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Abstract 13 

In the event of internal contamination with radionuclides, decorporating treatment is crucial. 14 

It must be initiated as soon as possible to limit tissue retention of radiocontaminants and 15 

accelerate their excretion. However, the existing therapies for such contaminations often lack 16 

effectiveness. The conventional research strategy is based on selecting or synthesizing new 17 

chelating agents, a lengthy and costly process. Another approach is drug repurposing, such as 18 

molecules belonging to the biphosphonate series. This primary therapeutic class is mainly 19 

used to treat bone metabolism disorders. However, for decades, biphosphonates have offered 20 

a wide range of applications in research, including macrophage depletion or bone 21 

regeneration, but also in more unexpected areas such as skin decontamination and 22 

decorporation. In addition, controlled drug delivery and nanotechnologies have offered a 23 

promising approach for significantly improving the delivery and efficacy of these active 24 

substances. They increase their distribution to target organs and bypass issues related to their 25 
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toxicity or poor pharmacokinetic performance. After outlining the pharmaceutical properties 26 

of biphosphonates, the present review aims to present the central innovative systems for their 27 

delivery and targeting in the field of radiation protection. 28 

 29 
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1 Introduction 33 

Bisphosphonates (BPs) have been initially used as corrosion inhibitors or complexing 34 

agents in the textile or petroleum industries. Etidronate (ethane-1-hydroxy-1,1-35 

bisphosphonate, EHBP, or 1-Hydroxyethylidene-1,1-diphosphonate, HEDP) was the first 36 

clinically applied in the 1960s [1]. Other molecules (clodronate, pamidronate, risedronate, 37 

alendronate, tiludronate, zoledronate, and ibandronate) were then successively available on 38 

the market. As bone resorption inhibitors, they were employed as first-line treatment of 39 

metabolic bone diseases such as osteoporosis and Paget's disease. Prescription of these drugs 40 

has been growing extensively due to population aging, with the global prevalence of 41 

osteoporosis estimated at 18.3% [2]. BPs are also widely used in therapy to treat 42 

hypercalcemia and as an adjuvant in bone metastasis. 43 

Besides their known therapeutic indications, BPs have been particularly interesting in 44 

radioprotection due to their mechanism of action and bone tropism. Since one of the target 45 

tissue after radiocontamination is the bone [3, 4], applications have included decontamination 46 

and decorporation [5, 6]. These studies demonstrated that BPs could be effective medical 47 

countermeasures for the population and workers exposed accidentally or intentionally to 48 

radiation. 49 

The mechanism of action of BP molecules relies on their binding to hydroxyapatite (HA) 50 

crystals related to their strong affinity for calcium (Ca) [7]. A few conditional stability constants 51 

(log K) for Ca-BP complexes are available. For instance, for the CaL2- complex, the values for 52 

clodronate, pamidronate, and EHBP are 5.77 ± 0.01 (0.1 M (CH3)4NCl, 25°C), 6.13 ± 0.1 (0.1 M 53 

KCl, 25°C), and 6.18 ± 0.03 (0.1 M (CH3)4N(NO3), 25°C), respectively [8-10]. Regarding the  54 

EHBP-Ca complex, the overall stability constant was determined as log β equal to 20.20 ± 0.06 55 

[11]. Other elements, such as divalent cations like copper (Cu2+), zinc (Zn2+), or iron (Fe2+), have 56 
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also been investigated for complexation and exhibit comparable affinities to BPs [12]. 57 

Recently, a detailed analysis of cobalt (Co2+) complexation with EHBP was published and 58 

provided several overall stability constants up to 27.11 ± 0.1 [13]. Trivalent cations (Al3+, Cr3+, 59 

Eu3+) were also investigated and displayed high values for the overall stability constants (log β 60 

> 25) [14, 15]. Moreover, a few studies have reported that BPs have a good affinity with 61 

hexavalent cations like uranium [16, 17]. Among all these elements, we can note that the 62 

recommended medical treatment for cobalt contamination has minimal effectiveness. The 63 

recent observations suggest that clinical indications of BPs could be extended to other 64 

radionuclides and increase the therapeutic arsenal in the event of internal contamination. 65 

This review aims to update the knowledge of this significant class of drugs. After reviewing 66 

the pharmacological properties and mechanism of action of BPs, we will discuss the 67 

applications of BPs in the field of radiation protection. 68 

2 Bisphosphonates: structure-activity relations 69 

Also known as diphosphonates, BPs are a family of synthetic pharmaceutical molecules 70 

characterized by two phosphonate groups, PO(OH)2, in geminal position, i.e. linked to the 71 

same carbon. BPs have a strong structural analogy with inorganic pyrophosphate, a 72 

degradation product of ATP that inhibits calcium phosphate precipitation by binding to HA 73 

crystals, which has a P-O-P bond (Fig. 1) [18-20]. However, replacing oxygen with a carbon 74 

atom in the center of the P-C-P bridge allows BPs to resist enzymatic degradation and are, 75 

therefore, non-hydrolyzable and, consequently, very stable molecules [21]. The differences 76 

between each BP are the two residues (R1 and R2), allowing the creation of multiple structures 77 

with different pharmacological properties.  78 

 79 

Fig. 1: General chemical structure of pyrophosphoric acid and bisphosphonic acid 80 
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BP molecules available on the market include clodronate, risedronate, ibandronate, 81 

pamidronate, alendronate, and zoledronate. EHBP is the reference BP. The chemical structure 82 

of these seven compounds is given in Fig. 2. These BPs share the P-C-P bridge and two 83 

phosphonate groups essential for bone resorption inhibition and targeting the bone mineral 84 

fraction [22]. Indeed, chemical modifications, such as adding carbon in the P-C-P bridge or 85 

replacing hydroxyl with methyl in the phosphonate groups, lead to a loss of bone affinity and 86 

resorption capacity [21, 23]. 87 

The short R1 chain provides BP an affinity for bone tissue, notably via the presence of the 88 

hydroxyl group. In contrast, the function and the potential to inhibit bone resorption are 89 

essentially linked to the R2 chain [24]. BPs can be classified into two categories according to 90 

the presence or absence of a nitrogen atom in the R2 chain. The first category includes the first 91 

generation of non-amino BP (EHBP, clodronate, tiludronate) with mono-atomic or hydroxyl 92 

groups. The second category consists of a second generation of amino BP with a primary 93 

amine group in R2, including pamidronate and alendronate, and a third generation of amino 94 

BP, which has a more complex structure and includes a tertiary nitrogen atom (ibandronate) 95 

or an aromatic N-heterocycle (risedronate, zoledronate). 96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 

 108 

 109 

 110 

Fig. 2: Chemical structure of bisphosphonic acid family members 111 

 112 
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The presence of a pyridine-type heterocycle or the R2 chain length dramatically influences 113 

the antiresorptive potency of the BPs molecules [18, 22]. The minimum dose of each BP 114 

required to induce osteopetrosis (a hereditary disease characterized by osteoclast dysfunction 115 

resulting in a defect in bone resorption) in young rats was determined to assess the potency 116 

of the BPs molecules. The doses were then compared to EHBP as a reference [25]. Table 1 117 

shows the structural characteristics of BPs and their relative potency [26]. 118 

 119 

Table 1: Chemical structure and relative potency of bisphosphonates 120 

Molecule R1 residue R2 residue Generation Potency 

Etidronate OH CH3 

1st 

1 

Clodronate Cl Cl 10 

Tiludronate H 4-chlorothiophenyl 10 

Pamidronate OH (CH2)2NH2 
2nd 

100 

Alendronate OH (CH2)3NH2 1,000 

Risedronate OH Pyridine 

3rd 

5,000 

Ibandronate OH 
 

10,000 

Zoledronate OH Imidazole 20,000 

 121 

3 Pharmacokinetic properties of BPs 122 

The administration of BPs usually occurs by the oral or intravenous route. Intramuscular 123 

and subcutaneous routes of administration are not considered because they induce irritation 124 

and tissue damage at the injection site [27, 28]. In humans, the oral absorption of BPs is 125 

minimal. The amount absorbed ranges between 2 and 2.5% for non-amino BPs and is about 126 

0.7% for amino BPs [29]. Furthermore, in the presence of food and drink containing calcium 127 

and magnesium, the bioavailability of BPs collapses dramatically.  128 

Once in the bloodstream, at physiological pH (7.4), BPs are partially ionized in the 129 

bloodstream, which explains their ability to bind to proteins present in plasma, mainly 130 

albumin. In humans, however, protein binding varies between BPs: for instance, on average, 131 

the binding fraction is 32% for zoledronate, 26% for ibandronate, 36% for clodronate [30, 31], 132 

and 78% for alendronate [32]. After a plasma half-life of around two hours, BPs disappear 133 

from the blood compartment and are retained in organs or undergo urinary excretion [33]. 134 

BPs are found throughout the human body in calcified (approximately 50-80%) and non-135 

calcified tissues [34]. 136 
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The distribution of BPs within calcified tissues is heterogeneous and complex [35]. Indeed, 137 

BPs will preferentially localize in trabecular bones where bone turnover is high. According to 138 

Lin's team, the concentrations of radiolabeled alendronate with carbon-14 (14C) are two to 139 

three times higher in these areas [36, 37]. In humans, the available data support the above 140 

results. According to the work of Carnevale et al., carried out on pre-and post-menopausal 141 

women using a technetium-99m-labeled methylene diphosphonate molecule, the distribution 142 

is predominantly in areas of high bone remodeling [38]. However, recent work by Roelofs' 143 

team suggests a more profound localization of BP. Indeed, 24 hours after administering 144 

fluorescent risedronate analogs to 3-month-old mice, the labeled molecule was found in 145 

osteocyte lacunae near vascular channels and in monocytes in the bone marrow [39]. 146 

The elimination half-life of BPs in skeletal tissue varies according to the molecule considered 147 

and depends on factors such as the rate of bone turnover and renal function [40]. In the case 148 

of alendronate, it is estimated to be more than ten years in healthy humans [41, 42]. 149 

The distribution of BPs in non-calcified tissues has not been investigated as much as in 150 

skeletal tissues. However, it appears to be relatively homogeneous with a preference for the 151 

liver, kidney, and spleen, but their retention decreases rapidly over time. After intravenous 152 

(IV) administration of 1 mg.kg-1 of 14C-alendronate in rats, the retention of the molecule in 153 

these tissues ranges from 63% of the dose at 5 min to 5% at 1 h. At the same time, retention 154 

in bone tissue increases to a peak at 1 hour after injection [37].  155 

The characteristic of BPs structure based on a P-C-P bridge makes enzymatic hydrolysis 156 

difficult. However, in contrast to nitrogen containing bisphosphonate (N-BP), in vitro studies 157 

in mammalian cells (murine macrophage cells J774 and human osteosarcoma cells MG63) 158 

suggest that clodronate and EHBP are metabolized to non-hydrolyzable cytotoxic analogs of 159 

ATP identified by chromatographic analysis. No data on the percentage of the dose that would 160 

be metabolized is available. In contrast, for alendronate, no metabolites were detected [43], 161 

and N-BP was eliminated in an unchanged form [35].  162 

The elimination route of BPs is almost exclusively urinary via glomerular filtration [35]. 163 

Some BPs are undergoing tubular secretion, as shown by Troehler's team on rodents [44]. The 164 

molecules used were EHBP and dichloromethylene diphosphonate labeled with 14C. According 165 

to Ruggiero et al., 50% of the absorbed BPs is excreted unmetabolized in the urine [24]. The 166 

removal of BPs is complex as it is dependent on bone turnover. Once integrated into the bone, 167 

BPs will only be mobilized during a bone remodeling phase. This slow removal kinetics explains 168 
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the continuous urinary and blood concentrations over long periods. A minor elimination route 169 

occurs via bile excretion (less than 0.5%) [37]. 170 

4 Mechanism of action of BPs 171 

The principal therapeutic action of BPs is the inhibition of bone resorption. Bone tissue is, 172 

therefore, the main target of this class of drugs. Before detailing the mechanism of action, we 173 

will discuss the chelation process essential to this mechanism. 174 

4.1 Chelation 175 

The high affinity of BPs for calcium is necessary to inhibit bone resorption. Indeed, the 176 

binding intensity of BPs to calcium present in the mineral fraction of bone by adsorption forms 177 

the basis of their mechanism of action [7]. Chromatographic studies suggest that the 178 

phosphonate groups and the R1 and R2 residues of BPs significantly bind to HA crystals. These 179 

chemical differences explain the variability observed between BPs. The results suggest an 180 

increasing affinity in the following order: clodronate < EHBP < risedronate < ibandronate 181 

< alendronate < zoledronate [45]. More recently, DFT (Density Functional Theory) analyses 182 

based on quantum calculations of molecular structures have confirmed these results [46]. 183 

They support the stronger affinity to the mineral matrix of BPs with a nitrogen atom, attesting 184 

to a more consistent anti-resorption effect [47].  185 

To better understand the chelation process, which is essential for the biological action 186 

of BPs, the Ca-BP bond has been studied extensively, particularly by Claessens and Van der 187 

Linden [8]. Among the ligands (L), EHBP and methylene diphosphonate were studied. 188 

According to the authors, the complexes would only exist at pH above 4. The predominant 189 

chemical complex at pH 5-7 would be a monoprotonated calcium one (CaHL−) with a formation 190 

constant log K at 3.12 ± 0.06. Then, by increasing the pH, the unprotonated dicalcium species 191 

(Ca2L) would be predominant with log K about 4.63 ± 0.06. The studies of Foti support these 192 

values [11]. Indeed, for the CaHL- complex, log K and log β (overall stability constant) are 2.87 193 

and 14.31 ± 0.05, respectively. For the Ca2L complex, log K and log β are 4.70 and 11.22 ± 0.06, 194 

respectively. Furthermore, it was shown that the bond between the BP and the calcium was 195 

bidentate or even tridentate when the R1 residue contained a hydroxyl group [48].  196 

In addition to calcium, the complexation between BP and especially EHBP (the head of 197 

BPs series) and other divalent elements has also been investigated, such as Cu2+, Zn2+, Fe2+, 198 

nickel (Ni2+), cadmium (Cd2+), magnesium (Mg2+), Co2+ and strontium (Sr2+) [11-13, 49]. 199 
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Complex formation with trivalent cations was also studied, especially with aluminium (Al3+), 200 

chromium (Cr3+) and europium (Eu3+) [14, 15]. The stability constants of these cations with 201 

EHBP are listed in Table 2. 202 

Table 2: Complexation constants for MH2L complex 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

All the elements examined form stable complexes with EHBP molecules, and the 224 

results are pretty similar. Concerning Cu2+, the complex M2L2 is predominant in a strongly 225 

alkaline solution. Log β was determined at 30.42 in 0.3 M NaOH solution at 25°c [50]. 226 

Differences can be observed and are function, among other things, of the ligand coordination 227 

sites, the charge of the complex, or the steric hindrance generated [49]. The use of BPs has 228 

also been considered for the decorporation of actinides such as uranium (U). A conditional 229 

constant for the complex UO2
2+-HEDP (1:1 complex stoichiometry) was determined at 230 

 log K log β 
 0.1 M KCl (20°C)a 

Co2+ ND 8.52 ± 0.04 

   

 0.1 M KNO3 (25°C)b,c,d 

Sr2+ 1.52 ND 

Co2+ 2.78 ND 

Cu2+ 3.0 ± 0.4 20.1 ± 0.5 

Zn2+ 3.8 ± 0.3 20.2 ± 0.5 

Ni2+ 4.8 ± 0.1 20.3 ± 0.2 

Cd2+ 4.5 ± 0.2 20.7 ± 0.3 

Fe2+ 3.3 ± 0.3 21.0 ± 0.4 

Cr3+ 4.0 ± 0.1 28.9 ± 0.1 

Al3+ 1.8 ± 0.3 29.1 ± 0.3 

   
 0.1 M NaCl (25°C)e 

Mg2+ 1.54 19.91 ± 0.2 

Ca2+ 1.83 20.20 ± 0.06 

   

 0 Mf 

Eu3+ 5.6 ± 0.4 25.2 ± 0.4 
M is metal and L is ligand (EHBP), ND means 
not determined. 
a[13], b[49], c[12], d[15], e[11], f[14]. 
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7.7 ± 0.3 by using a 0.1 M sodium perchlorate solution (at 20°c), and the stability constant was 231 

established at 19.1 [16].  232 

In addition to their anti-bone resorption property, BPs are used for imaging through 233 

bone scintigraphy. They can be coupled to radiotracers, which are beta/gamma emitters such 234 

as 99mTc, 153Sm, 186Re, 188Re, depending on the purpose for diagnostic purposes. The 235 

radiotracers can be coupled due to the chelation property of BPs towards these radionuclides 236 

[51, 52]. In summary, the powerful capacity of BPs, especially EHBP, to complex such cations 237 

is well documented and thus paving the way potentially for other elements.  238 

4.2 Tissue level  239 

At the tissue level, all BPs derivatives have a similar action. They bind preferentially to 240 

HA crystals, replacing inorganic pyrophosphate and inhibiting their degradation, thus 241 

preventing bone resorption. Employing a histomorphometric evaluation which allows a 242 

qualitative and quantitative analysis of the bone structure, it appears that in ovariectomized 243 

baboons treated with alendronate (0.05 or 0.25 mg.kg-1 by IV every 2 weeks for 2 years), there 244 

is a decrease in resorption gaps and then in a second phase (4 to 6 months after the start of 245 

treatment), an overall reduction in bone formation without any impact on osteoblast activity 246 

[53]. Consequently, a decrease in bone fragility and an increase in bone mass occur. 247 

Furthermore, as the newly formed bone is less prone to resorption, the mineralization phase 248 

is more complete, as it has been observed in women with post-menopausal osteoporosis 249 

treated with alendronate (5 to 10 mg.day-1 for 3 years or 20 mg.day-1 for 2 years followed by 250 

5 mg for 1 year) [54]. From a densitometric point of view, the decrease in resorption is more 251 

significant than that of bone formation, resulting in a positive calcium balance. 252 

4.3 Cellular level  253 

Since the pharmacological action of BPs is an anti-bone resorption effect, their preferred 254 

target is the osteoclast cell. Different results with a direct or indirect action on the target have 255 

been reported [55]. Depending on the model used, experimental results regarding the effect 256 

of BPs on the osteoclasts provide additional information. Indeed, in vitro studies using 257 

osteoclast-like cells and mouse bone marrow have shown osteoclastogenesis inhibition after 258 

alendronate treatment [56]. On the other hand, in vivo studies in rats have shown an increase 259 

in non-active osteoclasts and then, after chronic administration of BP (EHBP), a decrease in 260 

their number [57]. Several studies, especially those carried out in mice, have demonstrated 261 
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the penetration of certain radiolabeled BPs, such as tiludronate, into osteoclasts and the 262 

dysfunctions caused, including modification of the actin structure [58]. The team of Hughes et 263 

al. revealed, through in vitro and in vivo studies in mice, that treatment with different BPs 264 

(risedronate, pamidronate, and clodronate) promoted the apoptotic induction of osteoclasts 265 

[59]. In the presence of BPs, mouse osteoblasts in marrow cultures would indirectly inhibit 266 

osteoclast recruitment (the last step in osteoclastogenesis) or their activity via inhibitory 267 

factors present in the culture medium [60]. Concentrations as low as 10-11 mol.L-1 and an 268 

exposure time of 5 min would be sufficient to cause this effect [22]. However, the exact 269 

mechanism of action has not been elucidated. Finally, at the cellular level, the mode of action 270 

of BPs will differ according to their chemical structure [61]. They can block osteoclastogenesis 271 

by inhibiting precursor osteoclast proliferation and recruitment, promoting osteoclast 272 

apoptosis, and inhibiting osteoclast activity [55]. 273 

4.4 Molecular level  274 

The molecular mechanism of action of BPs has been elucidated in the late 1990s. During 275 

bone resorption, when the environment becomes acidic through the H+/Cl- transporter at the 276 

osteoclast membrane, the BPs will be protonated, making the binding with calcium less 277 

favorable, thus allowing their internalization by an endocytosis mechanism [62-64].  278 

BPs will not have the same molecular target depending on their chemical structure. Indeed, 279 

once internalized within osteoclasts, non-nitrogenous first-generation BPs will be integrated 280 

into the ATP molecules pool. The newly formed non-hydrolyzable ATP cytotoxic compounds 281 

will accumulate intracellularly, inhibiting essential ATP-dependent functions of the osteoclasts 282 

(disruption of the mitochondrial machinery and cell death), leading to their apoptosis [65]. 283 

The principal mechanism of action of nitrogenous BPs (second and third generations) is quite 284 

different. After entering the cell, BPs will play a key role in inhibiting mevalonate/cholesterol 285 

cycle enzymes (Fig. 3, [66]) and particularly farnesyl pyrophosphate synthase (FPP-synthase) 286 

[67, 68]. 287 



 
 

11 
 

   288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

Fig. 3: Summary of the mechanism of action of BPs 297 

 298 

By interfering with FPP-synthase, the prenylation (i.e., the addition of an isoprenoid 299 

lipid farnesyl at C15 or geranylgeranyl at C20, via a thioether linkage to proteins at or near the 300 

C-terminal amino acid cysteine position) of numerous small proteins such as Ras, Rho, Rac will 301 

no longer take place. Rho/Rac proteins constitute a subgroup from the Ras superfamily of 302 

small GTPases. The biological functions of these proteins that regulate cellular processes 303 

essential to osteoclasts, such as the organization of the cytoskeleton, the modification of the 304 

cell membrane, or the transduction of the cellular signal, will no longer be ensured and will 305 

then lead to the loss of the anti-resorption activity of osteoclasts and their apoptosis.  306 

The class of BPs could also have a beneficial role on osteoblastic cells by having an anti-307 

apoptotic action. Indeed, all BPs activate a kinase enzyme called Extracellular Signal-Regulated 308 

Kinase (ERK). By increasing the phosphorylation of ERK enzymes, BPs would thus prevent the 309 

apoptosis of osteoblasts [69]. 310 

Due to their bone tropism and role as inhibitors of bone resorption, BP molecules are 311 

mainly used in treating bone pathologies, including osteoporosis and Paget's disease [24, 70]. 312 

In addition, they are prescribed for preventing bone complications in adult patients with 313 

advanced malignant disease with bone involvement and treating tumor-induced 314 

hypercalcemia [71, 72]. BPs are also used in nuclear medicine for diagnostic, metabolic 315 

imaging, or therapeutic purposes [73, 74]. Finally, BPs seem to have a potential antitumoral 316 

effect, especially by inhibiting tumor migration and angiogenesis, inducing tumor cell 317 

apoptosis, or impairing tumor cell adhesion to bone [64]. 318 
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Generally, BPs are well tolerated if the recommendations for usage are respected (to 319 

take the treatment on an empty stomach, to remain in a sitting or standing position, and to 320 

respect a 30-minute delay before taking a meal). However, some patients experience 321 

potentially significant side effects that can cause great discomfort. Among the side effects 322 

noted are gastrointestinal symptoms (such as esophagitis, nausea, vomiting, diarrhea), kidney 323 

disorders, inflammation of certain membranes of the eye (such as uveitis, scleritis), metabolic 324 

troubles (hypocalcemia) [75-78]. Effects on the skeleton are also to be listed, such as atypical 325 

femoral fracture and osteonecrosis of the jaw [79-81]. Finally, minor cutaneous effects 326 

(eczema, urticaria, or Stevens-Johnson syndrome, which is more serious) and controversial 327 

effects (including atrial fibrillation and bone pain) have been described [82, 83].  328 

Due to significant strengths (bone tropism, inhibitor of bone resorption, stable complex 329 

with various divalent cations), BPs, widely studied in research, have interested researchers in 330 

a more unexpected field: radiation protection. In this latter case, adverse effects seen in 331 

chronic treatments can be excluded since it becomes an emergency treatment. 332 

 333 

5 Dosage forms and route of administration for the delivery of BPs 334 

5.1 Nanotechnologies for targeted delivery 335 

Among the formulations considered for the delivery of BPs are liposomes. They are small 336 

biodegradable vesicles composed of a phospholipid bilayer delimiting an aqueous 337 

compartment. This form allows the encapsulation of hydrophilic molecules in its core and 338 

lipophilic molecules within the bilayer. In oncology, clodronate liposomes are widely used to 339 

study the role of macrophages by inducing their apoptosis [84]. In addition to conventional 340 

liposomes, second-generation liposomes called stealth liposomes have also been applied to 341 

the delivery of BPs. They differ from the former by the addition, of hydrophilic polymers such 342 

as polyethylene glycol (PEG), allowing them to avoid opsonization (the process by which 343 

opsonins adsorb to the surface and promote phagocytosis) and thus to circulate longer in the 344 

body. These pegylated alendronate liposomes have been tested in mice to investigate the 345 

potential anti-tumor role of BPs [85]. In cancer-related research, pegylated nanoparticles of 346 

BP calcium salts were also tested in a model of mice with 4T1 tumors [86]. The results showed 347 

that M2 macrophages are depleted in large quantities and a drastic decrease in interleukin-10 348 
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secreted by M2 macrophages. This formulation has been responsible for a tumor 349 

microenvironment modification that allows for better radiotherapy efficacy.  350 

BPs are also used as ligands to target bone in different diseases. One study describes 351 

micelles loaded with curcumin (potential anti-tumor effect) and functionalized with 352 

alendronate conjugated to a polymer (hyaluronan-octadecanoic acid) [87]. After injections 353 

every 2 days for 20 days in a mouse model with osteosarcoma, the results showed that the 354 

formulation of curcumin-loaded micelles in the presence of alendronate demonstrated a high 355 

affinity for HA and delayed tumor growth compared to the free molecule (p<0.05).  356 

The IV route, one of the routes of BP administration in the clinic, allows for the 357 

distribution of various attractive targeting forms. Although it is invasive and requires a medical 358 

procedure, it will enable rapid delivery of the drug, in its totality, into the vascular 359 

compartment.  360 

5.2 Dosage forms to improve BPs bioavailability. 361 

5.2.1 Oral route 362 

The oral route is one of the routes of administration of BPs in clinical practice. The main 363 

objective is thus to enhance the gastrointestinal absorption rate of the molecules. The use of 364 

ibandronate-based gastro-resistant reservoirs has been studied in rodents [88]. This 365 

formulation is composed of nanoparticles with citrus pectin as the raft former, calcium 366 

carbonate to enhance the raft strength, sodium bicarbonate as an effervescent mixture and 367 

PEG as the permeability enhancer. Pharmacokinetics studies showed a 2-fold increase in 368 

bioavailability of the gastro-resistant reservoir compared to the reference formulation 369 

(calculated area under the curve (AUC) of 6899 ± 3.5 ng/ml.h and 3708 ± 3.4 ng/ml.h). The 370 

resistance to stomach acidic pH was also explored in rabbits with gastro-resistant liposomes 371 

of alendronate [89]. Bioavailability was increased by 12 between the gastro-resistant 372 

formulation and the tablet form. Since 2012, alendronate is commercially available in Japan 373 

in a weekly gel form [90]. This interesting dosage form was shown to be more suitable for 374 

aging populations. It has the advantage of not requiring water and is easier to swallow. 375 

Although no difference was found with the tablet form, the results are significantly more 376 

favorable for oral-related adverse events (heartburn and epigastralgia). The effervescent 377 

solution of alendronate (taken weekly) has also been clinically assessed compared to the 378 

tablet form [91]. The results indicated a better follow-up of the treatment and a better 379 
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tolerance with the effervescent solution due to the dissolution of alendronate in a buffered 380 

appetent solution, limiting the risk of gastrointestinal irritation. 381 

5.2.2 Pulmonary route 382 

BP delivery through the pulmonary route was poorly studied. A dried powder 383 

formulation was proposed based on alendronate, leucine, and ammonium bicarbonate [92]. 384 

Administration of the formulation (with particle size less than 12 µm) was performed by the 385 

intra-tracheal route. The bioavailability of alendronate using this formulation (6.23 ± 0.83%) 386 

was increased by a factor of 3.5 compared to the oral route. Another study focused on 387 

risedronate sodium which was formulated into poly(lactide-co-glycolic acid) microspheres 388 

(with particle size mean of 3.68 ± 0.69 µm) to test the possibility for risedronate to be 389 

delivered through an alternative route instead of oral administration [93]. In vivo results 390 

showed high bone deposition compared to controls. The pulmonary route has many 391 

advantages: a large surface area of absorption, close vascularization (subject to a small 392 

aerodynamic diameter), no hepatic first-pass effect, and few notable adverse effects, unlike 393 

the oral route.  394 

5.2.3 Transdermal route 395 

A microemulsion (water/oil) formulation of alendronate has been tested in rat model 396 

[94]. At an equivalent dose (30 mg.kg-1), statistically significant differences were reported 397 

between the oral and transdermal routes. The bioavailability of the microemulsion is twice 398 

greater than the solution. Another dosage form using the transdermal route was examined. It 399 

is a protransfersome gel loaded with risedronate [95]. Unlike liposomes, which have limited 400 

elastic properties and will primarily accumulate on the skin surface, protransfersomes are 401 

ultra-flexible lipid vesicles that can deform by absorbing water from the skin. Skin penetration 402 

is then increased without any sign of toxicity. Compared to the oral form, the results showed 403 

a statistically significant improvement in bone architecture and a strengthening of trabecular 404 

bone connectivity. Through these two examples, bioavailability was improved owing to the 405 

dosage form. The transdermal route displays real advantages such as no first hepatic passage, 406 

easy administration, the comfort of application, rapid withdrawal if necessary, and an absence 407 

of adverse effects related to oral administration. 408 

 409 
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6 BPs application in research in the field of radiation protection 410 

As previously mentioned, BPs are a historical class of drugs and have been the subject of 411 

research for many years due to their attractive (tissue of interest and pharmacological 412 

property) and promising (affinity and different speciation with divalent cations) 413 

characteristics. The therapeutic molecules recommended in case of internal contamination by 414 

radionuclides are few and not entirely adequate. Using BPs as a decorporation treatment is a 415 

judicious strategy because, in the case of uranium, the retention organs include the kidneys 416 

and bone tissue [4]. Unlike other therapeutics, a decorporating agent must meet specific 417 

essential criteria [96]: (i) to be non-toxic; (ii) to have high affinity for the molecule of interest; 418 

(iii) to form stable M-L complexes; (iv) to form soluble and urinary excretable M-L complexes 419 

(v) to be orally administrable. Designing a decorporation treatment based on BP molecule 420 

could be hazardous due to the low gastrointestinal absorption. However, relying on new 421 

technologies and considering an alternative route of administration is a challenging but 422 

promising approach.  423 

6.1 Skin decontamination 424 

Research applications using BP molecules have included skin decontamination after 425 

exposure to actinides, particularly to uranium. Modes of exposure are either poorly soluble 426 

form (U(IV)) or soluble form (U(VI)), which is the most stable form in biological and 427 

environmental media [97, 98]. One of the first studies worth mentioning is the one from 428 

Houpert et al. dealing with early skin decontamination after exposure to industrial U 429 

compounds [6]. The treatment uses a paste or a dressing based on hydrocolloid and 430 

carboxymethylcellulose (with high absorbency) associated or not with potential chelating 431 

agents such as EHBP. The authors conducted ex vivo studies on bovine muscle and in vivo 432 

experiments carried out on two different models in rats. One with intermuscular U deposition 433 

to mimic a blunt object injury and the other with IM U deposition to mimic a sharp object 434 

injury. The results are reported in Table 3. Adding the BP molecules did not improve treatment 435 

efficacy in all these experiments. The reason is probably due to the insoluble character of the 436 

uranium oxides being unfavorable to chemical chelation. 437 

In a second study, BP molecules incorporated into hydrogels were also considered for U 438 

decontamination [99]. Different types of hydrogels were formulated: pamidronate-based 439 

hydrogel (I), diethylene triamine pentaacetic acid (DTPA)-based hydrogel (II), pamidronate-440 
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based polymeric hydrogel (III) and hydrogel in which BP molecule is linked to the motif of 441 

naphthalene phenylalanine-phenylalanine (NapFF) or  NapFFP hydrogel (IV). For in vivo studies 442 

conducted on mice, a 1*1 cm2 wound was created using a razor blade on the back of the 443 

animals. Different parameters were monitored, such as survival rate at 10 days, change in 444 

body weight over 10 days, and the amount of U in the organs, particularly the kidneys (target 445 

organ) (Table 3). All 4 treatments demonstrated significant efficacy compared to controls, but 446 

the pamidronate-based hydrogel (I) yielded better results.  447 

The hydrogel-based treatment offers attractive results and combines interesting 448 

properties (absorptivity, stability, biocompatibility, biodegradability). However, the 449 

improvement of the effectiveness of these treatments by adding chelators to the formulas has 450 

not been demonstrated. Furthermore, the results obtained after using the dressing and paste 451 

forms are promising regarding reducing U in the kidneys. However, the results highlight the 452 

lack of efficacy of chelating agents within these dosage forms since they did not further retain 453 

the radionuclide. Nonetheless, in contrast to a simple EHBP solution, the dosage forms 454 

proposed (paste, dressing, hydrogel) are easier to use, ensure that the active molecule 455 

remains at the site of administration, and control the release of the drug by providing the 456 

carrier with a remanent effect. Effective emergency treatment after skin contamination 457 

appears essential to prevent the penetration of U in the body as much as possible and thus 458 

avoid long-term retention. 459 
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Table 3: Treatments for the decontamination of uranium using BPs 460 

Model 

CONTAMINATION TREATMENT 
RLigand

/ 

RN 
RESULTS 

Bibliogra 
phical 

references 
U 

compound Route 
Single or 
repeated 

Time 
before 

treatment 
Molecule 

Galenic  
form 

Route 
Single or 
repeated 

Duration 

Bovine 
muscle 

UO2, 

UO4  

or 
U3O8 

Depo-
sition  

on 
incisions  

Single 5 min 

Carboxymethyl- 
cellulose-based 
hydrocolloids 

associated or not 
with EHBP  

Paste 

Application  
on incisions 

Single 

15 min 
(only 

for UO4)  

or 1 h 

90 
(UO2) 

189 
(UO4) 

602 
(U3O8) 

U retention in the galenic form: 
15 min: 9% (6% with EHBP) 
1h: 75-84%  (no increase with EHBP) 

[6] 

Dressing 
U retention in the galenic form: 
15 min: 48% (33% with EHBP) 
1h: 89-97% (no increase with EHBP) 

Rat UO4 

Inter 
muscular 

deposition  
Single 

2 min 
  

Carboxymethyl- 
cellulose-based 
hydrocolloids 

associated (paste) or 
not with EHBP 

(paste/dressing)  

Dressing  
or paste Application  

on the inter 
or intra 

muscular 
pocket 

Single 

1 h 28 

Tissue retention of U at T0 + 1 h: 
Dressing: ↘ 63% (wound site), ↘ 68% (kidneys) 
Paste: ↘ 39% (wound site), ↘ 65% (kidneys). 
Paste + EHBP: ↘35% (wound site), ↘ 70% (kidneys) 
 
U retention in the galenic form at T0 + 1 h: 
63% (dressing), 40% (paste). No difference with 
EHBP with paste. [6] 

IM 
deposition 

Single /  Dressing  
15 min  
or 1 h 

/  

U retention (regardless the treatment duration)  
at T0 + 1 day:  
↘ 41% (kidneys), ↘ 40% (femur), ↘ 38% (carcass)  
 
U retention in the dressing at T0 + 1 day: 
28% (after 15 min), 30% (after 1 h).  

Mice 
UO₂ 

(NO₃)₂ 
3 drops on  
the wound 

Single 15 min 

Pamidronate-based 
hydrogel (I), 

DTPA-based hydrogel 
(II), 

Pamidronate-based 
polymeric hydrogel (III), 

NapFFP hydrogel (BP 
molecule linked to a 

naphthalene 
phenylalanine unit) (IV) 

Hydrogel 

Application  
on the  

wound site  

(0.125 cm
3
) 

Repeated  
(3 times) 

3 min NA 

Survival rate at T0 + 10 days: 
92% (I), 100% (II), 83% (III), and 58% (IV), 42% 
(control) 
 
Body weight during 10 days: 
Significantly gain for all treated groups (from day 5 
to day 10 for I; at day 10 for II, III and IV) vs control 
group. 
 
U quantity in kidneys:  
↘ 93% (II), ↘ 97% (III), ↘ 89% (IV)  
< DL for hydrogel (I) 

[99] 

U, uranium; RN, radionuclide; BP, bisphosphonate; NA, not available ; RLigand/RN means molar ratio ligand to radionuclide.  
  
  

    

461 
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6.2 Decorporation 462 

In the nuclear industry or following a nuclear incident/accident, the risk of internal 463 

contamination by inhalation, ingestion, or skin injury is real. It requires appropriate medical 464 

countermeasures using a decorporating agent. It removes radioactive elements from the body 465 

using a chelating agent or administering another pharmaceutical agent [100]. For some 466 

radionuclides (cesium-137 or iodine-131), treatments exist. However, for U, the proposed 467 

treatment is based on sodium bicarbonate, a non-specific molecule that lacks effectiveness. 468 

Until recently, various publications outlined the treatment strategies envisaged for the 469 

decorporation of this actinide [101-106]. Among the ligand families listed are 470 

polyaminocarboxylic acids, siderophores and bisphosphonates. 471 

Some research groups are considering BP as a potential chelator of U. Wang et al. developed 472 

a conjugate of dopamine and BP that binds to iron oxide with a high partitioning constant at 473 

pH 7 [107]. Another team has synthesized different ligands formed by several BP compounds 474 

(EHBP) anchored on a calix[4]arene structure [98], including one with conditional stability 475 

constants with the uranyl ion UO2
2+ greater than 14 (at pH values ranging from 5.5 to 9.0 and 476 

hypothesizing a 1:1 ligand/uranyl complex formation), which is favorable to strong ligand-477 

radionuclide complexations. Furthermore, the affinity of EHBP with U has also been 478 

demonstrated in rat serum using X-ray absorption spectroscopy (XAS) [108]. These in vitro 479 

data are promising clues for considering the application of this formulation to in vivo 480 

experiments.  481 

Studies with EHBP have also been conducted in the rodent model. The results are listed 482 

in Table 4. Firstly, decorporation studies were considered after IM radiocontamination. Wistar 483 

rats received an IP injection with EHBP 1 h after being contaminated by IM injection of uranyl 484 

nitrate [109]. The treatment was pursued for 28 days, with one injection per day. The 485 

administration of EHBP resulted in a significant decrease in U concentrations between 40 and 486 

50% in organs (kidney, liver, and femur) compared to controls. These encouraging data 487 

concerning the reduction of U retention in the kidneys had also been observed by Henge-488 

Napoli's team, who carried out a study in the rodent model [5]. The treatment used was EHBP. 489 

Henge-Napoli et al. considered several protocols depending on the time elapsed between 490 

contamination and treatment (immediate, 5, or 30 min), the route (IM, IP), or the type of 491 

administration (single or repeated). The significant results were similar regardless of the ratio 492 
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ligand/RN or route of administration. Indeed, during early administration of EHBP, the 493 

retention of U in the kidneys and the whole body declined by around 80% and 30% at 494 

T0 + 24 h, respectively, compared to controls. After a delayed treatment (30 min), U retention 495 

decreased by 45% in kidneys compared to controls. After repeated treatment, at T0 + 4 days, 496 

EHBP reduced the U retention in the kidneys by 72% and 497 

498 
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Table 4: Treatments studied for the decorporation of uranium using BPs  499 

U, uranium ; RN, radionuclide ; BP, bisphosphonate; RLigand/RN means molar ratio ligand to radionuclide. 500 

Model 

CONTAMINATION TREATMENT 
R

Ligand/
 

RN
 Results 

Biblio- 
graphical  

references 

U  
compound 

Route 
Single or  
repeated  

Time before 
treatment 

Molecule 
Galenic  

form 
Route 

Single or 
repeated  

Duration 

Rat UO₂(NO₃)₂ IM Single 1 h EHBP Solution IP 
Repeated 

(1/day) 
28 days 8 

U retention at T 28 days 
↘ ~ 50% (kidneys), ↘ ~ 40% (liver), ↘ ~ 43% (femur) 
Survival rate at T 28 days 
20% (control group), 50% (treated group) 

[109] 

Rat 
233

UO
2
(NO

3
)

2
 IM Single 

5 min 

EHBP 

Solution IM Single 
  
  

5000 
After early administration, U retention (at T 24 h): 
IM injection: ↘ 76% (kidneys), ↘ 30% (whole-body) 
IP injection: ↘ 83% (kidneys), ↘ 32%  (whole-body) 
 
After delayed administration, U retention (at T 24 h):  
IM injection: ↘ 45% (kidneys) 
IP injection: ↘ 45% (kidneys) 

[5] 

30 min 

At the  
same time 

Solution 

IP Single 
  

  
2500 30 min 

At the  
same time 

IP 
Repeated  

(1/day) 
3 days U retention at T 4 days: ↘ 72% (kidneys), ↘ 23% (whole-body) 

Rat 
238

UO₂(NO₃)₂ IP Single 
At the  

same time 
EHBP Solution IP Single   7.5 

For animals exposed and treated: bone healing did not differ from the non-exposed 
control group.  

[110] 

Rat 238
UO₂(NO₃)₂ IP Single 

At the  
same time 

EHBP Solution IP Single   8 

For animals exposed and treated: 
- Survival rate: 100% over 60-day period 
- Body weight: no difference with control groups not exposed (untreated or treated 
with EHBP) at T 8, 30, and 60 days 
- Kidney tissue: no difference with control groups not exposed (untreated or treated 
with EHBP) on the 60th day 

[111] 

Rat 

238
UO

2
(NO

3
)

2
.

6H
2
O 

IP Single 
At the  

same time,  
24 h or 48 h 

EHBP Solution 
IP or 
SC 

Single   10 

Survival rate on the 60th day of the experiment: 100% with EHBP (IP or SC) given 
immediately or 24 h after exposure (IP) 
Biometric parameters of the mandibles 60 days after the beginning of the 
experiment: better result with EHBP administered immediately by SC route 

[112] 

Rat 233
U IP Single 5 min 

BP ligands  
or EHBP 

alone  
Solution IP Single   100 

For 5 most promising ligands at T 5 days: 
U retention: ↘ 53-58% (kidneys) for ligands n°3C, 5C and 7B, ↘ 18-30% (bone) for 
ligands n°5C, 6A and 7B 
U excretion: ↗ 31% for ligand n°3C only 
For EHBP alone, at T 5 days: ↘ 31% (kidneys), ↗ 23% urinary excretion 

[17] 

Mice 
UO

2
(NO

3
)

2
. 

6H
2
O 

Oral Single 20 min EHBP Solution 

Oral 

Single   

2 to 4 
For oral route (R

L/RN
= 3) and SC route (R

L/RN
= 0.3): 

- Survival rate for at least 14 days: 50% 
- Urea and creatinine serum levels similar to control group at T 14 days 
- Kidney lesions less severe at T 48 h and signs of tissue recovery at T 14 days 
- Chelating effect of EHBP may prevent U from reaching acquiescent cells in the 
growth cartilage, allow normal formation of bone trabeculae. 

[113 – 115] 

SC 0.3 
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in the whole body by 23%. Under favorable conditions, EHBP has been shown to be 501 

significantly more effective if administered earlier. 502 

Decorporation studies have also been performed after radiocontamination with IP 503 

injection. Research was carried out on an alveolar bone healing model to study bone 504 

formation inhibition following uranium exposure [110]. After dental extraction, the rats were 505 

exposed to U and, at the same time, received a solution of EHBP at a ratio of 7.5 by the IP 506 

route. After an observation period of 14 days, unlike the exposed group in which bone healing 507 

did not occur, the exposed and treated group showed results similar to those of the control 508 

group. In another study, the researchers focused on renal function, another target of U [111]. 509 

A solution of EHBP was administered without delay to rats by IP at a molar ratio (RL/RN) of 10. 510 

At the end of the 60-day experiment, the exposed and treated animals showed a 100% survival 511 

rate, body weight, and histological analysis of the kidneys similar to the control groups [111]. 512 

The Ubios team also confirmed a 100% survival rate after late treatment administration 513 

(24 hours after contamination) and by SC route without delay after exposure to U [112]. The 514 

results also highlighted that a single SC injection of EHBP immediately after contamination 515 

was more effective in preventing undesirable changes in mandibular growth (compared with 516 

IP). Other chemical entities have been proposed, dipodal or tripodal analogs bearing BP 517 

functions [17]. Almost all of these compounds showed high complexation constants (between 518 

1015 and 1019.5) at pH 7.4 but also at pH 5.5 (pH of the kidney medium). An in vivo study was 519 

performed with the 5 most promising ligands (Table 4). At T0 + 5 days, for 3 ligands (n°3C, 5C, 520 

and 7B), U retention decreased by around 55% in kidneys, and for 3 ligands (n°5C, 6A, and 7B) 521 

18-30% in bone, but only one ligand (dipod n°3C) showed a significant increase of 31% in U 522 

excretion compared to controls. For EHBP alone, at T0 + 5 days, urinary excretion of the 523 

radionuclide was increased by 10% compared to controls. 524 

Finally, uranium decorporation has also been studied after oral exposure, a potential 525 

route of intake for the radionuclide. A solution of EHBP was administered 20 min after 526 

contamination by the oral route (RL/RN between 2 and 4) or by the SC route (RL/RN of 0.3) [113]. 527 

A survival rate of 50% for at least 14 days post-contamination was obtained after 528 

administration of BP by the oral route (at an RL/RN of 3) and by the SC route. The studies were 529 

pursued using the latter experimental conditions. In these groups of animals, the kidney 530 

lesions observed at 48 h were less severe than in the untreated exposed group and showed 531 

signs of healing at 14 days [114]. Finally, under these contamination/treatment conditions, 532 
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Bozal et al showed that EHBP allowed to improve the adverse effects regarding the endothelial 533 

ossification [115].  534 

As mentioned above, the free form of EHBP has shown interesting efficacy in terms of 535 

clinical parameters (survival rate, body weight), histology, tissue retention of uranium, and 536 

excretion. However, using targeting systems such as colloidal nanoparticles could significantly 537 

improve the efficacy of these pharmaceutical molecules. Indeed, these dosage forms 538 

undoubtedly provide them with the following benefits: (i) to protect them from the 539 

environment by reducing the potential enzymatic degradation, (ii) to avoid the premature 540 

binding with endogenous compounds, (iii) to improve the ligand distribution and target tissues 541 

[116]. Combining free and encapsulated forms would ultimately act on circulating uranium 542 

and prevent U retention in the organs of interest. 543 

 544 

7 Conclusion and perspectives 545 

As discussed in this review, BPs represent a historical and significant class of drugs in the 546 

pharmaceutical field. Due to their macrophage inhibitory properties and their distribution in 547 

bone tissue, BPs have opened several avenues of research, and various future applications are 548 

proposed. The results of studies using BP molecules are attractive due to innovative dosage 549 

forms that improve their bioavailability or allow the targeting of the proper tissue. Drug 550 

delivery sciences appear essential in designing new treatments by allowing better delivery of 551 

BPs, limiting collateral effects, and ultimately allowing a benefit for the patient. 552 

Among the applications mentioned, those related to skin decontamination and decorporation 553 

are promising, as evidenced by uranium studies. In addition, the global formation constants 554 

from the literature are attractive for both U and other divalent cations. For radionuclides such 555 

as radium, cobalt, or strontium, the efficacy of the therapy recommended by nuclear safety 556 

authorities worldwide is unsatisfactory, and the set-up of efficient medical countermeasures 557 

is essential for the population (civilian, responders, and nuclear workers). Thus, it appears 558 

worthwhile to continue the research with EHBP. Moving forward to nanotechnologies in the 559 

field of pharmacology must be considered for further investigations to maximize the efficiency 560 

of EHBP by focusing its action to decorporate the radiocontaminant. 561 

Through this review, potential cases of drug repurposing are numerous. Even though drug 562 

repositioning remains a minority path compared to traditional research, this is a valuable 563 
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strategy that gives us early access to strong knowledge, particularly regarding toxicological 564 

and pharmacokinetic aspects. In addition to this precious time saving, there is a financial gain 565 

by avoiding lengthy and costly screening processes. Although there are many challenges to 566 

overcome, because of the abundant literature on the subject, drug repurposing of BPs is 567 

becoming feasible. 568 
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