+

)
,

(20)

κ2
dz
dt

=−
(
∇zg(x,z)T (β+g(x,z))++∇zh(z)T (γ+h(z))+

)
,

(21)

κ2
dβ

dt
=−β+(β+g(x,z))+, (22)

κ2
dλ

dt
=−λ+(λ+ l(x))+. (23)

κ2
dγ

dt
=−γ+(γ+h(z))+. (24)

where (x,z,β,γ,λ) are now time-dependent vari-
ables and κ1 and κ2 are two time scaling constants
with κ1 ̸= κ2. We consider a duplex of two two-
time-scale recurrent neural network (20)-(24) RNN1
and RNN2 for solving (11)-(14) one with κ1 > κ2
and the second with κ1 < κ2 as shown in Figure 1.
The zoom on RNN1 shows the circuit implementa-
tion of a single two-timescale recurrent neural net-
work (20)-(24).

Theorem 6. (x∗,z∗,β∗,γ∗,λ∗) is an equilibrium
point of (20)-(24) if and only if (x∗,z∗) is a KKT
point of (11)-(14) and β∗,γ∗ and λ∗ are the associ-
ated Lagrange variables.

Proof. (x∗,z∗,β∗,γ∗,λ∗) is an equilibrium point of
(20)-(24) if and only if dx

dt = 0, dz
dt = 0, dβ

dt = 0, dλ

dt =

0 and dγ

dt = 0, we obtain system (19). By Theorems
3 and 4 the conclusion follows.

We describe the working process of the neurody-
namic duplex as follows:
First, the state variables of the neurodynamic models
are initialized. Then, each model undergoes a pre-
cise local search based on its dynamics for the op-
timization process. Once all neurodynamic models
have converged to their equilibria, the initial states
of the recurrent neural networks are optimized us-
ing the updating rule of particle swarm optimiza-
tion (PSO). We denote yi = (yi1, ...,yin)

T the posi-
tion of the ith particle and vi = (vi1, ...,vin)

T its ve-
locity. The inertia weight w ∈ [0,1] determines the
degree to which the particle’s previous velocity is re-
tained. The best previous position yielding the max-
imum fitness value for the ith particle is denoted as
ỹi = (ỹi1, ..., ỹin)

T , and the best position yielding the
maximum fitness value in the swarm is represented
by ŷ = (ŷ1, ..., ŷn)

T . The initial state of each neuro-
dynamic model is updated using the PSO updating
rule given by (Clerc and Kennedy, 2002), i.e,

vi( j+1) = wvi( j)+ c1r1(ỹi − yi( j))+ c2r2(ŷi − yi( j)),
(25)

yi( j+1) = yi( j)+ vi( j+1). (26)

where the iterative index is represented by j, while
the two weighting parameters are denoted as c1 and
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Figure 1: A block diagram depicting a duplex neurodynamic system with a two-timescale configuration

c2. r1 and r2 represent two random values drawn
from the interval [0,1].

The diversity of initial neuronal states plays a
critical role in achieving global optimization. Intro-
ducing a mutation operator, which generates a ran-
dom yi( j + 1), can enhance the diversity of initial
neuronal states. To quantify the diversity of these
states, we use the following function

d =
1
n

n

∑
i=1

∥yi( j+1)− ŷ( j)∥. (27)

We use wavelet mutation operator from (Ling et al.,
2008) and performing for the ith particle if d < ζ as
follows

yi( j+1)=
{

yi( j)+µ(hi − yi( j)) , ρ > 0
yi( j)+µ(yi( j)− li) , ρ < 0 (28)

where hi and li are the upper and the lower bound
for yi, respectively. ζ > 0 is a given threshold and ρ

is defined using a wavelet function

ρ =
1√
a

e−
φ

2a cos(5
φ

a
) (29)

As the value of ρ goes to 1, the mutated ele-
ment of the particle will move towards the maximum
value of yi( j + 1), whereas is close to -1, the mu-
tated element goes towards the minimum value of
xi( j+ 1). The magnitude of |ρ| determines the size
of the search space for xi( j+ 1), with larger values
indicating a wider search space. Conversely, smaller
values of |µ| lead to a smaller search space for fine-
tuning. To achieve fine-tuning, the value of the di-
lation parameter a is adjusted based on the current

number of iterations j relative to the total number
of iterations T . Specifically, a is a function of j/T ,
we take a = e10 j

T . We generate φ randomly from
[−2.5a,2.5a].

The algorithm details are given in Algorithm 1
where y = (x,z,β,γ)

4 CONVERGENCE ANALYSIS

Lemma 7. (Uryasev and Pardalos, 2013) Suppose
that the objective function f is measurable, and the
feasible region U is a measurable subset, and for any
Borel subset B of U with positive Lebesgue mea-

sure we have
∞

∏
k=1

(1 − Pk(B)) = 0. Let {y(k)}∞
k=1

be a sequence generated by a stochastic optimiza-
tion algorithm. If { f (y(k))}∞

k=1 is a nonincreasing
sequence, then it converges in probability to the set
of global optimal solutions.
Theorem 8. If the state of the following neurody-
namic model with a single timescale

κ
dx
dt =−

(
∇x f (x)+∇xg(x,z)T (β+g(x,z))++∇xl(x)(λ+ l(x))+

)
,

κ
dz
dt =−

(
∇zg(x,z)T (β+g(x,z))++∇zh(z)T (γ+h(z))+

)
,

κ
dβ

dt =−β+(β+g(x,z))+,

κ
dλ

dt =−λ+(λ+ l(x))+. (30)

κ
dγ

dt =−γ+(γ+h(z))+.

converges to an equilibrium point, then the state of
a neurodynamic model with two timescales, as de-



Algorithm 1 The neurodynamic duplex

- Let y1(0) and y2(0) be randomly generated in
the feasible region.
- Let ỹ(0) = ŷ(0) = y(0) the initial best previous
position and best position, respectively.
-Set the convergence error ε.
while ||y( j+1)− y( j)||≥ ε do

Compute the equilibrium points ȳ1( j) and ȳ2( j)
of RNN1 and RNN2 based on (20)-(24).
if f (x̄1( j))< f (x̃( j)) then

ỹ( j+1) = ȳ1( j)
else

ỹ( j+1) = ỹ( j)
end if
if f (x̄2( j))< f (x̃( j)) then

ỹ( j+1) = ȳ2( j)
else

ỹ( j+1) = ỹ( j)
end if
if f (x̃( j))< f (x̂( j)) then

ŷ( j+1) = ỹ( j+1)
else

ŷ( j+1) = ŷ( j)
end if
Compute the value of y( j+ 1) following (25)-
(26).
if d < ζ then

Perform the wavelet mutation (28).
end if
j=j+1

end while

scribed by equations (20)-(24), globally converges
to a partial optimum of problem (11)-(14).

Proof. The Lagrangian function of problem (11)-
(14) is given by

L(x,z,β,λ,γ) = f (x)+β
T g(x,z)+ γ

T l(x)+λ
T h(z).

As an equilibrium point of (30) corresponds to a
KKT point (x∗,z∗,β∗,λ∗,γ∗) of (11)-(14) (Xia and
Wang, 2004) verifying

∇xL(x∗,z∗,β∗,λ∗,γ∗) = 0, (31)
∇zL(x∗,z∗,β∗,λ∗,γ∗) = 0, (32)
∇βL(x∗,z∗,β∗,λ∗,γ∗) = 0, (33)

∇γL(x∗,z∗,β∗,λ∗,γ∗) = 0, (34)
∇λL(x∗,z∗,β∗,λ∗,γ∗) = 0, (35)

β
∗T g(x∗,z∗) = 0,β∗ ≥ 0, (36)

γ
∗T l(x∗) = 0,γ∗ ≥ 0. (37)

λ
∗T h(z∗) = 0,λ∗ ≥ 0. (38)

We fix x∗ and take z ∈ U∗
x , problem (11)-(14) be-

comes convex, we have

L(x∗,z∗,β∗,λ∗,γ∗)≤ L(x∗,z,β∗,λ∗,γ∗),

which leads to

f (x∗)+β∗T g(x∗,z∗)+λ∗T h(z∗)≤ f (x∗)+β∗T g(x∗,z)+λ∗T h(z).

As λ∗T l(x)≤ λ∗T l(x∗) = 0, γ∗T h(z)≤ γ∗T h(z∗) = 0
and β∗T g(x∗,z) ≤ β∗T g(x∗,z∗) = 0 from the KKT
conditions, then f (x∗)≤ f (x) and this for every z ∈
U∗

x . By Definition 2, we have that x∗ is a partial
optimum of (11)-(14).

Theorem 9. If the state of the two-timescale neuro-
dynamic model (20)-(24) converges to a partial opti-
mum, the initial states and time constants of the two
neurodynamic models are different. Then, the du-
plex of two two-timescale neural networks in Figure
1 system is globally convergent to a global optimal
solution of problem (11)-(14).

Proof. By Theorem 4, the two-timescale neuro-
dynamic models RNN1 and RNN2 are proven to
converge to a partial optimum. From Algorithm ??,
the solution sequence is generated as follows

{
ŷ( j+1) = ỹ( j+1) if f (x̃( j))< f (x̂( j)),
ŷ( j+1) = ŷ( j) else.

We observe that the generated solution sequence
{ f (ŷ( j))}∞

j=1 is monotonically increasing.
Let Mi, j be the supporting set of the initial state

of RNNi at iteration j. As indicated by equation
(28), the mutation operation ensures that the initial
states of the RNNs are forced to be in the feasible
region U. Hence, for every iteration index J ≥ 1,
the supporting sets fulfill the following condition

U ⊆ M =
J⋃

j=1

2⋃
i=1

Mi, j. (39)

We have v(U) = v(M )> 0. By Lemma 7, we have

lim
j−>∞

P(ŷ( j) ∈ Φ) = 1 (40)

where Φ is the set of the global optimal solutions of
(11)-(14). The conclusion follows.

5 NUMERICAL EXPERIMENTS

To evaluate the performance of our approach, we
consider a standard profit maximization problem. A
manufacturing firm produces n products with N dif-
ferent machines. The times required to manufacture
each unit are random variables. The mean vector µ j
and the covariance matrix Σ j describing the uncer-
tainty sets of the time vector t j = {ti j}1≤i≤n, where ti j
is the time required to manufacture one unit of each
of product i using machine j and the daily capacity
of each machine j given by b j are given. The ob-
jective of the study is to determine the daily number
of units to be manufactured for each product with-
out exceeding the available machining times. We



write our robust joint chance-constrained maximiza-
tion problem as follows.

min
x≥0

˙F˙0 ∈ D0 −E
[
c̃T x
]
, (41)

s.t. inf
F ∈D

P

(
n

∑
i=1

ti jxi ≤ b j, j = 1, ...,N

)
≥ p,(42)

where vector c̃ is a random variable and corre-
sponds to the profit per unit for each product, ti j is
the time required to manufacture one unit of product
i using machine j, b j is the time capacity of machine
j, p is a given probability level, D0 is an uncertainty
set for the distribution F0 of c̃ and D is an uncer-
tainty set for the distribution F of the random vari-
ables.

All the algorithms in this Section are im-
plemented in Python. We run our algo-
rithms on Intel(R) Core(TM) i7-10610U CPU @
1.80GHz. The random instances are generated
with numpy.random, and we solve the ODE sys-
tems with solve ivp of scipy.integrate. The deter-
ministic equivalent programs are solved with the
package gekko and the gradients and partial deriva-
tives are computed with autograd.grad and auto-
grad.jacobian. For the following numerical exper-
iments, the values of µ j and c̄ the mean of c̃ are
uniformly generated in [2.0,4.0], the components of
the matrix Σ j are uniformly drawn in the interval
[1.0,3.0] and we generate the values of b j uniformly
in [50.0,60.0], γk1 = 5 and γk2 = 5.

The resulting deterministic equivalent problems
of (41)-(42), where the uncertainty sets are D1 and
D2 are given respectively by

min −c̄T x,

s.t. µT
j x+

√
pz j

1− pz j
||Σ

1
2
j x||≤ b j, j = 1, ...,N,

N

∑
j=1

z j = 1,

x ≥ 0,z j ≥ 0, j = 1, ...,N,

and
min −c̄T x,

s.t. µT
j x+

(√
pz j

1−pz j
√

γk2 +
√

γk1

)
||Σ

1
2
j x||≤ b j, j = 1, ...,N,

N

∑
j=1

z j = 1,

x ≥ 0,z j ≥ 0, j = 1, ...,N,

5.1 The neurodynamic duplex vs.
convex approximations

Cheng et al. (Cheng et al., 2014) propose two con-
vex approximations to solve problem (41)-(42). A
linear approximation that gives an upper bound to
the minimization problem and a tangent approxima-
tions that leads to a lower bound. In this first subsec-
tion, we compare the objective value obtained using

the neurodynamic duplex with those obtained us-
ing the linear and the tangent approximations. We
compute the gap between the two bounds and the
global optimum given by the neurodynamic duplex

by GAP =
Boundlower, upper−ND

Boundlower, upper
, where Boundlower

is the value of the lower bound, Boundupper is the
value of the upper bound, and ND is the value ob-
tained using the neurodynamic duplex. We recapit-
ulate the obtained results in Table 1. Column one
gives the value of the confidence parameter p. Col-
umn two gives the final value of the neurodynamic
duplex. Columns three and four show the lower
bound and its gap with the neurodynamic duplex,
respectively. Finally, columns five and six present
the upper bound and the gap with the neurodynamic
approach. We observe that the final value obtained
with the dynamical duplex remains between the two
bounds for the different values of p with gaps less
than 0.5%, demonstrating that the neurodynamic ap-
proach effectively converges to the global optimum.
Moreover, we remark that as p increases, the value
of the objective function increases which is coherent
since lower values of p induce larger risk area.

5.2 The distributionally robust
optimization approach vs.
stochastic optimization approaches

To evaluate the robustness of the proposed duplex
for the two uncertainty sets D1 and D2, we addi-
tionally solve problem (41)-(42) when the random
variables follow uniform and normal distributions
and p = 0.95. We compare the solution of our pro-
posed distributionally robust approach with the so-
lution of the stochastic programming approach. We
generate 100 instances for (ti j)1≤I≤n,1≤ j≤N using the
mean vectors and the covariance matrix when the
true distribution of the stochastic variables is one
of the five following distributions: uniform distri-
bution, normal distribution, log-normal distribution,
logistic distribution and Gamma distribution. We
calculate the number of times when the constraints
were violated over the 100 generated scenarios for
each stochastic and robust solutions. Table 3 recapit-
ulates the obtained results, where column one gives
the true distribution, columns two, three, four and
five give the number of violated scenarios for the
solution obtained using the uniform approach, the
normal approach, the first robust approach and the
second robust approach, respectively. The relative
expected profit is computed relatively to the value
achieved by the solution of the stochastic program
with uniform distribution.

We observe that the distributionally robust ap-
proaches are more conservative compared to the
stochastic approaches. We invest between 4.3% and
12.2% of the expected profit in order to ensure the
joint constraint. In fact, the average number of vio-
lated scenarios for the robust approaches are 0 while



p Neurodynamic duplex Tangent approximation Linear approximation
Obj value Obj value GAP Obj value GAP

0.95 -36.25 -36.41 0.43% -36.20 -0.13%
0.9 -40.48 -40.51 0.07% -40.46 -0.04%
0.8 -45.30 -45.41 0.24% -45.22 -0.17%
0.7 -47.31 -47.38 0.14% -47.28 -0.06%
0.6 -48.09 -48.13 0.08% -48.07 -0.06%

Table 1: Results for different values of p for D1(µ,Σ)

n N Neurodynamic duplex Tangent approximation Linear approximation
Obj value Obj value GAP Obj value GAP

7 4 -22.86 -22.97 0.47% -22.77 -0.39%
10 5 -22.51 -22.65 0.61% -22.44 -0.31%
15 10 -21.36 -21.61 1.15% -20.82 -2.59%
20 15 -21.28 -21.78 2.29% -20.93 -1.67%
25 20 -19.79 -20.78 4.67% -19.01 -4.10%

Table 2: Results for different values of n and N for D1(µ,Σ)

the numbers of violated scenarios for the stochas-
tic solutions are significant, i.e., when Gamma is the
true distribution of the random variables, the average
number of the violated scenarios are 24 and 9 for the
uniform and the normal solutions, respectively.

6 CONCLUSION

This paper studies a distributionally robust joint-
constrained optimization problem for two different
moments-based uncertainty sets. We propose a two-
timescale neurodynamic duplex to solve the distri-
butionally robust problems. We prove that the pro-
posed approach converges almost surely to a global
optimum. Finally, we use our method to solve a
problem of profit maximization. We evaluate the
performances of the neurodynamic duplex by com-
paring it to the state-of-the-art solving methods.

A key advantage of this research is its capabil-
ity to solve distributionally robust joint-constrained
programs without relying on convex or linear ap-
proximation techniques. The results reveal that our
approach outperforms some existing state-of-the-art
methods. Furthermore, our method effectively cov-
ers the risk area by generating robust solutions, thus
ensuring reliable outcomes in uncertain scenarios.

However, it is crucial to acknowledge that the
current iteration of the algorithm is time-consuming,
primarily due to the iterative solutions required
by the dynamical differential system that describes
the model. Nonetheless, there are opportunities
to enhance both the efficiency and quality of the
algorithm through further research and develop-
ment efforts. One potential approach to improve
the algorithm is to implement artificial intelligence
techniques, such as neural networks or reinforce-
ment learning, in the Ordinary Differential Equa-
tion (ODE) solvers. By incorporating these AI tech-
niques, there is a possibility to enhance the speed

and accuracy of solving the dynamical differential
system. Furthermore, other computational tech-
niques, such as parallel computing, GPU accelera-
tion, or distributed computing, can be leveraged to
further reduce the execution time of the algorithm.
These techniques can make use of advancements in
hardware to process computations in parallel, lead-
ing to significant time savings in solving the system.
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