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Abstract

In this paper we discuss coupled-trajectory schemes for molecular-dynamics simula-

tions of excited-state processes. New coupled-trajectory strategies to capture decoher-

ence effects, revival of coherence and nonadiabatic interferences in long-time dynamics

are proposed, and compared to independent-trajectory schemes. The working frame-

work is provided by the exact factorization of the electron-nuclear wavefunction, and

it exploites ideas emanating from various surface-hopping schemes. The new coupled-

trajectory algorithms are tested on a one-dimensional two-state system using different

model parameters allowing to induce different dynamics. Benchmark is provided by the

numerically exact solution of the time-dependent Schrödinger equation.

1. Introduction

The development of excited-state molecular-dynamics schemes and codes1–10 is a topic which

has steadily evolved for few decades now, and raises continuous interest in the theoretical
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chemistry and chemical physics communities. Novel challenges are often presented to the-

oreticians following, for instance, advances in spectroscopy techniques that propose new

setups to study light-matter interactions.11–20 Tackling those new challenges requires that

algorithms/codes evolve and adapt, aiming to extend their range of applicability and to

become more efficient or more accurate.

In this context the present paper proposes new advances focusing on coupled-trajectory

methods for excited-state dynamics. The working framework is provided by the exact fac-

torization of the time-dependent electron-nuclear wavefunction.21–23 The exact-factorization

Ansatz allows one to factor the molecular wavefunction as the product of a nuclear wave-

function and a conditional electronic factor, and is then proven to be an exact rewriting of

the molecular time-dependent wavefunction. Evolution equations for the two terms of the

factored wavefunction can be derived from the time-dependent Schrödinger equation,24 and

have led, in previous work by Gross and collaborators,25–28 to derive a coupled-trajectory

mixed quantum-classical (CT-MQC) scheme for excited-state nonadiabatic dynamics. As the

name of the algorithm suggests, CT-MQC describes nuclear dynamics in terms of classical-

like trajectories that retain some quantumness via their coupling, which enables to naturally

account for decoherence effects.29 In CT-MQC, the electrons are, instead, propagated in time

quantum mechanically. Since the original derivation, CT-MQC has evolved in two main di-

rections: Min and coworkers exploited information provided by the exact factorization and

by CT-MQC to propose a new trajectory surface hopping procedure30,31 that includes deco-

herence effects, i.e., the DISH-XF algorithm (decoherence-induced surface hopping based on

the exact factorization);32 Agostini and coworkers extended the original CT-MQC aiming to

include spin-orbit coupling33 as well as the effect of an external time-dependent driving field

employing the Floquet formalism.34 DISH-XF relies on the use of independent trajectories

in order to boost the computational efficiency of the algorithm, thus providing access to

molecular systems and to their photo-induced dynamics.35–40 The generalized CT-MQC (G-

CT-MQC) scheme, instead, has been designed to treat on the same footing33,41 spin-allowed
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nonadiabatic electronic transitions, i.e., internal conversion, and spin-forbidden electronic

transitions mediated by spin-orbit coupling, i.e., intersystem crossing; the Floquet-based

CT-MQC (F-CT-MQC) scheme has been derived by combining the exact factorization with

the Floquet formalism42 to treat cases where systems are periodically driven by external

classical fields.34

Motivated by the appeal of a surface-hopping-like scheme30,31 and by the success of DISH-

XF, we propose and test in this work new strategies to improve the performance, in terms of

computational efficiency and accuracy, of coupled-trajectory schemes derived from the exact

factorization. In particular, we introduce:

(i) the independent bundle approximation (IBA) in CT-MQC, where bundles of coupled

trajectories are evolved independently from each other;

(ii) the fewest-switches coupled-trajectory trajectory surface hopping (FS-CT-TSH) scheme,

where coupled trajectories are evolved adiabatically and are subject to stochastic hops

between electronic states, in the spirit of surface hopping, according to the fewest-

switches procedure;31

(iii) the Landau-Zener coupled-trajectory trajectory surface hopping (LZ-CT-TSH) scheme,

where coupled trajectories are evolved adiabatically and are subject to stochastic hops

between electronic states according to the Landau-Zener probability.43–50

The key ingredient of all these strategies is the coupling among the trajectories, which is

fundamental to capture decoherence effects in excited-state dynamics, beyond ad hoc cor-

rection schemes.8,51–57 In addition, as the numerical case studies proposed here confirm,

the coupling among the trajectories results to be crucial to capture additional quantum ef-

fects such as revival of coherence48,58 and nonadiabatic interferences59–65 due, for instance,

to multiple crossings of photo-excited species through nonadiabatic regions.31 Those phe-

nomena have been observed recently in the so-called molecular Tully models, namely in

4-N,N’-dimethylaminobenzonitrile (DMABN) and in fulvene.58 The reason for testing differ-
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ent hopping schemes in CT-TSH is to purse flexibility of the algorithm in handling processes

of diverse nature, as, for instance, fewest switches performs better when the nonadiabatic

couplings are spatially localized,66 e.g., at conical intersections, whereas Landau-Zener can

be better exploited in the presence of delocalized couplings,67 e.g., for spin-orbit coupling.

The paper presents in detail the procedures illustrated above and is organized as fol-

lows. In Section 2 we recall briefly the exact factorization and the main ingredients for

the derivation of CT-MQC. Section 3 is devoted to the analysis of the coupling among the

trajectories, first derived in the framework of CT-MQC, and then applied to FS/LZ-CT-

TSH. In Section 4 numerical studies are presented on a one-dimensional two-states system

using different model parameters in order to induce different dynamics. The performance

of IBA in CT-MQC and of FS/LZ-CT-TSH are benchmarked against the exact solution of

the time-dependent Schrödinger equation. In addition, in order to point out the importance

of the coupling among the trajectories, results obtained with the standard (independent-

trajectory) fewest-switches trajectory surface hopping algorithm31 are presented, without

(FS-TSH) and with (FS-TSH-EDC) energy-decoherence corrections.68 All algorithms em-

ployed in this work are implemented in G-CTMQC69 freely available on GitLab under GNU

Lesser General Public License (LGPL). 1

2. Exact factorization and CT-MQC algorithm

A system of interacting electrons and nuclei evolving quantum mechanically is described by

the time-dependent Schrödinger equation (TDSE)

ih̄∂tΨ(r,R, t) =
(
T̂n(R) + ĤBO(r,R)

)
Ψ(r,R, t) (1)

where Ψ(r,R, t) is the time-dependent molecular wavefunction, T̂n(R) is the nuclear kinetic

energy, and ĤBO(r,R) is the electronic, Born-Oppenheimer (BO), Hamiltonian containing
1Input files and initial conditions for the calculations on Model I performed in this work are also available.
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the electronic kinetic energy and the interaction potentials. The variables r and R indicate

the positions of all electrons and all nuclei, respectively. According to the exact-factorization

Ansatz,4,21 the molecular wavefunction can be factored as

Ψ(r,R, t) = χ(R, t)ΦR(r, t) (2)

with χ(R, t) being the nuclear wavefunction and ΦR(r, t) being the electronic conditional

factor that parametrically depends on nuclear positions. Imposing that the electronic term

is normalized to one ∀R, t, the molecular TDSE yields24,70,71

ih̄∂tχ(R, t) =

[
Nn∑
ν=1

[−ih̄∇ν + Aν(R, t)]
2

2Mν

+ ε(R, t)

]
χ(R, t) (3)

ih̄∂tΦR(r, t) =
[
ĤBO(r,R) + Ûen[ΦR, χ]− ε(R, t)

]
ΦR(r, t) (4)

when Eq. (2) is inserted into Eq. (1). In Eq. (3) the sum over the index ν is performed over

the Nn nuclei, with masses Mν ; the spatial derivative with respect to the nuclear positions

is indicated as ∇ν . In the coupled nuclear and electronic equations, Eq. (3) and Eq. (4),

the time-dependent vector potential Aν(R, t),72 the time-dependent potential energy sur-

face (TDPES) ε(R, t),73,74 and the electron-nuclear coupling operator Ûen[ΦR, χ]75 mediate

the dynamical coupling between electrons and nuclei beyond the adiabatic regime. These

quantities are defined as

Aν(R, t) = 〈ΦR(r, t)| − ih̄∇ν ΦR(r, t)〉r (5)

ε(R, t) = 〈ΦR(r, t)| ĤBO(r,R) + Ûen[ΦR, χ]− ih̄∂t |ΦR(r, t)〉r (6)
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Ûen[ΦR, χ] =
Nn∑
ν=1

[−ih̄∇ν −Aν(R, t)]
2

2Mν

+
Nn∑
ν=1

1

Mν

(
−ih̄∇νχ(R, t)

χ(R, t)
+ Aν(R, t)

)
(−ih̄∇ν −Aν(R, t)) (7)

and the symbol 〈 · 〉r stands for an integration over electronic positions. The product form (2)

of the molecular wavefunction is invariant under a gauge-like (R, t)-dependent phase trans-

formation of the electronic and nuclear components.74 Fixing the gauge means to choose an

expression for such a phase or imposing a condition on the gauge fields that indirectly defines

the phase. The gauge fields are the vector potential and the TDPES, since they transform

as standard gauge potentials if the electronic and the nuclear wavefunctions are modified by

the gauge phase. Solving Eqs. (3) and (4) with any given choice of gauge leads to a unique

solution of the TDSE, as expected. Note that the sum of the first two terms in Eq. (6)

is gauge-invariant73 (this will be used in Section 4 to compare exact and trajectory-based

calculations).

Adopting a classical-like, trajectory-based perspective for the nuclear evolution, the

coupled-trajectory mixed quantum-classical (CT-MQC) algorithm has been derived in previ-

ous work.26 The idea is to rewrite the nuclear equation (3) employing the polar representation

of the nuclear wavefunction, i.e., expressing it in terms of its modulus/density and phase.

Two coupled equations are obtained by separating real and imaginary parts. The equation

for the phase is a Hamilton-Jacobi equation76 which can be solved with the method of charac-

teristics by introducing a set Hamilton-like ordinary differential equations to evolve positions

and momenta in time. The equation for the density is a continuity equation, which we do not

solve explicitly, because we suppose that for “short enough” times the spatial distribution of

classical-like trajectories remains localized in regions where the nuclear probability density

is large77 (this hypothesis will be tested in Section 4).

In the following we recall the basic equations and main ingredients leading to the deriva-

tion of CT-MQC equations, while we refer to Refs. [ 26,27,41] for a detailed description of
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the underlying approximations.

Henceforth, the term “trajectory” refers to a collection of 3Nn nuclear positions that

evolve in time, and all quantities depending on R in the quantum formulation acquire a

dependence on the trajectory R(t).

When the nuclear wavefunction is replaced by an ensemble of Ntraj trajectories, it is

particularly interesting to analyze the electron-nuclear coupling operator. In fact, as shown

in Eq. (7), the (second and) leading term78 in Eq. (7) depends explicitly on the nuclear

wavefunction. Therefore, along a trajectory R(t), the electron-nuclear coupling operator

becomes

Ûen '
Nn∑
ν=1

(
Ṙν(t) + i

Pν

(
R(t), t

)
Mν

)(
−ih̄∇ν −Aν

(
R(t), t

))
(8)

where Ṙν(t) if the classical velocity andPν

(
R(t), t

)
has been dubbed quantum momentum.25

This expression can be derived by expressing the nuclear wavefunction in terms of its modulus

|χ(R(t), t)| and phase S(R(t), t), and by defining the velocity as76

Ṙν(t) =
∇νS(R(t), t) + Aν(R(t), t)

Mν

(9)

and the quantum momentum as

Pν

(
R(t), t

)
=
−h̄∇ν |χ(R(t), t)|2

2 |χ(R(t), t)|2
(10)

The quantum momentum (divided by the nuclear mass) appears as a purely imaginary cor-

rection79 to the classical (real) velocity in the electron-nuclear coupling operator in the elec-

tronic evolution equation (4). It has been argued that it is responsible for inducing quantum

decoherence effects on electronic dynamics,2,29 as will be shown in Section 4. Calculation

of the quantum momentum requires to reconstruct the nuclear density at all times, which

can be achieved from the knowledge of the spatial distribution of the trajectories. There-
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fore, CT-MQC trajectories cannot be propagated independently, thus they are “coupled”.

Section 3 describes the quantum momentum is more details.

Since Ntraj trajectories are necessary to reconstruct the nuclear distribution, each trajec-

tory will be labeled with the symbol α. At each nuclear position along the trajectory α, the

electronic wavefunction is expressed as a linear combination of adiabatic states ϕ(m)
Rα(t)(r),

i.e., the eigenstates of ĤBO, namely

ΦRα(t)(r, t) =
∑
m

Cm (Rα(t), t)ϕ
(m)
Rα(t)(r) (11)

The index m runs over the electronic states considered in the expansion. When Eq. (11)

is inserted into Eq. (4), the electronic evolution equation for the expansion coefficients is

derived

Ċα
m(t) = Ċα

m,Eh(t) + Ċα
m,qm(t) (12)

The implicit time dependence of the coefficients via the trajectory is indicated by the index

α, and since the coefficients also depend explicitly on time, this time dependence is explicitly

indicated. The first (Eh) “Ehrenfest-like” term in Eq. (12) is

Ċα
m,Eh(t) = − i

h̄
Eα
mC

α
m(t)−

∑
l

Nn∑
ν=1

Ṙα
ν (t) · dαν,mlCα

l (t) (13)

where Eα
m is the m-th eigenvalue of ĤBO along the trajectory α, Ṙα

ν (t) is the velocity of the

nucleus ν along trajectory α, and dαν,ml = 〈ϕ(m)
Rα(t)|∇νϕ

(l)
Rα(t)〉r is the nonadiabatic coupling

vector between states m and l along the trajectory α (we suppose that dαν,ml are real). Note

that Eq. (13) is the electronic equation used in the trajectory surface hopping scheme as

well.31 The second term in Eq. (12), labeled “qm” as it depends on the quantum momentum
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Pα
ν (t), is

Ċα
m,qm(t) =

Nn∑
ν=1

Pα
ν (t)

h̄Mν

·
(
fαν,m −Aα

ν (t)
)
Cα
m(t) (14)

where the time-dependent vector potential along the trajectory α, i.e., Aα
ν (t), appears. The

term fαν,m is the m-th adiabatic force accumulated over time along the trajectory α, namely

fαν,m =

∫ t

0

(−∇νE
α
m) dτ (15)

The accumulated force appears in the approximated expression of the vector potential,

namely

Aα
ν (t) = h̄

∑
m,l

=
[
C̄α
m(t)Cα

l (t)
]
dαν,ml +

∑
m

|Cα
m(t)|2 fαν,m '

∑
m

|Cα
m(t)|2 fαν,m (16)

with the symbol C̄α
m(t) indicating the complex conjugated of Cα

m(t). As indicated in the

last equality, the contribution containing the nonadiabatic coupling is neglected,25,26 as it is

localized in space (dαν,ml are usually spatially localized) and, thus, expected to be negligible

when compared to the second contribution, which is accumulated in time.

The set of electronic equations (13) for the expansion coefficients for each α has to be

solved along the corresponding trajectory, and information about all other trajectories is

encoded in the quantum momentum.

The nuclear trajectory Rα
ν (t) for the ν-th nucleus is generated by the CT-MQC force

Fα
ν (t) = Fα

ν,Eh(t) + Fα
ν,qm(t) (17)

The expression of the force contains two terms, similarly to Eq. (12): the first is a (standard)
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Ehrenfest-like term

Fα
ν,Eh(t) =

∑
m

|Cα
m(t)|2 (−∇νE

α
m) +

∑
m,l

C̄α
m(t)Cα

l (t) (Eα
m − Eα

l ) dαν,ml (18)

the second term in Eq. (17) depends on the quantum momentum and on the accumulated

adiabatic force, namely

Fα
ν,qm(t) =

2

h̄

∑
m

|Cα
m(t)|2

[
Nn∑
µ=1

Pα
µ(t) · fαµ,m

] (
fαν,m −Aα

ν (t)
)

(19)

From Eqs. (12) and (17) it is clear that CT-MQC equations are basically Ehrenfest-like with

correction terms depending on the quantum momentum. The gauge has been chosen such

that εα(t) +
∑

ν Ṙα
ν (t) ·Aα

ν (t) = 0.

As mentioned above, the quantum momentum couples the trajectories, thus allowing to

include non-local effects into the electronic and nuclear evolution equations. This coupling

appears to be essential to capture decoherence effects, therefore, it will be further analyzed

in Section 3.

3. Coupling among the trajectories

The phenomenon of quantum decoherence is a well-studied critical issue in trajectory-based

algorithms,8,51–57,80–84 such as trajectory surface hopping31 and Ehrenfest dynamics,85 which

are based on the independent-trajectory approximation. Methods such as ab initio multiple

spawning (AIMS)3 and the direct-dynamics variational multi-configurational Gaussian (DD-

vMCG) approach86–89 are, instead, derived from the molecular TDSE, and, as such, are able

to capture quantum decoherence. Similarly, CT-MQC is derived from the (exact) nuclear (3)

and electronic (4) equations of the exact factorization (2), and via the quantum momentum,

it is able to capture decoherence effects. However, it should be mentioned that CT-MQC

equations are derived by performing the classical limit on Eqs. (3) and (4), which means that
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the effect of the quantum potential is neglected in the expression of the CT-MQC force and

that the continuity equation for the nuclear density is not solved along the characteristics.76,77

Consequently, convergence to the exact quantum mechanical results should not be expected

(not even in the limit of an infinite number of trajectories).

The procedure to determine the quantum momentum has been illustrated in previous

work,27,76 but we find instructive to discuss it here as well. In addition, in Appendix A

we prove that the expression used below can be derived based on a semiclassical analysis

of the nuclear wavefunction.90,91 As a first step, we notice that in the region where the

nonadiabatic couplings between the state m and all other states l, i.e., dαν,ml, are identically

zero, the population of state m along a trajectory α changes in time as

d |Cα
m(t)|2

dt
=

Nn∑
ν=1

2Pα
ν (t)

h̄Mν

·

[
fαν,m −

(∑
l

|Cα
l (t)|2 fαν,l

)]
|Cα

m(t)|2 (20)

The expression in parentheses is the time-dependent vector potential from Eq. (16). In the

term in square brackets we multiply fαν,m by the normalization condition of the electronic

wavefunction, which is expressed in the adiabatic basis as
∑

l |Cα
l (t)|2 = 1. In addition, we

suppose that the quantum momentum can be decomposed into contributions involving only

pairs of states (in analogy with the nonadiabatic couplings). We thus obtain

d |Cα
m(t)|2

dt
=

Nn∑
ν=1

2

h̄Mν

∑
l

Pα
ν,ml(t) ·

(
fαν,m − fαν,l

)
|Cα

l (t)|2 |Cα
m(t)|2 (21)

which is, in general, non-zero. However, this is not an issue along a single CT-MQC tra-

jectory, since it is the average over all trajectories that is expected to yield zero population

transfer from state m to l when the corresponding nonadiabatic couplings are zero. There-

fore, we have to impose N−1
traj

∑Ntraj
α=1 d |Cα

m(t)|2 /dt = 0, or equivalently

1

Ntraj

Ntraj∑
α=1

Nn∑
ν=1

2

h̄Mν

∑
l

Pα
ν,ml(t) ·

(
fαν,m − fαν,l

)
|Cα

l (t)|2 |Cα
m(t)|2 = 0 ∀ l (22)
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Due to the approximate nature of CT-MQC equations and of the quantum momentum, this

condition is not automatically satisfied, and has to be enforced by a suitable choice of the

quantum momentum. In particular, we impose the following condition, for each ν and for

each Cartesian component appearing in the scalar product above

Ntraj∑
α=1

Pαi,ml(t)
(
fαi,m − fαi,l

)
|Cα

l (t)|2 |Cα
m(t)|2 = 0 ∀ l, i (23)

with i = 1, . . . , 3Nn.

In “perfect decoherence” conditions for the nonadiabatic electron-nuclear problem, the

effect of decoherence obtained in CT-MQC would be to collapse the electronic wavefunction

along the trajectory α onto an electronic state, for instance onto state m. Consequently, the

selected state is associated to a population that is equal to one, i.e., |Cα
m(t)|2 = 1. Norm

conservation along that trajectory implies that |Cα
l (t)|2 = 0 ∀ l 6= m. Therefore, Eq. (22),

as well as Eq. (23), are naturally satisfied in perfect decoherence conditions. If, however,

the condition |Cα
l (t)|2 = 0 ∀ l 6= m is not exactly satisfied, Eq. (23) has to be enforced in

order to avoid spurious population transfer between electronic states in the regions where

the nonadiabatic couplings are zero.

Based on these observations, the quantum momentum can be computed such that it

satisfies condition (23). This is done by reconstructing the nuclear density as a sum of frozen

Gaussians centered at the trajectories positions, as shown in Appendix A. The linear-like

expression of the quantum momentum between states m and l is

Pα
ν,ml(t) = Γαν (t)Rα

ν (t)−Rα
ν,ml(t) (24)

However, it may not naturally satisfy condition (23). Therefore, while we compute the slope

Γαν (t) with the analytical expression Γαν (t) = h̄
σν

derived in Eq. (35), the expression of the
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y-intercept Rα
ν,ml(t) is modified such that it is independent of the trajectory index α

Ri,ml(t) =

Ntraj∑
β=1

Γβi (t)Rβ
i (t)

(
fβi,m − fβi,l

) ∣∣∣Cβ
l (t)

∣∣∣2 ∣∣Cβ
m(t)

∣∣2Ntraj∑
γ=1

(
fγi,m − fγi,l

)
|Cγ

l (t)|2 |Cγ
m(t)|2

−1

(25)

and the quantum momentum between states m and l becomes

Pαi,ml(t) =
h̄

σi
Rα
i (t)−Ri,ml(t) (26)

In order to recover Eq. (21), the y-intercept in Eq. (25) is chosen independent of α so as to

satisfy the condition given in Eq. (23). Note that when the denominator in Eq. (25) is zero

because of decoherence2, the quantum momentum itself is set to zero. If the denominator

in Eq. (25) is small for reasons other than decoherence, then the analytical expression of

the y-intercept is used (given in Appendix A in Eq. (36)). We monitor this divergence by

introducing a cutoff-radius ε as input parameter, and if |Ri,ml(t)−Rα
i (t)| > ε, then Eq. (36)

is used.

It is clear from the above equations that computing the quantum momentum along CT-

MQC trajectories requires knowledge of the positions of all trajectories at all times. The

quantum momentum is a spatially non-local quantity,79 thus encoding some quantumness in

the, otherwise purely classical, dynamics. However, calculation of the quantum momentum,

due to the coupling among the trajectories, has been identified as a major bottleneck of

CT-MQC when aiming at applying it to the study of complex molecular systems.27 Fur-

thermore, as it is clear from Eq. (17), calculation of all nonadiabatic coupling vectors along

the trajectories are required to determine the force in CT-MQC. Such calculation as well

is extremely time consuming when performed on molecular systems. To circumvent these
2We recall that when using a trajectory-based scheme like surface hopping or CT-MQC, the effect of

decoherence is reflected on the electronic wavefunction via its “collapse” along a trajectory α to a single
adiabatic state, say m, whose population, i.e., |Cαm(t)|2, becomes equal to one. Norm conservation along
that trajectory imposes that all other populations, for l 6= m, become zero.
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issues, the DISH-XF algorithm, discussed in the Introduction, has been proposed.32 In DISH-

XF, single trajectories are propagated independently from one another and, in the vicinity of

avoided crossings and conical intersections, new trajectories are created in the coupled states,

similarly to a spawning procedure, thus allowing to determine the quantum momentum via

the knowledge of the dynamics of the coupled trajectory. Such a procedure has been proven

successful for the study of the photo-dynamics of several molecular systems.32,35–40

In the present work, we follow different strategies to improve the performance of CT-

MQC, with the goal to remain as close as possible to the original idea of coupled trajectories

which is the strength of the method. Furthermore, we aim to avoid dealing with (i) analysis

of trajectories having different duration due to the spawning procedure, (ii) growing num-

ber of trajectories when multiple passages through the nonadiabatic region(s) occur, (iii)

introducing parameters to regulate the creation of new trajectories.3 Concerning point (ii),

additional procedures would probably be necessary to limit/reduce the number of trajecto-

ries along a simulation, as it has been recently shown in the context of AIMS.92,93 Keeping

these points in mind, and aiming to propose an efficient and accurate simulation scheme

employing coupled trajectories, we illustrate our ideas in Section 3.1.

3.1 New coupled-trajectory nonadiabatic schemes

In the framework of coupled-trajectory schemes to nonadiabatic dynamics based on the exact

factorization and on CT-MQC, the new strategies briefly presented in the Introduction are

described here, and tested in Section 4 aiming to improve on computational efficiency and/or

accuracy.

The first idea is to adopt in CT-MQC an approximation that is reminiscent of the in-

dependent first generation approximation used in AIMS.94 We introduce the independent-

bundle approximation (IBA): if we want to run a simulation with Ntraj trajectories, then we

decompose the whole ensemble into n bundles with ntraj = Ntraj/n trajectories each, and the
3A way to circumvent point (i) would be to use the “child” trajectories only as auxiliary trajectories.

However, this procedure would use computational resources without extracting actual information.
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final observables are computed by averaging over the bundles. If n = Ntraj we recover the

independent-trajectory approximation underlying Ehrenfest dynamics, because the quantum

momentum is identically zero for a run with a single trajectory. When n bundles of trajec-

tories are created and evolved independently from each other, a natural question arises: Is

there a best way to select their initial conditions? Different sampling schemes are proposed

and tested in Section 4.

The second idea is to exploit a surface-hopping scheme to drive nuclear dynamics, while

maintaining the full coupling among the trajectories. In this way, each trajectory is propa-

gated using a purely adiabatic force, rather than the full CT-MQC force of Eq. (17), while

electronic coefficients are evolved according to the CT-MQC equation (12). Therefore, only

the scalar product between the nonadiabatic coupling vector and the nuclear velocity along

a trajectory in Eq. (13) needs to be computed for the evolution. As in standard surface

hopping, the active state, or the force state, is chosen stochastically at each time step. Note

that the quantum-momentum term (14) in the electronic evolution equation (12) shall not

be viewed as a decoherence correction to surface hopping, since it has been derived from the

electronic equation (4) in the framework of the exact factorization. Therefore, the popula-

tions of the electronic states can be, and shall be, computed as the squared moduli of the

electronic coefficients evolved according to Eq. (12). It is important to stress that with this

procedure, which we refer to as CT-TSH, i.e., coupled-trajectory trajectory surface hopping,

the trajectories are intended as a support to sample the nuclear configuration space and the

electronic energy landscape (see discussion in Section 3.2). Thus, various strategies for the

hopping scheme can be envisaged, and similar outcomes are, indeed, expected.

Using adiabatic forces to propagate the coupled trajectories in CT-TSH, rather than the

full CT-MQC force (17), is expected to improve the stability of the numerical procedure at

long times, especially when multiple nonadiabatic crossings are observed, as the situations

tested in Section 4 or those observed in previous work.95,96 Even though the trajectories do

not carry phase information, the electronic coefficients of Eq. (12) do (approximately), and
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this affects the force (17). In long-time dynamics, and in the presence of interferences and

revivals of coherence, however, phase information is difficult to capture accurately, and the

accumulated errors in the phases produce noisy (vector and scalar) potentials,60 and thus, a

CT-MQC force which can be numerically unstable (as observed in Refs. [95,96]). Therefore,

employing CT-TSH completely circumvents the issue.

In the following section we will test the performance of the (original) fewest-switches (FS)

formula31 and of the Landau-Zener (LZ) formula46,47 as hopping schemes, and we denote

the two procedures as FS-CT-TSH and LZ-CT-TSH, respectively. Since information about

electronic population is encoded in the electronic coefficients used to expand the (exact)

electronic wavefunction in the adiabatic basis, Eq. (11), even in the Landau-Zener scheme,

the electronic evolution equation (12) has to be solved along the trajectories. In the fewest-

switches scheme, the hopping probability along the trajectory α from state m to state l at

time t is given by97

PFS
α,m→l(t) = max

0,−
2<
[
C̄α
m(t)Cα

l (t)
∑

ν dαν,lm · Ṙα
ν (t)

]
|Cα

m(t)|2
dt

 (27)

which depends on the time step dt, whereas in the (single-hopping) Landau-Zener scheme

the hopping probability46 is

P LZ
α,m→l = exp

−2π

h̄

(Hα
ml)

2∣∣∣∑ν Ṙα
ν (t) · ∇ν (Hα

mm −Hα
ll )
∣∣∣
 (28)

where Hα
ml and Hα

mm (or Hα
ll ) are the off-diagonal and diagonal elements of the electronic

Hamiltonian in diabatic representation at the position of the trajectory α. Equation (28)

is given using diabatic quantities, which will be available for the model systems used in

the numerical studies presented in Section 4. Landau-Zener schemes employing adiabatic

quantities have been proposed as well,46,47 therefore, extending our approach to more general

situations where the diabatic quantities are not available is indeed possible. It is worth
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mentioning that the Landau-Zener procedure can be extended to multiple dimensions.98

In FS-CT-TSH and LZ-CT-CTSH, at each time step the hopping probability is calculated

and compared to a random number ξ uniformly distributed between 0 and 1 to decide if a

hop to a new state occurs, exactly as it is done in standard surface hopping.97 Further

computational details and information about the treatment of frustrated hops and velocity

rescaling after a successful hop are given in Appendix B.

3.2 Rationalization of CT-TSH

In the new coupled-trajectory schemes proposed in Section 3.1 some elements are borrowed

from a standard surface-hopping procedure while others emanate from the exact factoriza-

tion. In this section, our aim is to clarify these points, justifying why we expect a better

performance of CT-TSH over CT-MQC and over surface hopping, as will be documented in

Section 4 based on numerical tests.

First, extensive analysis29,73,74,99 of the properties of the TDPES (6) of the exact factor-

ization confirmed that nuclear dynamics is basically driven by adiabatic potentials, which is

a common feature with surface hopping. The TDPES, in fact, (i) develops often adiabatic

shapes, (ii) with steps appearing in regions of small nuclear density, and bridging between

regions of different (adiabatic) slopes, and (iii) it becomes “more diabatic” in the regions

where adiabatic surfaces are close or degenerate. Therefore, the dynamics produced by the

TDPES can be replaced/approximated by purely adiabatic dynamics (see point (i)), as it

is done in surface hopping, mimicking the effect of the diabatic shape of the TDPES (see

point (iii)) via the stochastic hops in the regions of strong nonadiabaticity. The steps (see

point (ii)) are missed within a surface-hopping-like procedure. However, being associated to

regions of low nuclear probability density, the error does not strongly affect the final averages

when a large number of trajectories are considered.

Second, the time-dependent vector potential (5)72,74,100 couples to the nuclear kinetic

energy in Eq. (3). As it has been discussed in Ref. [ 74], its effect is to modify the nuclear
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momentum after the TDPES has developed the steps, namely when different portions of the

nuclear wavepackets propagate “on” different adiabatic surfaces and are, thus, associated to

different potential energies. This effect is reproduced as well in a surface-hopping procedure

via the (discontinuous) velocity rescaling after a hop has occurred.

Third, the major weaknesses of surface hopping are: the electronic equation, which is

not derived from the molecular TDSE (1), and the independent-trajectory approximation.

Both issues are overcome when employing the electronic evolution equation derived from

(the exact) Eq. (4) rather than the usual surface hopping equation (13), which requires

accounting for the coupling among the trajectories via the quantum momentum.

Fourth, since the hopping scheme in CT-TSH is merely a way to reproduce the effect

of the diabatic shape of the TDPES at the nonadiabatic crossing, we dot not expect that

different prescriptions for the hopping probability yield substantially different results. In

particular because, as mentioned above, in CT-TSH the trajectoires become a support to

sample the nuclear configuration space and the energy landscape. It follows that electronic

populations shall not be estimated by counting the trajectories in each state, but rather

from the average of the quantum electronic populations computed by solving the electronic

equation (12). This last point is particularly important: in CT-TSH we witness a paradigm

shift if compared to standard surface hopping. In fewest-switches surface hopping, it is the

electronic equation that is merely a support for the propagation of the trajectories, because

it is required to compute the hopping probability (and in Landau-Zener surface hopping,

solving the electronic equation is not required at all); in CT-TSH, instead, the opposite is

true. However, in some sense, according to the justifications presented above relating the

TDPES and the vector potential to some of the ingredients of a surface-hopping algorithm,

CT-TSH trajectories can be used for physical interpretation of the real nuclear dynamics.
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4. Nonadiabatic dynamics with coupled trajectories

In this section we present test studies of nonadiabatic dynamics in one-dimesional, in nuclear

space, two-level systems,48,101,102 i.e., with two electronic states, employing the coupled-

trajectory schemes presented in Section 2 and Section 3, namely CT-MQC (without and

with IBA), FS-CT-TSH and LZ-CT-TSH. In addition, in order to evaluate the effect of the

coupling among the trajectories, we include results based on surface hopping using the stan-

dard independent-trajectory approximation. For this, we use the fewest-switches algorithm

as hopping scheme; results obtained without considering any decoherence correction are re-

ferred to as FS-TSH, whereas in FS-TSH-EDC we employ energy-decoherence corrections.68

The BO Hamiltonian is given in the diabatic basis as

ĤBO(R) =

 H11(R) H12(R)

H12(R) H22(R)

 =

 1
2
k (R−R1)2 b exp [−a(R−R3)2]

b exp [−a(R−R3)2] 1
2
k (R−R2)2 + ∆

 (29)

which shows that the diabatic potential energy curves (PECs) are parabolas displaced in

position and in energy. The values of the parameters in atomic units are: k = 0.020 E2
hme/h̄

2,

a = 3.0 a−2
0 , R1 = 6.0 a0, R2 = 2.0 a0, R3 = 3.875 a0. The remaining parameters, i.e., b

and ∆, are used to define three different situations: b = 0.01 Eh and ∆ = 0.01 Eh in

Model I (weak nonadiabatic coupling in an asymmetric double-well potential), b = 0.005 Eh

and ∆ = 0.01 Eh in Model II (strong nonadiabatic coupling in an asymmetric double-well

potential), and b = 0.01 Eh and ∆ = 0 in Model III (weak nonadiabatic coupling in a

symmetric double-well potential). Figure 1 represents schematically Model I along with

some of the processes analyzed below.

In order to create different physical situations, we use different initial conditions in the

three models. In Model I, the initial nuclear wavepacket starts in the electronic excited state

centered at R0 = R2, so as to reproduce the effect of a short laser pulse that photo-excites

the system and, thus, initiates its (weak) nonadiabatic dynamics. The same initial condition
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Figure 1: Schematic representation of the model defined in Eq. (29). Dark-orange and dark-
green lines represent the adiabatic PECs of the ground state (S0) and of the excited state
(S1). The parameters ∆ and b are tuned to produce different nonadiabatic situations; in the
figure, the parameters and initial condition defining Model I are shown. Nuclear wavepackets
are shown: before the photo-excitation (t < 0), just after the photo-excitation (t = 0), and
at a later time (t = 48 fs). Coupled trajectories (indicated by filled circles with yellow
shaded contours) follow the nuclear wavepackets, and at intermediate times (t = 25− 30 fs)
they hop between the adiabatic PECs. They remain associated to one of the two states
(dark-orange or dark-green contours, depending on the state) but the corresponding values
of the electronic populations have intermediate values between 0 and 1 (filled circles with
orange-to-green transition). The arrows indicate various processes: upward gray arrow for
the instantaneous photo-excitation (from t < 0 to t = 0); downward light-green arrow (from
t = 0 to t = 25−30 fs) for the wavepacket/trajectories sliding down S1; rightward light-green
and light-orange arrows (from t = 25 − 30 fs to t = 48 fs) for the wavepacket/trajectories
moving on S1 and S0, respectively; light-green and light-orange arrows (for t > 50 fs) for
wavepacket/trajectories turning back on S1 and S0, respectively.

is used for Model II, however, the resulting dynamics will be different since the model is

strongly nonadiabatic. In both cases, the nuclear coordinate R can be interpreted as a

reaction coordinate that guides the de-excitation of the system. In Model III, the nuclear

wavepacket starts in the ground state and is centered in R0 = −2.5 a0. Also in this case,
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the resulting dynamics is nonadiabatic, and models, for instance, a proton-coupled electron

transfer process102,103 initiated from the non-equilibrium position of the proton. The initial

nuclear wavefunction is a real normalized Gaussian centered in R0 wit variance σ = 0.223 a0

χ(R, t = 0) =
4

√
1

πσ2
exp

[
−(R−R0)2

2σ2

]
(30)

The used nuclear mass is M = 20000 me in all models. Reference calculations are obtained

by solving the TDSE (1) in the diabatic basis. Quantum-classical results are obtained by

using

• CT-MQC: Ntraj coupled nuclear trajectories are evolved according to Eq. (17) and

electronic coefficients are evolved according to Eq. (12);

• CT-MQC with IBA: n independent bundles of ntraj coupled nuclear trajectories are

evolved according to Eq. (17) and electronic coefficients are evolved according to

Eq. (12);

• FS-TSH: Ntraj independent nuclear trajectories are evolved according to adiabatic

forces and electronic coefficients are evolved according to Eq. (13); the hopping prob-

ability is given by Eq. (27);

• FS-TSH-EDC: Ntraj independent nuclear trajectories are evolved according to adia-

batic forces and electronic coefficients are evolved according to Eq. (13); the hopping

probability is given by Eq. (27); at each time step, the coefficients associated to the

non-active states are damped exponentially over a characteristic decoherence time (see

Appendix B) to induce decoherence;

• FS-CT-TSH: Ntraj coupled nuclear trajectories are evolved according to adiabatic

forces and electronic coefficients are evolved according to Eq. (12); the hopping prob-

ability is given by Eq. (27);
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• LZ-CT-TSH: Ntraj coupled nuclear trajectories are evolved according to adiabatic

forces and electronic coefficients are evolved according to Eq. (12); the hopping prob-

ability is given by Eq. (28).

All algorithms are implemented in G-CTMQC69 and computational details are given in

Appendix B.

The adiabatic PECs and nonadiabatic coupling used in the calculations are obtained by

diagonalizing the Hamiltonian of Eq. (29). The PECs are labeled S0 (ground state) and S1

(excited state), and present an avoided crossing at Rac (Rac = R3 in Model I and Model

II; Rac = 4.0 a0 in Model III). When the nuclear wavepacket and the trajectories cross

the nonadiabatic region, electronic population transfer between S0 and S1 occurs. Owing

to the simplicity of the models, in the present study we can challenge the performance of

the coupled-trajectory and independent-trajectory schemes by looking at long-time dynam-

ics, which manifest coherence revivals and interferences as the result of multiple passages

of the nuclear wavepacket/trajectories through the nonadiabatic region. If we estimate a

characteristic time from the oscillation frequency in the harmonic wells of Eq. (29), which is

approximately 25− 30 fs, then “long-time dynamics” means ∼ 200 fs.

In what follows, the dynamics in the three models is monitored by looking at the time

trace of the electronic excited-state population, at the time trace of the electronic indicator

of coherence, and at nuclear distributions. Appendix B provides information about how the

observables shown below are computed, as well as computational details for the dynamics

simulations.

Let us comment in detail on the dynamics in Model I. The evolution starts with the

nuclear wavepacket in the excited state S1, and after less than 30 fs (1250 h̄/Eh) it experiences

a nonadiabatic population transfer to S0 as it goes through the avoided crossing atRac. Model

I is weakly nonadiabatic, thus the main portion of the nuclear wavepacket remains in S1 when

moving in the region R > Rac. Owing to the fact that the S1 PEC is very steep, the S1

wavepacket is rapidly reflected back towards Rac. The second nonadiabatic event occurring
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at about 75 fs (3125 h̄/Eh) involves the reflected S1 wavepacket which transfers once again

population onto S0. This process creates an additional portion of the S0 wavepacket moving in

the region R < Rac, while the portion previously created – during the first nonadiabatic event

– is being reflected back to Rac. At about 130 fs (5417 h̄/Eh), the S1 wavepacket, once again

reflected, from the left wall of the S1 PEC and moving towards Rac, encounters the (first) S0

wavepacket that has been reflected by the right wall of the S0 PEC: they interfere when they

meet at the avoided crossing, and we thus observe interstate interferences. Afterwards, at

about 150 fs (6250 h̄/Eh), two wavepackets in S0 meet in the region R < Rac and interfere,

but such intrastate interferences clearly do not alter the electronic population evolution.

Just before the end of the simulated dynamics, at about 175 fs (7300 h̄/Eh) the S0 and the

S1 wavepackets interfere once again when going through the avoided crossing.

As mentioned in the Introduction, the revivals of coherence and the interferences just

discussed, which are observed as well in Model II and Model III, are not unrealistic quantum

effects, and thus artefacts of the one-dimensional models studied here. In fact, recently,

similar features have been reported in the relaxation dynamics of photo-excited molecules,

such as DMABN and fulvene, which have been studied with AIMS and FS-TSH(-EDC).58

The nonadiabatic population transfers described above for Model I will be described in

detail in Section 4.1 (clearly identified in Figure 2). The frequent intrastate and interstate

interferences might make it challenging for trajectory-based methods to correctly capture

electronic dynamics. On the one hand, after every passage through the avoided crossing,

the system experiences decoherence, as different portions of the nuclear wavepackets, in S0

and in S1, evolve nearly independently. However, revivals of coherence occur every time

population is transferred from one state to the other. On the other hand, if the S0 and S1

wavepackets meet at the avoided crossing, they interfere while exchanging population.

The simulated dynamics for Model II is very similar to the dynamics in Model I described

above, but it is more classical, in the sense that interstate interferences occur only during the

third nonadiabatic event at about 120 fs (5000 h̄/Eh). However, at around 175 fs (7300 h̄/Eh),
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quantum dynamics shows intrastate interferences between two portions of the S1 wavepacket

occurring at Rac while interstate interferences with S0 occur as well.

In Model III, dynamics starts in S0, and since it is weakly nonadiabatic (similarly to

Model I) only a small portion of electronic population is transferred to S1 at about 45 fs

(1875 h̄/Eh). Later on, the S1 population slightly decreases at 105 fs (4375 h̄/Eh) when the

excited wavepacket is reflected back towards Rac by the right wall of the S1 PEC. At 150 fs

the dynamics shows a new increase in S1 population, when the S0 wavepacket passes through

Rac after being reflected by the right wall of the S0 PEC. At this time, the S1 wavepacket

that is being created by S0 interferes with another S1 wavepacket which is reaching Rac.

Detailed analysis of electronic and nuclear dynamics for the models illustrated above is

reported in Sections 4.1 and in Section 4.2, respectively, allowing to assess the performance

on the new coupled-trajectory algorithms proposed here.

4.1 Electronic observables

In Figure 2 we show the population of the excited state S1 calculated based on CT-MQC (left

panels), FS-TSH(-EDC) (central panels) and FS/LZ-CT-TSH (right panels) for the three

model systems studied here, namely Model I (top row), Model II (middle row) and Model

III (bottom row).

For CT-MQC, we propagateNtraj = 1000 coupled trajectories (blue lines in the left panels

of Figure 2), and we compare those results to IBA, where n = 10 bundles of ntraj = 100

trajectories each are propagated independently. The outcome of each independent run is

then averaged over n. IBA results slightly change depending on the sampling procedures to

select initial positions and momenta, which are described in Appendix B; in the left panels

of Figure 2, the different strategies are indicated as: red lines, when the initial conditions are

ordered depending on their total energy (E-ordered); orange lines, when the initial conditions

are ordered depending on their kinetic energy (T-ordered); green lines, when the initial

conditions are randomly initialized in each bundle (random). It is interesting to observe
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Figure 2: S1 population along the simulated dynamics: exact results (black lines) CT-
MQC (left panels), FS-TSH(-EDC) (central panels), and FS/LZ-CT-TSH (right panels).
We show Model I in the top row, Model II in the middle row, and Model III in the bottom
row. CT-MQC results with Ntraj = 1000 coupled trajectories in the left panels (blue lines)
are compared to CT-MQC results obtained by producing n = 10 independent bundles of
ntraj = 100 coupled trajectories. Initial conditions are ordered according to their total energy
(E-ordered, in red), according to their kinetic energy (T-ordered, in orange), or randomly
organized (random, in green). FS-TSH results with Ntraj = 1000 trajectories are shown as
light-blue and fuchsia lines, and FS-TSH-EDC results with the same number of trajectories
are shown as purple and light-green lines. The label “cl.” means that the population is
estimated from the number of trajectories evolving on S1 at time t, whereas “q.” means
that the average over the trajectories of the squared modulus of the electronic coefficient
for S1 at time t is shown. FS/LZ-CT-TSH results are obtained by running Ntraj = 1000
coupled trajectories using the fewest-switches or the Landau-Zener scheme. Populations
(labelled “q.”) are shown as fuchsia and as light-green lines, for FS-CT-TSH and LZ-CT-
TSH, respectively. For completeness, the ratio of trajectories evolving in S1 at each time step
(labelled “cl.”) is shown as light-blue lines and purple lines, for FS-CT-TSH and LZ-CT-TSH,
respectively.

that, if the initial sampling for the ntraj trajectories in each bundle is biased via E- or T-

ordering, populations results improve even if compared to the fully couple CT-MQC (with
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Figure 3: S0/S1 indicator of coherence. The color code and the organization of the panels is
the same as in Figure 2.

exactly the same initial conditions).

The population of S1 computed based on FS-TSH and FS-TSH-EDC is shown in the

central panels of Figure 2 and is compared to exact results. In surface-hopping schemes,

the population of the electronic states at time t has to be estimated as the ratio of trajec-

tories evolving in each state at that time, and the total number of trajectories. If internal

consistency holds, then such “classical” estimate agrees with the “quantum” estimate, which

is given by the average over the trajectories of the squared moduli of the electronic coeffi-

cients propagated according to the surface-hopping electronic equation (13). In the central

panels of Figure 2, we notice that for all models FS-TSH results for classical (cl.) and quan-

tum (q.) populations are different (light-blue and fuchsia lines), whereas they agree when

the energy-decoherence correction in FS-TSH-EDC is used (purple and light-green lines).
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Such energy-decoherence correction is, in fact, designed to restore surface-hopping internal

consistency.

When the coupled-trajectory approach is combined with surface hopping, the procedures

FS-CT-TSH and LZ-CT-TSH are derived, as discussed above. The populations of S1 thus

predicted are shown in the right panels of Figure 2 for the three models, and are compared

to exact results. As discussed in Section 3, electronic population of a given state has to be

estimated via the squared modulus of the corresponding expansion coefficient from Eq. (11),

averaged over the trajectories. In fact, the distribution of classical trajectories “on” the

PECs is only used to sample the energy landscape and, thus, the nuclear configuration

space, since the trajectories are not propagated according to the “exact force”. Therefore,

by contrast with the standard formulation of surface hopping, it is the “quantum” estimate

of the population which should be the reference (indicated as fuchsia and light-green lines

in the right panels of Figure 2), not the “classical” estimate (indicated as light-blue and

purple lines in the right panels of Figure 2). We find anyway interesting to compare the

two populations, both in the fewest-switches procedure and in the Landau-Zener procedure,

and to observe satisfactory agreement. Note that, as clarified in Appendix B, LZ-CT-TSH

trajectories are propagated for shorter times than FS-CT-TSH. The comparison of LZ/FS-

CT-TSH with exact results shows an improvement in predicting electronic populations over

independent-trajectory surface hopping as well as over CT-MQC.

In summary, comparing quantum-classical results with exact calculations in Figure 2 we

observe the following trends:

• In general, CT-MQC results agree very well with the reference, and in some cases, as

for instance in Model III, IBA results slightly improve on the fully coupled approach.

At long times, CT-MQC results lose accuracy, which might be explained by the fast

oscillations that develop in the potentials driving nuclear dynamics (see Figures 5, 6

and 7 below), as consequence of interferences. Those oscillations are not correctly

captured by the trajectories, thus their evolution deviates from the expected behavior
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as the simulation proceeds.

• For all models, decoherence corrections are essential to restore internal consistency in

FS-TSH-EDC. However, only in Model II, after the decoherence correction is applied,

surface-hooping populations converge to the correct results. It is interesting to notice,

in fact, that when the model is weakly nonadiabatic, i.e., Model I and Model III,

the energy-decoherence corrections act too strongly on the system, and FS-TSH-EDC

populations deviate from the reference. The situation does not improve when using

other values of the parameter that tunes the effect of the correction or when the results

are averaged over different hop histories (results not shown).

• FS/LZ-CT-TSH populations remain at all times very close to the exact results, im-

proving even on CT-MQC. Perhaps, as discussed above, this happens because the error

in the calculation of the full force due to interference effects, from Eq. (17), is circum-

vented by propagating the trajectories adiabatically. In addition, and as expected,

the hopping scheme does not seem to have an effect on the electronic populations (at

least for times at which the comparison between fewest switches and Landau-Zener is

shown).

In Figure 3 we show an indicator of coherence between the electronic states S0 and S1, which,

according to its definition given in Appendix B, is related to the overlap between nuclear

wavepackets associated to the two electronic states. Therefore, every time a wavepacket

passes through the nonadiabatic region and transfers amplitude to the other state, the in-

dicator of coherence increases; coherence, instead, decays when the wavepackets separate in

space, as consequence of the different slopes of the adiabatic PECs that drive their dynamics.

Analysis of the indicator of coherence shown in Figure 3 suggests that:

• Even though in CT-MQC with IBA, n bundles of coupled trajectories are propagated

independetly from each other, decoherence is well-described by all sampling schemes,

with small differences depending on the sampling. In general, decoherence effects
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applied via the quantum momentum are not as strong as they should be, and in fact

the indicator of decoherence does not decay to zero as in exact calculations.

• As expected, without applying decoherence corrections, FS-TSH yields over-coherent

results, and after the first crossing through the nonadiabatic coupling region, coher-

ences are created and do not decay to zero when the trajectories leave the coupling re-

gion. Energy-decoherence corrections definitely cure such over-coherence, even though

the corrections appear to be too strong.

• The effect of the coupling of trajectories and of the quantum momentum in FS/LZ-

CT-TSH improves the results over CT-MQC and FS-TSH-EDC. Probably, the more

stable nuclear dynamics with respect to CT-MQC (discussed above) yields a more

stable quantum momentum acting on the electronic populations. Nevertheless, we can

find similar features as in CT-MQC results, namely a slower decay of the coherence

indicator if compared to exact results, even though it is not as severe as in CT-MQC.

With the aim to analyze the effect of decoherence induced by the quantum momentum and,

thus, by the coupling among the trajectories, in (fully coupled) CT-MQC and in FS-CT-

TSH, we show in Figure 4 results for three selected trajectories, for Model I in the left panels,

for Model II in the central panels, and for Model III in the right panels. For each model,

as functions of time, we plot: the active (or force) state in FS-CT-TSH along the selected

trajectory (light-blue circles), which is either zero for S0 or one for S1; the population of

S1 along that trajectory, evolved according to FS-CT-TSH (fuchsia lines), which should be

equal to one when the active state is S1 if internal consistency holds valid; the population

of S1 along the trajectory evolved according to CT-MQC (blue lines) which has the same

initial conditions, i.e., position and momentum, as the chosen FS-CT-TSH trajectory.

In FS-CT-TSH, and it is the case in LZ-CT-TSH as well, the quantum momentum acting

in the electronic evolution equation (12) correctly accounts for decoherence effects by induc-

ing a decay of the electronic coefficients/populations that are not associated to the active
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Figure 4: Analysis of decoherence for three selected trajectories for Model I (left panels),
Model II (central panels), and Model III (right panels). The plots show, as function of time:
the active (or force) state in FS-CT-TSH along the selected trajectory (light-blue circles),
which is either zero for S0 or one for S1; the population of S1 along the selected trajectory,
evolved according to FS-CT-TSH, which should be equal to one when the active state is
S1 (fuchsia lines); the population of S1 along the trajectory evolved according to CT-MQC
which has the same initial conditions (position and momentum) as the chosen FS-CT-TSH
trajectory (blue lines).

state. A clear example is shown for Model II in the central panel of the top row of Figure 4:

just before 30 fs (1250 h̄/Eh), the active state switches from S1 to S0, and, similarly, the

electronic population of state S1 switches from 1 to 0; later on, just after 120 fs (5000 h̄/Eh),

the active state is S1 again, and the electronic population of state S1 switches from 0 to 1.

For a trajectory with the same initial conditions and propagated according to CT-MQC, the

electronic population of state S1 follows very closely the FS-CT-TSH population.

In some cases, the three quantities shown in Figure 4 are in reasonable good agreement

with each other (see for instance the central panel in the top row just described). However,

sometimes, CT-MQC results deviate from FS-CT-TSH, as is the case shown in the left panel
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of the top row. There, the quantum momentum probably acts differently towards the end

of the simulated dynamics, since the whole ensemble of trajectories behaves differently in

CT-MQC and in FS-CT-TSH. Furthermore, even though the two trajectories have the same

initial conditions, it is very likely that their dynamics deviates during the simulation, as they

are propagated according to different forces. In particular, the stochastic “ingredient” in FS-

CT-TSH might be a major source of deviation. Note, instead, that the active state often

agrees with the electronic population, suggesting some degree of internal consistency of the

surface-hopping procedure along a single trajectory. However, it is worth recalling that, in

FS-CT-TSH, the effect of the quantum momentum in the electronic evolution equation (12)

is not derived by imposing internal consistency. Also, internal consistency is not required

along a single trajectory, as a single trajectory completely loses physical meaning within such

a coupled-trajectory scheme.

4.2 Nuclear observables

In order to finalize the assessment of the coupled-trajectory procedures, let us now turn

towards the analysis of nuclear dynamics. To this end, we compare the quantum nuclear

distribution, i.e., the quantum nuclear density, and the TDPES, both obtained from ex-

act calculations, with the spatial distribution of the trajectories. In CT-MQC, we can

compute εαGI(t) =
∑

m |Cα
m(t)|2Eα

m, which is the CT-MQC-approximate expression of the

gauge-invariant part of the TDPES given in Eq. (6). This same quantity can be computed

in FS-CT-TSH. In addition, in FS-CT-TSH as well as in FS-TSH, we can look at the active

state as function of the trajectories positions at some given time step. It is interesting, then,

to compare the active states to the approximation of the TDPES and to the exact TDPES.

All those comparisons are presented in Figure 5 for Model I, in Figure 6 for Model II, and

in Figure 7 for Model III, at three selected time steps along the simulated dynamics (the

selected time steps are all the same for the three models and are indicated in the panels of

the figures). Note that for these comparisons we analyze FS-TSH rather than FS-TSH-EDC
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Figure 5: Comparison of the exact TDPES (only the gauge-invariant part is shown as black
lines) with: the TDPES estimated with CT-MQC using fully coupled trajectories (blue
circles in the left panels) and using n bunches of E-ordered trajectories (red dots in the left
panels); the active state in FS-TSH dynamics (light-blue circles in the central panels); the
active state in FS-CT-TSH dynamics (light-blue circles in the right panels) and the TDPES
estimated with FS-CT-TSH (fuchsia dots in the right panels). The plots are shown at the
times indicated in the panels for Model I. For reference, the adiabatic PECs are shown, S0 in
dark-orange and S1 in dark-green, along with the exact nuclear density at the corresponding
times (think black lines).

because, in general, the used energy-decoherence correction seems to produce population

dynamics with larger deviation from exact results than the uncorrected dynamics.

For Model I, shown in Figure 5, we observe that trajectories obtained based on IBA follow

closely the fully-coupled CT-MQC trajectories (left panels). This is indeed a desired result,

as it shows that using independent bunches provides a reasonable and accurate strategy to

accelerate the simulations. Such an observation remains valid for Model II and Model III,

as it is clearly shown in Figures 6 and 7 (left panels).

Independent-trajectory surface-hopping dynamics, i.e., FS-TSH, reproduces reasonably
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Figure 6: Comparison analogous to Figure 5 but for Model II. The color code is the same as
in Figure 5.

well the quantum nuclear distribution. However, in the most challenging situation repre-

sented by Model I, already at intermediate times, i.e., at t = 136.8 fs (5700 h̄/Eh) shown

in the central panel of the middle row of Figure 5, the trajectories miss the portion of the

nuclear density localized in the vicinity of R = 2 a0. There, the exact TDPES shows that

the nuclear density is mainly associated to S0, since the TDPES lies on the S0 PEC. Instead,

the trajectories are exclusively found on S1. The disagreement is even more severe at later

times, i.e., at t = 172.8 fs (7200 h̄/Eh) in Figure 5, as the portion of the density in the

vicinity of R = −2 a0 is completely missed by FS-TSH trajectories.

The deviations between the TDPES and the active state in FS-TSH are completely

eliminated when using FS-CT-TSH, since often the active state agrees with the shape of

the exact and of the approximated TDPES. Nonetheless, some disagreement can still be

observed at early times, at t = 74.4 fs (3100 h̄/Eh) in Figure 5 (right panel of the top row):
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Figure 7: Comparison analogous to Figure 5 but for Model III. The color code is the same
as in Figure 5.

this happens because when crossing the nonadiabatic region, surface-hopping trajectories are

forced to hop (or not), but since in Model I the system is weakly nonadiabatic, the typical

steps in the exact TDPES that bridge between adiabatic shapes appear slowly,73,74,99 only

some time after the nuclear density has left the nonadiabatic region.

Model II manifests strong nonadiabaticity, and all trajectory-based results agree pretty

well with each other and with exact calculations, as shown in Figure 6. It is interesting to

notice that, at the intermediate time t = 136.8 fs (5700 h̄/Eh), the approximate TDPES of

CT-MQC (left panel of the middle row) is particularly noisy in the region around the avoided

crossing. This behavior is due to the fact that the trajectories just left the coupling region

after having “interfered” with each other (see discussion above on the dynamics in Model II).

The active state in FS-TSH and FS-CT-TSH at the same times, shown in the central and

right panels of the middle row, respectively, capture much better the shape of the TDPES.
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The approximate TDPES in FS-CT-TSH (right panel of the middle row) is definitely more

neat than the CT-MQC approximation.

At the selected time steps in Model III, shown in Figure 7, we observe good agreement

among all trajectory-based simulation methods. The main deviation appears at t = 136.8 fs

(5700 h̄/Eh) for FS-TSH (central panel of the middle row in Figure 7). There, in fact, a

larger amount of trajectories are found in S0 around R = −2 a0 than in S1 around R = 2 a0.

Looking at the nuclear density, the inverse behavior is expected, and in fact, at that time, the

S1 population predicted by FS-TSH, shown in Figure 2, largely deviates from exact results.

The correct distribution is, instead, obtained at the same time for FS-CT-TSH (right panel

of the middle row of Figure 7). Another deviation from the exact TDPES is observed at

time t = 172.8 fs (7200 h̄/Eh) for FS-CT-TSH results (right panel in the bottom row), as

the step developing approximately at R = 1 a0 is not correctly captured. This issue is

probably related to the fact that the quantum momentum induces decoherence effects in a

smoother/softer way than what is expected from exact calculations. Such an observation can

be confirmed by looking at the indicator of coherence in Figure 3, which shows that while

for the quantum systems the indicator is zero, for the FS-CT-TSH system it has a (small)

finite value.

5. Conclusions

In this work we proposed and tested different coupled-trajectory strategies to simulate

excited-state dynamics based on the exact factorization of the electron-nuclear wavefunction.

In particular, we focused on capturing challenging quantum effects related to decoherence,

revivals of coherence, and nonadiabatic (interstate) interferences. We proved, based on nu-

merical case studies, the importance of the coupling among the trajectories to capture those

effects.

In CT-MQC, i.e., the coupled-trajectory mixed quantum-classical algorithm derived from
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the exact factorization, since trajectories are propagated simultaneously, the computational

cost rapidly increases with the number of trajectories and with the number of electronic

states included in the simulation (especially due to the calculations of the nonadiabatic

coupling vectors among all states for determining the force). Therefore, as first strategy, we

introduced, tested and validated the suitability of the independent-bundle approximation,

in order to propagate independently bundles of (a smaller number of) coupled trajectories,

a procedure which can be easily and trivially parallelized. As a second strategy, we looked

into combining the coupled-trajectory idea of CT-MQC with surface hopping, employing the

fewest-switches and the Landau-Zener probabilities for the stochastic hops. Since in surface

hopping nuclear trajectories are propagated adiabatically, these two new schemes allow one

to circumvent the expensive calculation of the nonadiabatic coupling vectors of the CT-MQC

force, while maintaining a coupled-trajectory perspective.

Combining ideas borrowed from surface hopping and from the exact factorization per-

forms surprisingly well, thus we believe that the algorithms developed in this work will be

able to open new avenues for stable, efficient and accurate nonadiabatic molecular-dynamics

simulations of systems of growing complexity. In particular, the encouraging results ob-

tained based on such a novel coupled-trajectory surface-hopping scheme motivate further

investigation aiming, for instance, to include spin-orbit coupling or the effect of an external

time-dependent perturbation and overcoming the limitations of current methods.
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A. Semiclassical analysis of the nuclear wavefunction

In this Appendix we describe how to derive the expression of the quantum momentum

based on the semiclassical, frozen-Gaussian representation90,91 of the nuclear wavefunction

of Eq. (2).

At the position Rα(t) of the trajectory α, the value of the nuclear wavefunction can be

approximated as

χ (Rα(t), t) =
1

Ntraj

Ntraj∑
β=1

√
Gαβ

σ exp [iSβ(t)] (31)

where the symbol Gαβ
σ = Gσ

(
Rα(t)−Rβ(t)

)
stands for the value of a normalized Gaus-

sian function (with constant width σ) centered at Rβ(t), and Sβ(t) is the classical action

computed along the trajectory β. Usually, the frozen width is chosen as the width of the

initial distribution. Starting from this expression the nuclear density |χ(Rα(t), t)|2 can be

computed as

|χ(Rα(t), t)|2 =
1

N2
traj

Ntraj∑
β,γ=1

√
Gαβ

σ Gαγ
σ exp [i (Sβ(t)− Sγ(t))] (32)

Applying the gradient −h̄∇ν to the nuclear density of Eq. (32), and dividing by (twice) the

nuclear density to get the quantum momentum, we find

Pα
ν (t) =

h̄
∑Ntraj

β=1

(
Rα
ν (t)−Rβ

ν (t)
)
Gαβ

σ

σν
∑Ntraj

β,γ=1

√
Gαβ

σ Gαγ
σ cos (Sβ(t)− Sγ(t))

+
h̄
∑Ntraj

β 6=γ,=1

(
Rα
ν (t)− Rβ

ν (t)+Rγ
ν (t)

2

)√
Gαβ

σ Gαγ
σ cos (Sβ(t)− Sγ(t))

2σν
∑Ntraj

β,γ=1

√
Gαβ

σ Gαγ
σ cos (Sβ(t)− Sγ(t))

−
h̄
∑Ntraj

β 6=γ,=1

(
Pβ
ν (t)−Pγ

ν(t)
)√

Gαβ
σ Gαγ

σ sin (Sβ(t)− Sγ(t))∑Ntraj
β,γ=1

√
Gαβ

σ Gαγ
σ cos (Sβ(t)− Sγ(t))

(33)

where the first two terms on the right-hand side follow from the spatial derivative of the
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Gaussians and the third term from the spatial derivative of the classical action in the cosine

function. In the numerators of the second and third line of the above expression, products

of Gaussians centered at different positions, i.e., Rβ(t) and Rγ(t), appear. In order for such

products to be not negligible, the position of the trajectory Rα(t), at which the quantum

momentum is computed, shall lie close to the centroid position Rc
ν(t) = Rβ

ν (t)+Rγ
ν (t)

2
(when

the Gaussians have the same width, as is the case here). The centroid is the position where

the Gaussian functions have the same value. Therefore, if Rα
ν (t) ' Rc

ν(t), the numerator

of the second term goes to zero and, thus, can be neglected if compared to the first term.

In fact, the first term includes in the numerator only products of Gassians centered at the

same position. The third term is negligible as well, if one considers the following relation:

Sβ(t) = S[Rβ(t)] = S[Rc(t)+∆β(t)] (and similarly for Sγ(t) with ∆γ(t) = −∆β(t)). Taylor-

expanding the action around the centroid position, one gets that the third term of Eq. (33)

is small if Rα(t) is close to Rc(t), which is the point where the product of two Gaussians –

centered at different positions – is reasonably different from zero. Therefore, we showed here

that the first term in Eq. (33) is the leading one, based on the representation of the nuclear

wavefunction as a combination of complex frozen Gaussians. Our simulations confirmed

these analytical findings.

For algorithmic simplicity, since the diagonal numerator is the leading term in the ex-

pression of the quantum momentum, we neglect as well all terms β 6= γ in the denominator

of Eq. (33). We have, thus, justified that, when using a semiclassical-like expression of the

nuclear density, the quantum momentum can be written as

Pα
ν (t) = Γαν (t)Rα

ν (t)−Rα
ν (t) (34)

where

Γαν (t) =

Ntraj∑
β=1

h̄Gαβ
σ

σν
∑Ntraj

γ=1 Gαγ
σ

=
h̄

σν
(35)
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and

Rα
ν (t) =

h̄

σν

Ntraj∑
β=1

Rβ(t)
Gαβ

σ∑Ntraj
γ=1 Gαγ

σ

(36)

Equation (34) looks like a linear function where Γαν (t) is the slope and Rα
ν (t) is the y-

intercept. On the one hand, the slope given in Eq. (35) is clearly independent of time and

of the trajectory index, and is fully determined by the values of the variances of the frozen

Gaussians in Eq. (31). In the original derivation of CT-MQC,25–27 the slope was chosen time

dependent and adapted along the dynamics. However, to stabilize the dynamics and reduce

the number of parameters to be chosen for a CT-MQC simulation, in Ref. [95] we introduced

the frozen-Gaussian expression (35). The expression of the y-intercept Rα
ν (t), on the other

hand, will be modified so as to satisfy the condition (23), stating that no population transfer

between two electronic states should be observed, when averaged of the trajectories, if the

corresponding nonadiabatic couplings are zero.

B. Computational details

Quantum calculations are carried out by solving the TDSE in the diabatic basis using the

split-operator technique.104 The used time step is dt = 0.0024 fs (0.1 h̄/Eh) and the spatial

grid is defined in the range R ∈ [−5.0, 15] bohr with 2000 grid points for all models.

Trajectory-based simulations are performed by solving nuclear equations with the velocity-

Verlet algorithm and the electronic equations with the Runge-Kutta-Gill algorithm, as im-

plemented in G-CTMQC.69 The time step is dt = 0.0024 fs (0.1 h̄/Eh) as in quantum

calculations, for both nuclear and electronic dynamics. For the assessment of the stability

of CT-MQC, we tested as well dt = 0.012, 0.024, 0.048 fs (0.5, 1.0, 2.0 h̄/Eh) and we did not

observe signifiant deviations.

We employ Ntraj = 1000 in fully-coupled CT-MQC, FS-TSH(-EDC) and LZ/FS-CT-

TSH. Initial positions and momentum are sampled from the (harmonic) quantum distribution
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determined as theWigner transform of the initial nuclear probability density used in quantum

calculations, i.e., the squared modulus of Eq. (30). The same initial conditions are used in all

simulations. In FS-TSH(-EDC) and in FS-CT-TSH we run as well 100 trajectories 10 times

with different seeds for the random number generator so as to sample different histories of

jumps. The results thus obtained do not deviate significantly from the previous ones. The

same initial conditions used in fully-coupled CT-MQC are organized in n = 10 independent

bundles of ntraj = 100 coupled trajectories, and are ordered according to their total energy

(E-ordered) or according to their kinetic energy (T-ordered). In addition, n = 10 bundles of

randomly organized ntraj = 100 coupled trajectories are propagated as well (random).

In surface-hopping-based calculations, after a hop to a new state occurs, the velocity of

that trajectory is rescaled along the direction of the corresponding nonadiabatic coupling to

enforce energy conservation; in the case of frustrated hops, no action is taken to modify the

velocity of the trajectory. In FS-TSH-EDC calculations, the coefficient that is not associated

to the active state is exponentially damped over a typical decoherence time as prescribed in

Ref. [68] (the value of the used parameter for the decoherence correction is C = 0.1 Eh).

In LZ-CT-TSH the hopping probability is computed (only once) as soon as a trajec-

tory Rα(t) satisfies simultaneously a distance criterion, i.e., |Rα(t) − Rac| < 0.1 a0, and an

energy criterion, i.e., |Eα
S0
− Eα

S1
| < 0.04 Eh. For each passage of the trajectory ensemble

through the coupling region, centered at Rac, we enforced that each trajectory “decides”

only once if a hop occurs or not. However, during the simulated dynamics, the trajectories

cross several times the coupling region and, as time goes on, this can happen for different

trajectories simultaneously. Therefore, we limit the propagation of LZ-CT-TSH trajectories

to a shorter time than FS-CT-TSH. Even if over a shorter time frame, the aim of the com-

parison between LZ-CT-TSH and FS-CT-TSH is achieved, that is, we proved numerically

that different hopping schemes yield similar results when coupled trajectories are employed

within a surface-hopping procedure.

Electronic populations and the indicator of coherence along the dynamics are computed
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in different ways depending on the simulation method. Using the index m = S0, S1 to label

the electronic states, we have that exact populations are obtained as

ρm(t) =

∫
dR |χm(R, t)|2 (37)

where χm(R, t) is the nuclear wavepacket associated to the electronic state m; it is computed

by transforming the diabatic wavepackets, which are evolved when solving the TDSE, into

adiabatic wavepackets along the quantum dynamics. In CT-MQC and FS/LZ-CT-TSH this

same observable is determined from the average over the trajectories of the squared moduli

of the electronic coefficients

ρCT−MQC
m (t) = ρFS/LZ−CT−TSH

m (t) =
1

Ntraj

Ntraj∑
α=1

|Cα
m(t)|2 (38)

whereas in FS-TSH(-EDC) we monitor the number of trajectories Nm(t) associated to each

electronic state m as a function of time

ρFS−TSH
m (t) = ρFS−TSH−EDC

m (t) =
Nm(t)

Ntraj

(39)

The quantity defined in Eq. (38) has been referred to as “quantum population” in the main

text, whereas the quantity defined in Eq. (39) is the “classical population”. Clearly, in CT-

MQC, only the quantum population, thus Eq. (38), is accessible, because in this procedure

one cannot identify the active state. Similarly, as we stressed in the main text, electronic pop-

ulations in FS/LZ-CT-TSH have to be estimated according to the quantum expression (38).

By contrast, in a pure surface-hopping scheme, where the electronic equation is not de-

rived from the exact equation (4), the classical expression is to be employed, thus Eq. (39).

In order to assess the internal consistency of the surface-hopping scheme, usually achieved

when decoherence corrections are used, as in FS-TSH-EDC, the classical and the quantum

electronic populations can be compared.
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The indicator of coherence ηS0S1(t) between the states S0 and S1 relates to the overlap

between the wavepackets χS0(R, t) and χS1(R, t), which explains why every time a nuclear

wavepacket goes through the nonadiabatic region centered at Rac, a revival of coherence

is observed. In order to define an indicator that can be evaluated in the same way using

quantum properties and trajectory-based properties, we compute

ηS0S1(t) =

∫
dR
|χ̄S0(R, t)χS1(R, t)|

2

|χ(R, t)|2
(40)

in the quantum calculations, and

ηCT−MQC
S0S1

(t) =
1

Ntraj

Ntraj∑
α=1

∣∣C̄α
S0

(t)Cα
S1

(t)
∣∣2 (41)

in CT-MQC. The same expression is used in FS/LZ-CT-TSH. Even though in FS-TSH(-

EDC) the electronic coefficients do not provide physical information about the dynamics, we

use the same expression to estimate ηFS−TSH
S0S1

(t) and ηFS−TSH−EDC
S0S1

(t).
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