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1Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique
pour la Complexité et les Systèmes, 91190, Gif-sur-Yvette, France

2Energy Analysis and Environmental Impacts Division, Lawrence Berkeley
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Accurately modeling the growth process of plants in interaction
with their environment is important for predicting their biophysical
characteristics, referred to as phenotype prediction. Most models are
described by discrete dynamic systems in general state-space repre-
sentation, with important domain-specific characteristics: First, plant
model parameters have usually clear functional meanings and may
be of genetic origins, thus necessitating a precise estimation. Sec-
ond, critical growth variables, specifically biomass production and
dynamic allocation to organs, are hidden variables, not accessible to
measure. Finally, the difficulty to assess the local plant environment
may imply the introduction of process noises in models. Therefore,
a precise understanding of the system’s behavior requires the joint
estimation of functional parameters, hidden states, and noise param-
eters. In this paper, we describe how a full Bayesian method of es-
timation can accurately estimate all these key model variables using
Markov chain Monte Carlo (MCMC) techniques. In the presence of
both process and observation noises, it requires to use adequate Par-
ticle MCMC (PMCMC) algorithms to efficiently sample the hidden
states, which consequently allows for a precise estimation of all noise
parameters involved. Thanks to the Bayesian framework, appropri-
ate choices of prior distributions for the noise parameters have en-
abled analytical posterior distributions and only simple updates are
required. Furthermore, this estimation strategy can be easily gener-
alized and adapted to different types of plant growth models, such
as organ-scale or compartmental, provided that they are formulated
as hidden Markov models. Our estimation method improves on those
classically used in plant growth modeling in several aspects: First,
by building upon a general probabilistic framework, the estimation
results allow proper statistical analyses. It is useful in prediction,
for uncertainty and risk analysis (for example for crop yield pre-
diction), but also to analyze the results of experimental trials, for
example to compare genotypes in breeding. Moreover, the care taken
in the estimation of hidden variables opens new perspectives in the
understanding of inner growth processes, notably the balance and in-
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2 G. VIAUD ET AL.

teraction between biomass production and allocation (referred to as
source-sink dynamics). Applications of this estimation procedure are
demonstrated on the GreenLab model for Arabidopsis thaliana and

the Log-Normal Allocation and Senescence (LNAS) model for sugar
beet, on both synthetic and real data.

1. Introduction. The ecophysiological processes underlying plant growth
are well understood from a biological point of view. Over the last decades,
many plant growth models have been proposed in order to predict plant’s
phenotypes, that is to say their biophysical characteristics under a wide
range of varying environments, by describing the main physical processes of
the plant’s growth (DeJong et al., 2011). Plant growth models find applica-
tions in agronomy, horticulture, forestry or ecology, they are used for plant
yield prediction (see for example the crop models APSIM (Keating et al.,
2003) or DSSAT (Jones et al., 2003)), for the optimization of crop man-
agement, notably for irrigation (Wu et al., 2012; Pluchinotta et al., 2018)
or fertilization (Lehmann et al., 2013), for the optimization of forestry sys-
tems (Pretzsch, Biber and Ďurskỳ, 2002; Fransson et al., 2020), or finally in
breeding to characterize genotypes (Yin, Struik and Kropff, 2004; Hammer
et al., 2006) or determine ideotypes (Qi et al., 2010; Quilot-Turion et al.,
2012).

Most of these models are described by discrete dynamic systems in general
state-space representation, with various time scales: usually daily for crops
like wheat or corn, but also yearly for trees or hourly for horticultural crops
in greenhouses. Mathematically speaking, the plant’s phenotypic traits of
interest are contained in model outputs

Plant growth models have important domain-specific characteristics: First,
model parameters have usually clear functional meanings and may be of ge-
netic origins, thus necessitating a precise estimation. Second, critical growth
variables, specifically biomass production and dynamic allocation to organs,
are hidden variables, not accessible to measure. Finally, the difficulty to
assess the local plant environment may imply the introduction of process
noises in models. Therefore, a precise understanding of the system’s behav-
ior requires the joint estimation of functional parameters, hidden states, and
noise parameters.

However, in plant growth modelling, the methods generally used rely on
a classical (generalized) least-square estimation, and it is generally done
without a proper modelling of observation and process noises and without a
proper handling of estimation uncertainty. Only recent attempts at Bayesian
estimation have been made, with crude versions of approximate Bayesian
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FULL BAYESIAN INFERENCE IN PLANT GROWTH MODELS 3

computation (Jones et al., 2015).
In this paper we present a generic method for the Bayesian inference of

plant growth models formulated in a general hidden Markov model frame-
work. Bayesian estimation appears more adapted to the biological case stud-
ies under consideration. First, it is more adapted to cases where there are
a limited number of observations that are particularly noisy (as is often
the case in plant growth applications). Second, models of biological systems
usually describe biophysical processes for which parameters have a clear in-
terpretation and prior knowledge can be used to specify prior distributions
(Illian, Møller and Waagepetersen, 2009).

Bayesian system identification amounts to estimate certain functional pa-
rameters jointly with some hidden states, and possibly the parameters re-
lated to the process and observation noises. Hence, several approaches to
modelling the system under consideration can be undertaken, and the es-
timation problem changes accordingly. Our method relies on using particle
MCMC (PMCMC) algorithms for a precise joint estimation of functional
parameters and hidden states and, subsequently, noise parameters.

We start by introducing in Section 2 the mathematical framework of state
space models. In Sections 3 and 4, we introduce the GreenLab model for
Arabidopsis thaliana and the Log-Normal Allocation and Senescene (LNAS)
model for sugar beet as hidden Markov models. In Section 5, we describe how
an accurate joint estimation of functional parameters and hidden states can
be performed using PMCMC algorithms. Section 6 is devoted to the estima-
tion of observation and process noise parameters and summarizes the whole
Bayesian inference procedure for all statistical variables involved. Finally,
in Section 7, the overall method is illustrated on the two models consid-
ered. First, on a real data set of A. thaliana growth using the GreenLab
model, which contains observation noises only. Since a wide range of mod-
els in plant science do not comprise process noises, it is crucial to ensure
that this method is adapted to this subclass of models. Second, the LNAS
model for sugar beet is used for the complete estimation of functional pa-
rameters, hidden states and noise parameters on synthetic and real data.
All the notations used throughout this article are summarized in Section 1of
the Supplementary Material (?).

2. General state space models. General state space models (GSSMs)
were introduced by Kalman (1960) and have been widely used for model cal-
ibration and prediction in various fields (Doucet, De Freitas and Gordon,
2001). They describe the time evolution of a dynamic system at each time
tn = n∆t, between t0 = 0 and tN = N∆t = T . Values are indexed with the
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4 G. VIAUD ET AL.

time step index n. At each time step, the system is described by a set of state
variables that can be considered as a vector of real values xn ∈ Rdx . In the
terminology of hidden Markov models (HMMs) (Rabiner, 1989), state vari-
ables are also known as hidden states, since they are a priori not observable.
The initial state of the system is denoted by x0 and may include variables
such as biomasses or surface areas. At time step n+ 1, the state variables of
the system xn+1 are updated by modelling biological processes at work in
the system. This is done by using the state variables xn ∈ Rdx of the previ-
ous time step n, environmental variables un ∈ Rdu and a set of parameters
θ intervening in the equations modelling the evolution of the system. Like
state variables, environmental variables and parameters can be considered
real-valued vectors. Environmental variables play a significant role on the
evolution of the system in plant science: temperature, humidity, or radiation
heavily influence biological processes such as photosynthesis, evapotranspi-
ration, and so on. Last but not least, process noises can be introduced in
order to account for model limitations or imperfections. They are stochastic
factors represented at each time step by the realization of a random vector
ηn ∈ Rdη . The transition from one time step to another can therefore be
synthesized in the most generic manner as xn+1 = fn(xn, un, θ, ηn), where
fn is the transition function summarizing all the equations of the system
evolution at time step n.

In most real life applications, particularly when dealing with continuous
variables, measurements on the system under consideration are not per-
formed exactly. Observation noises are therefore introduced, once again un-
der the form of stochastic factors represented at each time step by the re-
alization of a random vector ξn ∈ Rdξ . The observations on the system at
time step n can hence be summarized as yn = gn(xn, θ, ξn), where gn is the
observation function specifying what variables are observed and how.

Plant growth models are considered within this generic GSSM framework,
summarized by two equations, one for the system’s transition and the other
for its observation. At each time step n, yn is a vector of observations, that
are not necessarily the same at different times.

In their stochastic formulation with random vectors defining the process
and observation noises, SSMs are equivalent to HMMs where xn repre-
sents the hidden states, yn the observations. Thus, x0 ∼ p(x0) is the ini-
tial distribution, xn+1 ∼ p(xn+1|θ, xn) is the transition distribution, and
yn ∼ p(yn|θ, xn) is the observation distribution. In the rest of this paper,
we consider the most important and general case where both types of noises
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FULL BAYESIAN INFERENCE IN PLANT GROWTH MODELS 5

are present, i.e.: {
xn+1 ∼ p(xn+1|θ, xn),
yn ∼ p(yn|θ, xn).

It must be mentioned, however, that models with only observation noises and
no process noise (deterministic transition from xn to xn+1) can be handled
in the same generic framework, with the deterministic transition distribution
a Dirac delta function (that is to say p(xn+1|θ, xn) = 1 when xn+1 is given
by the deterministic function and 0 elsewhere). It is an important case to
consider since most classical plant growth models are built this way, from
the most classical crop models (Keating et al., 2003; Jones et al., 2003)
to functional-structural models like GreenLab (de Reffye et al., 2020). In
the next sections we present two examples of plant growth models with the
objective to illustrate how they can be written in the HMM framework: the
first one, GreenLab, without process noises; the second one, LNAS, with
process noises.

3. The GreenLab model for A. thaliana. In the context of this
work, our interest for A. thaliana stems from the large amount of data
that high-throughput phenotyping platforms provide. This is the case of
the Phenoscope (Tisné et al., 2013) where many plants are grown in a con-
trolled environment (temperature, radiation, hygrometry, etc.). The Green-
Lab model (de Reffye et al., 2020) is a functional-structural model: it com-
bines the description of plant architectural development and ecophysiological
functioning. It has been widely used in the last two decades and calibrated
for large varieties of plant species, however mostly with generalized least-
square estimators (Cournède et al., 2011). We adapt here a version for A.
thaliana. More details can be found in (Viaud, Loudet and Cournède, 2017).

Leaves of A. thaliana appear in a predefined order, called rank. The leaf
of rank v appears at time tv. The 1st and 2nd leaves first jointly appear
at time t12 = t1 = t2. Then the 3rd and 4th leaves jointly appear at time
t34 = t3 = t4. For v ≥ 5, tv = tv−1 + φ, where φ (h) is the phyllochron, i.e.
the time-lapse between the appearance of two successive leaves (Wilhelm
and McMaster, 1995). The initial biomass for the first two leaves is q0 and
the plant is assumed to grow only during the day, which lasts ns = 8h in our
study. The biomass produced at time step n is given by the Beer–Lambert
law (Marcelis, Heuvelink and Goudriaan, 1998):

(1) qn = µ rn s

1− exp

− k

s e

∑
v∈J1,νnK

qvn
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Fig 1. Left: normalized demand curves dv for the different leaves. Right: leaf area av
(cm2) for the different leaves. Evolution during daily hours (the n-th day corresponds to
the (ns × n)-th hour on the graphs).

where µ (g MJ−1) is the radiation use efficiency, rn (MJ cm−2) the photo-
synthetically active radiation, s (cm2) is related to the projected area of the
plant, k is the Beer–Lambert law coefficient of light extinction, e (g cm−2)
the leaf mass per area, νn the number of leaves of the plant and qvn (g) the

biomass of the v-th leaf. The term rn s
[
1− exp

(
− k
s e

∑
v∈J1,νnK q

v
n

)]
rep-

resents the absorbed radiation, it increases with the leaf surface area, but
a saturation effect occurs as soon as leaves start to superimpose, as higher
leaves cast shade on lower ones.

The biomasses allocated to the different leaves are proportional to their
respective demands, which are functions of their thermal time since appear-
ance. An index k(v) = 1 + 1(v > 4) indicates whether a leaf belongs to the
first 4 leaves, as leaves of rank v ≤ 4 and those with v > 4 exhibit different
dynamics. The demand of the v-th leaf at time step n is:

(2) dvn = fG
(
τvn/τ

v
exp;αk(v), βk(v)

)
.

Here, fG(x;α, β) = βαΓ(α)−1xα−1 exp(−βx) is the pdf of a Gamma distri-
bution parameterized by its shape α and rate β, τvn (°C h) is the accumulated
thermal time of the v-th leaf since its emergence and τvexp (°C h) is a charac-
teristic thermal time of expansion for the v-th leaf. The 1st and 2nd leaves
(resp. the 3rd and 4th leaves) share the same thermal time of expansion
τ12exp (resp. τ34exp) and τvexp = τ5exp for v ≥ 5. (α1, β1) and (α2, β2) are the
parameters of the Gamma distributions for the preformed leaves and those
with rank higher than 5 respectively. The biomass allocated to a leaf is then
δqvn = dvn/(

∑
w∈J1,νnK d

w
n )−1 qn, which allows to compute the accumulated

biomass of each leaf qvn = qvn−1 + δqvn and leaf area avn = e−1qvn. The observa-
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tions associated to the whole growth cycle of a plant is a sequence of vectors
of leaf areas. If Vn ⊂ J1, νnK is the set of ranks for which observations on leaf
areas are available at time step n, then the transition equation is:

xn+1 =



qn+1[
dvn+1

]
v∈J1,νn+1K[

δqvn+1

]
v∈J1,νn+1K[

qvn+1

]
v∈J1,νn+1K[

avn+1

]
v∈J1,νn+1K


=



rn µ s
[
1− exp

(
− k
s e

∑
qvn
)][

fG
(
τvn/τ

v
exp;αk(v), βk(v)

)]
v∈J1,νn+1K[(∑

dwn+1

)−1
dvn+1qn+1

]
v∈J1,νn+1K[

qvn + δqvn+1

]
v∈J1,νn+1K[

e−1qvn+1

]
v∈J1,νn+1K


= fn(xn, un, θ)

where xn = (qn, [d
v
n]1:νn , [δq

v
n]1:νn , [q

v
n]1:νn , [a

v
n]1:νn) represents the hidden

state, un = (rn, τn) the environmental variables and θ = (φ, q0, µ, s, e, k, α1,
β1, α2, β2, t

12, t34, [τvexp]1:νN ) the parameters. The observation equation is:

(3) yn = (ãvn)v∈J1,νnK = (avn · (1 + ξv,n))v∈J1,νnK = gn(xn, θ, ξn)

where ξn ∼ N (0, σ2Iνn) represents the observation noises, and thus:

(4) p(y1:N |θ, x1:N ) =
N∏
n=1

∏
v∈Vn

fN (ãvn; avn, σa
v
n).

Here, fN (x;µ, σ) = (2πσ2)−1/2 exp(−(x− µ)2/(2σ2)) is the pdf of a normal
distribution. Demands and areas for each leaf are shown in Figure 1.

4. The LNAS model for sugar beet. Although GreenLab belongs
to an important family of models in plant science comprising only obser-
vation noises, others also include process noises for an increased flexibility.
This is the case of the LNAS model for sugar beet (Cournède et al., 2013).
Plant organs are not considered individually, as in GreenLab, but as com-
partments. Two compartments are considered: leaves and roots. On day n,
the biomass of the roots is denoted qrn and that of the foliage is q`n = qgn+qsn,
where qgn is the biomass of green leaves and qsn is the biomass of senescent
leaves. All biomasses are expressed in g m−2. The environmental variables
of day n, such as the temperature tn (°C) and the photosynthetically active
radiation rn (MJ m−2), are daily averages.

Plant growth is driven by thermal time τn =
∑n

i=1 (ti − tb)+. At each time
step i, if the average temperature ti is above the base temperature (tb = 0 °C
in the case of sugar beet), their difference is accumulated in the thermal
time. When τn becomes greater than an initiation thermal time τinit, the
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8 G. VIAUD ET AL.

plant emerges, starts to intercept light, and produces biomass through pho-
tosynthesis. The production equation is again based on the Beer–Lambert
law and the deterministic produced biomass on day n is:

(5) qdetn = µ rn (1− exp(−k qgn/e))

where µ (g MJ−1) is a radiation use efficiency coefficient, k the Beer–Lambert
extinction coefficient, and e (m2 g−1) the leaf mass per area (such that qgn/e
is the leaf area index). There is however an important difference with the
GreenLab model: to account for some inaccuracies of the Beer–Lambert
law and the difficulty of assessing the local plant environment, the biomass
production is rendered stochastic. It is done by multiplying its determinis-
tic value with a multiplicative normal noise such that qston = qdetn · (1 + ηqn),
where ηqn ∼ N

(
0, (σq)

2
)
. To emphasize the variables on which are set process

noises, deterministic variables are denoted with a superscript det whereas
their stochastic equivalent are denoted with a superscript sto. The introduc-
tion of such stochastic values is of interest to express the transition pdf and
compute its value in a generic manner (Viaud, 2018, Chapter 5).

The biomass produced on day n is distributed between the foliage and
root system compartments according to an empirical function γ whose de-
terministic value is given by γdetn = γ0 + (γ` − γ0) FlogN (τn;µa, σa) where
γ0, γ` ∈ [0, 1] are respectively the initial and final proportions of biomass
allocated to the leaves, and FlogN is the cdf of a log-normal distribution
parameterized by its median µ and its standard deviation σ:

(6) FlogN (τ ;µ, σ) =
1

2

(
1 + erf

[
log (τ/µ)

σ
√

2

])
1 (τ ≥ 0) .

A process noise for the allocation is introduced, since this allocation strategy
heavily depends on environmental conditions and is known to be rather plas-
tic. Once again, a multiplicative normal noise is chosen and
γston = γdetn · (1 + ηγn) with ηγn ∼ N

(
0, (σγ)2

)
. The biomass of the whole

foliage increases every day: it receives the proportion γston of the biomass
produced, q`n = q`n−1 + γston qston . The biomass of senescent leaves is calcu-
lated as a proportion ρs = FlogN (τn − τs;µs, σs) of the foliage biomass,
qsn = ρsn q

`
n This process begins with some delay, once the thermal time

has reached a certain threshold τs. The biomass of green leaves is therefore
qgn = q`n − qsn = (1 − ρsn) q`n. Finally, the biomass of the roots is increased
by what is not allocated to the foliage qrn = qrn−1 + (1− γston ) qston . It can be
noted that both the allocation and the senescence processes are driven by
thermal time, hence temperature. The standard formulation of the LNAS
transition function eventually reads:
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xn+1 =



qdetn+1

qston+1

γdetn+1

γston+1

q`n+1

qgn+1

qrn+1


=



rn µ
(
1− exp(k qgn/e)

)
qdetn+1 · (1 + ηqn)(

γ0 + (γ` − γ0) FlogN (τn;µa, σa)
)

γdetn+1 · (1 + ηγn)

q`n + γn+1 qn+1

(1− FlogN (τn − τs;µs, σs))q`n
qrn + (1− γn+1) qn+1


= fn(xn, un, θ, ηn)

where xn = (qdetn , qston , γdetn , γston , q`n, q
g
n, qrn) represents the hidden state,

un = (rn, τn) the environmental variables, θ = (µ, k, e, γ0, γ`, µa, σa, τ s, µs, σs)
the functional parameters and ηn = (ηqn, η

γ
n) the process noises parameter-

ized by (σq, σγ). The transition pdf can be written as:

(7) p(xn+1|θ, xn) = fN (qston+1; q
det
n+1, σqq

det
n+1) · fN (γston+1; γ

det
n+1, σγγ

det
n+1).

It is assumed that we observe biomasses q̃♦ = q♦n · (1 + ξ♦n) at time steps
T♦ ⊂ J1, T K, with ξ♦n ∼ N (0, (σ♦)2) for ♦ ∈ {g, r}. The observation pdf is:

(8) p(yn|θ, xn) = fN (q̃gn; qgn, σgq
g
n) · fN (q̃rn; qrn, σrq

r
n)

Figure 2 displays the dynamics of the main variables of this model.

5. Joint estimation of functional parameters and hidden states.

5.1. Problem description. Some key variables to understand plant func-
tioning are not easily accessible to experimental measure and are represented

Fig 2. Left: production of biomass, the continuous line represents the deterministic values
predicted by the Beer–Lambert law, and the filled circles the corresponding noised values.
Center: allocation of the produced biomass to the different compartments; log-normal cdf
FlogN (µa,σa) (black), allocation variables γdet and γsto (gray). Right: biomasses of the
different compartments q` (light gray), qg (medium gray), q` (dark gray); hidden states as
lines and observed values as filled circles.
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10 G. VIAUD ET AL.

as hidden variables in the state-space representation of plant growth mod-
els. It is typically the case for biomass production and biomass partitioning
among the different organs which drive the source-sink dynamics, known
to be critical for plant performance (White et al., 2016; Smith, Rao and
Merchant, 2018). Statistical inference of these variables is thus a critical
issue.

In the presence of process noises, the objective is thus to jointly estimate
functional parameters θ and hidden states x1:N . It is classically done within
an MCMC algorithm with target distribution p(θ, x1:N |y1:N ) and proposal
distribution q(θ∗, x∗1:N |θt, xt1:N ), where variables with a superscript t denote
accepted values at the end of MCMC iteration t and variables with a super-
script ∗ denote candidate values at iteration t+ 1.

A natural approach is to update the parameters conditionally to the cur-
rent value of the hidden states and reciprocally, with a Gibbs algorithm
for example. However, the efficiency of such a scheme is compromised as
soon as there exists a strong correlation between parameters and hidden
states as shown by Liu, Wong and Kong (1994) and Roberts and Sahu
(1997), which is most often the case in plant growth models. To over-
come this issue, Fearnhead (2011) proposed the joint update of the pa-
rameters and hidden states with proposal distribution for the candidates
q(θ∗, x∗1:N |θt, xt1:N ) = q(θ∗|θt) q(x∗1:N |θ∗). Hence, the changes in the pa-
rameters can easily be controlled via q(θ∗|θt), and the candidate hidden
states x∗1:N will be consistent with the candidate parameters θ∗ thanks to
the proposal q(x∗1:N |θ∗). A classical choice for the proposal distribution is
p(x∗1:N |θ∗), i.e. performing a model simulation. It fails, however, to take into
account observations to optimize state space exploration and sample from
p(x∗1:N |θ∗, y1:N ). PMCMC methods (Andrieu, Doucet and Holenstein, 2010)
aim at overcoming this issue. If we managed to sample from p(x∗1:N |θ∗, y1:N ),

the acceptance probability would be α = 1∧ p(θ
∗|y1:N )

p(θt|y1:N )

q(θt|θ∗)
q(θ∗|θt)

, (see Lemma

in Web Appendix 5). This ultimately shows that such an MCMC scheme
would essentially target the marginal density p(θ|y1:N ) which stems from
its marginal Metropolis–Hastings (MMH) sampler, as already exploited in
(Beaumont, 2003) and (Andrieu and Roberts, 2009). A reasonable approxi-
mation to obtaining samples from p(x1:N |θ, y1:N ) is to use a sequential Monte
Carlo (SMC) algorithm within this MMH sampler, whence the appellation
particle marginal Metropolis–Hastings (PMMH).

It must be stressed that this estimation procedure is adapted to models
with and without process noise: in the absence of process noise, we can
simply revert to the decomposition q(θ∗, x∗1:N |θt, xt1:N ) = q(θ∗|θt) p(x∗1:N |θ∗)
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FULL BAYESIAN INFERENCE IN PLANT GROWTH MODELS 11

without the need to use an SMC method, and fall back to a standard MCMC
algorithm. It it therefore appropriate for the most common types of plant
growth models.

5.2. Choice of the SMC algorithm. Within the MMH sampler, the choice
of the SMC algorithm is crucial: it must be sufficiently accurate to provide re-
liable samples from p(x1:N |θ, y1:N ) without being too much time-consuming.
The SMC algorithm is indeed run at every MCMC iteration, and the whole
procedure can become very expensive in terms of computing time and mem-
ory, notably with complicated models like plant growth models that usually
require a considerable time to simulate.

In order to identify the best compromise in terms of accuracy and numer-
ical efficiency, we tested different SMC algorithms within PMMH, namely
the unscented Kalman filter (UKF) (Julier and Uhlmann, 1997), the en-
semble Kalman filters (EnKF) (Evensen, 1994), and the regularized particle
filters (RPF) (Chen and Cournède, 2014). The different methods are de-
tailed in Web Appendix 6. Despite a very low number of particles for UKF
of 2(dθ + dx) + 1 (i.e. 2·(3 + 2) + 1 = 11 in our benchmarks on the LNAS
model), PMMH-UKF manages to obtain very good estimates for both pa-
rameters and hidden states and outclassed both PMMH-EnKF and PMMH-
RPF (tested with 100 and 1000 particles each) for two parameters out of
three and one hidden state out of two. Because of its low computing time
and the good estimates it provides, it represents an excellent choice for the
joint estimation of parameters and hidden states within a PMMH sampler.
This echoes the results of Sherlock, Thiery and Lee (2017) who investigated
the performance of PMMH samplers and found that if the computational
cost of the algorithm is proportional to the number of particles N of the
SMC algorithm, it is often better to set N as low as possible. Doucet et al.
(2015) on the other hand provide guidelines to select the optimal number
of samples in the SMC step in some particular cases, suggesting that the
number of samples could be adapted at each PMMH iteration.

5.3. Adaptive scheme. For a better state space exploration and conver-
gence, we use an adaptive scheme derived from (Haario, Saksman and Tam-
minen, 2001) and described in (Andrieu and Thoms, 2008). At iteration t+1,
a new candidate is sampled as θ∗ ∼ N (θt, λtΣt), where:

(9)


µt = µt−1 + γt(θt − µt−1)

Σt = Σt−1 + γt
[
(θt − µt)(θt − µt)T − Σt−1]

λt = λt−1 exp
(
γt (α− α∗)

)
γt = 1/(t+ 1)
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Algorithm 1 PMMH for the joint estimation of (θ, x1:N )

Choose prior and sample θ0 ∼ p(θ)
Initialize γ0 = 1, µ0 = E[p(θ)], Σ0 = Cov[p(θ)], λ0 = 2.382/dθ
Run an SMC algorithm targeting p(x1:N |θ0, y1:N ) and sample x01:N ∼ p̂(x1:N |θ0, y1:N )
while t < M and convergence is not reached do

Sample θ∗ ∼ N (θt, λtΣt)
Run an SMC algorithm targeting p(x1:N |θ∗, y1:N ), sample x∗1:N ∼ p̂(x1:N |θ∗, y1:N )

Set
(
θt+1, xt+1

1:N

)
= (θ∗, x∗1:N ) with probability α = 1 ∧ p(θ

∗|y1:N )

p(θt|y1:N )

q(θt|θ∗)
q(θ∗|θt)

Update adaptive scheme variables γt+1, µt+1, Σt+1, λt+1

end while
Compute θ̂, Σ̂θ and x̂1:N , Σ̂x with burn-in period L

where α∗ is an optimal acceptance rate. Convergence is ensured as long as
the parameters of the adaptive schemes stay away from poor values (Andrieu
and Thoms, 2008). The whole algorithm is detailed in Algorithm 1.

6. Estimation of noise parameters. So far, the observation and pro-
cess noise parameters were assumed to be known, which is usually not the
case. However, the joint estimation of the deterministic and stochastic values
for a single state variable at different time steps can be used to estimate the
parameters underlying their distributions. We focus on the LNAS model,
comprising both observation and process noises, although the following pro-
cedure can be easily adapted to models with observation noises only.

State variables carrying process noises are the produced biomass
qston+1 = qdetn+1 · (1 + ηqn), with ηqn ∼ N

(
0, (σq)

2
)
, and the biomass allo-

cation coefficient γston+1 = γdetn+1 · (1 + ηγn), with ηγn ∼ N
(
0, (σγ)2

)
. State

variables affected by observation noises are the biomass of green leaves
q̃g = qgn · (1+ ξgn), with ξgn ∼ N

(
0, (σg)

2
)
, and that of roots q̃rn = qrn · (1+ ξrn),

with ξrn ∼ N
(
0, (σr)

2
)
. Defining σ2 = {σ2g , σ2r , σ2q , σ2γ}, the full likelihood is:

`(x1:N , y1:N |θ,σ2) ∝
∏
n∈Tg

fN (q̃gn; qgn, σgq
g
n)
∏
n∈Tr

fN (q̃rn; qrn, σrq
r
n)

N∏
n=1

fN (qston ; qdetn , σqq
det
n )

N∏
n=1

fN (γston ; γdetn , σγγ
det
n )

and the posterior distribution is therefore:

p(θ,σ2|x1:N , y1:N ) ∝ `(x1:N , y1:N |θ,σ2) p(θ,σ2)

∝ `(x1:N , y1:N |θ,σ2) p(θ) p(σ2g) p(σ
2
r ) p(σ

2
q ) p(σ

2
γ).

If the prior distributions for noise parameters are appropriately chosen, their
full conditional distributions can be analytically derived. More precisely, if
σ2♦ ∼ IG(α♦, β♦) then σ2♦| · · · ∼ IG(α̂♦, β̂♦) for ♦ ∈ {g, r, q, γ}, where:

imsart-aoas ver. 2014/10/16 file: output.tex date: November 17, 2023



FULL BAYESIAN INFERENCE IN PLANT GROWTH MODELS 13

(10)

α̂g = αg +
|Tg|
2
, β̂g = βg +

1

2

∑
n∈Tg

(q̃gn − qgn)
2

(qgn)2
,

α̂r = αr +
|Tr|
2
, β̂r = βr +

1

2

∑
n∈Tr

(q̃rn − qrn)2

(qrn)2
,

α̂q = αq +
N

2
, β̂q = βq +

1

2

N∑
n=1

(
qston − qdetn

)2
(qdetn )2

,

α̂γ = αγ +
N

2
, β̂γ = βγ +

1

2

N∑
n=1

(
γston − γdetn

)2
(γdetn )2

.

The derivation of these formulas are given in Web Appendix 4. Equivalent
formulas can be obtained for other types of noise models (additive normal for
instance). A strategy for a full Bayesian estimation is therefore to iteratively
estimate parameters and hidden states using a PMMH sampler, and update
the values of noise parameters based on these estimates as described in
Algorithm 2. It covers the generic case of a model with No observation
noises andNp process noises parameterized with [σoi ]i∈J1,NoK and [σpj ]j∈J1,NpK
respectively (such that, for GreenLab, Np = 0). A first step consists of
jointly estimating θ and x1:N , after which observation parameters can be
estimated. The latter are then used to refine estimates of θ and x1:N , and
finally, process noise parameters are updated. The whole procedure is done
in this order since observation noises have variances typically much greater
than those of process noises.

7. Applications. We now illustrate the whole estimation method, first
using the GreenLab model for A. thaliana (without process noise) on a real
data set in Section 7.1 (a case study on synthetic data is also described
in Web Appendix 3). We then focus on the LNAS model for sugar beet
(with process noise) to investigate the overall performance of our estimation
strategy on synthetic data in Section 7.2 before turning to a real case scenario
in Section 7.3.

7.1. GreenLab: real data. Images of A. thaliana were acquired using the
Phenoscope (Tisné et al., 2013) which allows to grow many individual plants
in a controlled environment. It outputs zenithal images of each plant every
day. The data set considered here consists of a series of 21 images for one
plant of each of the 4 genotypes Burren (Bur), Columbia (Col), Shahdara
(Sha) and Tsushima (Tsu) for a total of 1,043 observations. A manual seg-
mentation performed using a graphics editor (Viaud, Loudet and Cournède,
2017) allowed us to know the area of each leaf every day with a high preci-
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Algorithm 2 Overall Bayesian inference

Context: Model with No observation noises and Np process noises parameterized with
[σoi ]i∈J1,NoK and [σpj ]j∈J1,NpK respectively

1. Choose priors for functional parameters θ0 ∼ p(θ)
2. Choose priors for obs. noise parameters

(
σ0
oi

)2 ∼ IG(αoi , βoi) for i ∈ J1, NoK
If Np ≥ 1:

2’. Choose priors for prc. noise parameters
(
σ0
pj

)2 ∼ IG(αpj , βpj ) for j ∈ J1, NpK
3. Define σ =

{ [
σ0
oi

]
i∈J1,NoK ,

[
σ0
pj

]
j∈J1,NpK

}
4. Estimate θ, x1:N |y1:N ,σ using a PMMH-UKF sampler
5. Update σoi | · · · ∼ IG(α̂oi , β̂oi) for i ∈ J1, NoK (using Equation 10 or equivalent)

6. Update σ =
{ [
σ̂0
oi

]
i∈J1,NoK ,

[
σ0
pj

]
j∈J1,NpK

}
accordingly

If Np ≥ 1:
7. Estimate θ, x1:N |y1:N ,σ using a PMMH-UKF sampler
8. Update σpj | · · · ∼ IG(α̂pj , β̂pj ) for j ∈ J1, NpK (using Equation 10 or equivalent)

Return: Posterior distributions for parameters θ and states x1:N (obtained at 4. if
Np ≥ 1 else 7.), obs. noise parameters [σoi ]i∈J1,NoK (obtained at 5.) and
possibly prc. noise parameters [σpj ]j∈J1,NpK (obtained at 8.)

sion. For each individual, we jointly estimate functional and noise parame-
ters θ = (e, µ, φ, α1, β1, α2, β2) and σ using Algorithm 2 with a simple model
simulation instead of a UKF (at Step 4) and M = 20, 000 MCMC iterations.
The formula for the update of σ in this model is given in Web Appendix 2.
The mean and standard deviation of the posterior distributions of estimated
functional parameters are displayed in Table 1. We used the modelling ef-
ficiency (Wallach, 2006) EF(x, y) = 1 − (

∑
i (yi − xi)2)/(

∑
i (yi − ȳ)2) as a

criterion to compare hidden states and observations, i.e. EF(x̂1:N , y1:N ). The
results are displayed in Table 2. Finally, Figure 3 shows the graphs of the
observations y1:N and the estimated hidden states x̂1:N for each individual.

Great precision is achieved in the estimation of leaf areas, as can be seen
from Figure 3. Only the 5th leaf area, for Col and Sha, is overestimated

Gen. e µ φ α1 β1 α2 β2

Mean

Bur 1.38·10−3 2.51·10+0 1.24·10+1 1.33·10+0 2.60·10+0 3.45·10+0 4.42·10+0

Col 1.60·10−3 2.85·10+0 1.50·10+1 1.45·10+0 2.32·10+0 2.66·10+0 3.29·10+0

Sha 2.08·10−3 3.86·10+0 1.82·10+1 1.04·10+0 2.33·10+0 2.32·10+0 2.51·10+0

Tsu 1.77·10−3 3.57·10+0 1.19·10+1 1.32·10+0 1.88·10+0 3.31·10+0 4.62·10+0

Std

Bur 2.49·10−5 6.37·10−2 2.62·10−1 3.57·10−2 8.67·10−2 2.36·10−2 5.13·10−2

Col 1.07·10−5 2.32·10−2 2.48·10−1 2.99·10−2 5.17·10−2 3.71·10−2 4.47·10−2

Sha 1.22·10−5 2.73·10−2 2.07·10−1 1.12·10−2 1.36·10−2 2.06·10−2 4.12·10−2

Tsu 3.35·10−5 8.66·10−2 1.08·10−1 3.40·10−2 2.97·10−2 6.03·10−2 1.64·10−1

Table 1
Mean and standard deviation for the posterior distributions of the different estimated

parameters of the GreenLab model.
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at the end of the growth. This can also be seen from modelling efficiencies
in Table 2, for which the 5th leaf is the only one with values below 0.8.
Some of the first leaves also exhibit values between 0.8 and 0.9, because our
model imposes the same dynamics for the 1st and 2nd leaves on one hand
and the 3rd and 4th leaves on the other. Priors for σ were chosen such that
E[σ] = 1 · 10−1 and V[σ] = (2E[σ])2. The parameters of the inverse Gamma
distribution σ2 ∼ IG(α, β) were deduced accordingly. The standard devia-
tions of the observation noise were estimated to expected values, all of them
being comprised between 6 ·10−2 and 8 ·10−2 as detailed in Table 3. Overall,
results for functional parameters, hidden states and noise parameters using
these 4 real data sets are very satisfactory, even though the modelling of the

Fig 3. Areas of the first 8 leaves for genotypes Bur (top left), Col (top right), Sha (bottom
left) and Tsu (bottom right); observations (filled circles), and estimated states (lines).

Gen. 1 2 3 4 5 6 7 8

EF

Bur 8.69·10−1 9.43·10−1 8.32·10−1 9.91·10−1 9.66·10−1 9.71·10−1 9.41·10−1 9.12·10−1

Col 8.95·10−1 8.89·10−1 9.90·10−1 9.91·10−1 5.63·10−1 9.67·10−1 9.89·10−1 9.95·10−1

Sha 9.13·10−1 8.95·10−1 9.70·10−1 9.95·10−1 7.12·10−1 9.78·10−1 9.60·10−1 9.20·10−1

Tsu 7.52·10−1 8.79·10−1 9.63·10−1 9.35·10−1 8.43·10−1 9.29·10−1 9.41·10−1 9.31·10−1

Table 2
Modelling efficiency EF(x̂1:N , y1:N ) for the first 8 leaves.
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Gen. E[σ] α β E[σ| . . . ] α̂ β̂

Bur 1.00·10−1 2.07·10+0 1.07·10−2 7.13·10−2 6.71·10+1 3.36·10−1

Col 1.00·10−1 2.07·10+0 1.07·10−2 6.08·10−2 6.51·10+1 2.36·10−1

Sha 1.00·10−1 2.07·10+0 1.07·10−2 6.48·10−2 6.76·10+1 2.80·10−1

Tsu 1.00·10−1 2.07·10+0 1.07·10−2 7.89·10−2 6.71·10+1 4.11·10−1

Table 3
Prior (σ0, α0, β0) and estimated (σ̂, α̂, β̂) values of the observation noise parameters for

the different genotypes.

5th leaf dynamics could probably be improved.
In plant growth models, functional parameters are supposed to be char-

acteristic of genotypes (Yin, Struik and Kropff, 2004; Hammer et al., 2006;
Letort et al., 2008). A potential application of our parameterization study is
thus to compare the different Arabidopsis genotypes based on the estimated
parameters. Note that these genotypes are ecotypes, that is to say variants
characteristic of ecological regions: Columbia originates from the USA (MO),
Burren from Ireland, Tsushida from Japan, and Shahdara from Tadjikistan.
Such detailed comparison is beyond the scope of this paper, but we can give
a typical illustration for the parameter e, that is to say the leaf mass per
surface area, (also referred to as LMA in ecological studies). It was shown
that leaf traits associated with high leaf mass per surface area are charac-
teristic of plants capable to adapt to dry conditions (Wright et al., 2004).
In Table 1, we can see that e is indeed the largest for Shahdara, adapted to
cold-arid conditions of Pamir-Alay mountains in Tadjikistan, compared to
the other ecotypes of more temperate regions. Another known mechanism of
adaptation to dry conditions is a longer functioning of leaves (Wright et al.,
2004), which is also observed for Shahdara with its flatter sink dynamics (α
and β lower values in the Gamma distribution of the demand function 2).

7.2. LNAS: synthetic data. The generation of synthetic data for q̃g50:10:150
and q̃r50:10:150 is described in Web Appendix 6. We again used Algorithm
2 with M = 20, 000 iterations, this time with a PMMH-UKF sampler at
Step 4, to estimate the 3 most influential parameters of the model (de-
termined using a Sobol sensitivity analysis) θ

.
= (µ, γ0, µa), hidden states

x1:N
.
= (qg1:N , q

r
1:N , q

det
1:N , q

sto
1:N , γ

det
1:N , γ

sto
1:N ), and observation and process noise

parameters (σg, σr) and (σq, σγ). Values used for data simulation are de-
noted with a superscript ∗. Based on biological knowledge (Damay and
Le Gouis, 1993), (Chen, 2014), priors were chosen for functional parame-
ters as µ ∼ N (3.6, 0.32), γ0 ∼ N (0.8, 0.12), and µa ∼ N (600, 502). For
♦ ∈ {g, r, q, γ}, the mean of the prior distributions E[σ♦] was chosen at
least twice higher than σ∗♦ for a better state space exploration, the vari-
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Fig 4. Estimation of the observation and process noise parameters with the true value
(solid black line), the prior distribution (light gray curve), the prior mean (dashed light
gray line), the posterior distribution (dark gray curve) and the posterior mean (dashed
dark gray line).

ance was set such that V[σ♦] = (2E[σ♦])2 and the parameters (α♦, β♦) for
the inverse Gamma prior were deduced accordingly. Values for each noise
are displayed in Figure 4. The results of the first estimation for the ob-
served states qg and qr are very satisfactory, with EF(q̂g1:N , q

g
1:N ) = 0.997

and EF(q̂r1:N , q
r
1:N ) = 0.994. This first PMMH algorithm allows a precise es-

timation of the standard deviation for the observation noises using Equation
10, as we obtained E[σg| . . . ] = 1.36·10−1 and E[σr| . . . ] = 1.62·10−1.

These adequate estimates of θ, σg and σr are used for a second PMMH
algorithm aimed at refining the estimates on parameters, hidden states and
process standard deviations σq and σγ . For the second PMMH run, pri-
ors for θ were chosen as the posteriors obtained with the first PMMH run,
and observation standard deviations were fixed at their estimated values.
This two-step strategy was adopted as the estimation of observation noise
parameters is accurate and provide values close to the truth for a refined
estimation, which is more efficient than updating all noise parameters at
once. The joint estimation of θ and x1:N yield precise estimates. In par-
ticular, all the hidden states have modelling efficiencies higher than 0.98.
This ensures the quality of process noise parameter estimates, inferred from
hidden states using Equation 10, ultimately yielding E[σq| . . . ] = 2.34·10−2
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and E[σγ | . . . ] = 3.12·10−2. All results for noise parameters are displayed in
Figure 4. In conclusion, only σg is slightly overestimated, all other noises
have distributions whose mean is very close to the true value and with low
standard deviations. It is particularly interesting to obtain such results for
process noise parameters, since hidden states that are not observable are
usually hard to estimate. This was notably allowed thanks to the use of the
PMMH sampler for the joint estimation of functional parameters and hid-
den states as well as the Bayesian update of noise parameters. Overall, we
obtained very good results for all model variables involved.

7.3. LNAS: real data. We now turn to the case of real data for the LNAS
model. The data used for this study were obtained by the French institute
for sugar beet research (ITB, Paris, France) in 2010, details of the experi-
mental protocols can be found in (Baey et al., 2014). The biomasses of green
leaves and roots, qg and qr, were collected on 50 plants at 14 dates such that
Tg = Tr = {54, 68, 76, 83, 90, 98, 104, 110, 118, 125, 132, 139, 145, 160}. We es-
timated the same functional parameters and hidden states as in the case
of synthetic data and apply the same estimation strategy; only the num-
ber of MCMC iterations was increased to M = 50, 000 as real data needed
more iterations for convergence. For functional parameters, the same pri-
ors as in Section 7.2 were used. For noise parameters, we chose E[σg] =
E[σr] = 2.00·10−1, E[σq] = E[σγ ] = 5.00·10−2 and again V[σ♦] = (2E[σ♦])2

for ♦ ∈ {g, r, q, γ}. From Figure 5, hidden states seem to be well estimated
despite the observation noise. The estimation of noise parameters yields
credible values:

E[σg| . . . ] = 1.29·10−1,
and

E[σq| . . . ] = 1.80·10−2,
E[σr| . . . ] = 1.16·10−1, E[σγ | . . . ] = 2.23·10−2.

Figures of prior and posterior distributions for noise parameters can be
viewed in Web Appendix 8.

Compared to GreenLab, the LNAS model is less detailed from a mecha-
nistic point of view. It is thus less adapted to genotypic analysis. However,
it has shown good performances in crop yield prediction in a simpler de-
terministic version (Baey et al., 2014). The improved statistical estimation
proposed here with proper uncertainty evaluation opens new perspectives in
risk analysis, while providing the model with more flexibility. This flexibility
(allowed by the process noise in production and allocation equations) is also
interesting for further biological analysis. The estimated noises at each time
step ηqn and ηγn can be analyzed in correlation with environmental variables,
notably stresses, to see how they impact production and allocation: For ex-
ample, if ηγn was negative for a significantly long period of time and if we
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Fig 5. Estimation of the hidden states related to the observation noises qg (left) and
qr (right): observations are displayed as filled black circles, and corresponding estimated
hidden states as filled gray circles.

observed a water stress during this period, we could hypothesize that crops
adapt to water stress by changing their allocation strategy, and improve
the model accordingly. No such correlation was however highlighted in this
study.

8. Discussion. We considered two plant growth models within the gen-
eric framework of GSSMs, namely GreenLab for A. thaliana and LNAS for
sugar beet. GreenLab includes observation noises but no process noises, and
hidden states are a deterministic function of functional parameters, as is the
case of many plant growth models. For its part, LNAS includes both obser-
vation and process noises, which makes the estimation of hidden states much
more challenging. We proposed a full Bayesian estimation method based on
PMCMC methods for the joint estimation of functional parameters, hid-
den states, and observation and process noise parameters. It is very general
since it can handle the two main types of models considered, falling back to
a simple model simulation instead of an SMC method within the MCMC
algorithm in the absence of process noises. The estimation of noise param-
eters is based on the Bayesian framework and an adequate choice of prior
distributions for a straightforward update of noise parameters. It can handle
several noise models, provided that a prior distribution for noise parameters
can be chosen for an analytical update of the full conditional distributions.

We illustrated this strategy on several cases. First on a real data set
for A. thaliana using the GreenLab model, where estimates for functional
parameters and observation noise parameters allowed to explain the data
for individuals belonging to different genotypes very well. Second, on both
synthetic and real data for sugar beet using the LNAS model, with process
noise. On synthetic data, we notably showed how the overall procedure could
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yield very precise estimates of all model variables, but more importantly
hidden states and, as a consequence, process noise parameters.

Great emphasis has been placed on the appropriateness of a full Bayesian
approach in the context of plant growth models where important a priori
information may often be used. Not only may it be available thanks to
expert knowledge, it also proves to yield a flexible statistical framework for
the update of noise parameters. To the best of our knowledge, it is the first
time that the estimation of hidden states, process and observation noise
parameters thanks to PMCMC methods is undertaken.

PMCMC algorithms are of high interest in applications dealing with com-
plex state space models, large amounts of data and with highly multimodal
posterior distributions. One of their drawbacks is their numerical cost. Some
extensions have recently been proposed, such as interacting PMCMC algo-
rithms (Mingas, Bottolo and Bouganis, 2017) or by introducing new latent
variables (Fearnhead and Meligkotsidou, 2016) for enhanced mixing rates.
Their parallelization on CPU, GPU or field programmable gate arrays (FP-
GAs) is a topic of primary importance given their computing cost.

For complex models whose simulation is costly and with many parame-
ters to estimate, Hamiltonian Monte Carlo (HMC) methods (Neal, 2011),
(Hoffman and Gelman, 2014) could be used for an enhanced exploration of
the state space. Other strategies based on meta-modelling like Gaussian pro-
cess approximation of simulations (Overstall and Woods, 2013) could allow
computationally efficient MCMC inference and could also be tested.

The full Bayesian estimation procedure described here could also be adapted
to hierarchical models for populations of plants. While a topic of major im-
portance, few works have been undertaken in the plant community (Illian,
Møller and Waagepetersen, 2009).
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namics model for supporting decision-makers in irrigation water management. Journal
of environmental management 223 815–824.
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