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HYPERLOGARITHMIC FUNCTIONAL EQUATIONS ON DEL PEZZO SURFACES

ANA-MARIA CASTRAVET & LUC PIRIO

Abstract. For any d ∈ {1, . . . , 6}, we prove that the web of conics on a del Pezzo surface of degree
d carries a functional identity whose components are antisymmetric hyperlogarithms of weight
7 − d. Our approach is uniform with respect to d and relies on classical results about the action
of the Weyl group on the set of lines on the del Pezzo surface. These hyperlogarithmic functional
identities are natural generalizations of the classical 3-term and (Abel’s) 5-term identities satisfied
by the logarithm and the dilogarithm, which correspond to the cases when d = 6 and d = 5
respectively.

1. Introduction

1.1. Functional equations of polylogarithms. The classical logarithm Log satisfies Cauchy’s

identity

(1) Log(x) + Log(y) − Log(xy) = 0

for all x, y > 0, and this functional identity is fundamental in mathematics.

Several authors of the XIXth century have independently discovered equivalent forms of the
following identity

(

Ab
)

R
(

x
)

− R
(

y
)

− R

(

x

y

)

− R

(

1 − y

1 − x

)

+ R

(

x(1 − y)
y(1 − x)

)

= 0 ,

satisfied for all x, y such that 0 < x < y < 1, where R stands for Rogers’ dilogarithm, defined by

(2) R(x) = Li2(x) +
1
2

Log(x) Log(1 − x) −
π2

6
for x ∈ (0, 1), where Li2 stands for the classical bilogarithm, the weight 2 polylogarithm.

The identity
(

Ab
)

is nowadays called Abel’s identity of the dilogarithm, hence the notation. It
can be seen as a weight 2 generalization of Cauchy’s identity (1). To see in which way, recall the
weight n ≥ 1 polylogarithm Lin, classically defined on the unit disk D = { z ∈ C , |z|< 1 } as the
sum of the convergent series

Lin(z) =
∑

k≥1

zk/kn .

The first polylogarithm is related to the usual logarithm through the relation Li1(z) = −Log(1− z)
for z ∈ D, and both Log and R can be considered as suitable versions of the first two polyloga-
rithms such that the two functional identities (1) and

(

Ab
)

hold true.

Polylogarithms are special functions of great interest which satisfy properties generalizing
those of the logarithm and the dilogarithm. In particular, they satisfy functional equations of
the form

(3)
M
∑

i=1

ci Lin(Ui) = Ln−1

1

http://arxiv.org/abs/2301.06775v2
MAILTO:ANA-MARIA.CASTRAVET@UVSQ.FR
MAILTO:LUC.PIRIO@UVSQ.FR
https://mathworld.wolfram.com/RogersL-Function.html
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where the ci’s are rational coefficients, the U′
i
s are multi-variable rational functions and with Ln−1

a rational expression in polylogarithmic functions of weight at most n − 1.

Since the early XIX-th century (works of Spence, Kummer, Abel, etc) to nowadays, many
authors have discovered functional identities of the above form satisfied by (some version of)
polylogarithms Lin of weight n ≤ 7. Multi-variable generalizations of polylogarithms have been
considered as well, in particular their functional equations. The subject is currently very active.1

Polylogarithms are connected to several distinct fields in mathematics such as hyperbolic geom-
etry (volumes of hyperbolic polytopes), K-theory of number fields (Zagier’s conjecture), theory
of periods and multizeta values, scattering amplitudes in higher energy physics, theory of cluster
algebras, etc.2 In particular, it is now clearly established that knowing functional identities of the
form (3) is important, cf. [G1, §2]. However, in spite of the important number of recent works on
the subject, the functional identities satisfied by polylogarithms are still not well understood.

Identities of the form (3) are known to exist only for n ≤ 7 and for the higher weights (n = 6, 7)
were obtained by computer aided calculations (see [Ga]). The general belief is that, for any
n ≥ 1, there should exist a fundamental identity of the form (3) satisfied by Lin from which
any other could be formally obtained (for instance, see the last paragraph of [Gri, §4.1]). The
first interesting case to be considered is for weight 2, for which Abel’s identity is the evoked
fundamental one, a result which has been proved only recently in [dJ]. For weight 3, the 22-term
trilogarithmic equation in three variables found by Goncharov in [G3] may be the fundamental
one but, as far we are aware of, there is no proof until now. The weight 4 case is the subject
of the recent work [GR] by Goncharov and Rudenko. Using the cluster structure of the moduli
spaces M0,n+3, they construct a functional identity for the tetralogarithm which allows them to
prove Zagier’s conjecture in weight 4. This identity is expected to play the same role for the
tetralogarithm as the one played by Abel’s identity for the dilogarithm.

1.2. Hyperlogarithms. Hyperlogarithms are generalization of polylogarithms and they go back
to Poincaré. They are multivalued holomorphic functions on P1 which can be obtained by iterated
integrations of some given rational 1-forms with logarithmic singularities on the Riemann sphere.
More precisely, let σ1, . . . , σm+1 be m+1 pairwise distinct points of P1. We fix an affine coordinate
z such that σm+1 = ∞. Then the 1-forms ωs = dz/(z − σs) for s = 1, . . . ,m form a basis of the
space of global logarithmic 1-forms on P1 with poles in Σ = {σs}

m+1
s=1 . We set Z = P1 \ Σ.

Given any tuple (sk)w
k=1 of elements in {1, . . . ,m}, the weight w hyperlogarithm Lωs1 ···ωsw

is the
multivalued function on Z defined inductively as follows:

Lωsw
(z) =

∫ z

ωsw
= Log

(

z − σsw

)

and Lωs1 ...ωsw
(z) =

∫ z Lωs2 ...ωsw
(u)

u − σs1

du

The polylogarithmic functions (such as Log, Rogers’ dilogarithm R, or all the classical poly-
logarithm Lin) are particular instances of hyperlogarithms in the specific case when Σ = {0, 1,∞}.
If the properties of polylogarithms, in particular the functional equations they satisfy, have been
studied intensely, this is much less the case for more general hyperlogarithms (however see [We]
or the more recent [Br]). Several recent works have shown that hyperlogarithms are relevant for
computing certain scattering amplitudes in higher energy physics (see for instance the PhD thesis
[Pa] or the recent “white paper" [B&al], especially the fifth section therein).

1E.g., see the works Goncharov, Gangl, Goncharov-Rudenko, Charlton-Gangl-Radchenko, Rudenko.
2For more details, we refer to the surveys [Za] or [G2].

https://arts.st-andrews.ac.uk/digitalhumanities/fedora/repository/islandora%3A2864#page/7/mode/2up
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https://doi.org/10.1006/aima.1995.1045
https://doi.org/10.1007/s00029-003-0312-z
https://arxiv.org/abs/1803.08585
https://arxiv.org/abs/2012.09840
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In this paper, we describe generalizations in weight 3, 4, 5 and 6 of the 3-term and 5-term
identities of the logarithm and dilogarithm respectively. These identities are similar to the two
latter classical identities, but involve non polylogarithmic hyperlogarithms. For this purpose, we
introduce a geometric viewpoint on Abel’s identity

(

Ab
)

by relating it to the conic fibrations
of a quintic del Pezzo surface. The generalization will involve the conic fibrations of del Pezzo
surfaces of degree ≤ 6.3

1.3. Abel’s identity on the quintic del Pezzo surface. The five rational arguments

U1 = x , U2 = y , U3 =
x

y
, U4 =

1 − y

1 − x
and U5 =

x(1 − y)
y(1 − x)

of R in
(

Ab
)

can be interpreted geometrically as follows: let

β : X4 = Blp1,...,p4(P2) −→ P2

be the blow-up of the complex projective plane at the 4 points in general position p1 = [1 : 0 : 0],
p2 = [0 : 1 : 0], p3 = [0 : 0 : 1] and p4 = [1 : 1 : 1]. The surface is the quintic del Pezzo

surface. It carries five fibrations in conics φi : X4 → P1 (i = 1, . . . , 5) which coincide with the
compositions Ui ◦ β : X4 d P1 as rational functions. It follows that Abel’s identity can be written

(

AbX4

)

5
∑

i=1

ǫi R
(

φi

)

= 0

for some constants ǫ1, . . . , ǫ5 equal to 1 or −1, this identity holding true locally at any sufficiently
general point of X4 for suitable branches of Rogers dilogarithm.

1.4. Main result: generalization to del Pezzo surfaces of degree ≤ 6. Let 3 ≤ r ≤ 8 and let

Xr = Blp1 ,...,pr
(P2)

be the blow-up of the projective plane at r points in general position. Then Xr is a del Pezzo
surface of degree 9 − r, i.e., the anti-canonical class −KXr

is ample and with self-intersection
(−KXr

)2
= 9 − r. If 3 ≤ r ≤ 6, then the complete linear system −KXr

defines an embedding
Xr ֒→ P9−r such that the degree of Xr is 9 − r. We define the degree of a curve C ⊂ Xr to be
C · (−KXr

). Smooth rational curves in Xr of degree 1, respectively 2, are called lines, respectively
smooth conics. A conic fibration on Xr is the equivalence class (up to post composition with an
element of PGL2) of a morphism Xr → P1 such that a general fiber is a smooth conic.

The following facts are well known:

(i). The number lr of lines in Xr is finite;

(ii). The number κr of conic fibrations on Xr is finite as well;

(iii). Any conic fibration Xr → P1 has exactly r − 1 reducible fibers, each a union of two lines
in Xr intersecting transversely at one point.

(iv). The Picard group Pic(Xr) is free and is acted upon by a certain Weyl group Wr. Moreover,
this action preserves the intersection product.

3The 3-term identity of the logarithm can also be considered from a geometric perspective, but it is less meaningful
from this point of view, because it is “too simple". This is why we only consider the case of Abel’ equation.
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The values of lr and κr for 3 ≤ r ≤ 8 are given in the following table:

r 3 4 5 6 7 8

lr 6 10 16 27 56 240
κr 3 5 10 27 126 2160

Let φ1, . . . , φκr
: Xr → P1 be κr pairwise non equivalent conic fibrations. We denote by Lr the

divisor of Xr whose the irreducible components are all the lines in Xr and we set

Yr = Xr \ Lr .

From (iii), we know that the complement Σi of φi(Yr) in P1 is a finite set with r − 1 elements
denoted by σ1

i
, . . . , σr−1

i
. One assumes that φi has been chosen such that one of the σt

i
’s, say σr−1

i
,

coincides with∞ ∈ P1. Then the rational differentials ωt
i
= dz/(z −σt

i
) for t = 1, . . . , r − 2 form a

basis of the space of logarithmic 1-forms on P1 with poles along Σi.

For all i = 1, . . . , κr, let AIr−2
i

be the complete antisymmetric hyperlogarithm of weight r − 2
on Zi = P1 \ Σi, defined as the antisymmetrization of the hyperlogarithm Lω1

i
···ωr−2

i
with respect to

the logarithmic 1-forms ω1
i
, . . . , ωr−2

i
, i.e.,

AIr−2
i = Asym

(

Lω1
i
···ωr−2

i

)

=
1

(r − 2)!

∑

ν∈Sr−2

(−1)ν L
ω
ν(1)
i
···ω

ν(r−2)
i

where, for any ν ∈ Sr−2, we denote by (−1)ν the signature of ν. Each AIr−2
i

is uniquely defined
up to sign. Our main result is the following:

Theorem 1.1. There exists (ǫi)
κr

i=1 ∈ {±1}κr , unique up to a global sign, such that for any y ∈ Yr

and for a suitable choice of the branch of the hyperlogarithm AIr−2
i

at yi = φi(y) ∈ P1 for each

i = 1, . . . , κr, the following functional identity holds true on an open neighbourhood of y in Yr:

HLog(Xr)

κr
∑

i=1

ǫi AIr−2
i

(

φi

)

= 0 .

A few comments:

• The identity HLog(X3) is nothing else but the logarithm identity (1) and HLog(X4) coin-
cides with the geometric identity

(

AbX4

)

hence is equivalent to Abel’s relation
(

Ab
)

. In
contrast, the four other identities HLog(Xr) for r = 5, 6, 7, 8 are new.

• For any i = 1, . . . , κr, the suitable branch of the hyperlogarithm AIr−2
i

from the statement
of the theorem is defined in a precise and constructive way (see 8). Furthermore, in
Theorem 3.1 we prove an invariant algebraic version of Theorem 1.1 by constructing (an
algebraic equivalent of) each term ǫi AIr−2

i
(φi) by means of the natural action of the Weyl

group Wr on only one term, which we may assume to be AIr−2
1 (φ1).

• At least when r ≤ 7, there is a conceptual interpretation of why HLog(Xr) holds true in
terms of the space CLr freely spanned by the set Lr of lines contained in Xr. This space
is acted upon in a natural way by Wr and from a representation-theoretic perspective, the
left-hand side of HLog(Xr) can be interpreted as the image of the signature representa-
tion signr of the Weyl group Wr in the (r − 2)-th wedge product of CLr . The reason why
∑κr

i=1 ǫi AIr−2
i

(

φi

)

vanishes identically is that signr does not appear with positive multiplic-
ity in the decomposition of ∧r−2CLr in irreducible Wr-modules.
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1.5. Structure of the paper. Throughout the paper, we work in the complex analytic or algebraic
setting.

In Section §2, we recall the basic facts about hyperlogarithms and del Pezzo surfaces which will
be used in the rest of the paper. In particular, we explain how the functional identities satisfied by
hyperlogarithms can be proved algebraically (cf. Proposition 2.2). Section §3 is the main section
and that is where Theorem 1.1 is proved. Using Proposition 2.2, its proof is essentially reduced to
the verification that a certain (antisymmetric) tensorial identity hlog = 0 holds true. We include at
the end of Section §3 some considerations regarding possible generalizations to higher dimensions
(blow-ups of projective spaces at general points). Finally in Section §4, we make the identity
HLog(X5) explicit in some affine coordinates.

1.6. Acknowledgements. A.-M. Castravet was partially supported by the ANR grant FanoHK.
Thanks go to Igor Dolgachev and Jenia Tevelev for several useful discussions. L. Pirio bene-
fited from interesting early exchanges with Maria Chlouveraki and Nicolas Perrin, to whom he is
grateful. He also thanks Thomas Dedieu and Vincent Guedj for their interest in this work.

2. Preliminaries

In this section, we recall some properties of hyperlogarithms and del Pezzo surfaces.

2.1. Hyperlogarithms. Hyperlogarithms are multivalued holomorphic functions on P1 which
were used by Poincaré and Lappo-Danilevsky for building solutions to linear differential equa-
tions with regular singular points on the Riemann sphere. As modern references about hyperlog-
arithms, the reader can consult [We, Br] or [BPP, §2.3].

2.1.1. Let n ≥ 1 and σ1, . . . , σm be n pairwise distinct complex numbers. We set

Σ = {σ1, . . . , σm,∞} ⊂ P1 and Y = P1 \ Σ .

The 1-forms ωk = d Log(z − σk) = dz/(z − σk) for k = 1, . . . ,m form a basis of the space

HΣ = H0
(

P1,Ω1
P1

(

LogΣ
)

)

of global rational 1-forms on P1 with logarithmic poles along Σ.

We fix a base point y ∈ Y . For any word ωk1ωk2 · · ·ωkw
on the ωk’s, of length w ≥ 1, we define

the hyperlogarithm associated to it at y as the holomorphic germ at this point, denoted by L
y
ωk1 ...ωkw

defined inductively on the length w by successive integrations performed on a sufficiently small
neighborhood of y, according to the following relations:

L
y
ωkw

(z) =
∫ z

y

ωkw
= Log

(

z − σkw

y − σkw

)

and L
y
ωk1 ...ωkw

(z) =
∫ z

y

L
y
ωk2 ...ωkw

(u)

u − σk1

du for w > 1 ,

for any z sufficiently close to y on P1. The germ Lωk1 ...ωkw
∈ OY,y admits analytic continuation

along any continuous path γz : [0, 1] → P1 \ Σ joining y to an arbitrary point z ∈ Y . The value
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at z of this analytic continuation only depends on the homotopy class of γz and is easily seen to
coincide with the iterated integral of the tensor ωk1 ⊗ · · · ⊗ ωkw

∈
(

HΣ
)⊗w along γz: one has

L
y
ωk1 ...ωkw

(z) =
∫

γz

du

u − σk1

⊗
du

u − σk2

⊗ . . . ⊗
du

u − σkw

.

The germ L
y
ωk1 ...ωkw

gives rise to a global but multivalued holomorphic function on Y , with
branch points at theσk’s, which we will still refer to as the hyperlogarithm associated toωk1 . . . ωkw

and we denote by Lωk1 ...ωkw
.

More formally, we consider the map (where II stands for “Iterated Integral”)

(4) IIy

Y
: ⊕w≥0

(

HΣ)
⊗w −→ OP1,y , ωk1 ⊗ ωk2 ⊗ . . . ⊗ ωkw

7−→ L
y
ωk1 ···ωkw

.

which in addition to being C-linear, can be proved to be a morphism of algebras if ⊕w≥0
(

HΣ)⊗w

is endowed with the so-called “shuffle product” (but we will not use this property in the rest of
the paper). The image Im

(

IIy

Y

)

is a complex subalgebra of OP1,y and its elements are called (germs

at y of) hyperlogarithms. Moreover, the morphism (4) is injective. Consequently, for any germ of
hyperlogarithm L ∈ OP1,y, the minimum w(L) of integers w ≥ 0 such that L belongs to the image
of ⊕w′≥w

(

HΣ)⊗w′ by IIy

Y
is well-defined and is called the weight of L.

As multivalued functions on P1, the monodromy of hyperlogarithms can be proved to be unipo-
tent (see [We, Thm. 8.2]) from which it follows that these functions also form an algebra and that
the notion of weight still makes sense for them.

2.1.2. The most classical example is for m = 2 with σ1 = 0 and σ2 = 1 which encompasses
the case of classical polylogarithms. Indeed, setting η0 = dz/z and η1 = dz/(1 − z) in this special
case, as multivalued hyperlogarithms on P1 \ {0, 1,∞}, one has

Log = Lη0 , R =
1
2

(

Lη0η1 − Lη1η0

)

and Lin+1 = Lη⊗n
0 η1

for any n ≥ 0 .

Working locally with germs of hyperlogarithms is more involved but removes all ambiguity
regarding the choice of a branch of the functions considered. For instance, for any y ∈ P1 \

{0, 1,∞}, one has that the weight 2 hyperlogarithm at y whose symbol is 1
2 (η0η1 − η1η0) is the

holomorphic function defined by

Ry(z) =
1
2

(

Lη0η1 (z) − Lη1η0 (z)
)

=
1
2

∫

z

y



















Log
(

u−1
y−1

)

u
−

Log
(

u
y

)

u − 1



















du

for any z ∈ (P1, y). This hyperlogarithm has to be seen as a holomorphic version, localized at y,
of Rogers’ dilogarithm defined in 2.

2.1.3. We now define the hyperlogarithms involved in this paper, noted by AIw. Even if our
results is for weights w less than or equal to 6, the definition of AIw is completly uniform in w,
hence we will not impose any restriction on the weight in this subsection.

We use the notation of §2.1.1 again: Σ = {σ1, . . . , σm,∞}, ωk = dz/(z − σk) for k = 1, . . . ,m,
etc. We introduce a special class of hyperlogarithms on P1, with respect to Σ, of weight m = |Σ|−1.
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For a C-vector space V , we identify ∧mV with its image in V⊗m under the standard embedding:

∧mV ֒→ V⊗m, v1 ∧ . . . ∧ vm 7−→
1

m!

(

∑

τ∈Sm

(−1)τvτ(1) ⊗ . . . ⊗ vτ(m)

)

,

where (−1)τ stands for the signature of τ for any permutation τ ∈ Sm.

Definition 2.1. The (complete) anti-symmetric hyperlogarithm AIm of weight m on P1, with

respect to Σ, is the hyperlogarithm whose germ at any y ∈ Y = P1 \ Σ is obtained by taking the

image of ω1 ∧ . . . ∧ ωm ∈ ∧
mHΣ ⊂

(

HΣ
)⊗m

under the map (4): as germs at y, one has

AIm
Σ
= IIy

Y

(

ω1 ∧ . . . ∧ ωm

)

.

One verifies that ω1 ∧ . . . ∧ ωm ∈ ∧
mHΣ is canonically defined, up to a sign. It follows that

±AIm
Σ

is canonically defined by Σ. Here are some easy remarks about the first three examples:

− m = 1 and σ1 = 0; one has AI1
{0,∞} = Log up to sign;

− m = 2 and σ1 = 0, σ2
= 1; up to sign, one recovers the holomorphic version of Rogers’

dilogarithm discussed above since AI2
{0,1,∞} = Ry as germs at any y ∈ P1 \ {0, 1,∞};

− the case m = 3 is new since, the weight 3 antisymmetric hyperlogarithm has not been con-
sidered in the literature before as far we know. For any y ∈ P1\Σwith Σ = {σ1, σ2, σ3,∞},
one can give an explicit integral expression for AI3

Σ
(see (19)). However, one can prove

that AI3
Σ

can be expressed as the following linear combination of products of antisymmet-
ric polylogarithms of weight 1 or 2 since for suitable choices of the sign of AI3

Σ
and of the

weight two hyperlogarithms AI2
Σ\{σk}

’s for k = 1, 2, 3, the following relation holds true

AI3
Σ

(

z
)

=
1
3

3
∑

k=1

(−1)k−1Log

(

z − σk

y − σk

)

· AI2
Σ\{σk}

(

z
)

for any z ∈ P1 sufficiently close of the previously fixed base point y.

2.1.4. Pull-backs of hyperlogarithms. Let Y be a (not necessarily compact) complex manifold
and letH ⊂ H0(Y,Ω1

Y
) be a subspace of holomorphic 1-forms on Y , such that:

(5) For all ω,ω′ ∈H , one has dω = 0 and ω ∧ ω′ = 0 .

The conditions (5) are satisfied if, for example, H = φ∗H0(C,Ω1
C

), for some regular submersion
φ : Y → C, with C a smooth (not necessarily compact) curve. The conditions (5) ensure that for
any holomorphic 1-forms ω1 . . . , ωw inH , the iterated integral IIy

ω1ω2...ωw
=

∫ •
ω1⊗ω2⊗· · ·⊗ωw,

defined inductively as in §2.1.1, depends only on the homotopy class of the path γz. Hence, for
all m ≥ 1, there is C-linear map IIy

Y
: ⊕w≥0H

⊗w → OY,y, defined as in (4). Furthermore, this map
is an injective morphism of complex algebras.

A special situation occurs when the conditions (5) are not necessarily satisfied for all elements
ofH , but there exist subspaces H i ⊂ H for i = 1 . . . , d, such that for each i,H i satisfies (5). In
this case, we have again a well-defined injective C-linear map given by the iterated integrals on
the subspaces

∑d
i=1

(

H i

)⊗w
⊂H⊗w, for all w ≥ 0:

(6) IIy

Y
: ⊕w≥0

( d
∑

i=1

H⊗w
i

)

→ OY,y.
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2.1.5. Hyperlogaritms for webs. Fix m ≥ 1. The situation we consider here is when X a com-
plex projective manifold, φi : X → P1 surjective morphisms (with i = 1, . . . , d), such that there
exists subsets of m+1 distinct points Σi = {σ

1
i
, . . . , σm

i
,∞} ⊂ P1, such that φi : X\φ−1

i
(Σi)→ P1\Σi

is a regular submersion for all i, and the union D ⊂ X of all divisors φ−1
i

(σk
i
) ⊂ X, for all i and

k = 1, . . . ,m is such that one has dφi ∧ dφ j , 0 on Y = X \ D, for all i, j = 1, . . . , d distinct. Then
the maps φi (i = 1, . . . , d) define a regular d-web of hypersurfaces on Y .

In such a situation, we consider the following notations:

• we denote by H = H0(X,Ω1
X

(LogD)
)

⊂ H0(Y,Ω1
Y

)

the space of logarithmic 1-forms on
X with logarithmic poles along to D;

• for i = 1, . . . , d, we set Yi = P1 \ Σi and

− θ
j

i
= dz/(z − σk

i
) for k = 1, . . . ,m, which form a basis of

HΣi
= H0

(

P1,Ω1
P1

(

LogΣi

)

)

− Θ
j

i
= φ∗

i

(

θ
j

i

)

= dφi/(φi − σ
k
i
) for k = 1, . . . ,m, which form a basis of

H i = φ
∗
j

(

HΣi

)

⊂H ;

− θi = θ
1
i
∧. . .∧θm

i
∈ ∧mHΣi

⊂
(

HΣi

)⊗m andΘi = φ
∗
i

(

θi

)

= ∧m
k=1Θ

k
i
∈ ∧mH i ⊂

(

H i

)⊗m;

• for any y ∈ Y , we set yi = φi(y) ∈ P1 \ Σi and we consider the (germs of) weight m

hyperlogarithms

AIm
Σi
= IIyi

Yi

(

θi

)

∈ OP1,yi
for i = 1, . . . , d and AIm

i = IIy

Y

(

Θi

)

∈ OY,y .

One verifies easily that for any i, the following relation holds true as germs on Y at y:

AIm
i = AIm

Σi
◦ φi.

For any i = 1, . . . , d, the hyperlogarithm AIm
i

(or equivalently AIm
Σi

) is only well-defined up to
multiplication by −1. For each i, we fix one of the two possible choices for AIm

i
. The following

result, although elementary to prove, is key since it will allow us to handle algebraically the
functional identity we want to establish in §3:

Proposition 2.2. For c1 . . . , cd ∈ C, the following statements are equivalent:

i. One has
∑d

i=1 ciΘi = 0 in ∧nH ⊂H⊗n.

ii. There exists y ∈ Y such that
∑d

i=1 ci AIm
Σi

(φi) = 0 as a holomorphic germ at y on Y.

iii. For any y ∈ Y,
∑d

i=1 ci AIm
Σi

(φi) = 0 as a holomorphic germ at y on Y.

iv. One has
∑d

i=1 ci AIm
Σi

(φi) = 0 as multivalued functions on Y.

Proof. For a point y ∈ Y , we have
∑d

i=1 ci AIm
Σi

(φi) = IIy

Y
(
∑d

i=1 ciΘi), where IIy

Y
is the integration

map in (6). The statement now follows from the fact that this map is injective. �
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2.2. Del Pezzo surfaces. Del Pezzo surfaces are smooth projective surfaces with ample anti-
canonical line bundle. A del Pezzo surface is isomorphic to either P1×P1 or a blow-up Blp1,...,pr

(

P2)

(r ≥ 8) at r points p1, . . . , pr in general position in P2.

In what follows we consider del Pezzo surfaces Xr = Blp1,...,pr

(

P2) for 3 ≤ r ≤ 8. We fix a
blow-up map β = βr : Xr → P2. We refer to [Ma, Chap.IV] or [Do1, Chap.8] for general facts
about del Pezzo surfaces. Here we make a list of the properties that we will use.

(1). The Picard group Pic(Xr) is a free abelian group generated by the classes ei of the ex-
ceptional divisors β−1(pi) (for i = 1, . . . , r) and the class h of the preimage under β of a
general line in P2. The intersection pairing on Xr is determined by h2

= 1, h · ei = 0,
ei · e j = −δi j, for all i, j ∈ {1, . . . , r}.

(2). The canonical divisor is K = KXr
= −3h +

∑r
i=1 ei and the degree of Xr is (−K)2

= 9 − r.

(3). A line on Xr is a smooth curve ℓ ⊂ Xr with K · ℓ = ℓ2
= −1. Such a line is necessarily

a smooth rational curve and it can be naturally identified with its class in Pic(Xr). We
denote by Lr the set of lines on Xr.

(4). A conic on Xr is a curve C ⊂ Xr with C · K = −2 and C2
= 0. When C is smooth, it is

necessarily a smooth rational curve. Otherwise, it is the sum of two concurrent lines on
Xr. We denote by Kr the set of conic classes.

A conic fibration Xr → P1 is given by the complete linear system of a conic on Xr.
Hence, Kr corresponds to the set of conic fibrations up to projective equivalence.

(5). The orthogonal complement K⊥ =
{

α ∈ Pic(Xr)
∣

∣

∣α · K = 0
}

is free of rank r and spanned
by the classes

αi = ei − ei+1 for i = 1, . . . , r − 1 and αr = 3h − e1 − e2 − e3 .

Together with the positive definite symmetric form −(·, ·)|K⊥ coming from the intersection
pairing, the αi’s define a root system of type Er, with the convention that E4 = A4,
E5 = D5, see the following figure:

1 2 3 4 5

E
6

1 2 3 4

7

E7

1 2 3 4

8

E8

5

5

6

6

6 71 2 3 4

5

E = D5 5

1 2 3 4

E = A4 4

1 2 3

E
3= A

2
xA1

Figure 1. Dynkin diagrams Er (with i standing for αi for any i = 1, . . . , r)

(6). For any i = 1, . . . , r, the map

(7) sαi
: β 7−→ β +

(

β · αi

)

αi

is an involutive automorphism of
(

Pic(Xr), (·, ·)
)

which lets K invariant. The restrictions
of the sαi

’s to Rr = K⊥ ⊗Z R are orthogonal reflections and they generate a Weyl group of
type Er, denoted by Wr. In particular, Wr is finite.
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(7). For simplicity, we set si = sαi
for any i. When i = 1, . . . , r − 1, the reflection si acts on

Pic(Xr) by interchanging ei with ei+1, leaving other exceptional classes ek and h fixed.
The reflection sr acts as a Cremona transformation, i.e., one has sr(h) = 2h − e1 − e2 − e3

and sr(ei) = h − e j − ek for {i, j, k} = {1, 2, 3} and sr leaves ek fixed for k = 4, . . . , r.

(8). For an element w ∈ Wr, we denote (−1)w
= (−1)l(w) ∈ { ±1 } the signature of w. Here

l(w) stands for the length of w which by definition is the smallest non negative integer m

such that one can write w = si1 · · · sim for some i1, . . . , im in {1, . . . , r}. The map Wr →

{±1 }, w 7→ (−1)w is a group morphism, called the signature. The associated signature

representation is the unique non trivial representation of Wr of dimension 1.

(9). Any line ℓ (respectively, any conic class c) on Xr belongs to the Wr-orbit of the exceptional
divisor e1 (respectively, h − e1). This follows from Noether’s inequality (e.g., see [Do2,
p. 288]). Equivalently: Wr acts transitively on the set Lr of lines (respectively, on the set
Kr of conic classes).

(10). Any conic fibration φc : Xr → P1 corresponding to a conic class c has exactly r − 1
reducible fibers, each a union of two lines intersecting at a point. In particular, each conic
class is of the form c = ℓ+ ℓ′, with ℓ, ℓ′ lines such that ℓ · ℓ′ = 1. We will often write ℓ+ ℓ′

to indicate the reducible conic ℓ ∪ ℓ′.

(11). For r > 3, the stabilizer Wer
of er ∈ Lr is generated by the reflections si’s for i ranging

from 1 to r and distinct from r − 1. It follows that Wer
is isomorphic to the Weyl group

associated to the Dynkin diagram E′
r−1 obtained by removing the (r − 1)-th node as well

as the edge adjacent to it from Er, that is Wer
≃ W(Er−1). In particular, for r > 3 we have

lr = |Lr |= |Wr |/|Wr−1|. For r = 3, one has We3 = 〈s1〉 ≃ {±1} and l3 = |L3|= 6.

(12). The stabilizer Wc1 of c1 = h − e1 ∈ K is generated by the reflections s2, . . . , sr. This
subgroup of Wr is isomorphic to the Weyl group associated to the Dynkin diagram E′′

r−1
obtained by removing the first node as well as the edge adjacent to it from Er, which hence
is of type Dr−1.4 In particular, we have κr = |Kr |= |Wr|/|W(Dr−1)|= |Wr |/(2r−2(r − 1)!).

(13). For any mutually disjoint r − 2 lines ℓ1, . . . , ℓr−2, there exists an element w of the Weyl
group W such that w · ei = ℓi for all i = 1, . . . , r − 2 (cf. Corollary 26.8.(i) in [Ma]).

Some numerical invariants associated to the Weyl groups Wr and the sets of lines and conics
Lr and Kr are gathered in the following table:

An important ingredient in our approach is that for each case r ∈ {3, . . . , 8}, there are explicit
descriptions of both sets Lr and Kr (when those are seen as subsets of Pic(Xr)). We mention only
the case when r = 8 (from which the other cases can be easily deduced) and refer to [Ma, §26]
and [Do1] for details and proofs.

When viewed as elements of Pic(Xr), any line or conic class is uniquely determined by the tu-
ple of its integer coordinates (d,m1, . . . ,mr) ∈ Zr+1 with respect to the basis (h,−e1, . . . ,−er)
of the Picard lattice. Let the type of a coordinate (r + 1)-tuple (d,m1, . . . ,mr) by a symbol
(

d ; k
n1
1 , . . . , k

ns
s

)

for some integers kt , 0 and nt > 0 for t = 1, . . . , s ≤ r, with the defining
property that among the non zero m1, . . . ,mr, exactly nt are equal to kt, this for all t ranging from
1 to s (for example, the type of (6, 2, 2, 2, 3, 2, 2, 2, 0) ∈ Z9 is

(

6 ; 3, 26 )

, etc).

4Here we use the convention that D2 = A1 × A1 and D3 = A3.
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r 3 4 5 6 7 8

Er A2 × A1 A4 D5 E6 E7 E8

Wr = W(Er) S3 ×S2 S5
(

Z/2Z)4
⋉S5 W(E6) W(E7) W(E8)

ωr = |Wr| 12 5! 24 · 5! 27 · 34 · 5 210 · 34 · 5 · 7 214 · 35 · 52 · 7

lr = |Lr| 6 10 16 27 56 240

κr = |Kr| 3 5 10 27 126 2160

Table 1.

In the table below, we list all the types of lines and conics classes on X8, and indicate the
number of classes there are for each type (see [Ma, Prop. 26.1] and [Do1, §8.8]).

Lines on X8

Types Number of such

(

0 ; −1
)

8
(

1 ; 12 )

28
(

2 ; 15 )

56
(

3 ; 2, 16 )

56
(

4 ; 23, 15 )

56
(

5 ; 26, 12 )

28
(

6 ; 3, 27 )

8

Conic classes on X8

Types Number of such

(

1 ; 1
)

8
(

2 ; 14 )

70
(

3 ; 2, 15 )

168
(

4 ; 23, 14 )

280
(

4 ; 3, 17 )

8
(

5 ; 26, 1
)

56
(

5 ; 3, 23, 14 )

280
(

6 ; 32, 24, 12 )

420
(

7 ; 34, 23, 1
)

280
(

7 ; 4, 3, 26 )

56
(

8 ; 37, 1
)

8
(

8 ; 4, 34, 23 )

280
(

9 ; 42, 35, 2
)

168
(

10 ; 44, 34 )

70
(

11 ; 47, 3
)

8

Table 2. Types of lines and of conic classes and their numbers for the degree 1
del Pezzo surface X8.
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3. The identity HLogr−2

In the whole section, we fix 3 ≤ r ≤ 8. For most of the time, we will denote for simplicity

X = Xr , K = KXr
, L = Lr , K = Kr , etc.

3.1. For each conic class c ∈ K , we consider the corresponding conic fibration φc : X → P1 and
we denote by Σc ⊂ P1 the set of r − 1 distinct points corresponding to the reducible fibers of φc.
We may assume without loss of generality that Σc = {σ1

c , . . . , σ
r−1
c } (with σr−1

c = ∞), i.e., we are
in the situation of a web of hypersurfaces (conics, in our case) as described in §2.1.5. We consider
the same set-up and notations as in §2.1.5: we have

• Y = X \ L with L = Lr =
∑

ℓ∈L ℓ ⊂ X, andH = H0(X,Ω1
X

(Log L)
)

;

• and for any conic class c ∈ K , we set:

– HΣc = H0(P1,Ω1
P1(LogΣc)

)

andH c = φ∗cHΣc ⊂H ;

– η′c = ∧
r−2
i=1

(

dz

z−σi
c

)

∈ ∧r−2HΣc ⊂
(

HΣc
)⊗r−2; and

– ηc = ∧
r−2
i=1

(

dφc

φc−σ
i
c

)

= φ∗cη
′
c ∈ ∧

r−2H c ⊂
(

H c
)⊗r−2.

Each of the elements ηc generate the 1-dimensional C-vector spaces ∧r−2H c and is canonically
defined up to sign. In what follows, we identify ∧r−2H c with its image in ∧r−2H .

Using the notations of §2.1.5 for any y ∈ Y and as holomophic germs at this point, one has

(8) AIr−2
c

(φc) = AIr−2
Σc,y

(φc) = IIy(ηc) ∈ OY,y .

It then follows from Lemma 2.2, that Theorem 1.1 is equivalent to the following statement:

Theorem 3.1. 1. Up to a global sign, there is a canonical choice of a tuple (τc)c∈K with τc = ±ηc
for each c ∈ K and such that the following equality holds true in ∧r−2H:

(9)
∑

c∈Kr

τc = 0

2. Moreover, the identity (9) spans the space of linear relations between the τc’s, i.e., if (cc)c∈K ∈
CK is such that

∑

c∈Kr
cc τc = 0 then all the cc’s are equal.

The rest of this section is devoted to proving this result.

3.2. The irreducible components of L being the lines ℓ ∈ L, one can define a Poincaré residue
map ResL = ⊕ℓ∈LResℓ : Ω1

X

(

Log L
)

→ ⊕ℓ∈LOℓ wich makes the following sequence of sheaves
exact:

0→ Ω1
X 7−→ Ω

1
X

(

log L
)

7−→ ⊕ℓ∈LOℓ → 0.

As X is a rational variety, we have that H0(X,Ω1
X

) = 0, hence the residue map induces an injective
map of C-linear vector spaces ResL : H ֒→ CL and in turn an injective linear map ∧r−2H ֒→

∧r−2CL.

Given a conic fibration φc : X → P1 associated to a conic class c ∈ K , we denote by
C1
c , . . . ,C

r−1
c the reducible fibers of φc, with Ci

c = φ
−1
c (σi

c) for i = 1, . . . , r − 1 (with σr−1
c = ∞).

Each conic Ci
c is a union of two lines ℓi

c, ℓ̃
i
c intersecting in one point. It follows that the residues

ResL

(

dφc/
(

φc − σ
i
c

))

= Ci
c −Cr−1

c =

(

ℓi
c + ℓ̃

i
c

)

−
(

ℓr−1
c + ℓ̃

r−1
c

)

∈ CL
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for i = 1, . . . , r − 2, form a basis for the image of H c ⊂ H under the injective map H ֒→ CL.
Consequently, we get that the image of ηc ∈ ∧r−2H c ⊂ ∧

r−2H under the injective map ∧r−2H ֒→

∧r−2CL is

(10)
(

C1
c −Cr−1

c

)

∧ . . . ∧
(

Cr−2
c −Cr−1

c

)

.

3.3. The Weyl group W acts on the set of lines L and on the set of conic classes K in a compat-
ible way. In particular, for c ∈ K given, the action of any w ∈ W sends the reducible fibers of φc
to the reducible fibers of φw·c in the following way:

w · C i
c
= w · ℓ i

c
+ w · ℓ̃ i

c
.

On the other hand, the action of W on L induces a canonical linear action of W on CL, and
therefore on ∧r−2CL. The action of w ∈ W on any wedge product ∧r−2

i=1 ℓi with (ℓi)r−2
i=1 ∈ L

r−2 is
given by

w ·
(

ℓ1 ∧ · · · ∧ ℓr−2

)

=
(

w · ℓ1
)

∧ · · · ∧
(

w · ℓr−2
)

.

3.4. We now fix a base conic class c1 = h − e1 and label the reducible fibers of the associated
conic fibration φc1 : X → P1 by

C i
= C i−1

c1
= l1i + ei for i = 2, . . . , r ,

where l1i stands fo the class of the strict transform under the blow-up map β of the line in P2

through p1 and pi, i.e., l1i = h − e1 − ei. As a generator of (the image in ∧r−2CL of) ∧r−2H c1 , we
choose and fix

τc1 =
(

C2 −Cr
)

∧
(

C3 −Cr
)

∧ . . . ∧
(

Cr−1 −Cr
)

∈ ∧r−2CL.

For w ∈ W arbitrary, we have:

(11) w · τc1 =
(

w · C2 − w ·Cr) ∧
(

w · C3 − w · Cr) ∧ . . . ∧
(

w · Cr−1 − w · Cr) ∈ ∧r−2CL.

The stabilizer Wc1 of c1 is a subgroup of W hence naturally acts on ∧r−2CL. This action lets
∧r−2H c1 ⊂ ∧

r−2CL invariant hence ∧r−2H c1 is naturally a Wc1-representation (of dimension 1).

Lemma 3.2. 1. As a Wc1-representation, ∧r−2H c1 is isomorphic to the signature representation.

2. For w ∈ W and c ∈ K such that c = w · c1, the element

τc = (−1)w(

w · τc1
)

is a well defined generator of ∧r−2H c ⊂ ∧
r−2CL.

With the notation of this lemma, since the w · Ci’s for i = 2, . . . , r − 1 are the non irreducible
fibers of φc, one clearly has that τc coincides with ηc up to sign, hence, in particular, is a generator
of∧r−2H c. The interest of the second statement in this lemma is that it asserts that τc only depends
on c and not on w (once τc1 has been fixed).

Proof. Proving 1. is elementary. Indeed, being a Wc1-representation of dimension 1, there are
only two possibilities for ∧r−2H c1 : either it is the trivial Wc1-representation, or it is the signature
representation. To prove that the second case does occur, it suffices to exhibit an element w ∈ Wc1
such that w ·τc1 = −τc1 . Using (7) and (11), it is straightforward to check that any of the generators
s2, . . . , sr of Wc1 (cf. §2.2.(12)) has this property.
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The second part of the lemma follows easily from the first: for w1,w2 ∈ W such that w1 · c1 =

w2 · c1 = c, one has w−1
2 w1 ∈ Wc1 , hence w−1

2 w1 · τc1 = (−1)w−1
2 w1τc1 by 1. Thus w2 ·

(

w−1
2 w1 · τc1

)

=

(−1)w−1
2 w1 w2 · τc1 . The signature w 7→ (−1)w being a group morphism, one has (−1)w−1

= (−1)w

for any w, therefore one obtains that w1 · τc1 = (−1)w2 (−1)w1 w2 · τc1 . This is equivalent to
(−1)w1 w1 · τc1 = (−1)w2 w2 · τc1 , which is the relation ensuring that 2. holds true. �

3.5. Proof of Theorem 3.1. We are going to prove that the following statements are satisfied:

1. The K-tuple
(

τc
)

c∈K is a basis of ⊕c∈K ∧
r−2H c which is canonical, up to a global sign.

2. The sum
∑

c∈K τc in ∧r−2H transforms as the signature under the action of W.

3. One has
∑

c∈K τc = 0 in ∧r−2H .

4. Any scalar linear relation between the τc’s in ∧r−2H is a multiple of the one correspond-

ing to the identity of 3.

The first assertion follows easily from the second part of Lemma 3.2 and from the fact that
each τc necessarily coincides with ηc up to sign (details are left to the reader). In this subsection,
we are going to establish first 2. (cf. Lemma 3.5) then 3. and 4. which will follow in the same time
from Lemma 3.7.

For k ≥ 1, following Manin (cf. [Ma, §26]), we call an exceptional k-tuple any k-tuple (ℓi)k
i=1 ∈

Lk of non intersecting lines, i.e., such that ℓi · ℓ j = 0 for any i, j such that 1 ≤ i < j ≤ k. Our
approach to prove both 2. and 3. together is elementary and relies on the following

Lemma 3.3. Let E be an exceptional (r − 2)-tuple. There are exactly two conic classes such that

each element of E appears as a component of a reducible fiber of the associated conic fibration.

Proof. Since W acts transitively on the set of exceptional (r − 2)-tuples (according to §2.2.(13)),
one can assume that E = (e3, . . . , er). Concretely, one wants to determine the conic classes c ∈ K
such that c − ei ∈ L for i = 3, . . . , r. Since the two sets L and K are finite and can be explicitly
described (See Table 2 above for the case r = 8), the claim can be checked by a straightforward
case by case verification. One finds that only the two conic classes c1 = h − e1 and c2 = h − e2

satisfy the above conditions. �

We consider the following element of ∧r−2CL:

hlog = hlogr−2
=

∑

c∈K

τc .

We now prove that this element is equal to zero, by decomposing it in the canonical basis
of ∧r−2CL given by the wedge products ℓ1 ∧ ℓ2 ∧ . . . ∧ ℓr−2 of r − 2 pairwise distinct lines
ℓ1, . . . , ℓr−2 ∈ L.

Let ∧r−2
exc CL be the proper subspace of ∧r−2CL spanned by the wedge products ℓ1∧ℓ2∧. . .∧ℓr−2

for all exceptional (r − 2)-tuple of lines (ℓi)r−2
i=1 . We call such wedge products exceptional. We fix

once for all a basis of ∧r−2
exc CL formed by exceptional wedge products and call it the exceptional

basis of ∧r−2
exc CL. Note that this basis is unique but only up to changing the signs of its elements.

However, the arguments below are not essentially affected by this ambiguity.
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We may assume that ∧r
i=3ei is an element of the exceptional basis and we denote by

(12) Λ : ∧r−2
exc CL −→ C

the associated linear coordinate form with respect to the exceptional basis we are working with,
i.e.,Λ is the linear form on ∧r−2

exc CL characterized by the relations Λ(∧r
i=3ei) = 1 andΛ(∧r

i=3ℓi) = 0
for any exceptional wedge product ∧r

i=3ℓi such that {ℓi}
r
i=3 , {ei}

r
i=3.

We first prove the

Lemma 3.4. For any c ∈ K , τc belongs to ∧r−2
exc CL, therefore hlog =

∑

c∈K τc as well.

Proof. For c ∈ K , τc is equal to (10) up to sign. The lemma follows easily by noticing that the
conics C1

c
, . . . ,Cr−1

c
are pairwise disjoint and because each of them is the sum of two lines. �

We also need the following

Lemma 3.5. For any w ∈ W, one has w · hlog = (−1)w hlog.

Proof. For a conic class c ∈ K , let wc ∈ W be such that c = wc · c1. By the definition of τc, one has

τc = (−1)wcwc · τc1 = (−1)wc ∧r−1
i=2

(

wc · C
i − wc · C

r
)

.

Let w be an arbitrary element of W . From (11) and because wwc · c1 = w · c, it comes that

w · τc = (−1)wc ∧r−1
i=2

(

wwc · C
i − wwc · C

r
)

= (−1)wτw·c .

Summing up on the conic classes and because c 7→ w · c is a bijection of K , one gets

w·hlog =
∑

c∈K

w·τc = (−1)w
∑

c∈K

τw·c = (−1)w hlog . �

Since the W-action on Pic(X) preserves the intersection product, ∧r−2
exc CL is a proper W-submo

-dule of ∧r−2CL. Furthermore, W acts on ∧r−2
exc CL by permuting the elements of the exceptional

basis. Moreover, by §2.2.(13) this action on the exceptional wedge products is transitive (up to
sign). To check that hlog = 0 in ∧r−2

exc CL, it suffices to check that any element ∧r−2
i=1 ℓi in the

exceptional basis appears in hlog with coefficient zero. For such ∧r−2
i=1 ℓi, let w ∈ W be such that

w · (∧r
i=3ei) = ∧r−2

i=1 ℓi. It suffices to check that Λ(w−1 · hlog) = 0 (see notation (12). By Lemma
3.5, this would follow from verifying that Λ(hlog) = 0.

From Lemma (3.3), the only conic classes c ∈ K for which ∧r
i=3ei appears with non-zero

coefficient in the decomposition of τc in the exceptional basis are c1 = h − e1 and c2 = h − e2, i.e.,

(13)
{

c ∈ K
∣

∣

∣ Λ(c) , 0
}

=
{

c1 , c2
}

.

Consequently, one has

(14) Λ
(

hlog
)

=

∑

c∈K

Λ
(

τc
)

= Λ
(

τc1
)

+ Λ
(

τc2
)

.

On the other hand, considering our initial choice for τc1 , we have (see §3.2 above)

τc1 =
(

ℓ12 + e2 − ℓ1r − er

)

∧
(

ℓ13 + e3 − ℓ1r − er

)

∧ . . . ∧
(

ℓ1 r−1 + er−1 − ℓ1r − er

)
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from which we have immediately that

(15) Λ
(

τc1
)

= Λ

(

− er ∧ e3 ∧ e4 ∧ . . . ∧ er−1

)

= (−1)r .

From §2.2.(7), we know that the first fundamental reflection s1 acts as the transposition ex-
changing e1 and e2 on the set {h, e1, . . . , er}. Therefore, one has s1 · c1 = c2 and s1 ·

(

e3∧ . . .∧er

)

=
(

s1 ·e3
)

∧. . .∧
(

s1 ·er

)

= e3∧. . .∧er which implies that Λ
(

s1 ·τc1
)

= Λ
(

τc1
)

. Since τc2 = (−1)s1 s1 ·τc1
by definition and because (−1)s1 = −1, one obtains that

(16) Λ(τc2) = (−1)r−1
= −Λ(τc1) .

Substituting (15) and (16) in (14) gives Λ(hlog) = 0 which, as explained above, implies the

Lemma 3.6. One has hlog = 0.

The assertion 3. at the beginning of §3.5 is proved. We now prove assertion 4. Consider the
graph with vertices in K , with c, c′ ∈ K joined by an edge if there exists an element ∧r−2

i=1 ℓi of the
exceptional basis that appears with non-zero coefficient in the decomposition of both τc and τc′ in
the exceptional basis. We have

Lemma 3.7. For any element ℓ1 ∧ . . . ∧ ℓr−2 of the exceptional basis, there are exactly two conic

classes c, c′ ∈ K such that ℓ1 ∧ . . . ∧ ℓr−2 appears with non-zero coefficient in the decomposition

of τc and τc′ in the exceptional basis. Moreover, these two coefficients are opposite.

Proof. For e3 ∧ . . . ∧ er, this has been proved above (cf. (13), (15) and (16)). The general case
follows by considering the action of W . �

Assume now that there exists a relation
∑

c∈K ccτc = 0 for some cc ∈ C. By Lemma 3.7, for
two conic classes c and c′ connected by an edge, we have cc + cc′ = 0. Hence it suffices to prove
that our graph is connected. As the action of W on K is transitive, it suffices to check that for all
w ∈ W the classes c1 = h− e1 and w · c1 are connected by a sequence of edges. Furthermore, using
again the action of W , it suffices to check this for w = si (i = 1, . . . , r). The reflections s2, . . . , sr

belong to the stabilizer of c1, so there is nothing to prove. If w = s1, then c2 = w · c1 = h − e2. As
proved above, c1 and c2 are connected by an edge. The proof of Theorem 3.1 is now complete.

3.6. A representation-theoretic interpretation. The K-tuple τK =
(

τc
)

c∈K is an algebraic
avatar of the κr-tuple of hyperlogarithms

(

ǫi AIr−2
i

(Ui)
)κr

i=1 involved in the statement of Theorem
1.1. It turns out that τK as well as the fact that the identity

(17) hlogr−2
=

∑

c∈K

τc = 0

is satisfied in ∧r−2CL can be interpreted within the representation theory of the Weyl goup W .
This subsection is devoted to an exposition of this. For details, we refer to [Pi] where the second
author used this approach to give a representation theoretic proof of Theorem 3.1 for del Pezzo
surfaces of degree d ∈ {2, . . . , 6}.
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The key points from this perspective are the following (cf. [Pi, §3.2] for details):

1. one can define a natural action of W on the direct sum ⊕c∈K ∧r−2H c such that the map

ιK : ⊕c∈K ∧
r−2H c −→ ∧

r−2CL

induced by the natural inclusion ∧r−2H c ֒→ ∧
r−2H

ResL
−→ ∧r−2CL becomes a morphism

of W-representations;

2. as a W-representation, ⊕c∈K ∧r−2H c is isomorphic to sign⊗CK where sign stands for the
signature W-representation and where the W-module structure on CK is the one induced
by the action of W on K by permutations;

3. the span of τK =
(

τc
)

c∈K is W-invariant and is the unique 1-dimensional irreducible
component of ⊕c∈K ∧r−2H c which is isomorphic to the signature representation sign;

4. from 1. and 3. it follows that ιK
(

τK
)

=
∑

c τc = hlogr−2 spans a W-subrepresentation of
∧r−2CL which either is zero or is isomorphic to sign;

5. the decomposition of ∧r−2CL in W-irreducibles can be determined explicitly (by means
of computations with GAP). In particular, sign appears with positive multiplicity in this
decomposition if and only if r = 8.

From the points 4. and 5. above, one obtains an alternative, conceptual proof of the identity (9)
of Theorem 3.1. This proof relies on the decompositions of ∧r−2CL in irreducible W-modules
which are interesting on their own and appear to be new for r > 4 (see [Pi, Proposition 3.2]).
Note, for r = 8 one would need to adapt this approach in order to prove our main result, possibly
by considering the subrepresentation given by ∧r−2

exc CL (Lemma 3.4). More generally, it would
be interesting to determine the decomposition into irreducibles of ∧r−2

exc CL for any r and to verify
wether it admits the signature as one of its irreducible components or not (we know that it is not
the case for r ≤ 7).

3.7. The identity HLogr−2 is defined over Z. By requiring that all the residues considered are
integers, one defines canonical Z-structures HZ, HZ

Σc
, HZ

c on the spaces H , HΣc , H c respec-

tively, which are compatible with respect to pull-backs and inclusions, i.e., one has φ∗
c
HZ
Σc
=HZ

c

and H c ⊂ H induces an inclusion HZ
c
⊂ HZ for any c ∈ K . Moreover, the residue map ResL

of §3.2 admits a canonical liftHZ −→ ZL over Z. We leave it to the reader to verify that all the
statements in §3.3–§3.6 hold over Z. In conclusion, HLogr−2 is defined over Z, a fact which may
be interesting from an arithmetic perspective.

3.8. For any n ≥ 2, it is tempting to consider more generally blow-ups Yr = Blr
(

Pn) at r ≥ n + 2
general points and attempt to generalize Theorem 3.1 by following the exact same approach as
in this section. One defines a symmetric bilinear form (·, ·) on K⊥

Yr
⊂ Pic(Yr) = Z{H, E1 . . . , Er}

(where H is the hyperplane class and the Ei’s are the classes of the exceptional divisors) by setting
(

H,H
)

= n − 1 ,
(

H, Ei

)

= 0 and
(

Ei, E j

)

= −δi j for i, j = 1, . . . , r .

One can define a Coxeter group W associated to a T-shaped Dynkin-type diagram T2,n+1,r−n−1

such that W acts on Pic(Yr) in a geometric fashion, in particular preserving the bilinear form (·, ·).
It is known that W is finite if and only if

(18)
1

n + 1
+

1
r − n − 1

>
1
2
.
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This condition is equivalent to Yr being a Mori dream space [Mu, CT] and translates to r ≤ n + 3
if n ≥ 5, r ≤ 8 if n = 4, 2, and r ≤ 7 if n = 3. Such blow-ups are natural generalizations of del
Pezzo surfaces. We refer to [Mu, CT] for more details.

Assume that (18) is satisfied. One can replace the set of lines L by the set of Weyl divisors,
i.e., divisors in the finite orbit W · E1, and the set K of conic classes with the set of Weyl pencils,
which we define as one-dimensional linear systems |E + F|, for E, F Weyl divisors such that
(E, F) = 1. Such a linear system c induces a rational map φc : Yr d P1 which has r − n + 1
reducible fibers, with components E′, F′ Weyl divisors such that (E′, F′) = 1 and E′+F′ = E+F

in Pic(Yr). It is straightforward to check that the group W acts transitively on the sets L and K .
All the constructions leading up to Lemma 3.2 hold in this more general context, i.e., for each
Weyl pencil c ∈ K we can construct canonical elements τc ∈ ∧r−nCL (well-defined up to a global
sign) such that Lemma 3.2 and the statements 1. and 2. at the beginning of §3.5 hold. However,
if n ≥ 3, the identity

∑

c τc = 0 never holds. One can follow the same approach as in this section
to prove an analogue of Lemma 3.3: for any exceptional (r − n)-tuple E there are exactly n Weyl
pencils such that each element of E appears as a component of a reducible fiber of the associated
fibration. The analogue of Lemma 3.7 is that the coefficient with which an element E1∧ . . .∧Er−n

in the exceptional basis appears in
∑

c∈K τc is (up to a sign) (n − 2), hence, never zero if n ≥ 3. In
analytic terms, this translates as the fact that, if AIr−n

c stands for the hyperlogarithm on P1 such
that AIr−n

c

(

φc
)

= IIy

Yr
(τc) for any c ∈ K (for a previously chosen base point y general in Yr), then

the functional identity
∑

c∈K AIr−n
c

(

φc
)

= 0 is not satisfied in the vicinity of y on Yr.

However, the space HLogr−n
Yr

of tuples (αc)c∈K ∈ CK such that
∑

c∈K αc AIr−n
c

(

φc
)

= 0 is not
trivial. Similar to the case of del Pezzo surfaces, for every exceptional r-tuple E there exists a
small modification FE : Yr d Blq1 ,...,qr

(Pn), where β : Blq1 ,...,qr
(Pn) → Pn is a blow-up of a

(possibly distinct) configuration of points q1, . . . , qr in general position. Let J ⊂ {1, . . . , r} be
of cardinal n − 2 and let πJ : Pn

d P2 be the linear projection from the (n − 3)-plane in Pn

spanned by the q j’s for j ∈ J. Setting q′
k
= πJ(qk) for k < J, one has r − n + 2 points in general

position in P2. The total space of the blow-up βJ : Bl{q′
k
}k<J

(

P2) → P2 is a del Pezzo surface of
degree d = 7 − r + n which we will denote by dPd,J. We let ΠE ,J : Yr d dPd,J be the induced
rational maps (so that one has βJ ◦ ΠE ,J = πJ ◦ β ◦ FE as rational maps). If KJ denotes the set
of conic classes on dPd,J and ψκ : dPd,J → P1 denotes the associated conic fibration for κ ∈ KJ ,
then the compositions φκ = ψκ ◦ ΠE ,J : Yr d P1 are Weyl pencils (and all Weyl pencils are of
this form). Consequently one obtains an injection KJ ⊂ K . If

∑

κ∈KJ
ǫκ AIr−n

κ

(

ψκ
)

= 0 stands
for the identity on dPd,J given by Theorem 1.1 (with ǫκ ∈ {±1} for any κ ∈ KJ), one gets that
the hyperlogarithmic identity

∑

κ∈KJ
ǫκ AIr−n

κ

(

φκ
)

= 0 holds true locally at y on Yr. This identity
corresponds to a non-zero element of HLogr−n

Yr
, which we denote by HLogr−n

E ,J
. It follows that

HLogr−n
Yr

is not trivial.

It is natural to ask whether the span of the set of HLogr−n
E ,J

’s for all pairs (E , J) as above coin-
cides with the whole space HLogr−n

Yr
or not. For the case when r = n + 2 with n ≥ 2 arbitrary, this

follows from computations in [Pe]. By direct computations, we have verified that it is the case as
well for (n, r) = (3, 6) and (n, r) = (4, 7). We conjecture that this happens in all cases. If true, this
would say that regarding functional identities satisfied by the complete antisymmetric hyperloga-
rithms AIr−n

c on Yr, there is nothing new since everything come from the 2-dimensional del Pezzo
hyperlogarithmic identity HLogr−n (up to pull-backs under the maps ΠE ,J : Yr d dPd,J).
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4. The identity HLog3 in explicit form

The identity HLog2 is equivalent to Abel’s relation
(

Ab
)

which is written in explicit form.
One can make the other hyperlogarithmic identities HLogr−2 explicit as well. We illustrate this
with the case when r = 5.

Let X5 stand for the blow-up of P2 at the following five points: p1 = [1 : 0 : 0], p2 = [0 : 1 : 0],
p3 = [0 : 0 : 1], p4 = [1 : 1 : 1] and p5 = [a : b : 1], for some parameters a, b ∈ C such that

ab(a − 1)(b − 1)(a − b) , 0 ,

a condition that we assume to be satisfied in what follows.

We make explicit the weight 3 hyperlogarithmic identity HLog(X5) when expressed in the
affine coordinates x, y corresponding to the affine embedding C2 ֒→ P2, (x, y) 7→ [x : y : 1].

Relatively to the coordinates x, y, the conic fibrations on X5 correspond on P2 to the following
rational functions Ui (where P stands for the affine polynomial P = (1− b)x− (1− a)y− (a− b)) :

U1 = x U2 =
1
y

U3 =
y

x
U4 =

x−y

x−1 U5 =
b(a−x)
ay−bx

U6 =
P

(x−1)(y−b) U7 =
(x−y)(y−b)

y P
U8 =

x P
(x−y)(x−a) U9 =

y(x−a)
x(y−b) U10 =

x(y−1)
y(x−1) .

For any i = 1, . . . , 10, the set of λ ∈ P1 for which U−1
i

(λ) is reducible has the form {0, 1, ri,∞}
where ri ∈ P1 \ {0, 1,∞} is given by

r1 = a r2 =
1
b

r3 =
b

a
r4 =

a − b

a − 1
r5 =

b(a − 1)
a − b

r6 =
b − a

b
r7 =

1
1 − a

r8 = 1 − b r9 =
1 − a

1 − b
r10 =

a(b − 1)
b(a − 1)

.

For a triple (a, b, c) of pairwise distinct points on C and a given base point ξ ∈ C \ {a, b, c}, we
consider the weight 3 hyperlogarithm L

ξ

a,b,c
defined by

L
ξ

a,b,c
(z) =

∫ z

ξ

( ∫ u3

ξ

(

∫ u2

ξ

du1

u1 − c

)

du2

u2 − b

)

du3

u3 − a

for any z sufficiently close to ξ, and we denote by AI
ξ

a,b,c
its antisymmetrization:

(19) AI
ξ

a,b,c
=

1
6

(

L
ξ

a,b,c
− L

ξ

a,c,b
− L

ξ

b,a,c
+ L

ξ

b,c,a
+ L

ξ

c,a,b
− L

ξ

c,b,a

)

.

We now fix a base point ζ ∈ C2 image of a point in X5 which does not belong to any line. For
i = 1, . . . , 10, we set ζi = Ui(ζ) ∈ C \ {0, 1, ri} and

AI3
i = AI

ζi

0,1,ri
.

Then one can verify that HLog(X5) has the following explicit form

(20)
10
∑

i=1

AI3
i

(

Ui

)

= 0 ,

a functional identity which is satisfied on any sufficiently small neighborhood of ζ.
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