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ABSTRACT 

The electronic stopping power is an observable that quantifies the ability of swift ions penetrating 

matter to transfer energy to the electron cloud. The recent literature has proven the value of Real-

Time Time-Dependent Density Functional Theory to accurately evaluate this property from first-

principles but questions remain regarding the capability of computer codes relying on atom-centered 

basis functions to capture the physics at play. In this article, we draw attention to the fact that 

irradiation by swift ions triggers electron emission into the continuum, especially at the Bragg peak. 

We investigate the ability of Gaussian atomic orbitals (AOC), that were fitted to mimic continuum wave 

functions, in improving electronic stopping power predictions. AOC are added to standard correlation-

consistent basis sets or STO minimal basis sets. Our benchmarks on water irradiation by fast protons 

clearly advocate for the use of AOC, especially near the Bragg peak. We show that AOC only need to 

be placed on the molecules struck by the ion. The number of AOC that are added to the usual basis set 

is relatively small compared to the total number of atomic orbitals, making the use of such basis set 

an excellent choice from a computational cost point of view. The optimum basis set combination is 

applied for the calculation of stopping power of a proton in water with encouraging agreement with 

experimental data.  
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1. INTRODUCTION 

The interaction of high energy, ionizing, radiations (e.g. X, extreme UV, XUV or  photons, fast ions or 

electrons) with matter is of major importance in various scientific contexts. In medicine for instance, 

swift ions (e.g. H+ or C6+) and X photons are used for the treatment of cancers in radiotherapies1. In 

space, on the other hand, the chemistry that takes place on dusts2,3 or in the atmosphere of Jovian 

planet’s satellites are thought to be modulated by collisions with high energy particles from the sun or 

from the cosmos4,5. As a final example, we mention the nuclear industry, for which the question of 

corrosion inside a nuclear plant reactor or the extraction of degradation effluents,  are both central for 

safety reasons and for the longevity of nuclear installations 6.  

The mechanisms of energy deposition in matter by fast ions, together with the first relaxation decays, 

govern the production of electron-hole and of charge migrations (electron cloud dynamics). These 

early steps condition all the subsequent phenomena that eventually lead to chemical alterations of 

irradiated matter. Energy deposition in ion-matter irradiation is quantified by the stopping power. At 

the microscopic level, it is defined as 𝑆 ≡ −𝜕𝐸𝑘 𝜕𝑟𝑝𝑟𝑗Τ , that is the derivative of the projectile’s kinetic 

energy with respect to its infinitesimal displacement. As ions interact with both electrons and atom 

nuclei, 𝑆  can be separated into a nuclear contribution (𝑆𝑛 ), an electronic contribution (𝑆𝑒 ) and 

eventually an electronic/nuclear coupling term 𝑆𝑛/𝑒
7. For ions with kinetic energy of a few tens of keV 

to a few MeV, 𝑆𝑒  largely dominates over 𝑆𝑛  and only the former will be of interest here. Typical profiles 

of 𝑆𝑒  as a function of the projectile’s kinetic energy on the 10 keV-MeV range are non-monotonic, first 

increasing with the projectiles’ speed, up to a maximum called the Bragg peak, then decreasing for 

higher kinetic energies. The elaboration of theoretical models aiming at rationalizing stopping power 

has a long history8. These models are for example used in semi-empirical Monte Carlo track structure 

codes9. The advent of sophisticated quantum chemistry approaches and powerful supercomputers 

have opened the door toward the evaluation of stopping power from first principles.  

Notably, Density Functional Theory (DFT)10,11 and its Time-Dependent version (TD-DFT)12,13 are 

particularly suited to tackle the dynamics triggered in the electron cloud by ionizing radiation14. The 

appeal of DFT and TD-DFT is the combination of accuracy and computational efficiency that enables 

simulations of very large molecular systems15–17. Researchers have examined the ability of TD-DFT to 

calculate 𝑆𝑒 , in particular via the so-called Real-Time TD-DFT approach (RT-TD-DFT) that consists in the 

explicit propagation in time of the electronic equations-of-motion18. So far, applications of RT-TD-DFT 

for 𝑆𝑒  evaluations are encouraging18–21, even though important aspects remain to be clarified, in 

particular regarding the mathematical choice that must be made in order to represent the electronic 

wave functions. Using plane wave codes, Correa and coll. and Kanai and coll. showed that 𝑆𝑒 can be 
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reliably evaluated from RT-TD-DFT simulations over a wide range of projectile’s kinetic energies, 

including the Bragg peak region 16,22–28, thereby showing the ability of plane-waves to properly describe 

associated wave functions. The situation is, to our point of view, less clear when using Gaussian basis 

functions. On one hand, Artacho and co-workers evaluated 𝑆𝑒 for proton and alpha particle in Au, Al 

and LiF for low kinetic energies, i.e. below the Bragg peak, with good agreement with available 

experiments18,29,30. On the other hand, Bruneval and co-workers reported a great sensitivity of the 

calculated 𝑆𝑒  with the basis set via thoughtful benchmarks for 𝑆𝑒  in lithium and aluminum31,32 for 

projectile’s kinetic energy ranging from 0.01 MeV to 1 MeV. To optimize the basis set choice, they 

proposed a trial-and-error approach to build ad hoc basis sets for 𝑆𝑒  calculations including the basis 

functions within the Dunning series that mostly influence the stopping power value. A drawback of the 

approach seems to be the generation of rather large basis sets, hence computationally expensive to 

ensure convergence of the calculated stopping power. More recently, calculations of electronic 

stopping power for proton in water was reported by Artacho, Kohanoff and co-workers19. Provided 

adequate sampling of ion-water molecule irradiation conditions, the authors were able to recover the 

experimental stopping power curve. We note that here again, a rather large split-valence triple-zeta 

basis set was used on all atoms (6-311G**(2d,2p)). In summary, while previous studies have 

established the reliability of RT-TD-DFT for ab initio calculations of electronic stopping power, and even 

the coupled 𝑆𝑛/𝑒  terms7, the conditions for which Gaussian function basis codes can achieve the same 

performances as plane-wave codes remain unclear. From recent literature, it transpires that large, 

hence computationally expensive, Gaussian basis sets are mandatory in order to converge the 

simulated properties.  

Plane-waves can achieve remarkable accuracy over the entire simulation boxes provided sufficiently 

large cutoff values are used. This is for instance necessary to account for core electrons excitations. 

Moreover, the eventual inclusion of exact exchange contributions to the exchange-correlation 

potential can turn intractable. Gaussian basis functions are of more flexible use. They can afford 

exchange-correlation functionals with fractions of exact exchange at manageable cost. In conclusion, 

it is thus worthwhile to pursue both kinds of methods for radiation chemistry problems. 

Here, we propose a less computationally costly approach that explicitly includes, with Gaussian basis 

sets, the physics of the process we want to describe. Indeed, a characteristic of excitations caused by 

fast ion collisions is the emission of electrons in the continuum or in conduction bands, the wave 

functions of which exhibit several nodes and fast oscillations. This is particularly true near the Bragg 

peak where energy deposition is the highest. This characteristic feature has so far not been fully 

appreciated in our point of view. We make the hypothesis that the 𝑆𝑒  underestimation with Gaussian 

basis sets comes from a poor description of the high-lying excited states and, in particular, of the 
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continuum states that are involved in these electronic excitations. In fact, the high energy states are 

usually very poorly described with standard Gaussian basis sets, and the correct nodal structure 

(continuum oscillatory behavior) of the wavefunction is not reproduced33.  

In the literature some strategies have been proposed to improve Gaussian basis sets to describe high 

lying excited and continuum states. Kaufmann et al.34  and more recently, Wozniak et al.35  proposed 

a fitting procedure able to optimally represent Rydberg and continuum energy states of atoms in 

Gaussian basis sets. A different approach to obtain Gaussians optimized for the continuum was 

proposed in the context of electron–molecule scattering by Nestmann and Peyerimhoff36 for neutral 

systems. The method has been further extended by Faure et al. 37 for the description of charged 

systems, such as ions. These Gaussian-type-orbitals have been used for example in cross-sections 

calculations for electron- or positrons molecules collisions via the “R-matrix” approach38–40. The use of 

Gaussians specific to describe the high lying excited states and the continuum has been demonstrated 

to be fundamental to correctly describe physical processes involving specifically these types of energy 

states41. The generated basis sets have been applied for calculations of bound and continuum states 

of charged molecules, such as CnH- and N2
+. 

In this article we investigate the capability of atomic orbitals optimized for the continuum generated 

by the procedure of Nestmann and Peyerimhoff36 in the context of 𝑆𝑒  calculation. We consider proton 

penetration in water and report extensive benchmarks. We show remarkable improvement of 

calculated electronic stopping power values at a very reasonable computational price. The results 

analyses permit to better understand the phenomena at play in fast ion-matter irradiation. 

 

2. Gaussian type orbitals for the continuum 

2.1 Fitting parameters 
 
Nestmann and Peyerimhoff 36 and later Faure et al.37  developed a method and a computational code 

(GTOBAS and NUMCBAS) which are able to construct adequate Gaussian-type-orbitals continuum 

basis sets for representing numerical continuum orbitals (𝑢ℎ𝑙 ) over a finite range. 𝑙  is the second 

quantum number. The functions 𝑢ℎ𝑙 are determined over grid points 𝑟𝑘 by solving a single channel 

scattering equation with the NUMCBAS module. At this stage, the effective charge of the scattering 

process’s target, which defined the model potential is specified, together with the boundary radius (𝑅) 

and an upper energy bound (𝐸). The optimization of the exponents of Gaussian functions (𝛼𝑖) to fit 

continuum functions (𝑢ℎ𝑙) is then achieved with GTOBAS by minimizing the following 𝐹𝑙,𝑁 function, 
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with  𝑁  being the number of continuum functions and 𝑛  the number of Gaussian exponents. The 

coefficients 𝑐ℎ𝑖  are determined by a least-squared fit. The 𝐷  function is added to avoid the 𝛼𝑖  

coefficients to collapse to the same value and to avoid linear dependency issues.  

In our calculations, we fitted the continuum orbitals with Coulomb functions. In the following we will 

indicate these optimal continuum exponents as Atomic Orbitals fitting the Continuum (AOC). We have 

generated a series of continuum basis sets for neutral H and O atoms separately, varying the boundary 

radius 𝑅, between 3, 4, 8, and 12 bohr, while keeping the upper bound eigenvalues 𝐸 to 3 or 5 Ry. We 

have also carried out different calculations changing 𝑙  between 2, 3 and 4. The list of generated 

exponents can be found in Table 1 for two sets of AOC. As can be seen from the exponents reported 

in the Table, the AOC are not especially diffuse, and actually also contain rather contracted basis 

functions.  

Table 1: three atomic orbital basis sets for the continuum generated with the GTOBAS program for hydrogen and oxygen. A 
contraction degree of one is used for all functions. L refers to the maximum second quantum number of the set. The exponents 
are given in bohr-2. 

 R3-L2-E5  R3-L3-E5  

𝐿 H O O 

s 1.710454 43.427950 42.804237 
 0.123936 1.248411 1.007852 
 0.029705 0.441522 0.430483 
  0.141377 0.173415 
  0.039096 0.062317 

p 0.552411 23.750649 7.237503 
  4.098560 0.823115 
  0.980036 0.387840 
  0.333144 0.171542 
  0.100335 0.067076 

d 0.552411 7.053886 6.326432 
  1.733890 1.556423 
  0.458709 0.585402 
  0.112128 0.249634 
  0.023529 0.097136 
f   2.797851 
   0.866865 
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The exponents we obtained from the fitting are specific for the description of the continuum states. 

Therefore, in order to obtain a well-balanced Gaussian basis sets, we completed the AOC with Dunning 

type of basis42–45 that we imported from the Basis Set Exchange library46.  

2.2 Computational details 
 
We now investigate the performance of AOC enriched basis sets for the prediction of electronic 

stopping power curves. To this end, we have considered twelve water slabs comprised of ca. 50 water 

molecules that we irradiate with fast protons (hereafter referred to as the projectile) traveling along 

the z-axis (Figure 1). The Cartesian coordinates of the slabs were extracted from classical molecular 

dynamics simulations. Following the suggestion of Maliyov et al. 31 we apply a mixed-basis-set scheme, 

differentiating water molecules lying close to the projectile’s propagation line from the others. They 

are hereafter named as waterclose and waterfar respectively (Figure 1). As soon as an oxygen water atom 

lies within less than 2.6 Å from the projectile’s propagation track, the whole water molecule falls in 

the waterclose class. The different combinations of basis sets are summarized in Table 2. We use the 

generic notation FX-CY to indicate the standard basis set used for bound electrons. FX and CY are 

respectively a simplified notation for the waterfar  and waterclose atoms respectively. X and Y indicate 

the level of valence splitting for the oxygens, namely 2, 3, 4 … for double, triple, quadruple … zeta 

quality basis sets. In general we use cc-pVDZ on hydrogens, therefore this information is not included 

in our “FX-CY” style notation. For example, F4-C6 indicates the use of cc-pVQZ on waterfar oxygens, cc-

pV6Z on waterclose oxygen atoms and cc-pVDZ on all hydrogen atoms. When AOC functions are added 

(on waterclose atoms), two triplets of integers a, b and c are added in parentheses for oxygen and 

hydrogen atoms respectively. a, b, and c are respectively the 𝑅 value in Bohr, the maximum second 

quantum number 𝐿𝑚𝑎𝑥  and the upper bound eigenvalues in Ry (see above). For example, F2-

C3(3.3.5/3.2.5) means that we use cc-pVDZ on waterfar  oxygen atoms, cc-pVTZ on waterclose oxygen 

atoms and cc-pVDZ on all hydrogen atoms. For the waterclose  molecules, we add a set of AOC fitted 

with 𝑅 = 3  bohr, 𝐿𝑚𝑎𝑥 = 3  and 𝐸 = 5 Ry for oxygens and a set of AOC fitted with 𝑅 = 3  bohr, 

𝐿𝑚𝑎𝑥 = 2 and 𝐸 = 5 Ry for hydrogens. Finally, in some specific combinations, the labels ‘aug’, ‘min’, 

‘ryd’ and ‘cor’ are added. They respectively indicate the addition of diffuse functions, the use of a 

minimal basis set, the addition of Rydberg functions, or the use of tight core orbitals. The reader is 

referred to Table 2 for the precise definition of each basis set combination.  
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Figure 1: a water slab traversed by a fast proton travelling along the orange line. The water molecules that lie close (< 2.6 Å) 
to the propagation line (waterclose ) are represented with thick chemical bonds. The other water molecules (waterfar) are shown 
with thin licorice representation. The color code of the Cartesian coordinated system is as follow: x-axis in red, y-axis in green 
and z-axis in blue. 

Table 2: basis set combinations considered in this article to investigate the sensitivity of electronic stopping power calculations.  
NAO  is the number of atomic orbitals in the case of the water slab showed in Figure 1 . The aug, min, ryd and cor labels indicate 
the addition of diffusion functions, the use of minimal basis set, the addition of Rydberg functions or the use of tigh core 
orbitals.  

 NAO waterfar waterclose 

  O H O H 

F2-C2 1175 cc-pVDZ cc-pVDZ cc-pVDZ cc-pVDZ 

F2-C3 1315 cc-pVDZ cc-pVDZ cc-pVTZ cc-pVDZ 

F3-C4 2360 cc-pVTZ cc-pVDZ cc-pVQZ cc-pVDZ 

F4-C5 4152 cc-pVQZ cc-pVDZ cc-pV5Z cc-pVDZ 

F4-C6 4740 cc-pVQZ cc-pVDZ cc-pV6Z cc-pVDZ 

F2-C6 2540 cc-pVDZ cc-pVDZ cc-pV6Z cc-pVDZ 

F2-C2(3.2.5/3.2.5) 1693 cc-pVDZ cc-pVDZ cc-pVDZ-R3-L2-E5 cc-pVDZ-R3-L2-E5 

F2-C3(3.2.5/3.2.5) 1833 cc-pVDZ cc-pVDZ cc-PVTZ-R3-L2-E5 cc-pVDZ-R3-L2-E5 

F2-C2(3.3.5/3.2.5) 2043 cc-pVDZ cc-pVDZ cc-pVDZ-R3-L3-E5 cc-pVDZ-R3-L2-E5 

F2-C3(3.3.5/3.2.5) 2183 cc-pVDZ cc-pVDZ cc-PVTZ-R3-L3-E5 cc-pVDZ-R3-L2-E5 

F2-C2(8.2.5/8.2.5) 1959 cc-pVDZ cc-pVDZ cc-pVDZ-R8-L2-E5 cc-pVDZ-R8-L2-E5 

F2-C2(12.2.5/12.2.5) 2274 cc-pVDZ cc-pVDZ cc-pVDZ-R12-L2-E5 cc-pVDZ-R12-L2-E5 

F2-C2(3.4.5/3.2.5) 2183 cc-pVDZ cc-pVDZ cc-pVDZ-R3-L4-E5 cc-pVDZ-R3-L2-E5 

F2-C2(3.3.5/4.3.3) 2575 cc-pVDZ cc-pVDZ cc-pVDZ-R3-L3-E5 cc-pVDZ-R4-L3-E3 

F2-C4(3.3.5/4.3.3) 2960 cc-pVDZ cc-pVDZ cc-pVQZ-R3-L3-5 cc-pVDZ-R4-L3-E3 

F2-Caug2(3.3.5/4.3.3) 2645 cc-pVDZ cc-pVDZ aug-cc-pVDZ-R3-L3-5 cc-pVDZ-R4-L3-E3 

Fmin-Cmin(3.3.5/3.2.5) 1239 STO-3G STO-3G STO-3G-R3-L3-E5 STO-3G-R3-L2-E5 

F2-Cryd2(3.3.5/3.2.5) 2330 cc-pVDZ cc-pVDZ DZP-RDH-R3-L3-E5 cc-pVDZ-R3-L2-E5 

F2-Ccor2(3.3.5/4.3.3)  DZVP-GGA DZVP-GGA cc-pCVDZ-R3-L3-E5 cc-pVDZ-R4-L3-E3 



8 

 

All simulations have been carried out with our multi-GPU implementation of RT-TD-DFT in the 

deMon2k code (version 6.1.6) using 4 GPU and 40 CPU or 8 GPU and 64 CPU47. For electronic integral 

calculations, we used a mixed scheme for electronic repulsion and adaptive grids of high accuracy for 

the exchange-correlation contributions (10-7 Ha, following deMon2k nomenclature)48,49. deMon2k 

relies on the auxiliary DFT formalism (ADFT) whereby variationally fitted electron densities are 

introduced to avoid cumbersome four-index electronic-repulsion-integral calculations and to simplify 

the numerical integration of XC contributions. The extension of ADFT to Real-Time Time-Dependent 

ADFT was previously shown to be robust and accurate. We refer the reader to recent reviews for more 

details on the RT-TD-ADFT formalism50,51. We have used the automatically generated GEN-A2 auxiliary 

basis set to expand the auxiliary electronic densities. The auxiliary sets are automatically built from the 

atomic orbital basis set to span the space covered by the latter. We previously showed that GEN-A2 is 

reliable to evaluate 𝑆𝑒  with deviations of less than 10-4 Ha/bohr compared to more complete auxiliary 

basis sets52. We chose Dirac exchange and Vosko, Wilk and Nusair correlation functionals. We do not 

expect significant influence from the choice of the XC functional on basis set effects32. For each water 

slab, we first obtained the ground state electronic densities by means of a self-consistent-field 

calculation with tight convergence criteria (10-10 Ha and 5.10-7 Ha on the electronic energy and density 

fitting error). The SCF procedure was conducted in absence of the projectile. The projectile was then 

placed 50 Å away from the molecular system, defining by convention time zero of the RT-TD-ADFT 

simulation. The projectile is defined as a +1 point-charge generating a Liénard-Wierchet Coulomb 

potential53. No basis functions are placed on the projectile. Electronic dynamics simulations were 

carried out with a time step of 0.001 fs using a second-order Magnus propagator coupled to a 

predictor-corrector scheme52,54. The matrix exponent entering the propagator expression was 

evaluated with a Taylor expansion comprising 65 terms. The simulations were terminated when the 

projectile had traveled 10 Å after traversing the slab. We considered the following projectile kinetic 

energies to build stopping power curves: 0.001, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8 and 

1 MeV. For each kinetic energy, we simulated irradiation considering each of the 12 water slabs. We 

report on Figures 4 to 7 the average stopping power value over each the 12 slabs. For each kinetic 

energy the statistical uncertainty is estimated via the Student law as ±2.179 ∗ ඥ𝑢2 12Τ  where 𝑢2 is 

the variance of the stopping power calculated over the 12 slabs.   

Simulation data were analyzed with the R package for statistical computing and the Rstudio graphical 

interface 55. The R studio scripts written to generate Figures together with the data files generated by 

deMon2k can be downloaded on the Zenodo repository databank (DOI: 10.5281/zenodo.8037349). It 

is thus possible for an interested user to redraw automatically all the Figures presented in this article, 

or to conduct complementary analyses based on our data.  
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2.3 Mechanism of energy deposition  
 
To illustrate the mechanism of electronic excitation caused by fast ions irradiation, we show in Figure 

2 and in Fig. S1. the Kohn-Sham MO populations as a function of time. We have chosen one water slab 

to make these calculations. The line shape was obtained defining, for each MO, a Lorentzian function 

with 0. 2 eV full-width-at-half-maximum and scaled by its population variation with respect to the 

ground state. Blue region means depopulation of the orbitals while the orange colors mean the 

population of initially unoccupied MO. The functions have been renormalized to allow comparisons 

among the graph. We consider four basis set combinations, namely F2-C2, F2-C3, F2-C6 and F2-

C2(3.3.5/4.3.3) and three proton’s kinetic energy (0.075, 0.5 and 1 MeV). The vertical blue curves 

represent the density-of-state (DOS) for each basis set. The stacked black lines on the left represent 

the energy positions of Kohn-Sham molecular orbitals with the frontier MOs highlighted in color. 

The DOS for the F2-C2, F2-C3 and F2-C6, continuously becomes denser above zero. We still note energy 

regions of lower DOS, notably around 10 eV, and 20 eV with F2-C2, and marked DOS fluctuations up-

to 50eV. With F2-C2 or F2-C3 the DOS continuously decays above 30eV. The addition of AOC on the 

F2-C2 basis set, makes the DOS much denser which always remains above 10 eV-1 in the [0-50] eV 

region. This clearly indicates the improvement of the continuum description with AOC. It is now 

interesting to have a look at the regions of the energy spectra involved in the excitation. Taking F2-

C2(3.3.5/4.3.3) as reference, we see that the excitation process involves all valence electrons that 

populate initially unoccupied MOs over a wide energy window. For example, at 0.075 MeV, significant 

electronic populations up to 50 eV are seen with a pick around 5 eV. Comparing the excitations 

patterns at higher kinetic energies (0.5 and 1 eV), we note a similar mechanism, although with less 

energetic excitations.  

The situation is more contrasted with basis set deprived from AOC functions. With the F2-C6 basis set, 

the general view is preserved although the decay of electronic excitations above 5eV is less smooth 

than with F2-C2(3.3.5/4.3.3). On the other hand, with F2-C2 and F2-C3, we clearly see white areas in 

the excitation spectra, notably around 10 and 20 eV or above 40 eV with F2-C2. This is clearly to be 

related to the smaller DOS at these energies. In the following sections, we examine the consequences 

of these features on the electronic stopping power values.  
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Figure 2: time evolution of the Kohn-Sham MO manifold with respect to the ground state for different basis sets and projectile’s 
kinetic energies, for one water slab. Blue and orange colors respectively indicate depopulation and population of MO. The 
time window chosen to define the abscissa scale corresponds to the times for which the projectile is 5 Å before and after the 
water aggregate. The left-hand-side of each graph depicts the MO diagrams, highlining the HOMO, LUMO and zero energy 
levels with red, orange and green bars respectively. Finally, the vertical blue curves represent the density-of-state (DOS). See 
Fig. S1 for the other basis sets and kinetic energies.  

 

 2.4 Stopping power calculation 
 
The total energy of a molecule/projectile system comprises the projectile kinetic energy, the molecular 

system energy and the projectile/molecule interaction energy, denoted as 𝐸𝑘𝑖𝑛
𝑝𝑟𝑗,  𝐸𝑚𝑜𝑙 and 𝐸𝑚𝑜𝑙/𝑝𝑟𝑗  

respectively. The stopping power is defined as the loss of projectile’s kinetic energy as it penetrates in 

matter, i.e. 𝑆 ≡ −𝜕𝐸𝑘𝑖𝑛
𝑝𝑟𝑗

𝜕𝑟𝑝𝑟𝑗ൗ  or 𝑆 = 𝜕(𝐸𝑚𝑜𝑙 + 𝐸𝑚𝑜𝑙/𝑝𝑟𝑗) 𝜕𝑟𝑝𝑟𝑗ൗ . In our simulations, we fix the 

projectile’s kinetic energy and we work within the frozen nuclei approximation. Hence, we directly 

obtain the electronic contribution 𝑆𝑒  with the later expression. The sum of 𝐸𝑚𝑜𝑙  and 𝐸𝑚𝑜𝑙/𝑝𝑟𝑗  is 

evaluated in the ADFT framework according to: 
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𝐸𝑚𝑜𝑙 = 𝐸𝑐𝑜𝑟𝑒[𝜌] + 𝐽[𝜌, 𝜌] + 𝐸𝑋𝐶[𝜌] + 𝐸𝑁𝑅  (3) 

𝐽[𝜌, 𝜌] = ඵ
𝜌(𝒓𝟏)𝜌(𝒓𝟐)

ȁ𝒓𝟏 − 𝒓𝟐ȁ
𝑑𝒓𝟏𝑑𝒓𝟐 −

1

2
ඵ

𝜌(𝒓𝟏)𝜌(𝒓𝟐)

ȁ𝒓𝟏 − 𝒓𝟐ȁ
𝑑𝒓𝟏𝑑𝒓𝟐 

(4) 

𝐸𝑚𝑜𝑙/𝑝𝑟𝑗 = − න
𝜌(𝒓)𝑍𝑝𝑟𝑗

ห𝒓 − 𝑹𝑝𝑟𝑗ห
𝑑𝒓 + ∑

𝑍𝐴𝑍𝑝𝑟𝑗

ห𝑹𝐴 − 𝑹𝑝𝑟𝑗ห
𝐴

 
(5) 

𝐸𝐴𝐷𝐹𝑇 = 𝐸𝑚𝑜𝑙 +  𝐸𝑚𝑜𝑙/𝑝𝑟𝑗  (6) 

where 𝐸𝑐𝑜𝑟𝑒 is the core electronic energy collecting electronic kinetic energy and Coulomb attraction 

with all atom nuclei, except for the projectile. 𝐽  and 𝐸𝑋𝐶  are respectively the classical Coulomb 

repulsion and the exchange-correlation energies. 𝐽 is calculated with the help of variational density 

fitting (Eq. 4)56,57. The fitted density (𝜌) is also used to evaluate the XC energy and potentiall49. 𝐸𝑁𝑅 is 

the nuclear repulsion among atom nuclei. The first term on the right-hand side of Eq. 5 is the Coulomb 

attraction between electrons and the projectile, the charge and position vector of which are denoted 

𝑍𝑝𝑟𝑗  and 𝑹𝑝𝑟𝑗  respectively (vectors are written in bold). The second term is the repulsion between the 

projectile and the atom nuclei (A) with charge 𝑍𝐴  and position 𝑹𝐴 . Note that for finite system 

irradiation, 𝐸𝑚𝑜𝑙/𝑝𝑟𝑗 vanishes when the projectile is far from the molecular system of interest. Figure 

3 depicts typical energy profiles for two proton’s kinetic energies, namely 0.075 MeV and 0.6 MeV. 

The black curves represent the variation of the ADFT energy with respect to the ground state energy. 

The origin of the projectile-molecule distance metric is set by convention to the moment when the 

projectile enters the van der Waals envelop of the molecule. Sharp energy rises are seen when the 

projectile-molecule distance reaches 3.1, 8.2 and 9 Å. These three peaks correspond to the passage of 

the projectile close to atomic nuclei. On the other hand, the red curves (Δ𝐸𝑚𝑜𝑙 ) are smoother. 

Δ𝐸𝑚𝑜𝑙can be regarded as the energy deposited into the electron cloud upon collision. The vertical 

dashed lines correspond to the entrance and exit of the projectile in the water slab. 

The extraction of stopping power values from RT-TD-DFT simulations is not straightforward for 

disordered molecular systems and in absence of periodicity19,28. We have here considered four ways 

for evaluating 𝑆𝑒. We either take the overall energy variation between the entry and exit points that 

we divide by the distance travelled by the projectile (𝑆𝑒
Δ𝐸 ), or we evaluate the instantaneous stopping 

power values at every propagation step and we average this quantity over the entire penetration 

period ( 𝑆𝑒ۃ
δ𝐸ۄ ). The two approaches can be combined considering either the Δ𝐸𝑚𝑜𝑙  or 

Δ𝐸𝐴𝐷𝐹𝑇energies. 𝑆𝑒
Δ𝐸  and ۃ𝑆𝑒

δ𝐸ۄ are expected to give same values by construction within numerical 

rounding errors. This is indeed what we find for the two simulations showed on the Table 3. We find 

that considering the smoother Δ𝐸𝑚𝑜𝑙  curves leads reliable estimates of 𝑆𝑒 .  This is the approach 

retained for the rest of this article (𝑆𝑒 ≡ 𝑆𝑒ۃ
δ𝐸ۄ with Δ𝐸𝑚𝑜𝑙).  
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Table 3: electronic stopping power in Ha/bohr calculated for one water slab with the four methods described in the text. 

𝐸𝑘𝑖𝑛
𝑝𝑟𝑗   Δ𝐸𝑚𝑜𝑙 + ΔE𝑚𝑜𝑙/𝑝𝑟𝑗  Δ𝐸𝑚𝑜𝑙 

0.075 MeV 𝑆𝑒
Δ𝐸  0.229 0.235 

𝑆𝑒ۃ 
δ𝐸0.235 0.228 ۄ 

0.6 MeV 𝑆𝑒
Δ𝐸  0.071 0.070 

𝑆𝑒ۃ 
δ𝐸0.069 0.071 ۄ 

 

 

 

Figure 3: examples of energy profiles associated with the collision of a water slab by a 0.075 or 0.6 MeV proton. The black 

curve corresponds to the variation of ADFT energy (𝐸𝐴𝐷𝐹𝑇) while the red curve corresponds to the variation of 𝐸𝑚𝑜𝑙  as a 
function of the distance of the projectile with the water slab. The vertical dashed lines indicate when the projectile enters and 
exits the van der Waals envelope of the water slab, the former instant defining null distance.  

2.5 Basis set benchmarks on water slabs 
 
We explore in this section the influence of the basis set quality on the electronic stopping power 

average over 12 water slabs. For each projectile’s kinetic energy, we independently ran 12 RT-TD-ADFT 
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simulations and calculated  ۃ𝑆𝑒
δ𝐸ۄ  for each of them as detailed in the previous section. We report on 

the graphs the average over these 12 ۃ𝑆𝑒
δ𝐸ۄ values. For each kinetic energy the statistical uncertainty 

is estimated via the Student law as ±2.179 ∗ ඥ𝑢2 12Τ  where 𝑢2 is the variance of the stopping power 

calculated over the 12 slabs. We start by considering the series of Dunning basis sets (Figure 4). A 

typical non-monotonic shape is obtained in each case, confirming the ability of RT-TD-ADFT to capture 

the physics at play in such irradiation. The standard deviations are significant, indicating the strong 

sensitivity of the 𝑆𝑒  with the molecular geometry. In that regard, it should be noted that most curves 

largely overshoot the experimental curve which exhibits a value of 0.16 Ha/bohr at the Bragg peak58. 

This overestimation is the consequence of the projectile-water molecule distances sampled in the 

water slabs compared to the distribution that would be found for bulk water19. This is however not an 

issue for discussing basis set effects on 𝑆𝑒  calculation. The geometry sampling issue will be addressed 

in section 3. For the present discussion, we consider that a higher 𝑆𝑒  computed value would indicate 

better description of electronic excitation, hence better basis set. Coming back to Figure 4, the 

maximum of the curve, i.e. the so-called Bragg peak is not sensitive to basis set as soon as the F2-C3 

basis set is used (cc-pVDZ on all atoms and cc-pVTZ on waterclose oxygens). On the other hand, the 

calculated electronic stopping power is strongly dependent on the basis set. Going through the F2-C2 

to F4-C6 series leads to a seemingly continuous increase of 𝑆𝑒  values. It is quite frustrating that even 

the rich, and computationally involved F4-C6 combination does not seem to ensure convergence. 

Nevertheless, when the expensive sextuple zeta basis set is used on waterclose oxygen atoms while 

keeping cc-pVDZ on all other atoms (F2-C6), we recover almost the same curve as F4-C6. This indicates 

that for the water systems investigated here, the quality of the basis set is a critical parameter for the 

atoms along the particle track, but not so much for the more remote atoms. One understands why 

small Dunning basis sets like F2-C2 and F2-C3 largely underestimates 𝑆𝑒  looking at Figure 2. It is 

apparent that several excitations cannot take place upon irradiation because the DOS associated to 

these basis sets exibit holes (e.g. around 10 and 20 eV). One strategy to go toward the basis set limit 

would be to further enrich the basis set on hydrogen atoms or on waterfar molecules. A more 

systematic approach was proposed by Maliyov et al. 32 relying on a trial-and-error optimization 

algorithm to select the basis functions that most contribute to energy deposition. They applied this 

algorithm to 𝑆𝑒  calculations in Li and Al. The approach leads to heavy basis sets which are 

computationally expensive to use, not to mention the need to optimize the basis set in preliminary 

simulations on smaller systems.  
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Figure 4: electronic stopping power for proton in water slabs as a function of the projectile kinetic energy with a series of 
Dunning standard basis sets (see Table 2). The error bars are the standard deviations calculated over the 12 water slabs with 
a confidence interval of 95%. 

Actually, the poor convergence property of 𝑆𝑒  depicted in Figure 4 suggests that increasing the degree 

of valence splitting is not the best strategy to follow. As stated in Introduction, we turn in this article 

to the use of AOC basis functions, that we add on top of the F2-C2 or F2-C3 basis set (Table 2) on water 

molecules lying within 2.6 Å of the projectile propagation line.  

We start by comparing the F2-C2(3.2.5/3.2.5), F2-C3(3.2.5/3.2.5), F2-C2(3.3.5/3.2.5) and F2-

C3(3.3.5/3.2.5) (Figure 5). The effect of adding AOC to the standard cc-pVDZ basis sets is substantial. 

Already with the F2-C2(3.2.5/3.2.5), the 𝑆𝑒  curve approaches the one obtained for F4-C5. The 

improvement is spectacular around the Bragg peak (0.01 - 0.2 MeV) and even for high projectile kinetic 

energies the F2-C2(3.2.5/3.2.5) basis outperforms the F2-C2 basis set. The 𝑆𝑒 curve obtained with F2-

C2(3.2.5/3.2.5) confirms our intuition that improving the description of the continuum is crucial to 

obtain reliable 𝑆𝑒. The F2-C3(3.2.5/3.2.5) basis set helps to further increase the stopping power value, 

but it is when one increases Lmax from 2 to 3 for AOC on oxygen that one gets significant increase. 

Interestingly, the combination of (3.3.5/3.2.5) with either F2-C2 or F2-C3 gives similar results indicating 

that when atomic orbitals for the continuum are used, a description of valence electrons by a simple 

double zeta basis set is good enough. Actually, the combination of (3.3.5/3.2.5) with the mininal STO-

3G basis set (Fmin-Cmin(3.3.5/3.2.5)) gives a curve similar to that obtained with F2-C2(3.3.5/3.2.5) 

(Fig. S2). The region around the Bragg peak is well captured by standard basis sets enriched with the 

(3.3.5/3.2.5) AOC sets. On the other hand, for higher projectile’s energy, a gap remains with 𝑆𝑒 
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calculated with F4-C6 (or F2-C6) and the choice of a given AOC set has little influence on this gap. To 

probe if lower energy states are populated for projectile kinetic energies above 0.2 MeV, we have run 

a series of calculation using a Dunning-Hay basis set45 fitted to describe low energy Rydberg states and 

AOC (F2-Cryd2(3.3.5/3.2.5), Table 2). Results are showed in Fig. S2 and indicate no substantial 

differences with F2-C2(3.3.5/3.2.5) after the Bragg peak. In another test we have considered the 

addition of diffuse functions on the waterclose oxygens or moving to a quadruple level valence splitting 

(basis set combinations F2-Caug2(3.3.5/4.3.3) and F2-C4(3.3.5/4.3.3) respectively). The results are 

shown on in Fig. S3. First adding diffuse functions has no impact to the stopping power curves. On the 

other hand, comparing F2-C4(3.3.5/4.3.3) with F3-C4 shows, as before a remarkable improvement 

near the Bragg peak, and a slight improvement at higher energies, reducing the gap with F4-C6 or F2-

C6. Actually, the examination of the excitation patterns (Fig. S1) reveals no major differences between 

F2-C6 and F2-C2(3.3.5/4.3.3), except at very high energy (> 40 eV), where the former basis sets affords 

more excitations. In principle this energy range is covered by the AOC we generated for this article, 

but one may add other sets of AOC parameters in the future to better describe this excitation domain.  

 

Figure 5: average electronic stopping power for proton penetrating water slabs as a function of the projectile kinetic energy 
with a Dunning standard basis set augmented by AOC (see Table 2). The error bars are the standard deviations calculated 
over the 12 water slabs with a confidence interval of 95%. 

A further increase of Lmax from 3 to 4 (F2-C2(3.4.5/3.2.5) vs. F2-C2(3.3.5/3.2.5)) leaves the 𝑆𝑒 almost 

unchanged, but still slightly below the values provided by the F4-C6 basis set (Fig. S4). With F2-

C2(3.3.5/4.3.3), AOC with Lmax =3 are added on both hydrogen and oxygen atoms of the waterclose
 

ensemble of molecules, the 𝑆𝑒 curves are the largest near the Bragg peak and then slightly below the 
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𝑆𝑒  curves provided by F4-C6 at higher kinetic energies (Figure 5). Note that the F2-C2(3.3.5/4.3.3) 

combination gives better results than those provided by F2-C2(3.4.5/3.2.5) basis set combination. This 

tends to show that it is better to increase Lmax consistently on all atoms rather than focusing only on 

heavy atoms. 

The set comprised of F2-C2(3.2.5/3.2.5), F2-C2(8.2.5/8.2.5) and F2-C2(12.2.5/12.2.5) permits to 

evaluate the influence of the R parameter, which is respectively set it to 3, 8 or 12 bohr (Fig. S5). We 

see a small upward shift around the Bragg peak when going from F2-C2(3.2.5/3.2.5) to F2-

C2(8.2.5/8.2.5), otherwise we see no much influence of the parameter for higher projectile kinetic 

energy. The curves obtained for F2-C2(8.2.5/8.2.5) and F2-C2(12.2.5/12.2.5) are almost 

superimposable. The R parameters seems to have less influence than the Lmax parameter. 

In another series of tests, we consider the F2-C2(3.2.5/3.2.5) but we vary the number of atoms on 

which this basis set is placed (Figure 6). With F2-C2(3.2.5/3.2.5)-b, only the oxygen atoms situated 

within 2 Å from the propagation line hold a (3.2.5/3.2.5) AOC set, not the hydrogen covalently linked 

to them. We see that the 𝑆𝑒 curve significantly drops down, indicating that it is needed to have 

continuum basis functions on both oxygen and hydrogen atoms. With F2-C2(3.2.5/3.2.5)-c, a 

(3.2.5/3.2.5) AOC set is also positioned on oxygen atom situated 4 Å away from the projectile 

propagation line, and with F2-C2(3.2.5/3.2.5)-d is further enriched with (3.2.5/3.2.5) AOC set on the 

hydrogen atoms bonded to them. In both cases, the 𝑆𝑒 curves are slightly modified. This is a result 

indicating that energy deposition is a very local property and the need to have dedicated basis set to 

describe the continuum is restricted to the atoms that are the closest from the propagation line, i.e. 

the atoms directly struck by the projectile. 
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Figure 6: electronic stopping power for proton in water slabs as a function of the projectile kinetic energy with a Dunning 
standard basis set augmented by AOC placed on various atoms (see Table 2). The error bars are the standard deviations 
calculated over the 12 water slabs with a confidence interval of 95%. 

 

2.5 Computational cost 
 
The computational timings generated by all the basis sets are collected in Figure 7, taking the F2-C2 

simulation as reference. The dashed line is a parabolic fit with the number of atomic orbitals. The 

overall trend is due to the Dunning cc-pV5Z and cc-pV6Z basis sets. Very satisfactorily, the advisable 

F2-C2(3.3.5/3.2.5) basis set is only 1.56 times more computationally expensive than the simple cc-

pVDZ basis set. By comparison the F4-C6 basis set is 5 times more expensive. However, we showed 

that the F2-C6 basis set provides results of similar quality for a much lower computational cost (a ratio 

of 1.76 is found with F2-C2). Eventually, the use of a minimal basis set enriched with AOC (Fmin-

Cmin(3.3.5/3.2.5)) may be a good solution if one is interested for instance in carrying out extensive 

sampling of impact parameters. Future work should address the relevance of this conclusion for other 

chemical systems containing not only oxygen or hydrogen atoms.  
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Figure 7: relative computational cost of RT-TD-ADFT simulations taking the F2-C2 basis set as reference. The dashed line is a 
parabolic fit over all data points. All the simulations have been run on the Adastra machine (CINES, France) with one node 
encompassing 8 GPU and 64 CPU. 

 

3. Comparison with experimental stopping power 

Having benchmarked Gaussian basis sets effects on average 𝑆𝑒  values, we now move to comparison 

with experimental data. To this end, we consider a more realistic model than the gas phase water slab 

investigated in Section 2 (Figure 1). Indeed, to minimize border effect, we rely on a QM/MM (Quantum 

Mechanics /Molecular Mechanics) methodology59. In a first step we carried out a Langevin molecular 

dynamics simulation of a 100 Å3 water box with the TIP3P model60 at 298 K for 1 ns with the CHARMM 

program61. We first extracted 20 regularly-spaced-snapshots from the simulation and used them in 

subsequent RT-TD-ADFT/MM simulations. For each snapshot, the QM region was determined by 

defining a cylinder centered at the water box’s center and aligned along the z-axis (Figure 8). The 

cylinder has radius and length of 6 and 16 Å respectively. Any water molecule the oxygen atom of 

which was contained in the cylinder’s volume, was included in the QM region. On average the QM 

region encompassed 67 water molecules. For the stopping power calculation, we eliminated two 2.5 

Å-length cylindrical layers at the extremities in order to alleviate border effect. To assess the 

convergence with basis set, we first conducted three series of simulations with the following basis set 
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combinations: F2-C2(3.3.5/4.3.3), F2-C4(3.3.5/4.3.3) and F2-Ccor2(3.3.5/4.3.3). All other simulation 

parameters were similar to those used for the water slabs (section 2.2).  

 

Figure 8: QM/MM set-up developed to evaluate the electronic stopping power. Water molecules described at the MM level 
are shown in grey sticks, while water molecules described at the DFT level are shown with ball-and-stick representation. 

 

 

Figure 9: electronic stopping power obtained with our Gaussian Basis set RT-TD-ADFT approach using 20 QM/MM water 
cylinders. Comparison with experiments (Sz09 62 and Sz10 63). Three basis sets are tested.  

The simulated stopping power curves calculated at the RT-TD-ADFT level are shown in Figure 9. We 

also report the experimental measurements from Shimizu and coll. 62,63 A first striking observation is 
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the weak basis set sensitivity of the 𝑆𝑒  curve. Comparing F2-C2(3.3.5/4.3.3) and F2-C4(3.3.5/4.3.3) 

indicates that going from cc-pVDZ to cc-pVQZ on the waterclose oxygens has a small impact. The blue 

curve lies slightly above the red one until 1 MeV. This result is in line with the previous benchmarks on 

water slabs (Fig. S3). When AOC are used, the valence splitting level has much less impact on energy 

deposition than when AOC are absent. The use of tight-core Dunning basis sets (green-dashed curve) 

has also little impact. Apart at the Bragg peak, the F2-C2(3.3.5/4.3.3) and F2-Ccor2(3.3.5/4.3.3) basis 

sets provide similar results. In summary, we conclude that our simulated  𝑆𝑒  curves are converged with 

respect to the basis set. If we compare them to the available experimental data on the 0.29 to 1.94 

MeV energy range, we note a systematic underestimation of the RT-TD-ADFT values.  

Actually, a closer analysis of the 20 molecular geometries might provide an explanation of the 

discrepancy between our calculated curves and the experimental ones. Indeed, our set of geometries 

might not properly sample the distances between the irradiating ion and the atoms composing the 

system. Kohanoff and co-workers nicely demonstrated the importance of a proper sampling for such 

calculations19. The probability distributions of the minimum projectile-atom-distances differ somehow 

from ideal distributions (Fig. S6). Notably, this Figure shows that the 20 geometries do not sample 

projection-oxygen distances below 0.37 Å. To cure this issue, we first have extended our sets of 

geometries with 8 new configurations. These configurations were obtained taking one of the 

precedent geometries and shifting the projectile’s impact parameter in the 0.05-0.37 Å window in 

order to more closely collide water molecules. Second, we have applied a reweighting procedure. 

Specifically, after the calculation of a given instantaneous stopping power value 𝑆𝑒
δ𝐸 , we calculate the 

projectile-ion distance in order to determine a correcting weight. The latter is simply the ratio between 

the normalized probabilities. RT-TD-ADFT simulations with the F2-C2(3.3.5/4.3.3) basis set 

combination have been run on the supplementary systems. 

Results are reported in Figure 10. We complement the graph with stopping power curves obtained 

with the SRIM (The Stopping and Range of Ions in Matter)64 and PSTAR (Stopping Power and Range 

Tables for Protons)58. The stopping power curves obtained by Reeves et al. 65 and by Yao et al.20 with a 

plane-wave RT-TD-DFT implementation are also reported for comparison. Considering first the brute 

RT-TD-ADFT data (no reweighting, red-dashed curve), we note that including 8 supplementary 

cylinders has a strong effect on the average 𝑆𝑒 . At high kinetic energies, the calculated curve is slightly 

above the experimental one, but near the Bragg peak, it largely overshoots the semi-empirical SRIM 

and PSTAR curves. Clearly, the projectile-atom sampling quality is a major parameter impacting the 

average 𝑆𝑒 . This parameter is actually as important as the basis set quality.  
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The reweighted RT-TD-ADFT stopping power curve, on the other hand, compares very well with the 

experiment and the SRIM and PSTAR models. Above 0.9 MeV, the RT-TD-ADFT curves lie very close to 

the experimental points and slightly below those provided by semi-empirical approaches. At the Bragg 

peak the agreement is also good with the semi-empirical models. For very low kinetic energy (0.01-

0.05 MeV) our values overestimate those provided by the semi-empirical models. Electron attachment 

to the projectile at low velocities would reduce the effective charge of the projectile and decrease the 

stopping power. This could be an explanation of the overestimation that will deserve to be addressed 

more in depth. 

The comparison with other TD-DFT calculations using plane-wave basis functions is also encouraging. 

The data reported in 2016 by Kanai co-worker (RYK16)65 used a cutoff value of 50 Ry and the 1s 

electrons of oxygen atoms were treated as core electrons with a pseudopotential. With a more 

sophisticated protocol, with a 250 Ry cutoff and all electrons represented explicitly, this research group 

later obtained a better agreement with experimental data (YYK19)20. Here, our aim is to show that RT-

TD-ADFT with Gaussian basis set can perform as good as a plane-wave code for electronic stopping 

power calculation provided adequate basis functions are used together with a proper configurational 

sampling. In that regard, it is delicate to push further the comparison between plane-wave and 

Gaussian basis sets curves as different sets of geometries have been used.  

 

Figure 10: electronic stopping power obtained with our Gaussian Basis set RT-TD-ADFT approach using 29 QM/MM water 
cylinders. Comparison with experiments (Sz09 62 and Sz10 63), semi-empirical models (SRIM and PSTAR) and with other plane-
wave (PW) RT-TD-DFT implementation of Reeves et al. (RYK16) 65 and Yao et al. (YYK19)20. 
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Conclusions 

In this article, we have reported extensive benchmarks of RT-TD-ADFT electronic stopping power 

calculations with a code relying on atom-centered basis functions. The novelty of the present work 

was to investigate the relevance of Gaussian basis functions fitted to describe the continuum (AOC). 

We have considered liquid water models irradiated by protons in the 0.01-1 MeV kinetic energy range. 

We found that the addition of AOC on top of standard basis sets is very beneficial. AOC-augmented 

double-zeta basis sets were shown to give reliable electronic stopping power values. Even the 

combination of AOC with the minimal basis STO-3G basis set gave satisfactory results. The effect is 

mostly noticeable around the Bragg peak where electron transitions are the most energetic, but for 

faster projectiles, AOC still clearly improve 𝑆𝑒  predictions. On the other hand the need to capture lower 

energy transitions puts pressure on the quality of valence electron description (and eventually also 

core excitations31). We found that AOC only need to be placed on the molecules that are most closely 

lying to the projectile’s propagation track. Furthermore, the addition of AOC on these atoms makes 

superfluous the basis set enrichment on atoms positioned further away from this line. The 

consequence of these prescriptions is a very modest increase of the computational cost associated 

with the use of AOC (Figure 7). According to our benchmarks for water slabs irradiation by fast protons, 

it seems advisable to fit AOC with a rather small parameter extension (𝑅 = 3 bohr) and to opt for 

pronounced angular flexibility by setting the 𝐿𝑚𝑎𝑥  quantum number to 3. We applied the optimal F2-

C2(3.3.5/4.3.3) set-up to a QM/MM model for bulk water, which gave good agreement with 

experimental data. As already documented in Ref. 19, particular attention must be paid to properly 

sample projectile-atom distances or, as here to apply a reweighting procedure to obtain reliable 

average stopping power values. In summary, this first application of Gaussian AOC for the calculation 

of electronic stopping power opens the door for more extensive benchmarks, for example with other 

irradiating ions and/or for other materials.  
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