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Trajectory-based approaches to excited-state, nonadiabatic dynamics are promising simulation techniques to describe the response of complex molecular systems upon photo-excitation. They provide an approximate description of the coupled quantum dynamics of electrons and nuclei trying to access systems of growing complexity. The central question in the design of those approximations is a proper accounting of the coupling electron-nuclei and of the quantum features of the problem. In this paper, we approach the problem in the framework of the exact factorization of the electron-nuclear wavefunction, re-deriving and improving the coupled-trajectory mixed quantum-classical (CT-MQC) algorithm recently developed to solve the exact-factorization equations. In particular, a procedure to include quantum nuclear effects in CT-MQC is derived, and tested on a model system in different regimes.

Introduction

Simulating the excited-state dynamics of complex molecular systems is a challenging task that concerns a growing community of theoretical chemists, chemical physicists and material scientists. The dynamical response of systems like graphene quantum dots [1], the provitamin D 3 molecule [2], or an organic chromophore [3], after photoexcitation can only be described in simulation in an approximate way. The reason is indeed the exponential growth of the computational cost with the number of degrees of freedom for solving the quantum-mechanical problem exactly. In order to realistically predict molecular structures that are products of photo-activated reactions, these approximations have to correctly capture the coupling between electronic and nuclear motion, that is source of phenomena such as nonadiabatic transitions and quantum decoherence, or also account for the quantum nature of the nuclear degrees of freedom.

Methods for excited-state molecular dynamics range from quantum wavepacket simulation schemes [4][5][6][7][8][9] and semiclassical approaches [10][11][12][13][14][15][16][17], to trajectory-based techniques with travelling Gaussian wavepackets [18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33], with quantum trajectories [34][35][36][37][38][39][40][41][42], or as quantum-classical approaches [43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62]. Among these, the most promising to gain access to molecular systems of increasing size are Send offprint requests to: clearly trajectory-based techniques, based on a simplified description of nuclear dynamics in terms of trajectories, and exploiting the possibility of on-the-fly calculation of electronic-structure properties. In this paper, we will focus on the trajectory-based scheme derived from the exact factorization of the electron-nuclear wavefunction [63,64]. As extensively discussed in the literature [65,66,52,[67][68][69], the exact factorization represents a suitable starting point for developing quantum-classical approximations to the quantum-mechanical electron-nuclear problem. In fact, the (molecular) time-dependent Schrödinger equation is decomposed into coupled electronic and nuclear evolution equations, that naturally lend themselves to the developments of approximations that (i) can be designed to affect only the nuclear subsystem, (ii) can be used to perform the quantum-to-classical limit- [START_REF] Vleck | Proc. Nat. Ac. Sci[END_REF][START_REF] Wyatt | Quantum dynamics with trajectories. Introduction to quantum hydrodynamics[END_REF] on the nuclear dynamics governed by a timedependent Schrödinger equation. The work proposed here, still within the exact factorization, is an attempt to improve the approximations involved in (ii).

It has been shown [53,54] that the nuclear time-dependent Schrödinger equation can be mapped onto the coupled Hamilton-Jacobi and continuity equations describing, respectively, the evolution of the phase of the nuclear wavefunction and the nuclear density. Hamilton-Jacobi equation could be solved with the method of characteristics, generating trajectories produced by a force term accounting for the effect of the electrons (either adiabatic or nonadiabatic), via time-dependent scalar and vector potentials [65,66,[START_REF] Curchod | [END_REF], and a contribution to the force that depends on the, so-called, quantum potential [34-36, 38, 37, 39,40, 71, 73, 74]. The quantum potential is a well-known quantity in the field of Bohmian dynamics, as it allows to reproduce quantum effects within a trajectory-based description of the dynamics. It depends, however, on the nuclear density, or more precisely on the second spatial derivative of the modulus of the wavefunction, thus it couples the Hamilton-Jacobi equation for the phase to the continuity equation for the density. An approximate quantum-classical solution of the coupled electronic and nuclear equations of the exact factorization, from which the coupled-trajectory mixed quantum-classical (CT-M-QC) algorithm [53] has been derived, discards the quantumpotential term in the force. This approximation simplifies the numerical procedure, as it decouples the Hamilton-Jacobi equation from the continuity equation.

We reconsider this approximation, and suggest a new solution in two steps. First, we propose to compute the quantum-potential contribution to the force within a modified version of the CT-MQC algorithm, in which the nuclear density is reconstructed as the sum of travelling Gaussians centered at the positions of the trajectories. The merit of this improvement is that it still does not require the explicit solution of the continuity equation, and thus it does not affect heavily the computational cost of a CT-MQC calculation. Second, we apply the method of characteristics to the Hamilton-Jacobi equation, finding Hamilton's equations generating the characteristics. Although the idea behind this procedure has been already sketched in previous work [54], we provide here the, still lacking, detailed derivation.

A first example, in which the effect of the quantum potential is observable, illustrates an adiabatic (in the electronic ground state) tunneling process. It yields results not only in qualitative, but also in quantitative, agreement with exact calculations. Instead, in our second example, a strong nonadiabatic process in which the role of the quantum potential is less important, the new approximation is able to improve the trajectory-based calculations.

The paper is organized as follows. In Section 2 we recall the exact factorization, and discuss within our approximation the procedure to solve the time-dependent nuclear Schrödinger equation, to determine the phase and the density of the nuclear wavefunction. The illustrative one-dimensional two-state model, solved in the two cases discussed above, is presented in Section 3 together with simulation details. Section 4 discusses the numerical results and validates the proposed approximation. Conclusions are contained in Section 5.

Exact factorization of the electron-nuclear wavefunction

The exact factorization of the electron-nuclear wavefunction [63,64] provides a prescription for decomposing the time-dependent Schrödinger equation (TDSE) for a system of interacting electrons and nuclei into the coupled dynamics of the subsystems, i.e., the electronic and the nuclear.

The time-dependent molecular wavefunction, Ψ (r, R, t), is the solution of the TDSE ĤΨ = i∂ t Ψ , with Hamiltonian Ĥ(r, R) = Tn (R) + ĤBO (r, R), containing the nuclear kinetic energy, Tn , and the electronic Born-Oppenheimer (BO) Hamiltonian, ĤBO , defined as the sum of the electronic kinetic energy and of the interaction potentials. Here, the symbols r, R indicate all electronic and nuclear coordinates, respectively. The full wavefunction can be exactly written as the product

Ψ (r, R, t) = χ(R, t)Φ R (r, t), (1) 
where χ(R, t) can be considered a genuine nuclear wavefunction, yielding the exact nuclear many-body density and current density, and Φ R (r, t), the electronic function, depends parametrically on the nuclear configuration. Note that the partial normalization condition dr|Φ R (r, t)| 2 = 1 ∀ R, t has to be imposed to guarantee that |χ(R, t)| 2 reproduces at all times the nuclear density.

Inserting the factorization (1) into the TDSE, and using the partial normalization condition [75,76], one finds the coupled evolution equations for the two components of the molecular wavefunction, namely

ĤBO + Û coup en -Φ R (r, t) = i ∂ t Φ R (r, t) (2) Nn ν=1 [-i ∇ ν + A ν ] 2 2M ν + χ(R, t) = i ∂ t χ(R, t), (3) 
where the new quantities introduced will be discussed below. The derivation of these equations can be found in Ref. [64] and is detailed for full understanding in Appendix A. Nuclear masses are indicated by the symbol M ν , with the index ν running over the N n nuclei. In the electronic equation ( 2), the operator Û coup en [Φ R , χ] [67] couples the electronic evolution to the nuclear dynamics as it depends on the nuclear wavefunction,

Û coup en [Φ R ,χ] = Nn ν=1 1 M ν [-i ∇ ν -A ν ] 2 2 + -i ∇ ν χ χ + A ν • (-i ∇ ν -A ν ) . ( 4 
)
Note that in the second term the gradient in (-i ∇ ν χ)/χ only acts on the nuclear wavefunction. The scalar potential, or time-dependent potential energy surface (TD-PES) [65,77,66,78,[START_REF] Curchod | [END_REF][79][80][81][82], (R, t), and the time-dependent vector potential [START_REF] Curchod | [END_REF]69,[83][84][85][86], A ν (R, t), are defined by

(R, t) = Φ R (t)| ĤBO + Û coup en -i ∂ t |Φ R (t) r , (5) 
and

A ν (R, t) = Φ R (t)| -i ∇ ν Φ R (t) r , (6) 
respectively, where • r stands for an integration over the electronic coordinates. In the nuclear TDSE (3), the timedependent potentials fully account for electronic nonadiabatic effects, i.e., excited-state effects, on nuclear motion. It has been shown [68] that in the limit of infinite nuclear masses, or in the limit m/M → 0 [87], Eqs. ( 2) and ( 3) reduce, as it would be good to expect, to the standard BO (adiabatic) equations. The (R, t)-dependent phase transformations

χ(R, t) → χ(R, t) = e -i θ(R,t) χ(R, t) (7) 
Φ R (r, t) → ΦR (r, t) = e i θ(R,t) Φ R (r, t), (8) 
clearly leave unchanged the product form of the molecular wavefunction, Eq. ( 1). Under such transformation, the time-dependent potentials transform as

˜ (R, t) = (R, t) + ∂ t θ(R, t) (9) Ãν (R, t) = A ν (R, t) + ∇ ν θ(R, t). ( 10 
)
These transformation relations are easy to prove, after some algebra, if the expressions of χ(R, t) and ΦR (r, t) are replaced into the definitions of the time-dependent potentials given in Eqs. ( 5) and ( 6). The evolution equations are form-invariant under a gauge transformation. Uniqueness of the solution of Eqs. ( 2) and ( 3) is guaranteed up to a chosen gauge.

Aiming at developing a strategy to efficiently solve the coupled electronic and nuclear equations of motion, we write the nuclear wavefunction in polar form, i.e., χ(R, t) = exp[(i/ )S(R, t)] |χ(R, t)|. By inserting this expression into the TDSE, applying the differential operators, and separating its real and imaginary parts, we derive an evolution equation for the phase

∂ t S = - ν [∇ ν S + A ν ] 2 2M ν -- ν -2 2M ν ∇ 2 ν |χ| |χ| , (11) 
= - ν [∇ ν S + A ν ] 2 2M ν -( + Q) , (12) 
which implicitly defines the quantum potential Q(R, t), and another for the density

Γ (R, t) = |χ(R, t)| 2 ∂ t Γ = - ν ∇ ν • Γ ∇ ν S + A ν M ν . (13) 
Eq. ( 11) can be viewed as a Hamilton-Jacobi equation, if we take the right-hand side as a Hamiltonian, whose kinetic term is ν [∇ ν S + A ν ] 2 /(2M ν ), and the potential term is

V(R, t) = (R, t) + ν -2 ∇ 2 ν |χ(R, t)| 2M ν |χ(R, t)| . ( 14 
)
The quantity Q(R, t) in Eq. ( 12) depending on the modulus of χ is the, so-called, quantum potential. Eq. ( 13) is a continuity equation for the nuclear probability density, whose probability current density is

J ν (R, t) = Γ (R, t) ∇ ν S(R, t) + A ν (R, t) M ν . ( 15 
)

Method of characteristics to solve the Hamilton-Jacobi equation

The solution of the Hamilton-Jacobi equation ( 11) can be constructed by employing the method of characteristics. Rearranging Eq. ( 11), we introduce the function [88]

F (∇S, S t , R, t) = S t + H (∇S, R, t) = 0 ( 16 
)
where we have indicated with ∇S the 3N n -dimensional gradient of S(R, t) and with S t its partial time derivative. Note that the Hamiltonian explicitly depends on time via the TDPES and the quantum potential. The solution S depends on the variables R, t, while the Hamilton-Jacobi equations depends non-linearly on the first derivatives of S with respect to these variables. Before giving the characteristic equations of the Hamilton-Jacobi equation, we denote ∇S = P, such that H(∇S, R, t) = H(P, R, t), and we introduce the following partial derivatives

∂ Rν F (P, S t , R, t) = ∂ Rν H (P, R, t) (17) ∂ t F (P, S t , R, t) = ∂ t H (P, R, t) (18) ∂ Pν F (P, S t , R, t) = ∂ Pν H (P, R, t) (19) ∂ St F (P, S t , R, t) = 1 (20) ∂ S F (P, S t , R, t) = 0, (21) 
with ν = 1, . . . , 3N n , as in Appendix B. The characteristic equations yield the "evolution" of R(s), t(s), P(s), S t (s), S(s) as functions of the parameter s. We have (see Eqs. ( 68), ( 70) and ( 72))

Ṙν (s) =∂ Pν H (P(s), R(s), t(s)) (22) ṫ(s) =1, ( 23 
) Ṗν (s) = -∂ Rν H (P(s), R(s), t(s)) (24) Ṡt (s) = -∂ t H (P(s), R(s), t(s)) (25) 
Ṡ(s) = 3Nn ν=1 P ν (s)∂ Pν H (P(s), R(s), t(s)) -H(P(s), R(s), t(s)). (26) 
In our case the characteristic equations to be explicitly solved are

Ṙν = P ν (t) + A ν (R, t) M ν (27) Ṗν = -∇ ν H n (P(t), R(t), t) (28) 
Ṡ = Nn ν=1 P ν (t) • P ν (t) + A ν (R, t) M ν -H n (P(t), R(t), t), (29) 
while Eq. ( 23) is trivial and Eq. ( 25) is just a consistency relationship.

The symbol H n has been used to indicate the Hamiltonian as written in the right-hand side of Eq. ( 11),

H n (P(t), R(t), t) = Nn ν=1 [P ν (t) + A ν (R, t)] 2 2M ν + (R, t) + Q(R, t), (30) 
thus the right-hand side of Eq. ( 28), considering that

A ν • (∇ ν A ν ) = ∇ ν (A ν • A ν )/2, is Ṗν = -∇ ν Nn ν =1 P ν (t) • A ν (R, t) M ν + A 2 ν (R, t) 2M ν + (R, t) -∇ ν Q(R, t). (31) 
In sight of the gauge freedom ( 7) and ( 8), we can choose a phase θ(R, t), satisfying the equation

Nn ν=1 P ν • ∇ ν θ M ν - (∇ ν θ) 2 2M ν + ∂ t θ = - Nn ν=1 P ν • A ν M ν + A 2 ν 2M ν + ( 32 
)
such that the term in parenthesis in Eq. ( 31) can be set to zero. Notice that the quantum potential Q(R, t) is not a gauge potential, since it depends on the modulus of the nuclear wavefunction, which is not a gauge-dependent quantity. Eq. ( 31) differs from the expression of the force that has been derived in previous work [53,54,[START_REF] Min | [END_REF]55], since there we have worked in the Lagrangian frame and we have, a bit abusively, called conjugate momentum the linear momentum M ν Ṙν .

In principle, the solution of the Hamilton-Jacobi equation, S(R, t), is obtained by integrating the ODEs for an infinite number of initial conditions, to determine the value of S at time t and position R, thus obtaining S(R, t).

Computing the nuclear density and the quantum potential

Solving the Hamilton-Jacobi equation (11) employing the method of characteristics described in Section 2.1, together with the continuity equation (13), is fully equivalent to solving the nuclear TDSE (3). However, our aim here is mainly to propose and justify an approximation which decouples the equation for the phase (11) from that for the denisty (13).

The approximation we suggest tentatively for the probability density associated to the nuclear wavefunction appearing in the expression of the quantum potential is

|χ (R, t)| 2 = 1 N tr Ntr I=1 Nn ν=1 G σ I,ν R ν ; R (I) ν (t) (33) 
where

G σ I,ν (R ν ; R (I)
ν (t)) are normalized Gaussians centered at the classical trajectory R (I) (t) and the variance

σ I,ν , if n (I)
tr is the number of trajectories whose R (J) (t) falls in a sphere of given radius (typically 1 Å in Ref. [START_REF] Min | [END_REF]) centered at R (I) (t), is given by [54] 

σ I,ν = D 2 I,ν -D 2 I,ν n (I) tr . (34) 
Here,

D I,ν = 1 n (I) tr n (I) tr J=1 R (I) ν (t) -R (J) ν (t) (35) 
D 2 I,ν = 1 n (I) tr n (I) tr J=1 R (I) ν (t) -R (J) ν (t) 2 . ( 36 
)
Each Gaussian in Eq. ( 33) is associated to a constant weight, 1/N tr , that guarantees the normalization of the density. To avoid misunderstanding, let us stress that this choice does not mean equivalent weights associated to the trajectories, since the initial conditions are sampled from the given nuclear probability distribution at time t = 0. This means that we expect to have more trajectories in regions of higher probability at time 0. Of course there is no guarantee that this initial distribution will be conserved at long times, but it can be considered reasonable at least at relatively short times.

It is worth noting that this Ansatz, Eq. ( 33), was already used in Refs. [53,54,[START_REF] Min | [END_REF] to solve the electronic part of the problem, but then it was not used to compute the quantum potential in Eq. (31). The novelty here is that we want to explore possible improvements obtainable by using consistently the same Ansatz also to compute the quantum potential.

Once this improved approximation described above has been defined, we can use the coupled-trajectory mixed quantum classical (CT-MQC) algorithm discussed in Refs.- [53,54,[START_REF] Min | [END_REF] to follow the dynamics of our system. In the next section we describe details of the simulations used to test this approximation.

Simulation details

We select a one-dimensional model to illustrate the performance of the new CT-MQC algorithm. In particular, we (i) investigate how our new quantum potential can provide strong nuclear quantum effects such as the spatial splitting of a nuclear wavepacket induced by tunneling or by electronic nonadiabatic transitions, and (ii) check how well the distribution of trajectories reproduce the real nuclear density of our model.

The chosen system is described by the Hamiltonian in the diabatic basis

Ĥ = P 2 2M + V + (R) d d V -(R) , (37) 
where the 2 × 2 matrix is the representation of the "electronic Hamiltonian", Ĥel , in the standard 2-state "electronic" basis (| ↑ , | ↓ ). There, the diagonal elements of the electronic Hamiltonian are

V ± (R) = aR 2 ± bR + c, (38) 
and the parameters are a = 1.0 a.u., b = 3.5 a.u., c = 3.0625 a.u., and d = 1.0 a.u. in the first case (set 1), while in the second case (set 2) we change d = 0.25 a.u. . The nuclear mass is chosen to be M = 2000 a.u., as the proton mass in atomic units. The adiabatic PESs (BO PESs) and the adiabatic states are given by

E ± (R) = V + (R) + V -(R) 2 ± 1 2 (V + (R) -V -(R)) 2 + 4d 2 (39) 
and

|±; R = N (R) |↑ + E ± (R) -V + (R) d |↓ , (40) 
with

N (R) = d/ d 2 + (E ± (R) -V + (R))
2 a normalization term. We report in Fig. 1 the two BO PESs and the nonadiabatic couplings ϕ

(+) R |∂ R ϕ (-) R
for both sets of parameters. As it is clear from the figure, changing the value of the off-diagonal elements in Eq. ( 37) allows to tune the coupling between the two electronic states, and thus to change the nonadiabatic character of the problem. In both cases, the initial condition is chosen such that

|Ψ (R, t = 0) = 4 1 πσ 2 e -(R-R 0 ) 2 2σ 2 e i P0(R-R0) |-; R , (41) 
namely a Gaussian-shaped nuclear wavepacket centered at R 0 = -1.75 a.u. with variance σ = 0.2 a.u. is placed "on" the ground-state (lower) surface and, so to say, directed toward the nonadiabatic coupling region, with average linear momentum at time t = 0 is P 0 = 90 a.u. or P 0 = 150 a.u., for the first and for the second study, respectively. The ini- tial nuclear density is also shown in Fig. 1. The two sets of parameters have been chosen to observe different physical processes, namely tunneling through the electronic ground-state barrier (set 1) and nonadiabatic populating the excited state from the ground state (set 2).

Exact propagation is performed in the diabatic basis with time-step dt = 0.1 a.u. using the split-operatortechnique [90] with

e -i Ĥdt e -i Ĥel dt 2 e -i P 2 2M dt e -i Ĥel dt 2 . ( 42 
)
The "electronic" part has been solved as shown in Appendix C. As for our approach, we generated N tr = 1000 trajectories by solving the Lagrange equivalent of Eqs. ( 27) and ( 28) using the velocity-Verlet algorithm. The electronic evolution is computed as shown in Refs. [53,54]. The time step dt = 0.1 a.u. is used for the overall integration.

Due to the limited sampling of trajectories, some features of the nuclear density and, thus, of the quantum potential might be not properly reproduced within the CT-MQC procedure. To circumvent this problem, we apply a Gaussian smoothing to the density and the quantum potential computed according to Eqs. ( 33) and ( 12), respectively. The Gaussian smoothing consists in convoluting the function of interest with a suitable Gaussian, thus replacing the initial function with a smoothed representation of the original one. In our simulations, we have used a value of the Gaussian variance between 0.4 and 0.6 a.u., checking the stability of the results.

Illustrative examples

In this section, at first we focus on the process of tunneling in the adiabatic regime. The initial kinetic energy of the travelling wavepacket is not sufficient for it to classically overcome the potential barrier of the ground-state PES. Additionally, once again due to the low momentum of the nuclear wavepacket, and in consequence of the weak nonadiabatic coupling, no population transfer from the electronic ground state to the excited state is observed during the dynamics. Then, we have chosen a stronger coupling between the electronic states so that the initial momentum of the nuclear wavepacket is large enough for the wavepacket to split passing through the avoided crossing, while undergoing a nonadiabatic transition to the excited state.

Tunneling effects in the adiabatic regime

We report in Fig. 2 the transmission probability, i.e., the probability of the nucleus to be in the region R > 0 a.u. The exact calculation shows in Fig. 2 that for t ≥ 70 a.u. almost 30% of the density is transferred across the barrier. In the trajectory-based calculation (CT-MQC algorithm or our present approach) we try to estimate the transmission probability as the fraction of trajectories which have R > 0 a.u. at time t. We see in Fig. 2 that by CT-MQC the transmission probability is less than 2%, while in our approach it is correctly reproduced. A convergence test has been performed on the transmission probability for 100, 1000, and 10000 trajectories. The (systematic) error on the final value of the probability decreases from 16%, to 5% and 3%, respectively. We directly compare the nuclear density Γ (R, t) with our and the CT-MQC approximation given in Eq. (33). Once again, in Fig. 3 we show exact results (black lines), the results based on CT-MQC (green lines) and our results (red lines, undistinguishable from exact). Without the quantum potential, as expected from previous observations, the approximate density is qualitatively different from reference results. The inclusion of the force term containing the effect of the quantum potential clearly improves the behavior of density.

Nonadiabatic regime

The parameters of the potentials and the initial conditions for the dynamics have been modified as described in Section 3 to increase the nonadiabatic character of the simulated process. We show in Fig. 4 the agreement between the population of the ground and excited states computed exactly and according to the two approximations under test. As expected, the ground-state population decreases in time, while the population of the excited state increases with time, since during the passage of the nuclear wavepacket through the region of coupling, a nonadiabatic transfer from the ground to the excited state takes place. To analyze the effect of the quantum potential in this case, we compare in Fig. 5 the exact nuclear probability density with our approximation and with CT-MQC. It is evident that the effect of the quantum potential is weaker than in the previous model study, since CT-MQC is already capable of reproducing the spatial splitting of the nuclear density. However, our approach allows to slightly improve on CT-MQC approximation the trajectory distribution. Specially in the last snapshot shown in Fig. 5 it is clear that our approach produces (i) a good shifting of the peak of the distribution, and (ii) a more convincing zero in the region between the two peaks. Both features improve the agreement with exact results.

Conclusions

In this work we have revisited the CT-MQC approach to quantum nonadiabatic dynamics improving that approximation by including an estimate of the quantum potential which in CT-MQC is put to zero. In doing that we have also intended to clarify the derivation of the approach with special emphasis on the solution of the nuclear dynamics by characteristics. We hope that this clear-cut reconstruction of the meaning of the solution by characteristics together with the choice of an initial nuclear density physically meaningful (a wavepacket) will give a stil intuitive but reasonable justification for the way in which we reconstruct in this approach the nuclear density, i.e., also the quantum potential, at time t. By a suitable illustration using a spin-boson model we have been able to discuss tunneling effects and nonadiabatic dynamics. From these two effects we have shown that the new approach is an objective improvement on CT-MQC.

we have to consider only the infinitesimal variations of the variables x, u, p which leave the value of F unchanged, that is

dF = F p • dp + F u du + F x • dx = 0. ( 64 
)
Geometrically this condition means that the vector (dx, du, dp) is orthogonal to the gradient (F x , F u , F p ) of F . The equations of any curve (characteristics) which satisfy this condition, i.e., each curve which stays in the tangent bundle of the manifold generated by F ,

ẋ = dx ds u = du ds ṗ = dp ds (65) 
define variables x, u, p which lie on the isosurface F (p, u, x) = 0. From that we get the solution of the PDE for every point x reached by the curve. Normally the number of curves needed to solve completely the PDE is defined by the boundary condition, i.e., by all points x 0 ∈ ∂Ω, u 0 , p 0 , that lie in the boundary of the domain in which we need to solve the PDE. The next step is to derive the explicit form for the characteristic equations (65). To this end, let us look at the function (Eq. ( 60)) F (∇u(x), u(x), x) = F (x) = 0 for any x ∈ Ω as a function of the variable x. That implies

∂F ∂x i = n j=1 F pj (p(s), u(s), x(s))u xj xi (x(s)) + F u (p(s), u(s), x(s))p i (s) + F xi (p(s), u(s), x(s)) = 0, (66) 
with i = 1, . . . , n. In Eq. ( 66) we used the definition

p i (x) = ∂u(x) ∂x i = u xi (x) . (67) 
If we assume that ẋj (s) = F pj (p(s), u(s), x(s)),

and consider that ṗi

(s) = d ds ∂u(x(s)) ∂x i = n j=1 ∂ ∂x j ∂u(x(s)) ∂x i dx j (s) ds = n j=1 u xj xi (x(s)) ẋj (s), (69) 
then we see that the first term on the right-hand side of Eq. ( 66) can be identified with Eq. ( 69), i.e., 

Replacing this expression in Eq. ( 66) we obtain ṗi (s) = -F u (p(s), u(s), x(s))p i (s) -F xi (p(s), u(s), x(s)). where we have used Eqs. ( 67) and (68).

We shall now prove by replacing Eqs. ( 68), [START_REF] Vleck | Proc. Nat. Ac. Sci[END_REF], and (72) in Eq. ( 64) that infinitesimal variations of x, u, p generated moving along the characteristics, we leave F unchanged. In fact, ∀ s 

C Decomposition of the electronic Hamiltonian

In this appendix, having separated by Trotter the evolution operator into nuclear (kinetic energy) and "electronic" parts, we write down the explicit expression of the "electronic" evolution operator.

The model Hamiltonian introduced in Section 3 is written as a linear combination of the Pauli matrices and the identity matrix, that is

Ĥel (R) = V + (R) d d V -(R) = α(R)σ x + β(R)σ z + γ(R) Î. ( 74 
)
The elements of Ĥel (R) are all real, thus the contribution of σy is identically zero. It is easy to prove that α(R) = d and that, using γ(R) + β(R) = V + (R) and γ(R) -β(R) = V -(R), the explicit values of β(R) and γ(R) are easily computed, but not needed. Using this decomposition, the expression 

e -i dt 2 Ĥel = e -i dt 2 [α(R)σx+β(R)σz+γ(R) Î] , (75) 
where we have used the property σ2n i = Î and σ2n+1 

which gives the action of the Ĥel evolution operator.

Fig. 1 .

 1 Fig. 1. Adiabatic (BO) PESs computed by diagonalizing the 2 × 2 electronic Hamiltonian in Eq. (37), shown as continuous dark-green (parameter set 1) and dashed green (parameter set 2) lines. The nonadiabatic coupling are shown as continuous blue (parameter set 1) and dashed cyan (parameter set 2) lines. The initial nuclear density is also plotted as a red line.

Fig. 2 .

 2 Fig. 2. Transmission probability across the barrier of the ground-state PES for the parameter set 1 of Fig. 1. The black curve shows the quantum-mechanical result, computed from the exactly propagated nuclear density. Our results are shown in red (1000 trajectories), dark-pink (100 trajectories) and pink (10000 trajectories), while the green line shows the CT-MQC result.

Fig. 3 .

 3 Fig.3. Snapshots at 50, 100, 140 a.u. (from left to right) of the exact nuclear density (black lines), and of the nuclear density constructed according to Eq.(33). Red lines, our results (superimposed to the exact); green lines, CT-MQC.

Fig. 4 .

 4 Fig. 4. Population of the electronic states in the adiabatic basis as functions of time. The reference result (black lines) is computed by solving exactly the quantum dynamics as described in Section 3. Our results are shown as red lies, while CT-MQC results are shown as green lines.

Fig. 5 .

 5 Fig. 5. Snapshots at 20, 40, 60 a.u. (from left to right) of the exact nuclear density, of the one from the present work and from CT-MQC. The color code is the same as in Fig. 3.
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  xj xi (x(s))F pj (p(s), u(s), x(s)) = ṗi (s).

( 71 )

 71 Finally, to determine the last equation for the characteristics, let us differentiate u(s) with respect to s. s)F pj (p(s), u(s), x(s)),[START_REF] Curchod | [END_REF] 

F

  pj (p(s), u(s), x(s)) -F u (p(s), u(s), x(s))p j (s)-F xj (p(s), u(s), x(s)) + F u (p(s), u(s), x(s))p j (s)F pj (p(s), u(s), x(s)) + F xj (p(s), u(s), x(s))F pj (p(s), u(s), x(s)) = 0. (73)

  introduced in Eq.(42), can be written as, applying again the Trotter decomposition, ase -i dt 2 [α(R)σx+β(R)σz+γ(R) Î] = e -i dt 2 [α(R)σx+β(R)σz] e -i dt 2 γ(R) Î e -i dt 2 α(R)σx e -i dt 2 β(R)σz e -i dt 2 γ(R) Î .(76)Then, expanding each exponential in a Taylor series, we get e -i dt 2 α(R)σx = cos α

  n a positive integer and i = x, y, z, ande -i dt 2 β(R)σz = cos β2 [γ(R)+β(R)] cos α(R)dt 2 -ie -i dt 2 [γ(R)-β(R)] sin α(R)dt 2 -ie -i dt 2 [γ(R)+β(R)] sin α(R)dt 2 e -i dt 2 [γ(R)-β(R)] cos α(R)dt 2   ,

Acknowledgements

We are delighted to dedicate this small piece of work to our friend Hardy for his 65th birthday. Fond as we are of his highly collaborative and hospitable character we wanted to give a worth contribution to these qualities. Therefore, we made a special effort to contribute to his recent ideas by clarifying once and for all the concept of solution by characteristics. We really hope Hardy will enjoy as much as we have.

Authors contributions

All authors were involved in the preparation of the manuscript. All authors have read and approved the final manuscript.

A Coupled electron-nuclear equations

In this appendix we derive the coupled electronic and nuclear equations, Eqs. ( 2) and (3), starting with the exactfactorization Ansatz of Eq. ( 1) and the general expression of the TDSE for the molecular wavefunction Ψ (r, R, t).

The factored form of Ψ is inserted into the TDSE, that is

When multiplying by Φ * R (r, t) and integrating over electronic coordinates, we get for the term on the left-hand side

and for the term on the right-hand side

In Eqs. ( 44) and ( 45), • r indicates an integration over electronic coordinates and the partial normalization condition Φ R (t)|Φ R (t) r = 1 ∀R, t has been used. The righthand side of Eq. ( 44) can be rewritten using for the second term

and identifying in the third term the time-dependent vector potential,

In sight of Eq. ( 43), and equating ( 45) and ( 47), the timederivative of the nuclear wavefunction is

Adding and subtracting the term A 2 ν /(2M ν ), and defining the TDPES as

Eq. ( 48) becomes

which is a standard TDSE. Now we move to the derivation of the electronic evolution equation (2). Before proceeding, we rearrange Eq. ( 50), wherever χ = 0, as

In Eq. ( 43), we consider the right-hand side

and the left-hand side

Equating the right-hand sides of Eqs. ( 53) and ( 54), we obtain

where in going from the first to the second equality, the first term on the right-hand side has been replaced by Eq. ( 52). To write Eq. ( 56) in the form given in the main text, Eq. ( 2), we need few further steps. We start selecting in the first and second lines of Eq. ( 56) the three terms indicated below, and see that they can be written as

then we gather the terms that in Eq. ( 56) are multiplied by (-i ∇ ν χ)/χ, and we end summing them together to find the quantity

ûν appears in the definition of Û coup en [Φ R , χ], the electronnuclear coupling operator, in Eq. ( 4). The evolution equation for Φ R finally reads

that is Eq. ( 2).

B Characteristics of a partial differential equation

The method of characteristics to solve a partial differential equation (PDE) aims at translating the PDE into infinitely many first-order ordinary differential equations (ODEs) that compute curves (the characteristics) providing a pointwise solution of the PDE. The procedure followed in Section 2.1 to determine the characteristics of the Hamilton-Jacobi equation associated to the nuclear TDSE is an application of the method discussed below [88].

Let us consider the general form of a non-linear PDE

where the unknown function u depends on the coordinates x ∈ Ω ⊆ R n , and we have indicated the derivatives of u with respect to the coordinates as p = ∇u. Let us introduce a family of curves described parametrically x = x(s) = [x 1 (s), . . . , x n (s)] (61) u = f (s) (62) p = g(s) (63) with i = 1, . . . , n and s ∈ I ⊆ R. These curves are the characteristics of the PDE (60) if, for each value of the parameter s, u = u(x) is a solution of the PDE with p(x) = ∇u(x). Therefore, we need to identify "evolution equations" for x(s), u(s), p(s) that guarantee the condition F = 0, i.e., Eq. ( 60), for any value of s. To this end,