
HAL Id: hal-04272048
https://universite-paris-saclay.hal.science/hal-04272048

Submitted on 9 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimenting with hybrid quantum optimization in
HPC software stack for CPU register allocation

Brice Chichereau, Stéphane Vialle, Patrick Carribault

To cite this version:
Brice Chichereau, Stéphane Vialle, Patrick Carribault. Experimenting with hybrid quantum optimiza-
tion in HPC software stack for CPU register allocation. Third International Workshop on Integrating
High-Performance and Quantum Computing (WIHPQC 2023) in IEEE Quantum Week 2023 (QCE),
Sep 2023, Bellevue, United States. �hal-04272048�

https://universite-paris-saclay.hal.science/hal-04272048
https://hal.archives-ouvertes.fr

Experimenting with hybrid quantum optimization in HPC software stack
for CPU register allocation

Brice Chichereau
CEA, DAM, DIF

F-91297 Arpajon, France
Université Paris-Saclay, CEA,

Laboratoire en Informatique
Haute Performance pour
le Calcul et la simulation

Bruyères-le-Châtel, France
brice.chichereau@cea.fr

Stéphane Vialle
CentraleSupélec

Gif-sur-Yvette, 91192, France
Université Paris-Saclay, CNRS,

Laboratoire Interdisciplinaire
des Sciences du Numérique

Orsay, France
stephane.vialle@centralesupelec.fr

Patrick Carribault
CEA, DAM, DIF

F-91297 Arpajon, France
Université Paris-Saclay, CEA,

Laboratoire en Informatique
Haute Performance pour
le Calcul et la simulation

Bruyères-le-Châtel, France
patrick.carribault@cea.fr

Abstract

Quantum computers exploit the particular behavior of
quantum physical systems to solve some problems in a
different way than classical computers. We are now ap-
proaching the point where quantum computing could pro-
vide real advantages over classical methods. The computa-
tional capabilities of quantum systems will soon be avail-
able in future supercomputer architectures as hardware
accelerators called Quantum Processing Units (QPU).
From optimizing compilers to task scheduling, the High-
Performance Computing (HPC) software stack could ben-
efit from the advantages of quantum computing. We look
here at the problem of register allocation, a crucial part of
modern optimizing compilers. We propose a simple proof-
of-concept hybrid quantum algorithm based on QAOA to
solve this problem. We implement the algorithm and inte-
grate it directly into GCC, a well-known modern compiler.
The performance of the algorithm is evaluated against the
simple Chaitin-Briggs heuristic as well as GCC’s regis-
ter allocator. While our proposed algorithm lags behind
GCC’s modern heuristics, it is a good first step in the de-
sign of useful quantum algorithms for the classical HPC
software stack.

Keywords— compiler optimization, quantum computing
applications, register allocation, graph coloring

1 Motivation and goals

Quantum Computing has gained a lot of traction in the past
decade due to its theoretical ability to outperform classical
computers for some tasks. These include but are not limited
to: integer factoring [1], linear system solving [2], database
searching [3], and quantum system simulation [4]. While the
concept of quantum computing is more than 40 years old, there
has been a recent surge of interest in this domain. This is due
to the recent realization of quantum devices capable of per-
forming basic computations. The class of current quantum
hardware is called NISQ for Noisy Intermediate Scale Quan-
tum [5]. Right now these devices cannot outperform classical
computers on general tasks due to many physical limitations,
but it is believed that we might see a NISQ device that reaches
this crucial milestone soon.

The potential advantages of quantum computing have led to
an increasing interest from the High-Performance Computing
community in the integration of quantum processing power in
new HPC architectures. While full-scale fault-tolerant quan-
tum computers might only become a reality in the far future,
NISQ devices will soon be integrated into existing supercom-
puters. These devices are usually called Quantum Processing
Units (QPU) and can be based on a variety of quantum sys-
tems, ranging from electron spin to photon polarization.

The computing power of QPUs could be leveraged in many
ways when they are connected to a supercomputer. A path of
particular interest to us is the HPC software stack i.e. the set of
tools and software necessary for the efficient operation of HPC

1

applications. This software stack covers everything from devel-
opment tools to runtime software and operating systems. Opti-
mizing compilers are a crucial part of this stack as they are used
to convert human-readable source code to architecture-specific
machine instructions. Compilers are a good target for improve-
ment through quantum computing as they are composed of a
large set of computationally hard tasks, often related to com-
binatorial optimization problems. One such example would
be register allocation which is closely related to the NP-hard
problem of graph coloring [6].

With quantum accelerators soon to be integrated into some
HPC clusters, we raise the question of how to leverage the
capabilities of QPUs for the HPC software stack. Some of the
many computationally hard tasks in this stack could benefit
from the advantages of quantum computing. As a proof-of-
concept for this idea, this paper proposes an integration of a
hybrid quantum register allocation algorithm in GCC [7]. The
performance of this approach will be evaluated by compiling
HPC proxy apps for a classical x86_64 CPU architecture.

The main contributions of our work are as follows:

• We propose a register allocation method centered around
a hybrid quantum optimization algorithm. We imple-
mented the algorithm using a quantum computing frame-
work and integrated it as a replacement for the graph
coloring step of GCC’s register allocation.

• We evaluate the quality of the solutions given by our al-
gorithm by comparing them to a simple classical heuristic
and GCC’s allocation algorithm. We show improvement
over the simple heuristic but do not yet reach the perfor-
mance of GCC.

The rest of this paper is organized as follows: Section 2 lays
down the background and discusses related work. Section 3
introduces the hybrid register allocation algorithm. Section 4
describes the implementation of the algorithm and its integra-
tion into an existing compiler. The performance of our algo-
rithm on real HPC codes is studied in Section 5 and, finally,
Section 6 concludes this paper.

2 Background
2.1 Register Allocation problem
Compilation is a long process that usually ends with ”code
generation” which consists of translating the program into
architecture-specific instructions [8]. As part of code gener-
ation, the compiler needs to determine where to store each
variable of the program. Modern computer architectures are
composed of a variety of types of storage, each with its size and
speed. Registers are small memory slots in the CPU which are
extremely fast to access, most can be used directly in an oper-
ation without any load cycles.

While there can be any number of variables in a program,
processors contain a finite number of registers. If two variables
are in use (or ”live”) simultaneously, they cannot be stored in
the same register. Optimizing compilers need to decide which
variables to store in registers and which to store in system
memory. If not all variables can be stored in registers, the ones
stored in system memory are said to have been ”spilled” [6].

A well-established method of register allocation is based on
graph coloring [6, 9]. The core component of this technique is
the interference graph: an undirected graph G = (V,E) where

nodes represent the variables of the program. There is an edge
between two variables if and only if they are alive simultane-
ously in at least one statement. If the nodes representing two
variables are not connected by an edge, the live ranges of the
variables are distinct and we can allocate both to the same reg-
ister. Register allocation boils down to finding a valid coloring
of this graph using registers as colors.

However, the simple k-coloring problem only captures a very
basic description of the register allocation problem. In modern
CPU architecture, each variable in a program can only be allo-
cated to a specific subset of all available registers. The problem
that needs to be solved then becomes the list coloring of the
interference graph with, for each variable v, Lv the list of reg-
isters that it can be allocated to. Each variable can either be
allocated to a register or spilled to system memory, let us then
define L = {mem} ∪

⋃
v∈V Lv the list of all spaces where a

variable could be stored.
The final component we use to define register allocation here

is a cost function Calloc : V ×L 7→ R that assigns an allocation
cost for each possible combination of variables and register (or
memory). We can then define register allocation as a combi-
natorial optimization problem detailed in Equation 1.

min
r : V 7→L

∑
v∈V

Calloc(v, r(v)) (1a)

s.t. ∀(v, v′) ∈ E, r(v) 6= r(v′) or r(v) = mem (1b)
∀v ∈ V, r(v) ∈ Lv ∪ {mem} (1c)

We want to find an allocation r : V 7→ L that minimizes the
overall allocation cost (1a) while allocating different registers
to variables that are live at the same time or spilling them (1b).
We also need to make sure that each variable is allocated to a
register to which it can indeed be allocated (1c).

2.2 Quantum Computing for optimization
A category of problems that could benefit from the advantages
provided by quantum computing is combinatorial optimiza-
tion problems. The Quantum Approximate Optimization Al-
gorithm (QAOA) [10] is a hybrid quantum algorithm aiming at
providing improvements for combinatorial optimization tasks
over classical counterparts –in terms of approximation ratio
and/or execution time. Given a cost function C : {0, 1}n 7→ R,
it tries to find an approximate minimum of C by searching
for the ground state of a cost Hamiltonian HC defined by
〈x|HC |x〉 = C(x) for x ∈ {0, 1}n. To construct it from the
cost function a simple conversion can be obtained by taking
C(x) and applying the map xi ↔ (I − σZ

i)/2 where σZ
i is the

Pauli Z gate applied on qubit i.
QAOA is a type of Variational Quantum Algorithm [11]:

the core of the algorithm is a parameterized quantum circuit
for which we will try to find the ”best” parameters using a
classical optimization loop. The state prepared by the circuit
is |γ,β〉 and is parameterized by 2p real angles (γ1, ..., γp) and
(β1, ..., βp). The circuit is made of p layers of gates derived
from HC and the angles γ,β.

An approximate solution to the optimization problem is
found by finding parameters γ∗ and β∗ that minimize the mea-
sured cost:

C(γ,β) = 〈γ,β|HC |γ,β〉 (2)
This classical optimization loop can be realized using algo-

rithms such as Nelder-Mead [12] or COBYLA [13] for example.

2

The final result of the algorithm is obtained by sampling the
state |γ∗,β∗〉, a bitstring x that minimizes C will be found
with high probability given a large enough p.

2.3 Related work
As mentioned in Section 2.1, the register allocation problem
can be considered a variant of graph coloring. Specific quan-
tum circuits and implementations to solve this problem using
Variational Quantum Algorithms have been proposed in the
past [14]. These quantum algorithms solving max-k-coloring
have also been tested on NISQ devices [15], the results seem to
suggest that QAOA for such optimization problems could be
beneficial. However, register allocation as we defined is a dif-
ferent, more complex problem than max-k-coloring. It is closer
to list-coloring where each node can be assigned to a specific
list of colors while also adding constraints such as spilling [6].

While quantum algorithms for the specific problem of reg-
ister allocation are a new field of research, there has been ex-
tensive work regarding classical algorithms that solve this op-
timization problem. Chaitin’s method of allocating registers
by coloring the interference graph [6] (and the following im-
provement by Briggs [9]) is foundational and still widely used
in modern compilers. The basic principle of the algorithm is
to successively remove nodes that satisfy deg(v) < k from the
interference graph and add them to a stack. If there are no
such nodes, nodes are spilled and removed from the graph un-
til a node satisfies the condition. When all nodes have been
removed, they are popped from the stack one by one and as-
signed an available color.

Integration of Quantum and High-Performance Comput-
ing is an emerging field of research. Some groundwork has
been laid regarding the possible architectures and challenges
of HPC/QC integration [16, 17]. The specific area of using
quantum algorithms to solve problems in the HPC software
stack is novel as far as we have been able to find. However, the
idea of using quantum algorithms was already put forward in
the case of quantum circuit compilation [18].

3 Quantum Algorithm for Regis-
ter Allocation

3.1 Independent set extraction
If we look back at the register allocation problem as we defined
it in Equation 1, it is quite clear that it is a complex combina-
torial problem. Converting constraints (1b) and (1c) as well as
the allocation cost in (1a) into a single global cost Hamiltonian
to be used for QAOA is left as future work. Instead, we de-
cided to find a simple quantum hybrid algorithm to solve the
register allocation problem that would lead to smaller quantum
circuits.

A known method to color graphs consists of sequentially ex-
tracting large independent sets from the graph and assigning
the same color to each node of the set as there are no edges
between them [19, 20]. We will apply this idea here with one
specificity being that we will use QAOA to find large indepen-
dent sets in the graph. To use QAOA we need a cost Hamil-
tonian for the weighted Maximum Independent Set (w-MIS)
problem. The cost Hamiltonian is derived from the cost func-
tion described in Equation 3 where xv = 1 ⇐⇒ v is in the

independent set. We apply the map xv → (I−σZ
v)/2 to obtain

the final Hamiltonian [21], which is described in Equation 4.

Cw-MIS(x) =
∑

(v,v′)∈E

xvxv′ −
∑
v∈V

wvxv (3)

Hw-MIS =
∑

(v,v′)∈E

σZ
v σ

Z
v′ +

∑
v∈V

(wv − deg(v))σZ
v (4)

One qubit will correspond here to one vertex of the graph
and a qubit measured in state ”1” will mean that the node is
in the set.

As noted in Section 2.1, each variable can only be allocated
to a specific subset of possible registers. In other words, each
register t can only store variables that are in the set Vt defined
as: Vt = {v ∈ V : t ∈ Lv}. For each register we will then try to
find a large independent set in G[Vt] = (Vt, Et), the subgraph
of G induced by Vt ⊆ V .

To minimize the total allocation cost we would like to allo-
cate variables that would be costly to spill into memory first.
To take this into account, we will extract for each register an
independent set that maximizes the potential cost of spilling
the variables to memory instead of storing them in the register.
We define, for each register t, the cost of spilling a variable v
as the cost of storing it in memory minus the cost of storing it
in the register (Equation 5).

Cspill(v, t) = Calloc(v,mem)− Calloc(v, t) (5)

The order in which the registers are allocated is decided
using a cost function described in Section 3.2. Algorithm 1
describes the full register allocation algorithm with the step
that is performed on the QPU in italics at line 6.

Algorithm 1 Greedy MIS QAOA
Require: Interference graph G = (V,E), lists of available

registers (Lv)v∈V , spill cost Cspill.
1: L :=

⋃
v∈V Lv

2: Initialize r(v) := mem for all v ∈ V
3: while |L| > 0 and |V | > 0 do
4: t′ := argmint∈L c(t)
5: if |Et′ | > 0 then
6: [On QPU] Use QAOA to find Max Independent

Set S of G[Vt′] with weights wv = Cspill(v, t
′)

7: else
8: S := Vt′

9: end if
10: for all v ∈ S do
11: r(v) := t′

12: Remove v from G
13: end for
14: Remove t′ from all Lv

15: Update L :=
⋃

v∈V Lv

16: end while
17: return Allocation r

We never explicitly decide to spill a variable to memory here.
Instead, spills happen when there are no registers left to which
the variable could be allocated.

3

3.2 Allocation order
As mentioned earlier, the registers are assigned in a specific
order related to what we call a ”register allocation cost” c : L 7→
R. This cost should reflect how risky it would be to assign
this register in terms of potential spills. Spills happen when
a variable is not included in the independent set while having
only one available register left. The allocation cost function c
should reflect the probability of this situation happening for
each register.

To take into account this risk, the cost function reflects how
dense the subgraph G[Vt] = (Vt, Et) is. We want to penalize
graphs with a large number of edges and few nodes as it could
negatively impact the maximum size of the extracted indepen-
dent set. We define this ”register allocation cost” as follows:

c(t) =
|Et|
|Vt|

(6)

4 Adding a Quantum Computing
routine to GCC

4.1 Architecture of GCC’s compilation
pipeline

The previous section described a hybrid quantum register allo-
cation algorithm based on QAOA. The next step is to imple-
ment this algorithm and integrate it into a modern optimizing
compiler. We decided to integrate our algorithm into GCC [7]
as it is one of the most widely used compilers in both research
and industrial settings.

Fr
on

t-E
nd

M
id
dl
e-
En

d

B
ac
k-
En

d

GENERIC RTL

GIMPLE

ASM

C

C++

...

Figure 1: Simplified internal architecture of GCC com-
piler. The various Intermediary Representations are writ-
ten over each arrow connecting the internal compiler
blocks.

GCC’s internal architecture can be split into three main
parts (see Figure 1). The front-end parses and analyses code
written in a specific language and converts it to a generic In-
termediary Representation (IR) called GENERIC. The Middle-
End first converts the GENERIC code into another IR called
GIMPLE, the program represented this way will then go
through many optimization and transformation passes. Most
of the architecture-independent optimization will happen at
this time. Finally, the program is converted into a final IR
called Register Transfer Language (RTL) before entering the
final steps of compilation. Those final steps are all inside the
Back-End in which architecture-specific transformations and
optimizations will happen before the final Assembly (ASM)
code generation.

GCC offers an extensive plugin system that allows the in-
tegration of new transformation passes without having to di-

rectly modify the compiler. However, this plugin system is
most suited for Middle-End passes and we could not use it to
integrate our modified back-end register allocation pass. We
directly integrated our hybrid algorithm into the existing pass
that handles this task in GCC. This pass is called the Inte-
grated Register Allocator (IRA) as it also performs tasks such
as live range splitting and register coalescing on the fly during
coloration.

To integrate our algorithm into GCC we override the col-
oration step of the IRA with an external routine as described
in Figure 2. We do so for every interference graph in the com-
piled code (∼1 per function/loop). As the number of qubits
required to run the quantum algorithm scales with the number
of nodes in the input interference graph, we want to work on
as small graphs as possible. To do so the interference graph is
first decomposed into its connected components1 before run-
ning the algorithm on each component. The final allocation
result is gathered from the results of all subgraphs.

Quantum devices have a limited number of available qubits
that can be used to run a quantum algorithm. To take this
constraint into account, we only use our algorithm to color the
graphs that require fewer qubits than a fixed threshold. The
maximum number of qubits required by our algorithm is given
by the number of nodes of the largest subgraph induced by any
available register t:

Nqubits(V,L) = max
t∈L

|Vt| (7)

Every individual subgraph that requires fewer qubits than a
fixed threshold will be allocated using the hybrid quantum al-
gorithm. The components that would require too many qubits
will be colored by GCC’s regular register allocator.

4.2 Quantum routine implementation

The core of our hybrid register allocation algorithm is the ap-
proximate solving of the Maximum Independent Set problem
using QAOA. We implemented this quantum algorithm us-
ing a high-level quantum computing framework developed by
Atos/EVIDEN called myQLM [23]. We chose this framework
as it offers a generic quantum circuit programming model as
well as integrated quantum circuit emulators. The main benefit
of using a generic quantum computing framework is the ability
to be hardware-agnostic. This allows us in theory to be able to
run the quantum algorithm on any given quantum device that
supports the gate-based model of quantum computation.

1A connected component of the graph G is a subgraph in which
each pair of nodes is connected via a path. The list of all connected
components of a graph can be obtained by Breadth-First Search [22].

4

HPC Runtime

int main()
{
 ...
}

GCC

Fr
on

t-E
nd

M
id

dl
e-

En
d

B
ac

k-
En

d

IRA
Greedy MIS QAOA

Fi
ni

sh
 a

llo
ca

tio
n

Choose next register

 classical optimization

0111 0101
0101 1010
1001 1101
1010 1101

CPU

QPU QAOA

Prepare Measure
state

Figure 2: Architecture of the modified GCC compilation stack with the integration of the quantum-assisted register
allocator. The coloration step of GCC’s Integrated Register Allocator is overridden to use Algorithm 1. The quantum
state preparation and measurement operations are executed on an external QPU.

Listing 1: myQLM Max Independent Set QAOA
1 # Initialize empty Hamiltonian
2 h = Observable(G.number_of_nodes())
3

4 # First term of the Hamiltonian
5 for u, v in G.edges():
6 h.add_term(
7 Term(1, "ZZ", [u, v])
8)
9

10 # Second term of the Hamiltonian
11 for u in G.nodes():
12 h.add_term(
13 Term(weights[u] - G.degree[u], "Z", [u])
14)
15

16 # Generate quantum circuit from h
17 circ = AnsatzFactory.qaoa_circuit(h, p)
18

19 # Run the QAOA optimization loop
20 qpu = get_default_qpu()
21 stack = ScipyMinimizePlugin() | qpu
22 job = circ.to_job(observable=h)
23 result = stack.submit(job)

To implement QAOA in myQLM, we could either manually
write the whole quantum circuit or use built-in methods to gen-
erate said circuit. We chose the latter for simplicity and leave
the problem of optimizing the quantum circuit for our specific
problem to future work. The built-in QAOA circuit genera-
tion methods take as input the cost Hamiltonian and generate
a ”quantum job” that can then be run on any supported QPU.
The quantum job can also be run using a quantum circuit em-
ulator instead of a real QPU.

An example code excerpt that uses myQLM to implement
QAOA for the Max Independent Set problem is provided in
Listing 1.

5 Experimental results evaluation

5.1 Benchmark methodology
To validate the concept of integrating quantum algorithms into
the classical HPC software stack, we measured the performance
of the new hybrid register allocation algorithm. The metric we
use to evaluate the performance of register allocation is the al-
location cost computed by GCC which is similar to the one de-
fined in Equation 1a. As no real quantum device was available
to us, the quantum jobs were run using the CLinalg simulator
included in myQLM which is based on state-vector simulation.
We chose to use noiseless quantum circuit simulations for this
study to serve as we meant it to be a proof-of-concept for hy-
brid quantum methods in the HPC software stack.

To evaluate the performance of our hybrid algorithm we used
the modified GCC to compile three HPC proxy apps: miniFE,
miniMD –both of which are part of the Mantevo project [24]–
and LULESH [25]. We chose these codes as they are rep-
resentative of some of the most common HPC use cases. As
a point of comparison, we also performed the register alloca-
tion step of the compilation of these codes using the classical
Chaitin-Briggs [6, 9] register allocation algorithm as well as
GCC’s allocation algorithm. GCC was used in all cases to
generate the interference graph and to perform the other steps
of compilation.

We chose to run the simulation with a fixed maximum num-
ber of qubits set to 13 to limit the total simulation time. The
number of variables that could be allocated using our algorithm
with 13 qubits are shown in Table 1. This limited number of
available qubits means that only small interference graphs can
be colored with the hybrid quantum algorithm. Modern CPU
architectures usually contain a few dozen hardware registers
which are more than the number of nodes of the processed
graphs. This would make the coloring task trivial by assigning
a different register to each node. To emphasize the differences
in performance between our algorithm and the classical algo-
rithms, we decided to restrict the set of available CPU registers
by passing the -ffixed-<reg> option to the compiler for each
unwanted register <reg>.

5

Table 1: Comparison of the number of variables handled
by our algorithm with 13 available qubits.

Code Total variables Variables han-
dled by QAOA

LULESH 11010 1343 (12.2%)
miniFE 23426 3700 (15.79%)
miniMD 25885 9376 (36.22%)

The global benchmark parameters were as follows:

• Codes: LULESH [25], miniFE , miniMD [24]
• Target CPU architecture: x86_64 (AMD64)
• Used registers: rax, rcx, rdx, xmm0, xmm1, xmm2

• QAOA classical optimizer: COBYLA optimizer [13]
• Classical optimizer max number of iterations: 200
• QAOA initial parameters: Taken from a TQA sched-

ule [26] with ∆t = 0.75

• QAOA measurement shots2: 1000

5.2 Performance of the algorithm on HPC
apps

We measured the allocation cost computed by GCC for our
hybrid algorithm as well as the simple Chaitin-Briggs heuris-
tic [6,9] and GCC’s internal register allocation algorithm. The
results of the comparison in terms of total allocation cost are
given in Figure 3. We see that our hybrid quantum algorithm
outperforms the basic Chaitin-Briggs allocation heuristic for
all HPC codes to a varying degree. The difference is most no-
ticeable on miniFE, this could be caused by many factors such
as the shape and size of the encountered interference graphs.

We see however that GCC’s internal allocation algorithm
always outperforms our simple hybrid algorithm. This can be
explained in multiple ways: first of all, the idea of greedily
extracting the largest independent graph could be largely sub-
optimal compared to optimal coloring. Also, GCC performs
other optimizations during the coloring step of allocation that
could explain another part of the difference in performance.
Finally, there is no clear theoretical proof of a clear advan-
tage provided by QAOA for optimization problems, its poten-
tial inherent weaknesses may take part in the lackluster per-
formance. This opens many paths forward to implement our
method to address these points, these improvements are left as
future work.

6 Conclusion and Future Work
In this work, we proposed an application of Quantum Com-
puting for High-Performance Computing in the form of a hy-
brid quantum register allocation algorithm based on QAOA.
We allocate all variables of a code to registers by extracting
Maximum Independent Sets from the interference graph using
QAOA. We implemented this algorithm using the high-level

2The number of shots is the number of times each quantum mea-
surement is repeated to obtain a probability distribution.

LULESH miniFE miniMD
0.85

0.90

0.95

1.00

1.05

1.10

R
el

at
iv

e
al

lo
ca

tio
n

co
st

-0.10%

-4.50%

-1.00%-0.90%

-7.00%

-4.40%

Allocation costs for each tested HPC code

Chaitin-Briggs
Greedy MIS QAOA
GCC IRA

Figure 3: Allocation cost computed by GCC for each reg-
ister allocation method and each evaluated code. The cost
is taken as the average over 3 simulations.

myQLM quantum computing framework and integrated it di-
rectly inside GCC’s register allocation pass.

We demonstrated improved register allocation performance
over the basic Chaitin-Briggs allocation algorithm on three
sample HPC codes: LULESH, miniFE and miniMD. The ex-
periments were run on a noiseless quantum circuit simulator
with a small number of available qubits. The performance of
the algorithm was however not as good as the internal GCC
register allocator. This can be explained in multiple ways but
it raises the question of the practical interest of the current
version of our algorithm.

We believe there are multiple paths forward regarding use-
ful applications of quantum algorithms for the HPC software
stack. First of all, for the problem of register allocation, we
could employ a column generation method on a Linear Pro-
gramming version of the problem which then uses a quantum
algorithm for the pricing sub-problem. Such a method has
already been demonstrated for the problem of minimum ver-
tex coloring [27] using a neutral atom-based QPU. Other ideas
could revolve around embedding the constraints of the opti-
mization problem into the quantum circuit [28]. We could also
leverage a larger amount of qubits to cover a bigger percent-
age of the compiled code as only a small part of the codes is
covered now (see Table 1). Finally, other interesting hard op-
timization problems in the HPC software stack may be better
suited for hybrid quantum methods. We believe in particular
that many scheduling tasks are present in various tools and
runtime software that could benefit from quantum computing.

Acknowledgments
This work is part of HQI initiative (www.hqi.fr) and is sup-
ported by France 2030 under the French National Research
Agency award number “ANR-22-PNCQ-0002”.

References
[1] P. Shor, “Algorithms for Quantum Computation: Dis-

crete Logarithms and Factoring,” in Proceedings 35th
Annual Symposium on Foundations of Computer Sci-
ence, Nov. 1994, pp. 124–134, https://doi.org/10.1109/s-
fcs.1994.365700.

6

[2] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Al-
gorithm for Solving Linear Systems of Equations,” Physi-
cal Review Letters, vol. 103, no. 15, p. 150502, Oct. 2009,
http://arxiv.org/abs/0811.3171.

[3] L. K. Grover, “A fast quantum mechanical algorithm for
database search,” in Proceedings of the Twenty-Eighth
Annual ACM Symposium on Theory of Computing, ser.
STOC ’96. New York, NY, USA: Association for Com-
puting Machinery, Jul. 1996, pp. 212–219.

[4] R. P. Feynman, “Simulating Physics with Comput-
ers,” International Journal of Theoretical Physics,
vol. 21, no. 6, pp. 467–488, Jun. 1982, https://-
doi.org/10.1007/BF02650179.

[5] J. Preskill, “Quantum Computing in the NISQ Era
and Beyond,” Quantum, vol. 2, p. 79, Aug. 2018,
https://quantum-journal.org/papers/q-2018-08-06-79/.

[6] G. J. Chaitin, “Register Allocation & Spilling
via Graph Coloring,” ACM SIGPLAN Notices,
vol. 17, no. 6, pp. 98–101, Jun. 1982, https://-
doi.org/10.1145/872726.806984.

[7] “GCC, the GNU Compiler Collection - GNU Project.”
[8] S. Muchnick and M. and Associates, Advanced Compiler

Design Implementation. Morgan Kaufmann, Aug. 1997.
[9] P. Briggs, “Register Allocation via Graph Color-

ing,” Ph.D. dissertation, Rice University, Apr. 1992,
https://scholarship.rice.edu/handle/1911/96426.

[10] E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum
Approximate Optimization Algorithm,” Nov. 2014.

[11] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin,
S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan,
L. Cincio, and P. J. Coles, “Variational Quantum Al-
gorithms,” Nature Reviews Physics, vol. 3, no. 9, pp.
625–644, Sep. 2021, http://arxiv.org/abs/2012.09265.

[12] J. A. Nelder and R. Mead, “A Simplex Method
for Function Minimization,” The Computer Journal,
vol. 7, no. 4, pp. 308–313, Jan. 1965, https://-
doi.org/10.1093/comjnl/7.4.308.

[13] M. J. D. Powell, “A Direct Search Optimization Method
That Models the Objective and Constraint Functions
by Linear Interpolation,” in Advances in Optimization
and Numerical Analysis, ser. Mathematics and Its Ap-
plications, S. Gomez and J.-P. Hennart, Eds. Dor-
drecht: Springer Netherlands, 1994, pp. 51–67, https://-
doi.org/10.1007/978-94-015-8330-5_4.

[14] Y.-H. Oh, H. Mohammadbagherpoor, P. Dreher, A. Singh,
X. Yu, and A. J. Rindos, “Solving Multi-Coloring Combi-
natorial Optimization Problems Using Hybrid Quantum
Algorithms,” Dec. 2019.

[15] Z. Tabi, K. H. El-Safty, Z. Kallus, P. Hága, T. Kozsik,
A. Glos, and Z. Zimborás, “Quantum Optimization for
the Graph Coloring Problem with Space-Efficient Embed-
ding,” 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE), pp. 56–62, Oct. 2020,
http://arxiv.org/abs/2009.07314.

[16] K. A. Britt and T. S. Humble, “High-Performance Com-
puting with Quantum Processing Units,” ACM Journal
on Emerging Technologies in Computing Systems, vol. 13,
no. 3, pp. 39:1–39:13, Mar. 2017.

[17] T. S. Humble, A. McCaskey, D. I. Lyakh, M. Gowris-
hankar, A. Frisch, and T. Monz, “Quantum Computers
for High-Performance Computing,” IEEE Micro, vol. 41,
no. 5, pp. 15–23, Sep. 2021.

[18] S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sorn-
borger, and P. J. Coles, “Quantum-assisted quantum com-
piling,” Quantum, vol. 3, p. 140, May 2019.

[19] M. Chams, A. Hertz, and D. de Werra, “Some Exper-
iments with Simulated Annealing for Coloring Graphs,”
European Journal of Operational Research, vol. 32, no. 2,
pp. 260–266, Nov. 1987, https://www.sciencedirect.com/-
science/article/pii/S0377221787801480.

[20] Q. Wu and J.-K. Hao, “Coloring Large Graphs Based
on Independent Set Extraction,” Computers & Oper-
ations Research, vol. 39, no. 2, pp. 283–290, Feb.
2012, https://www.sciencedirect.com/science/article/pi-
i/S0305054811000979.

[21] A. Lucas, “Ising formulations of many NP problems,”
Frontiers in Physics, vol. 2, 2014.

[22] J. Hopcroft and R. Tarjan, “Algorithm 447: Efficient Al-
gorithms for Graph Manipulation,” Communications of
the ACM, vol. 16, no. 6, pp. 372–378, Jun. 1973, https://-
doi.org/10.1145/362248.362272.

[23] “Quantum Application Toolset — myQLM Documenta-
tion Documentation.”

[24] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Wil-
lenbring, H. C. Edwards, A. Williams, M. Rajan, E. R.
Keiter, H. K. Thornquist, and R. W. Numrich, “Improv-
ing performance via mini-applications,” Sandia National
Laboratories, Tech. Rep. SAND2009-5574, vol. 3, 2009.

[25] I. Karlin, J. Keasler, and R. Neely, “LULESH 2.0 Updates
and Changes,” Livermore, CA, Aug. 2013.

[26] S. H. Sack and M. Serbyn, “Quantum annealing initial-
ization of the quantum approximate optimization algo-
rithm,” Quantum, vol. 5, p. 491, Jul. 2021.

[27] W. d. S. Coelho, L. Henriet, and L.-P. Henry, “A quan-
tum pricing-based column generation framework for hard
combinatorial problems,” Jan. 2023.

[28] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D. Ven-
turelli, and R. Biswas, “From the Quantum Approximate
Optimization Algorithm to a Quantum Alternating Oper-
ator Ansatz,” Algorithms, vol. 12, no. 2, p. 34, Feb. 2019,
http://arxiv.org/abs/1709.03489.

7

