Cécile Tardif 
  
Emmanuel Jaccoulet 
  
Jean-François Bellec 
  
Yannick Surroca 
  
Laurence Talbot 
  
Myriam Taverna 
  
Claire Smadja 
email: claire.smadja@universite-paris-saclay.fr
  
Imaged capillary isoelectric focusing associated with multivariate analysis: a powerful tool for quality control of therapeutic monoclonal antibodies

Keywords: Imaged capillary isoelectric focusing, Therapeutic monoclonal antibody, Quality control, mAb formulation, chemometric, Principal Component Analysis

Monoclonal antibodies are increasingly used in cancer therapy. To guarantee the quality of these mAbs from compounding to patient administration, characterization methods are required (e.g. identity). In a clinical setting, these methods must be fast and straightforward.

For this reason, we investigated the potential of image capillary isoelectric focusing (icIEF) combined with Principal Component Analysis (PCA) and Partial least squares-discriminant analysis (PLS-DA). icIEF profiles obtained from monoclonals antibodies (mAbs) analysis have been pre-processed and the data submitted to principal component analysis (PCA). This pre-processing method has been designed to avoid the impact of concentration and formulation. Analysis of four commercialized mAbs (Infliximab, Nivolumab, Pertuzumab, and Adalimumab) by icIEF-PCA led to the formation of four clusters corresponding to each mAb. Partial least squares-discriminant analysis (PLS-DA) applied to these data allowed us to build models to predict which monoclonal antibody is analyzed. The validation of this model was obtained from k-fold cross-validation and prediction tests. The selectivity and the specificity of the model performance parameters were assessed by the excellent classification obtained. In conclusion, we established that the combination of icIEF and chemometric approaches is a reliable approach for unambiguously identifying compounded therapeutic monoclonal antibodies (mAbs) before patient administration.

Introduction

Monoclonal antibodies (mAbs) are increasingly developed for the treatment of a variety of autoimmune and inflammatory diseases, as well as cancer. Their selectivity for biological targets and limited side effects explain the increased interest of the biopharmaceutical industry in these molecules [START_REF] Kaplon | Antibodies to watch in 2021[END_REF]. In a hospital environment, their administration requires a compounding step, mainly performed by diluting marketed mAbs at high concentrations in isotonic solutions. According to good manufacturing practices, online quality control of mAbs before patient administration is mandatory to detect errors (related to treatment or dosage) during the compounding step and avoid administration mistakes that account for 33% of overall pharmaceutical errors (more frequent than prescription errors) [START_REF] Berdot | Drug Administration Errors in Hospital Inpatients: A Systematic Review[END_REF][START_REF] Alt | Determination of critical quality attributes for monoclonal antibodies using quality by design principles[END_REF]. mAbs are complex and heterogeneous glycoproteins with a wide range of variants that make quality control using conventional separative methods challenging. Before their release to patients, mAbs compounded at hospitals are typically submitted to visual controls only.

However, a much more thorough characterization process assessing their identity (the right mAb to the right patient), micro-heterogeneity, and structural integrity is required to ensure their quality. And in a clinical context (lean production and high demand for outpatient care), a fast, simple, and high-throughput method is critical [START_REF] Alt | Determination of critical quality attributes for monoclonal antibodies using quality by design principles[END_REF].

Charge variants linked to post-translational modifications (mainly glycosylation) and degradations/modifications in the protein sequence represent the main source of microheterogeneity for formulated mAbs and are an important critical quality attribute [START_REF] Singh | Should charge variants of monoclonal antibody therapeutics be considered critical quality attributes?[END_REF]. Profiling of intact mAbs based on the charge may also help identifying different species, related to conformations, size, and sequence, making it a reliable approach for assessing mAbs identity.

To fully identify charge variants of a given mAb, profiling its charge variants using ionexchange chromatography (IEX) is a powerful and widely adopted approach [START_REF] Yüce | Fractionated charge variants of biosimilars: A review of separation methods, structural and functional analysis[END_REF]. However, accurate identification of mAbs often requires liquid chromatography coupled with mass spectrometry (MS) [START_REF] Fekete | Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals[END_REF]. Besides, "bottom-up" or "middle-up" approaches followed by 2dimensional liquid chromatography (2D-LC) (e.g. IEX and RPLC)-MS instrumentation allow numerous mAbs variants identification [START_REF] Jaccoulet | Quality control of therapeutic monoclonal antibodies at the hospital after their compounding and before their administration to patients[END_REF][START_REF] Goyon | Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies[END_REF]. More recently, online automated multidimensional high (ultra) performance liquid chromatography, including ion-exchange chromatography and RPLC-MS, namely 4D HPLC [START_REF] Verscheure | Monoclonal antibody charge variant characterization by fully automated four-dimensional liquid chromatography-mass spectrometry[END_REF], has been shown to separate major and minor charge variants, improving the sequence coverage and thereby mAbs identification.

However, these methods involve many different and complementary approaches that do not meet the fast, simple, and high-throughput analysis required for mAbs identity and dosage confirmation in hospitals.

As an alternative to chromatographic approaches and in line with the requirements of the clinic, capillary electrophoresis (CE) has proven to be a reliable tool for routine analysis and has gained acceptance in the field of quality control of mAbs. CE methods like SDS-CGE, CZE, and cIEF have been introduced as potential identification tools based on migration time [START_REF] Jaccoulet | Quality control of therapeutic monoclonal antibodies at the hospital after their compounding and before their administration to patients[END_REF]. The more recent imaged capillary isoelectric focusing (icIEF), whereby imaging of the entire column eliminates resolution issues associated with mobilization, has emerged as a promising QC method. icIEF provides higher resolution and reproducibility in a shorter analysis time than conventional cIEF and is widely employed to separate protein charge variants based on their isoelectric point (pI) [START_REF] Goyon | Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies[END_REF]. A recent interlaboratory study involving 12 laboratories [START_REF] Salas-Solano | Robustness of iCIEF methodology for the analysis of monoclonal antibodies: An interlaboratory study[END_REF] demonstrated the robustness of the icIEF methodology for analyzing charge variants of monoclonal antibodies. In addition, this CE method meets the criteria required for quality control at hospitals considering its robustness, the small volume required, the short analysis time, and the charge variants separation efficiency. However, mAbs identification based on the pI profiling of one given mAbs might not be accurate for its unambiguous identification. Firstly, high microheterogeneity can generate multiple peaks with different intensities and several close variants that can't necessarily be resolved. Secondly, several mAbs can exhibit similar cIEF profiles that could be modified according to the presence of specific excipients or the mAbs concentration in the formulated product. To make this approach more powerful and allow unambiguous and unbiased identification of compounded mAbs, we explored the idea of combining it with data processing methods and statistical analysis.

Multivariate analysis (MVA) and Partial Least Squares-Discriminant analysis (PLS-DA) have indeed the ability to extract relevant and specific information provided by electrophoretic profiles [START_REF] Brereton | Partial least squares discriminant analysis: Taking the magic away[END_REF]. This approach has been successfully employed for discriminant analysis (i.e., between mAbs or for mAbs submitted to different stresses) from data obtained by Raman, near-infrared, and UV spectroscopy [START_REF] Cruzado-Park | Optimization of an IgG1 CIEF separation by using narrow-range ampholytes and DMSO as protein solubilizer[END_REF][START_REF] Mohan | Extension of separation range in capillary isoelectric focusing for resolving highly basic biomolecules[END_REF][START_REF] Singh | Effect of Polysorbate 20 and Polysorbate 80 on the Higher-Order Structure of a Monoclonal Antibody and Its Fab and Fc Fragments Probed Using 2[END_REF]. To the best of our knowledge, profiles provided by separation techniques such as icIEF have never been combined with PCA or PLS-DA for mAbs identification purposes. In addition, these data processing methods have the potential to significantly reduce or suppress the impact of mAbs concentration and formulation. This parameter is rarely considered when designing analytical tools for QC.

This work aims at exploring the potential of icIEF combined with Principal

Component Analysis (PCA), and PLS-DA built from electropherograms to identify and discriminate different reconstituted therapeutic mAbs. For this study, we used commercially available mAbs (Nivolumab, Infliximab, Pertuzumab, and Pembrolizumab), with pI ranging from 7.6 to 9. These mAbs were selected based on their physicochemical properties, their generation (zumab, ximab…), and the typical range of pI seen for this type of biotherapeutics.

For this purpose, a generic icIEF method adapted to all mAbs, whatever their generation and physicochemical properties, was first developed. Then, a combination of preprocessing approaches was thoroughly investigated using the data sets provided by icIEF analysis.

Variabilities in the experimental method as well as different analytical conditions (days, cartridges, sample preparations) used for the icIEF profiling were also introduced to mimic hospital practices (mAbs concentrations and compounding) and build a robust chemometric model.

Materials and methods

Chemicals and reagents

Pharmalytes (PL) 5-8 and 8-10.5 were obtained from GE Healthcare Bio-Sciences (Gothenburg, Sweden), and urea (99 %) from Sigma Aldrich (Saint Louis, USA). Markers for pI calculation and Methylcellulose stock solution (3%) were obtained from ProteinSimple, a Bio-Techne brand (San Jose, USA). Acidic and basic blocking agents, respectively Serine (98%) and TEMED (99 %), were purchased from Sigma Aldrich (Saint Louis, USA).

Monoclonal antibodies, Infliximab, Pertuzumab, Nivolumab, Adalimumab, Natalizumab, and Rituximab, were provided from Divbio (Ulvenhout, Netherland). All mAbs were compounded using pure water obtained from a Milli-Q unit (Millipore, Milford, MA) or physiological saline solutions (NaCl 0.9 %), following therapeutic concentrations ranging from 0.5 to 1.5 mg/mL.

Apparatus and Material

The experiments were performed on the Maurice instrument from ProteinSimple, a Bio-Techne brand(San Jose, USA). Data was acquired using the Compass for iCE software (v 2.2.0, San Jose, USA). The icIEF cartridges contain a fluorocarbon (FC) coated capillary with an effective capillary length of 5 cm and 100 µm internal diameter. Imaged detection with native fluorescence was used with 10 seconds of exposure (λ excitation : 280 nm, λ emission : 320-450 nm).

Methods

icIEF analysis : sample preparation and icIEF conditions

The mAbs samples solution contained 0.15 mg/mL mAbs, 0.30% methylcellulose, 2% of each pharmalytes (5-8, 8-10.5), pI markers (7.05 and 9.99), 1% TEMED 2% Serine and 2M urea. The cooling block was set at 4°C. Method development was conducted according to the ProteinSimple cIEF Method Development Guide (046-296, Rev A 2016). Samples were loaded for 55 s and focused at 1.5 kV for 1 min and 30 kV for 12 min. The mAbs chosen were representative of mAbs variety in terms of pI as well as generation, biological targets, and formulations were selected (Table 1). The electropherograms obtained by imaged cIEF plot intensities against pixels (due to the "imaged" technology involving a camera for detection), and specific pI markers are required to convert pixels into pI.

Data handling and multivariate analysis

Data handling and multivariate analyses were processed with XLStat Software (V.2021.4, Addinsoft TM , France).

2.3.2.1.Data collection and pre-processing method (alignment, scaling, and centering)

A total of 234 samples were analyzed by icIEF generating 234 electropherograms.

Variabilities (i.e. 6 cartridges, 25 days, 58 sample preparations, 2 batches), were introduced in the sample preparation to mimic hospital conditions as much as possible. Samples were randomly divided into two sets, namely the training set (n = 138) and the test set (n =95), as shown in Table 2. Data pre-processing is essential in data modelling to eliminate undesired variations (such as instrument artifacts) and highlight variations of interest. Changing data attributes via data pre-treatment may improve the results of the clustering algorithm. In this study, groups are characterized by different mAbs (i.e., one given mAb constitutes its own class), individuals are defined by icIEF injections, and peak heights are used as variables.

First, signal intensities versus pI from electropherograms were extracted and aligned on the major peak. This step is necessary to perform appropriate comparisons between profiles and to reduce errors from icIEF focalization (due to pipetting or experimental errors). Following alignment, only a subset of electropherograms was considered for the studies to reduce the number of variables and focus only on important ones (variables belonging to the antibody profiles excluding spikes and markers). These precise electropherogram windows were arbitrarily chosen to keep the same number of variables for every individual. Finally, scaling processes were used to correct systematic variation in peak height between samples and emphasize antibody features. Centering and scaling are the two most important processes in building smaller clusters. VAST (VAriable STability) scaling was selected to scale individuals. This normalization allows us to work at different concentrations and reduce variations between individuals that belong to the same class (intra-mAb variation). This approach uses standard deviation and coefficient of variation (cv) as scaling factors, focusing on stable variables with minimal fluctuations. As described by Robert A Van Den Berg and colleagues, the cv application increases the value of the smallest peak height while decreasing the importance of the highest peak height [START_REF] Van Den Berg | Centering, scaling, and transformations: Improving the biological information content of metabolomics data[END_REF]. Thus, VAST scaling operates in two sequential steps where mean centering is first applied, and then scaling by cv (i.e., 1/cv) is performed with x ij related to the peak area ratio for one injection at a given pI; the mean [START_REF] Kaplon | Antibodies to watch in 2021[END_REF] and s i the standard deviation (2) of calculated values for one injection. The coefficient of variation is obtained from the following relation cv =

, and the calculated centered and normalized value of x ij (3) by VAST strategy:
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After these three steps of alignment, subset selections, and scaling, signals are used as a normalized fingerprint to describe antibodies (Figure 1).

2.3.2.2..Principal component analysis

Principal component analysis (PCA) was first conducted on the icIEF database after the preprocessing step. We put our effort to explain variation between individuals while using the smallest number of components. Data from the training set were used for statistical study only after the pre-treatment procedure described in 2.3.2.a. PCA was used on the data obtained to evaluate its potential ability to discriminate mAbs [START_REF] Adams | Evaluation of dissolution profiles using principal component analysis[END_REF]. Loading vectors and scores characterizing the principal components (PCs) provide qualitative and quantitative information about the mAbs, respectively.

2.3.2.3.PLS-DA modeling

As a second statistical approach, PLS-DA was employed as a robust supervised method in addition to PCA to provide predictive and descriptive modelling results. The two data sets, namely the training set and the testing set (Table 2), were used to build and validate the PLS-DA model respectively [START_REF] Lee | Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps[END_REF]. The procedure was as follows: The training electropherograms were classified into subgroups of mAbs-dependent quantitative variables (response variables-Y). Then, independent qualitative and quantitative explanatory variables were introduced (predictor variable-X). Quantitative descriptors relate to treated signal and pI, qualitative descriptors to cartridges, dates of analysis, and mAbs origins (Table 1). The optimal model well as the two new mAbs (Natalizumab, Rituximab). These last two were used as true negatives to validate the model.

Evaluation of model performances and classification modeling

The initial part of the validations consists of k-fold Cross Validation (CV) done directly on the data training set, as described in section 2.3.2.b. To accomplish a quantitative validation, typical parameters such as the Root Mean Square Error (RMSE), R 2 , and the Q 2 index, which describes the predictive power of the models, were employed to assess the best PLS-DA model. For prediction purposes, decision rules must first be defined to include or exclude individuals in clusters. A binary prediction is the most straightforward technique when creating an actual classification model. However, a simple prediction from the fitted model doesn't yield integers numbers but values between 0 and 1. Indeed each new sample is reduced to the predicted value according to the PLS model; its position is described by a score between 0 and 1 [START_REF] Preda Christian | Preda PLS classification function.pdf[END_REF]. Ideally, the score is equal to 1 for samples belonging to a correct class or 0 if not. Consequently, a threshold between 0 and 1 is a straightforward technique to provide binary answers from the model. A cut-off value was arbitrarily selected to include or exclude samples from a cluster. This criterion was set to exclude actual negative or positive samples with more certainty (Figure 2).

The second step of the validation model is to determine qualitative performance parameters.

The testing data set was used to calculate false positives (FPR) and false negatives (FNR) rates after predicting which cluster individuals were assigned.

This allows us to calculate the specificity (SP) and sensitivity (ST). Then, SP and ST were computed using the following equations:

Where TP and TN represent the number of true positives and true negatives, and FP and FN are, respectively, False Positive and False Negatives. These criteria describe the accuracy of the sample assignment to a given class for mAb identification. A suitable class attribution should result in SP = 1.0 and ST = 1.0

Results and Discussion

Development of the icIEF: method

The first part of this study aimed at developing a reliable and generic icIEF method to analyze a wide range of therapeutic mAbs, considering that for one mAb, the pI of charge variants may range from 5 to 10.5. Monoclonal antibodies representative of mAbs variety in terms of pI, generation, biological targets, and formulations, were selected (Table 1). Infliximab (pI 7.6, chimeric, IgG1) and Adalimumab (pI 8.9, fully human, IgG4), exhibit similar biological activities (both directed against TNF ). Nivolumab (pI 8.0) and Pertuzumab (pI 9.0) are fully human (IgG4) and humanized (IgG1) mAbs respectively. We focused mainly on the ampholyte ranges, concentrations, and the use of blocking agents to fine-tune the pH gradient and avoid variants loss during the focalization.

Pharmalytes composition and concentration

pI of monoclonal antibodies typically ranges from 6.0 to 9.5 [START_REF] Van Den Berg | Centering, scaling, and transformations: Improving the biological information content of metabolomics data[END_REF]. Therefore, to allow the separation of most charge variants, a broad range of Pharmalytes (e.g., pH 3-10) is commonly used, and a narrow range is added to increase the resolution between charge variants [START_REF] Cruzado-Park | Optimization of an IgG1 CIEF separation by using narrow-range ampholytes and DMSO as protein solubilizer[END_REF]. A combination of Pharmalytes 5-8 and 8-10.5 was chosen, and their relative proportion (from 1:5 to 5:1) was investigated. The results showed that for the most acidic mAbs, such as Infliximab, and the most basic ones, like Pertuzumab, a 1:1 ratio and a total concentration of ampholytes of 4% gives the highest resolution and allow the identification of more charge variants. The pI values of the mAbs could be estimated thanks to the addition of two pI makers (1% total mix). These values were consistent with those measured in the previous study and with theoretical calculations [START_REF] Van Den Berg | Centering, scaling, and transformations: Improving the biological information content of metabolomics data[END_REF]. Despite the combination of these two Pharmalyte ranges, which generate discontinuous repartition of amphoteric species around pI 8, electropherograms were shown to be reproducible between different days (20 days in total)

and cartridges (4). The reproducibility was evaluated by measuring the entire area, including the main peak, basic and acidic species of each isoform. The RSDs obtained (< 5% for Infliximab, <6% Nivolumab, <10% Pertuzumab, <7% Adalimumab) were acceptable considering mAbs' complexity.

Selection of blocking agents

In icIEF, the whole capillary is imaged, and the variants must be focused in the desired region. In addition, a loss of basic and acidic carrier ampholytes (cathodic or anodic drift) could occur during the focalisation process leading to a lack of repeatability/reproducibility. This is why the addition of a sacrificial zone at both ends of the capillary (anode and cathode) was considered to prevent charge variants from drifting outside the focusing window. For this purpose TEMED, a strong base, and Serine-D, an acidic modifier (pI of 5.5), were used as cathodic and anodic blockers respectively. TEMED is frequently employed for the cathodic end when analyzing basic proteins. Serine has been chosen, as its pI (5,68) is adapted to basic proteins such as mAbs. Their concentration varied between 0 and 5%. Figure 3 shows that when the amount of TEMED or D-serine increased, the migration time was reduced (the electropherogram shifted to the right for D-Serine and to the left for TEMED), demonstrating their efficiency as blocking agents. [START_REF] Mohan | Extension of separation range in capillary isoelectric focusing for resolving highly basic biomolecules[END_REF] Finally, D-serine and TEMED were added to the separation mix at 2.4 % and 1.2%, respectively, to prevent peak loss, and maintain the variants in the detection zone while maintaining a good resolution.

Preprocessing of mAbs icIEF analysis

The specific electrophoretic profile obtained for each monoclonal antibody could serve as a fingerprint for their unambiguous identification through an additional data treatment and PLS-DA analysis. For this purpose, the data was extracted from the electropherograms and submitted to a pre-processing procedure. PCA was then used to analyze the pre-processed data as an exploratory method; (i) to evaluate the impact of concentration and excipients variations on PCA projections, (ii) to assess the performances of the pre-processing method.

This pre-processed data evaluation by PCA analysis is of paramount importance for the development of the PLS-DA model for mAbs discrimination.

Pre-processing method

The data processing was designed to extract relevant data from the electropherograms (mAb icIEF profiles), independently of pI scaling (x-scaling/abscissa from the electropherogram).

As a result, an arbitrary scaling for the x-axis was created, where each point is separated by one unit (intensity values of electropherograms). A manual alignment of the profiles was performed by using the main peak as the reference point. The purpose is to develop a processing approach uncorrelated to mAbs pI, thus reducing the impact of the formulation or the concentration. And as opposed to conventional calculation where a pI re-calibration is required, no pI markers are needed for this approach (see Figure 1, first step).

Impact of excipients

To evaluate the impact of excipients on PCA analysis, Infliximab (1mg/mL) samples were reconstituted in ultrapure water or Polysorbate 80 (PS 80) (1% and 5%). Polysorbate 80 (PS80) was chosen since it is widely used in protein formulation to avoid self-aggregation and is found in all formulated mAbs. Higher concentrations of PS 80 were selected compared to those traditionally used in hospital (0.1 to 2%) to verify its lack of impact in mAbs discrimination. icIEF profiles of infliximab (ultrapure water, PS 80 1%, PS 80 5%) and

Nivolumab (1 mg/mL in Milli-Q water) were then pre-processed and submitted to PCA analysis. Nivolumab (1mg/mL) was used as a reference to highlight the discrimination between Infliximab and Nivolumab and decrease variations between the different types of reconstituted Infliximab. We can observe from Figure 4 that when Infliximab is formulated in PS80, a shift of the icIEF profile is observed compared to Infliximab reconstituted in ultrapure water. However, when the electropherograms obtained from Infliximab (ultrapure and PS 80)

and Nivolumab were pre-processed, and the data was submitted to PCA analysis [START_REF] Singh | Effect of Polysorbate 20 and Polysorbate 80 on the Higher-Order Structure of a Monoclonal Antibody and Its Fab and Fc Fragments Probed Using 2[END_REF], the results obtained showed that all the infliximab samples (PS80 and pure water) were randomly located in the same cluster, whereas Nivolumab samples form another cluster (Figure 5). This demonstrates that the developed pre-processing method performed before PCA analysis avoids interferences generated by the addition of PS 80 such as pI variation. We can also state that PS80 at the concentration currently employed will have no impact on mAbs discrimination following this iCIEF-PCA analysis. The same approach was followed with Infliximab samples reconstituted with NaCl 0.9% (physiological concentration and pH).

Figure 5 clearly shows that Infliximab samples formulated with NaCl are also located in the same Infliximab cluster, demonstrating that the impact of NaCl 0.9% on PCA projections can be suppressed. We can therefore hypothesize that the potential impact of phosphate buffer could also be prevented following this approach. Consequently, mAbs identification via cluster attribution is possible despite possible variations in the composition of the formulated product.

Impact of mAbs concentration

The data processing method built also needs to consider the specificities of each patient's treatment, such as doses [START_REF] Di Paolo | Personalized Medicine of Monoclonal Antibodies in Inflammatory Bowel Disease: Pharmacogenetics, Therapeutic Drug Monitoring, and Beyond[END_REF]. Therefore, the procedure described in the previous chapter (preprocessing and PCA projections) was applied to evaluate the impact of mAbs concentration.

Three concentrations (0.5, 1.0, 1.5 mg/mL) of Infliximab were compared to one concentration of Nivolumab (1mg/mL) to highlight discrimination between Infliximab and Nivolumab rather than variations between Infliximab at different concentrations. Considering that these two mAbs (Infliximab and Nivolumab) could be administered intravenously at mg/mL levels, such concentrations ranges were chosen in our study. In addition, in a quality control process (e.g. linearity, range determination, detection limit) dilution of a standard solution is required by the International Council for Harmonisation guidelines thereby lowering the concentration.

The data pre-processing was associated with a normalization step by VAST scaling to prevent the impact of the concentration on peak intensities. PCA score plots revealed two distinct clusters of individuals: one for three concentrations of Infliximab and one for the Nivolumab (figure 6). Individuals corresponding to the three concentrations of infliximab are randomly distributed in the same cluster without any relation to the concentrations. This result highlights the ability of PCA to discriminate individuals from Infliximab or Nivolumab, whatever the concentration of infliximab, with a score of 71% for the first two principal components (PC1, PC2).

mAbs identification modeling

This work aimed at building a PLS-DA model suitable for quality control that could easily identify mAbs-based treatments. Four mAbs (Infliximab, Nivolumab, Pertuzumab, and Adalimumab) were investigated to evaluate the ability of this model to discriminate different antibodies. In the first step, PCA was used as an exploratory method to evaluate the performance of processing methods for mAb discriminations. Then, the relevance of the PLS-DA model for mAbs discrimination was evaluated using cross-validation and prediction tests.

PCA overview for mAbs identification

A principal component analysis (PCA) was performed on 234 icIEF electropherograms of four commercialized mAbs to provide an overview of the possible separation of individuals.

The 234 electropherograms were provided by analyzing four mAbs prepared at different days, from various batches, and analyzed with different icIEF cartridges. The four mAbs chosen were Infliximab, Nivolumab, Pertuzumab, and Adalimumab at 1 mg/mL, compounded in Milli-Q water. As described in the previous chapter, mAbs iCIEF profiles were submitted to data processing and compared using PCA. A satisfactory score plot of 76.9% for the first two components was obtained as depicted Figure 7. Four clusters were formed, corresponding to each mAb, allowing their identification irrespective of the experimental conditions (days, cartridges, hospital environment, batches, formulation, and concentration). PC1 accounts for 68.13% of the variance explained, indicating that data are mainly divided along this axis. The axis maintained the same score by increasing the number of individuals, and the cluster remained highly differentiated, demonstrating that the measurements were reproducible. This multivariate approach provides an unsupervised and early assessment of the potential of the icIEF-chemometrics association.

3.3.2.PLS-DA model performances/ Qualitative validation

PLS-DA was then used as a strong supervised method to provide descriptive and predictive modelling results based on training and testing sets (Table 2). Firstly, the training set, including the four therapeutic mAbs (Infliximab, Nivolumab, Pertuzumab, and Adalimumab), was subjected to supervised PLS-DA analysis. Results showed that four clusters related to the four mAbs were formed with a score of 97.6% using only 5 Latent Variables (LV), defined as reduced and unobservable variables that describe the model. To validate this model based on the four clusters, k-fold cross-validation was performed by dividing the training set into 7 subgroups of 22 individuals sampled randomly. As described in [START_REF] Cruzado-Park | Optimization of an IgG1 CIEF separation by using narrow-range ampholytes and DMSO as protein solubilizer[END_REF], a 7-fold CV appeared to be a favorable k-fold, which could be considered as a good compromise between 5-and 10-fold, limiting bias and reducing variance between individuals. As a result, the confusion matrix (Table 3) was thoroughly investigated, and no incorrect attribution of individuals to the cluster was found. Cross-validation (CV) performance was evaluated; the CV-RMSE was 0.136, and the CV-R2 was 0.988 (Table 4). Secondly, prediction tests were performed as blind tests to confirm correct class attribution for samples from a database that was not used for modelling (testing set). The testing set was performed with the four mAbs previously evaluated (Infliximab, Nivolumab, Pertuzumab, and Adalimumab) and two additional mAbs (Rituximab and Natalizumab). We have chosen Natalizumab, to ensure that our model is able to discriminate two humanized mAbs (i.e.Pertuzumab and natalizumab) and rituximab to evaluate the discrimination between two chimeric mAbs (i.e. Infliximab, and Rituximab). The model's ability to accept or reject mAbs as 'known" (Infliximab, Nivolumab, Pertuzumab, and Adalimumab) or "unknown" (Rituximab and Natalizumab) (Figure 2) was also evaluated. To identify individuals, samples were assigned to a class (each mAb representing one class) with the highest function of classification score in a prediction test. The score values were around 1 if the prediction corresponded to the class of interest and 0 if not. The best scores are usually higher than 1, and the lowest is less than 0. A threshold T was determined only for the highest score to avoid misclassification of an "unknown" sample and to ensure that an analyzed sample belongs to the correct class. As a result, an interval centered on 1 was computed, and a range of 1 ± T was determined. If the individual's highest score is in the range for a specific class, the prediction is correct, and the sample will be identified as the correct class of mAb.

When the highest score for a specific class is outside this range, the individual will not be recognized as belonging to that class. If an individual does not correspond to any class (they are outside the range for each specific class), the individual is listed as "unknown." No incorrect predictions were obtained on our testing set. Each individual from "known" mAbs (Infliximab, Nivolumab, Pertuzumab, and Adalimumab) was successfully identified, whereas "unknown" mAbs (Rituximab and Natalizumab) were all rejected. The t1-t2 plot of the Xscores of the PLS-DA prediction with the testing set in Figure 8 showed the expected correct attribution of individuals from "known" mAbs. Two additional clusters were formed corresponding to Rituximab, Natalizumab, "unknown" mAbs without overlap. This demonstrates that the model can accurately assign individuals to the appropriate cluster and create new clusters for individuals that have not been classified. This significant result shows that the model can be extended to other treatments not included in the initial data set (training set). This threshold has been estimated by using PLS regression [22][17]. Finally, a threshold of 0.23 produced the best results, resulting in 100% sensitivity and 100% specificity.

To conclude on the model's performance, qualitative parameters were examined. R²Y was found to be 0.988, and Q² validated the model's quality with a satisfying result of 0.976 (Table 4). These results confirm the reliability of the PLS-DA models rendering possible mAbs identification at any concentration, whatever their formulation.

Concluding remarks

In this work, we first created a general icIEF approach for mAbs with pIs ranging from 7 to 9 and concentrations varying from 0.5 mg/mL to 1.5 mg/mL. We established for the first time the ability of an icIEF-chemometrics method to discriminate four therapeutical mAbs unbiaised by their intrinsic properties (generation, pI, and targets...) or any interferences generated by their formulation. PLS-DA model based on pre-processed electropherograms is able to effectively attribute samples to the correct mAb cluster without any concentration or excipient effects. This allows accurate identification of different mAbs. The model also rejected "unknown" mAbs and created a new cluster, allowing the database to expand and include additional treatments (mAbs). The models' prediction performance is appropriate for routine QC at the hospital. Such analytical approach, supplemented by icIEF-PCA analysis, is particularly promising in a clinical environment where the establishment of rapid quality controls before patient administration is of paramount importance. 

  was validated using k-fold cross-validation (k = 7) on the training set. The training set was separated into seven subgroups of 22 individuals to undertake such validation. The testing set serves as the final validation of the model, offering an unbiased evaluation of a final model fit on the training dataset. Individuals from the four previous mAbs (Infliximab, Pertuzumab, Nivolumab, and Adalimumab) not used in training sets were included in the testing set, as
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 123 Figure 1: Schematic flow of the computational steps for data pre-processing
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 123 Figure 1: Schematic flow of the computational steps for data pre-processing

Figure 4 :

 4 Figure 4: separation profiles of Infliximab (1.0 mg/mL), without excipients and formulated with PS80 5%. Peaks were aligned on peptide marker pI 7.05. Experimental conditions as mentioned in Fig.3.

Figure 6 :

 6 Figure 6: Impact of mAbs concentration: PCA score plot of Infliximab at different concentrations (0.5 mg/mL as (), 1.0 mg/mL (), 1.5 mg/mL () and Nivolumab () as a reference at 1.0mg/mL. PC1-PC2 score plot is 71.0%.

Figure 8 :

 8 Figure 8: PLS-DA scores t1 and t2 of icIEF profiles after pretreatment procedure (234 mAbs). From the training set, Infliximab (), Nivolumab (), Adalimumab () and Pertuzumab (-). From the prediction set; Infliximab (), Nivolumab (), Adalimumab () and Pertuzumab (). The two "unknown" mAbs, Rituximab (  ) and Natalizumab ().

Table 1 :

 1 The two "unknown" mAbs, Rituximab (  ) and Natalizumab (). Monoclonal antibodies employed to build and validate the predictive model

	1.2%), TEMED (1,2;

Figure 5: Impact of excipients: PCA score plot: Infliximab reconstituted in ultra-pure water (), Infliximab formulated with PS80 5% (),Infliximab formulated with PS801% (◾) or NaCl 0.9% ( ), Nivolumab () as reference. The symbol (%) expresses the contribution of each PC, and the (PC1, PC2) score is 70.28 %.
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Table 1 :

 1 Monoclonal antibodies employed to build and validate the predictive model

	Monoclonal antibodies	mAbs origins	Type	pI	Molecular weight
					(kDa)
	Infliximab (inflix)	Chimeric	IgG1	7.6	144
	Nivolumab (Nivo)	Fully	IgG4	8.0	144
		humanized			
	Adalimumab (Ada)	Fully	IgG1	8.9	144
		humanized			
	Pertuzumab (Pertu)	Humanized	IgG1	9.0	148
	Natalizumab (Nata)	Humanized	IgG4	8.9	149
	Rituximab (Ritux)	Chimeric	IgG1	9.9	144

Table 2 :

 2 Dataset descriptions used for PLS-DA optimization and validation.

	Data set Purpose		Number of	Antibodies (number of individuals)
				samples	
	Training Model feature,	138	Nivolumab (34), Adalimumab (43), Pertuzumab (37),
		Cross-validation		
					Infliximab (24)
	Testing	Model	testing	95	Nivolumab (3), Adalimumab (10), Pertuzumab (6),
		(blind test)			Infliximab (4), Natalizumab (41), Rituximab (31)

Table 3 :

 3 Matrix of confusion of the testing set after preprocessing steps on the four mAbs.

	From \To	Ada	Inflix	Nivo	Pertu	Total	% correct
	Ada	10	0	0	0	10	100,00%
	Inflix	0	4	0	0	4	100,00%
	Nivo	0	0	3	0	3	100,00%
	Pertu	0	0	0	6	6	100,00%
	Total	10	4	3	6	23	100,00%

Table 4 :

 4 Precision parameters of cross-validation and Prediction in PLS-DA for mAb's identification.

	n	LV	k-CV	CV-R 2	CV-RMSE	R 2 Y	Q²
	234	5	7	0.988	0.136	0.988	0.976
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