Hyperlogarithmic functional equations on del Pezzo surfaces

Ana-Maria Castravet, Luc Pirio

To cite this version:

Ana-Maria Castravet, Luc Pirio. Hyperlogarithmic functional equations on del Pezzo surfaces. Advances in Mathematics, 2024, 442, pp.109567. 10.48550/arXiv.2301.06775 . hal-04303999

HAL Id: hal-04303999
https://universite-paris-saclay.hal.science/hal-04303999
Submitted on 24 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HYPERLOGARITHMIC FUNCTIONAL EQUATIONS ON DEL PEZZO SURFACES

ANA-MARIA CASTRAVET \& LUC PIRIO

Abstract

For any $d \in\{1, \ldots, 6\}$, we prove that the web of conics on a del Pezzo surface of degree d carries a functional identity whose components are antisymmetric hyperlogarithms of weight $7-d$. Our approach is uniform with respect to d and relies on classical results about the action of the Weyl group on the set of lines on the del Pezzo surface. These hyperlogarithmic functional identities are natural generalizations of the classical 3-term and (Abel's) 5-term identities satisfied by the logarithm and the dilogarithm, which correspond to the cases when $d=6$ and $d=5$ respectively.

1. Introduction

1.1. Functional equations of polylogarithms. The classical logarithm Log satisfies Cauchy's identity

$$
\begin{equation*}
\log (x)+\log (y)-\log (x y)=0 \tag{1}
\end{equation*}
$$

for all $x, y>0$, and this functional identity is fundamental in mathematics.
Several authors of the XIXth century have independently discovered equivalent forms of the following identity

$$
\begin{equation*}
R(x)-R(y)-R\left(\frac{x}{y}\right)-R\left(\frac{1-y}{1-x}\right)+R\left(\frac{x(1-y)}{y(1-x)}\right)=0, \tag{Ab}
\end{equation*}
$$

satisfied for all x, y such that $0<x<y<1$, where R stands for Rogers' dilogarithm, defined by

$$
\begin{equation*}
R(x)=\operatorname{Li}_{2}(x)+\frac{1}{2} \log (x) \log (1-x)-\frac{\pi^{2}}{6} \tag{2}
\end{equation*}
$$

for $x \in(0,1)$, where $\mathbf{L i}_{2}$ stands for the classical bilogarithm, the weight 2 polylogarithm.
The identity ($\mathcal{A} \boldsymbol{b}$) is nowadays called Abel's identity of the dilogarithm, hence the notation. It can be seen as a weight 2 generalization of Cauchy's identity (11). To see in which way, recall the weight $n \geq 1$ polylogarithm $\mathbf{L i}_{n}$, classically defined on the unit disk $\mathbf{D}=\{z \in \mathbf{C},|z|<1\}$ as the sum of the convergent series

$$
\mathbf{L i}_{n}(z)=\sum_{k \geq 1} z^{k} / k^{n} .
$$

The first polylogarithm is related to the usual logarithm through the relation $\operatorname{Li}_{1}(z)=-\log (1-z)$ for $z \in \mathbf{D}$, and both \log and R can be considered as suitable versions of the first two polylogarithms such that the two functional identities (1) and ($\mathcal{A b}$) hold true.

Polylogarithms are special functions of great interest which satisfy properties generalizing those of the logarithm and the dilogarithm. In particular, they satisfy functional equations of the form

$$
\begin{equation*}
\sum_{i=1}^{M} c_{i} \mathbf{L i}_{n}\left(U_{i}\right)=\mathrm{L}_{n-1} \tag{3}
\end{equation*}
$$

where the c_{i} 's are rational coefficients, the $U_{i}^{\prime} s$ are multi-variable rational functions and with L_{n-1} a rational expression in polylogarithmic functions of weight at most $n-1$.

Since the early XIX-th century (works of Spence, Kummer, Abel, etc) to nowadays, many authors have discovered functional identities of the above form satisfied by (some version of) polylogarithms $\mathbf{L i}_{n}$ of weight $n \leq 7$. Multi-variable generalizations of polylogarithms have been considered as well, in particular their functional equations. The subject is currently very active $]^{1}$ Polylogarithms are connected to several distinct fields in mathematics such as hyperbolic geometry (volumes of hyperbolic polytopes), K-theory of number fields (Zagier's conjecture), theory of periods and multizeta values, scattering amplitudes in higher energy physics, theory of cluster algebras, etc 2^{2} In particular, it is now clearly established that knowing functional identities of the form (3) is important, cf. [G1, §2]. However, in spite of the important number of recent works on the subject, the functional identities satisfied by polylogarithms are still not well understood.

Identities of the form (3) are known to exist only for $n \leq 7$ and for the higher weights ($n=6,7$) were obtained by computer aided calculations (see [Ga]). The general belief is that, for any $n \geq 1$, there should exist a fundamental identity of the form (3) satisfied by $\mathbf{L i}_{n}$ from which any other could be formally obtained (for instance, see the last paragraph of [Gri] §4.1]). The first interesting case to be considered is for weight 2, for which Abel's identity is the evoked fundamental one, a result which has been proved only recently in [$\mathbf{d J}]$. For weight 3 , the 22 -term trilogarithmic equation in three variables found by Goncharov in [G3] may be the fundamental one but, as far we are aware of, there is no proof until now. The weight 4 case is the subject of the recent work $[\mathbf{G R}]$ by Goncharov and Rudenko. Using the cluster structure of the moduli spaces $\mathcal{M}_{0, n+3}$, they construct a functional identity for the tetralogarithm which allows them to prove Zagier's conjecture in weight 4 . This identity is expected to play the same role for the tetralogarithm as the one played by Abel's identity for the dilogarithm.
1.2. Hyperlogarithms. Hyperlogarithms are generalization of polylogarithms and they go back to Poincaré. They are multivalued holomorphic functions on \mathbf{P}^{1} which can be obtained by iterated integrations of some given rational 1-forms with logarithmic singularities on the Riemann sphere. More precisely, let $\sigma_{1}, \ldots, \sigma_{m+1}$ be $m+1$ pairwise distinct points of \mathbf{P}^{1}. We fix an affine coordinate z such that $\sigma_{m+1}=\infty$. Then the 1 -forms $\omega_{s}=d z /\left(z-\sigma_{s}\right)$ for $s=1, \ldots, m$ form a basis of the space of global logarithmic 1-forms on \mathbf{P}^{1} with poles in $\Sigma=\left\{\sigma_{s}\right\}_{s=1}^{m+1}$. We set $Z=\mathbf{P}^{1} \backslash \Sigma$.

Given any tuple $\left(s_{k}\right)_{k=1}^{w}$ of elements in $\{1, \ldots, m\}$, the weight w hyperlogarithm $L_{\omega_{s_{1}} \cdots \omega_{s_{w}}}$ is the multivalued function on Z defined inductively as follows:

$$
L_{\omega_{s_{w}}}(z)=\int^{z} \omega_{s_{w}}=\log \left(z-\sigma_{s_{w}}\right) \quad \text { and } \quad L_{\omega_{s_{1}} \ldots \omega_{s_{w}}}(z)=\int^{z} \frac{L_{\omega_{s_{2}} \ldots \omega_{s_{w}}}(u)}{u-\sigma_{s_{1}}} d u
$$

The polylogarithmic functions (such as Log, Rogers' dilogarithm R, or all the classical polylogarithm $\mathbf{L i}_{n}$) are particular instances of hyperlogarithms in the specific case when $\Sigma=\{0,1, \infty\}$. If the properties of polylogarithms, in particular the functional equations they satisfy, have been studied intensely, this is much less the case for more general hyperlogarithms (however see [We] or the more recent $[\overline{\mathbf{B r}}]$). Several recent works have shown that hyperlogarithms are relevant for computing certain scattering amplitudes in higher energy physics (see for instance the PhD thesis [Pa] or the recent "white paper" [B\&al], especially the fifth section therein).

[^0]In this paper, we describe generalizations in weight $3,4,5$ and 6 of the 3 -term and 5-term identities of the logarithm and dilogarithm respectively. These identities are similar to the two latter classical identities, but involve non polylogarithmic hyperlogarithms. For this purpose, we introduce a geometric viewpoint on Abel's identity $(\mathcal{A} \boldsymbol{b})$ by relating it to the conic fibrations of a quintic del Pezzo surface. The generalization will involve the conic fibrations of del Pezzo surfaces of degree ≤ 63
1.3. Abel's identity on the quintic del Pezzo surface. The five rational arguments

$$
U_{1}=x, \quad U_{2}=y, \quad U_{3}=\frac{x}{y}, \quad U_{4}=\frac{1-y}{1-x} \quad \text { and } \quad U_{5}=\frac{x(1-y)}{y(1-x)}
$$

of R in $(\mathcal{A} \boldsymbol{b})$ can be interpreted geometrically as follows: let

$$
\beta: X_{4}=\mathbf{B l}_{p_{1}, \ldots, p_{4}}\left(\mathbf{P}^{2}\right) \longrightarrow \mathbf{P}^{2}
$$

be the blow-up of the complex projective plane at the 4 points in general position $p_{1}=[1: 0: 0]$, $p_{2}=[0: 1: 0], p_{3}=[0: 0: 1]$ and $p_{4}=[1: 1: 1]$. The surface is the quintic del Pezzo surface. It carries five fibrations in conics $\phi_{i}: X_{4} \rightarrow \mathbf{P}^{1}(i=1, \ldots, 5)$ which coincide with the compositions $U_{i} \circ \beta: X_{4} \rightarrow \mathbf{P}^{1}$ as rational functions. It follows that Abel's identity can be written
$\left(\mathcal{A l} b_{X_{4}}\right)$

$$
\sum_{i=1}^{5} \epsilon_{i} R\left(\phi_{i}\right)=0
$$

for some constants $\epsilon_{1}, \ldots, \epsilon_{5}$ equal to 1 or -1 , this identity holding true locally at any sufficiently general point of X_{4} for suitable branches of Rogers dilogarithm.
1.4. Main result: generalization to del Pezzo surfaces of degree ≤ 6. Let $3 \leq r \leq 8$ and let

$$
X_{r}=\mathbf{B l}_{p_{1}, \ldots, p_{r}}\left(\mathbf{P}^{2}\right)
$$

be the blow-up of the projective plane at r points in general position. Then X_{r} is a del Pezzo surface of degree $9-r$, i.e., the anti-canonical class $-K_{X_{r}}$ is ample and with self-intersection $\left(-K_{X_{r}}\right)^{2}=9-r$. If $3 \leq r \leq 6$, then the complete linear system $-K_{X_{r}}$ defines an embedding $X_{r} \hookrightarrow \mathbf{P}^{9-r}$ such that the degree of X_{r} is $9-r$. We define the degree of a curve $C \subset X_{r}$ to be $C \cdot\left(-K_{X_{r}}\right)$. Smooth rational curves in X_{r} of degree 1, respectively 2 , are called lines, respectively smooth conics. A conic fibration on X_{r} is the equivalence class (up to post composition with an element of PGL_{2}) of a morphism $X_{r} \rightarrow \mathbf{P}^{1}$ such that a general fiber is a smooth conic.

The following facts are well known:
(i). The number l_{r} of lines in X_{r} is finite;
(ii). The number κ_{r} of conic fibrations on X_{r} is finite as well;
(iii). Any conic fibration $X_{r} \rightarrow \mathbf{P}^{1}$ has exactly $r-1$ reducible fibers, each a union of two lines in X_{r} intersecting transversely at one point.
(iv). The Picard group $\operatorname{Pic}\left(X_{r}\right)$ is free and is acted upon by a certain Weyl group W_{r}. Moreover, this action preserves the intersection product.

[^1]The values of l_{r} and κ_{r} for $3 \leq r \leq 8$ are given in the following table:

\boldsymbol{r}	3	4	5	6	7	8
$\boldsymbol{l}_{\boldsymbol{r}}$	6	10	16	27	56	240
$\boldsymbol{\kappa}_{\boldsymbol{r}}$	3	5	10	27	126	2160

Let $\phi_{1}, \ldots, \phi_{\kappa_{r}}: X_{r} \rightarrow \mathbf{P}^{1}$ be κ_{r} pairwise non equivalent conic fibrations. We denote by L_{r} the divisor of X_{r} whose the irreducible components are all the lines in X_{r} and we set

$$
Y_{r}=X_{r} \backslash L_{r} .
$$

From (iii), we know that the complement Σ_{i} of $\phi_{i}\left(Y_{r}\right)$ in \mathbf{P}^{1} is a finite set with $r-1$ elements denoted by $\sigma_{i}^{1}, \ldots, \sigma_{i}^{r-1}$. One assumes that ϕ_{i} has been chosen such that one of the σ_{i}^{t} 's, say σ_{i}^{r-1}, coincides with $\infty \in \mathbf{P}^{1}$. Then the rational differentials $\omega_{i}^{t}=d z /\left(z-\sigma_{i}^{t}\right)$ for $t=1, \ldots, r-2$ form a basis of the space of logarithmic 1-forms on \mathbf{P}^{1} with poles along Σ_{i}.

For all $i=1, \ldots, \kappa_{r}$, let $A I_{i}^{r-2}$ be the complete antisymmetric hyperlogarithm of weight $r-2$ on $Z_{i}=\mathbf{P}^{1} \backslash \Sigma_{i}$, defined as the antisymmetrization of the hyperlogarithm $L_{\omega_{i}^{1} \cdots \omega_{i}^{r-2}}$ with respect to the logarithmic 1-forms $\omega_{i}^{1}, \ldots, \omega_{i}^{r-2}$, i.e.,

$$
A I_{i}^{r-2}=\operatorname{Asym}\left(L_{\omega_{i}^{1} \cdots \omega_{i}^{r-2}}\right)=\frac{1}{(r-2)!} \sum_{\nu \in \mathbb{E}_{r-2}}(-1)^{\nu} L_{\omega_{i}^{\nu(1)} \ldots \omega_{i}^{v(-2)}}
$$

where, for any $v \in \mathbb{S}_{r-2}$, we denote by $(-1)^{v}$ the signature of v. Each $A I_{i}^{r-2}$ is uniquely defined up to sign. Our main result is the following:

Theorem 1.1. There exists $\left(\epsilon_{i}\right)_{i=1}^{\kappa_{r}} \in\{ \pm 1\}^{K_{r}}$, unique up to a global sign, such that for any $y \in Y_{r}$ and for a suitable choice of the branch of the hyperlogarithm $A I_{i}^{r-2}$ at $y_{i}=\phi_{i}(y) \in \mathbf{P}^{1}$ for each $i=1, \ldots, \kappa_{r}$, the following functional identity holds true on an open neighbourhood of y in Y_{r} :
$H \log \left(X_{r}\right)$

$$
\sum_{i=1}^{K_{r}} \epsilon_{i} A I_{i}^{r-2}\left(\phi_{i}\right)=0
$$

A few comments:

- The identity $\mathbf{H L o g}\left(X_{3}\right)$ is nothing else but the logarithm identity (1) and $\mathbf{H L o g}\left(X_{4}\right)$ coincides with the geometric identity $\left(\mathcal{A} b_{X_{4}}\right)$ hence is equivalent to Abel's relation ($\mathcal{A b}$). In contrast, the four other identities $\operatorname{HLog}\left(X_{r}\right)$ for $r=5,6,7,8$ are new.
- For any $i=1, \ldots, \kappa_{r}$, the suitable branch of the hyperlogarithm $A I_{i}^{r-2}$ from the statement of the theorem is defined in a precise and constructive way (see 8). Furthermore, in Theorem 3.1 we prove an invariant algebraic version of Theorem 1.1]by constructing (an algebraic equivalent of) each term $\epsilon_{i} A I_{i}^{r-2}\left(\phi_{i}\right)$ by means of the natural action of the Weyl group W_{r} on only one term, which we may assume to be $A I_{1}^{r-2}\left(\phi_{1}\right)$.
- At least when $r \leq 7$, there is a conceptual interpretation of why $\mathbf{H L O g}\left(\boldsymbol{X}_{r}\right)$ holds true in terms of the space $\mathbf{C}^{\mathcal{L}_{r}}$ freely spanned by the set \mathcal{L}_{r} of lines contained in X_{r}. This space is acted upon in a natural way by W_{r} and from a representation-theoretic perspective, the left-hand side of $\mathbf{H L o g}\left(\boldsymbol{X}_{\boldsymbol{r}}\right)$ can be interpreted as the image of the signature representation $\mathbf{s i g n}_{r}$ of the Weyl group W_{r} in the $(r-2)$-th wedge product of $\mathbf{C}^{\mathcal{L}_{r}}$. The reason why $\sum_{i=1}^{\kappa_{r}} \epsilon_{i} A I_{i}^{r-2}\left(\phi_{i}\right)$ vanishes identically is that $\mathbf{s i g n}_{r}$ does not appear with positive multiplicity in the decomposition of $\wedge^{r-2} \mathbf{C}^{\mathcal{L}_{r}}$ in irreducible W_{r}-modules.
1.5. Structure of the paper. Throughout the paper, we work in the complex analytic or algebraic setting.

In Section §2, we recall the basic facts about hyperlogarithms and del Pezzo surfaces which will be used in the rest of the paper. In particular, we explain how the functional identities satisfied by hyperlogarithms can be proved algebraically ($c f$. Proposition 2.2). Section $\$ 3$ is the main section and that is where Theorem 1.1 is proved. Using Proposition 2.2, its proof is essentially reduced to the verification that a certain (antisymmetric) tensorial identity hlog $=0$ holds true. We include at the end of Section $\$ 3$ some considerations regarding possible generalizations to higher dimensions (blow-ups of projective spaces at general points). Finally in Section $\$ 4$ we make the identity $\operatorname{HLOg}\left(X_{5}\right)$ explicit in some affine coordinates.
1.6. Acknowledgements. A.-M. Castravet was partially supported by the ANR grant FanoHK. Thanks go to Igor Dolgachev and Jenia Tevelev for several useful discussions. L. Pirio benefited from interesting early exchanges with Maria Chlouveraki and Nicolas Perrin, to whom he is grateful. He also thanks Thomas Dedieu and Vincent Guedj for their interest in this work.

2. Preliminaries

In this section, we recall some properties of hyperlogarithms and del Pezzo surfaces.
2.1. Hyperlogarithms. Hyperlogarithms are multivalued holomorphic functions on \mathbf{P}^{1} which were used by Poincaré and Lappo-Danilevsky for building solutions to linear differential equations with regular singular points on the Riemann sphere. As modern references about hyperlogarithms, the reader can consult $[\mathbf{W e}, \overline{\mathbf{B r}}]$ or $[\mathbf{B P P}$ §2.3].
2.1.1. Let $n \geq 1$ and $\sigma_{1}, \ldots, \sigma_{m}$ be n pairwise distinct complex numbers. We set

$$
\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{m}, \infty\right\} \subset \mathbf{P}^{1} \quad \text { and } \quad Y=\mathbf{P}^{1} \backslash \Sigma
$$

The 1-forms $\omega_{k}=d \log \left(z-\sigma_{k}\right)=d z /\left(z-\sigma_{k}\right)$ for $k=1, \ldots, m$ form a basis of the space

$$
\mathcal{H}_{\Sigma}=\mathbf{H}^{0}\left(\mathbf{P}^{1}, \Omega_{\mathbf{P}^{1}}^{1}(\log \Sigma)\right)
$$

of global rational 1-forms on \mathbf{P}^{1} with logarithmic poles along Σ.
We fix a base point $y \in Y$. For any word $\omega_{k_{1}} \omega_{k_{2}} \cdots \omega_{k_{w}}$ on the ω_{k} 's, of length $w \geq 1$, we define the hyperlogarithm associated to it at y as the holomorphic germ at this point, denoted by $L_{\omega_{k_{1}} \ldots \omega_{k_{w}}}^{y}$ defined inductively on the length w by successive integrations performed on a sufficiently small neighborhood of y, according to the following relations:
$L_{\omega_{k_{w}}}^{y}(z)=\int_{y}^{z} \omega_{k_{w}}=\log \left(\frac{z-\sigma_{k_{w}}}{y-\sigma_{k_{w}}}\right) \quad$ and $\quad L_{\omega_{k_{1}} \ldots \omega_{k_{w}}}^{y}(z)=\int_{y}^{z} \frac{L_{\omega_{k_{2}} \ldots \omega_{k_{w}}}^{y}(u)}{u-\sigma_{k_{1}}} d u \quad$ for $w>1$,
for any z sufficiently close to y on \mathbf{P}^{1}. The germ $L_{\omega_{k_{1}} \ldots \omega_{k_{w}}} \in O_{Y, y}$ admits analytic continuation along any continuous path $\gamma_{z}:[0,1] \rightarrow \mathbf{P}^{1} \backslash \Sigma$ joining y to an arbitrary point $z \in Y$. The value
at z of this analytic continuation only depends on the homotopy class of γ_{z} and is easily seen to coincide with the iterated integral of the tensor $\omega_{k_{1}} \otimes \cdots \otimes \omega_{k_{w}} \in\left(\boldsymbol{\mathcal { H }}_{\Sigma}\right)^{\otimes w}$ along γ_{z} : one has

$$
L_{\omega_{k_{1}} \ldots \omega_{k_{w}}}^{y}(z)=\int_{\gamma_{2}} \frac{d u}{u-\sigma_{k_{1}}} \otimes \frac{d u}{u-\sigma_{k_{2}}} \otimes \ldots \otimes \frac{d u}{u-\sigma_{k_{w}}} .
$$

The germ $L_{\omega_{k_{1}} \ldots \omega_{k_{w}}}^{y}$ gives rise to a global but multivalued holomorphic function on Y, with branch points at the σ_{k} 's, which we will still refer to as the hyperlogarithm associated to $\omega_{k_{1}} \ldots \omega_{k_{w}}$ and we denote by $L_{\omega_{k_{1}} \ldots \omega_{k_{w}}}$.

More formally, we consider the map (where II stands for "Iterated Integral")

$$
\begin{equation*}
\mathrm{II}_{Y}^{y}: \oplus_{w \geq 0}\left(\mathcal{H}_{\Sigma}\right)^{\otimes w} \longrightarrow O_{\mathbf{P}^{1}, y}, \quad \omega_{k_{1}} \otimes \omega_{k_{2}} \otimes \ldots \otimes \omega_{k_{w}} \longmapsto L_{\omega_{k_{1}} \cdots \omega_{k_{w}}}^{y} . \tag{4}
\end{equation*}
$$

which in addition to being \mathbf{C}-linear, can be proved to be a morphism of algebras if $\oplus_{w \geq 0}\left(\boldsymbol{H}_{\Sigma}\right)^{\otimes w}$ is endowed with the so-called "shuffle product" (but we will not use this property in the rest of the paper). The image $\operatorname{Im}\left(\mathrm{II}_{Y}^{y}\right)$ is a complex subalgebra of $O_{\mathbf{P}^{1}, y}$ and its elements are called (germs at y of) hyperlogarithms. Moreover, the morphism (4) is injective. Consequently, for any germ of hyperlogarithm $L \in O_{\mathbf{P}^{1}, y}$, the minimum $w(L)$ of integers $w \geq 0$ such that L belongs to the image of $\oplus_{w^{\prime}} \geq w\left(\mathcal{H}_{\Sigma}\right)^{\otimes w^{\prime}}$ by II_{Y}^{y} is well-defined and is called the weight of L.

As multivalued functions on \mathbf{P}^{1}, the monodromy of hyperlogarithms can be proved to be unipotent (see [We, Thm. 8.2]) from which it follows that these functions also form an algebra and that the notion of weight still makes sense for them.
2.1.2. The most classical example is for $m=2$ with $\sigma_{1}=0$ and $\sigma_{2}=1$ which encompasses the case of classical polylogarithms. Indeed, setting $\eta_{0}=d z / z$ and $\eta_{1}=d z /(1-z)$ in this special case, as multivalued hyperlogarithms on $\mathbf{P}^{1} \backslash\{0,1, \infty\}$, one has

$$
\log =L_{\eta_{0}}, \quad R=\frac{1}{2}\left(L_{\eta_{0} \eta_{1}}-L_{\eta_{1} \eta_{0}}\right) \quad \text { and } \quad \mathbf{L i}_{n+1}=L_{\eta_{0}^{8 n} \eta_{1}} \quad \text { for any } n \geq 0
$$

Working locally with germs of hyperlogarithms is more involved but removes all ambiguity regarding the choice of a branch of the functions considered. For instance, for any $y \in \mathbf{P}^{1} \backslash$ $\{0,1, \infty\}$, one has that the weight 2 hyperlogarithm at y whose symbol is $\frac{1}{2}\left(\eta_{0} \eta_{1}-\eta_{1} \eta_{0}\right)$ is the holomorphic function defined by

$$
R^{y}(z)=\frac{1}{2}\left(L_{\eta_{0} \eta_{1}}(z)-L_{\eta_{1} \eta_{0}}(z)\right)=\frac{1}{2} \int_{y}^{z}\left(\frac{\log \left(\frac{u-1}{y-1}\right)}{u}-\frac{\log \left(\frac{u}{y}\right)}{u-1}\right) d u
$$

for any $z \in\left(\mathbf{P}^{1}, y\right)$. This hyperlogarithm has to be seen as a holomorphic version, localized at y, of Rogers' dilogarithm defined in 2 .
2.1.3. We now define the hyperlogarithms involved in this paper, noted by $A I^{w}$. Even if our results is for weights w less than or equal to 6 , the definition of $A I^{w}$ is completly uniform in w, hence we will not impose any restriction on the weight in this subsection.

We use the notation of $\$ 2.1 .1$ again: $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{m}, \infty\right\}, \omega_{k}=d z /\left(z-\sigma_{k}\right)$ for $k=1, \ldots, m$, etc. We introduce a special class of hyperlogarithms on \mathbf{P}^{1}, with respect to Σ, of weight $m=|\Sigma|-1$.

For a C-vector space V, we identify $\wedge^{m} V$ with its image in $V^{\otimes m}$ under the standard embedding:

$$
\wedge^{m} V \hookrightarrow V^{\otimes m}, \quad v_{1} \wedge \ldots \wedge v_{m} \longmapsto \frac{1}{m!}\left(\sum_{\tau \in \mathfrak{G}_{m}}(-1)^{\tau} v_{\tau(1)} \otimes \ldots \otimes v_{\tau(m)}\right)
$$

where $(-1)^{\tau}$ stands for the signature of τ for any permutation $\tau \in \mathcal{S}_{m}$.
Definition 2.1. The (complete) anti-symmetric hyperlogarithm $A I^{m}$ of weight m on \mathbf{P}^{1}, with respect to Σ, is the hyperlogarithm whose germ at any $y \in Y=\mathbf{P}^{1} \backslash \Sigma$ is obtained by taking the image of $\omega_{1} \wedge \ldots \wedge \omega_{m} \in \wedge^{m} \mathcal{H}_{\Sigma} \subset\left(\boldsymbol{H}_{\Sigma}\right)^{\otimes m}$ under the map (4): as germs at y, one has

$$
A I_{\Sigma}^{m}=\operatorname{II}_{Y}^{y}\left(\omega_{1} \wedge \ldots \wedge \omega_{m}\right)
$$

One verifies that $\omega_{1} \wedge \ldots \wedge \omega_{m} \in \wedge^{m} \boldsymbol{\mathcal { H }}_{\Sigma}$ is canonically defined, up to a sign. It follows that $\pm A I_{\Sigma}^{m}$ is canonically defined by Σ. Here are some easy remarks about the first three examples:

- $m=1$ and $\sigma_{1}=0$; one has $A I_{\{0, \infty\}}^{1}=\log$ up to sign;
$-m=2$ and $\sigma_{1}=0, \sigma^{2}=1$; up to sign, one recovers the holomorphic version of Rogers' dilogarithm discussed above since $A I_{\{0,1, \infty\}}^{2}=R^{y}$ as germs at any $y \in \mathbf{P}^{1} \backslash\{0,1, \infty\}$;
- the case $m=3$ is new since, the weight 3 antisymmetric hyperlogarithm has not been considered in the literature before as far we know. For any $y \in \mathbf{P}^{1} \backslash \Sigma$ with $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \infty\right\}$, one can give an explicit integral expression for $A I_{\Sigma}^{3}$ (see (19). However, one can prove that $A I_{\Sigma}^{3}$ can be expressed as the following linear combination of products of antisymmetric polylogarithms of weight 1 or 2 since for suitable choices of the sign of $A I_{\Sigma}^{3}$ and of the weight two hyperlogarithms $A I_{\Sigma \backslash\left\{\sigma_{k}\right\}}^{2}$'s for $k=1,2,3$, the following relation holds true

$$
A I_{\Sigma}^{3}(z)=\frac{1}{3} \sum_{k=1}^{3}(-1)^{k-1} \log \left(\frac{z-\sigma_{k}}{y-\sigma_{k}}\right) \cdot A I_{\Sigma \backslash\left\{\sigma_{k}\right\}}^{2}(z)
$$

for any $z \in \mathbf{P}^{1}$ sufficiently close of the previously fixed base point y.
2.1.4. Pull-backs of hyperlogarithms. Let Y be a (not necessarily compact) complex manifold and let $\boldsymbol{H} \subset \mathbf{H}^{0}\left(Y, \Omega_{Y}^{1}\right)$ be a subspace of holomorphic 1-forms on Y, such that:

$$
\begin{equation*}
\text { For all } \omega, \omega^{\prime} \in \mathcal{H} \text {, one has } d \omega=0 \text { and } \omega \wedge \omega^{\prime}=0 \tag{5}
\end{equation*}
$$

The conditions (5) are satisfied if, for example, $\boldsymbol{H}=\phi^{*} \mathbf{H}^{0}\left(C, \Omega_{C}^{1}\right)$, for some regular submersion $\phi: Y \rightarrow C$, with C a smooth (not necessarily compact) curve. The conditions (5) ensure that for any holomorphic 1 -forms $\omega_{1} \ldots, \omega_{w}$ in $\boldsymbol{\mathcal { H }}$, the iterated integral $\mathrm{II}_{\omega_{1} \omega_{2} \ldots \omega_{w}}^{y}=\int^{\bullet} \omega_{1} \otimes \omega_{2} \otimes \cdots \otimes \omega_{w}$, defined inductively as in $\$ 2.1 .1$, depends only on the homotopy class of the path γ_{z}. Hence, for all $m \geq 1$, there is C-linear map $\operatorname{II}_{Y}^{y}: \oplus_{w \geq 0} \mathcal{H}^{\otimes w} \rightarrow \mathcal{O}_{Y, y}$, defined as in (4). Furthermore, this map is an injective morphism of complex algebras.

A special situation occurs when the conditions (5) are not necessarily satisfied for all elements of $\boldsymbol{\mathcal { H }}$, but there exist subspaces $\boldsymbol{\mathcal { H }}_{i} \subset \boldsymbol{\mathcal { H }}$ for $i=1 \ldots, d$, such that for each i, \mathcal{H}_{i} satisfies (5). In this case, we have again a well-defined injective \mathbf{C}-linear map given by the iterated integrals on the subspaces $\sum_{i=1}^{d}\left(\boldsymbol{H}_{i}\right)^{\otimes w} \subset \boldsymbol{\mathcal { H }}^{\otimes w}$, for all $w \geq 0$:

$$
\begin{equation*}
\mathrm{II}_{Y}^{y}: \oplus_{w \geq 0}\left(\sum_{i=1}^{d} \boldsymbol{\mathcal { H }}_{i}^{\otimes w}\right) \rightarrow \mathcal{O}_{Y, y} \tag{6}
\end{equation*}
$$

2.1.5. Hyperlogaritms for webs. Fix $m \geq 1$. The situation we consider here is when X a complex projective manifold, $\phi_{i}: X \rightarrow \mathbf{P}^{1}$ surjective morphisms (with $i=1, \ldots, d$), such that there exists subsets of $m+1$ distinct points $\Sigma_{i}=\left\{\sigma_{i}^{1}, \ldots, \sigma_{i}^{m}, \infty\right\} \subset \mathbf{P}^{1}$, such that $\phi_{i}: X \backslash \phi_{i}^{-1}\left(\Sigma_{i}\right) \rightarrow \mathbf{P}^{1} \backslash \Sigma_{i}$ is a regular submersion for all i, and the union $D \subset X$ of all divisors $\phi_{i}^{-1}\left(\sigma_{i}^{k}\right) \subset X$, for all i and $k=1, \ldots, m$ is such that one has $d \phi_{i} \wedge d \phi_{j} \neq 0$ on $Y=X \backslash D$, for all $i, j=1, \ldots, d$ distinct. Then the maps $\phi_{i}(i=1, \ldots, d)$ define a regular d-web of hypersurfaces on Y.

In such a situation, we consider the following notations:

- we denote by $\mathcal{H}=\mathbf{H}^{0}\left(X, \Omega_{X}^{1}(\log D)\right) \subset \mathbf{H}^{0}\left(Y, \Omega_{Y}^{1}\right)$ the space of logarithmic 1-forms on X with logarithmic poles along to D;
- for $i=1, \ldots, d$, we set $Y_{i}=\mathbf{P}^{1} \backslash \Sigma_{i}$ and
- $\theta_{i}^{j}=d z /\left(z-\sigma_{i}^{k}\right)$ for $k=1, \ldots, m$, which form a basis of

$$
\mathcal{H}_{\Sigma_{i}}=\mathbf{H}^{0}\left(\mathbf{P}^{1}, \Omega_{\mathbf{P}^{1}}^{1}\left(\log \Sigma_{i}\right)\right)
$$

- $\Theta_{i}^{j}=\phi_{i}^{*}\left(\theta_{i}^{j}\right)=d \phi_{i} /\left(\phi_{i}-\sigma_{i}^{k}\right)$ for $k=1, \ldots, m$, which form a basis of

$$
\begin{gathered}
\mathcal{H}_{i}=\phi_{j}^{*}\left(\mathcal{H}_{\Sigma_{i}}\right) \subset \mathcal{H} ; \\
-\theta_{i}=\theta_{i}^{1} \wedge \ldots \wedge \theta_{i}^{m} \in \wedge^{m} \mathcal{H}_{\Sigma_{i}} \subset\left(\boldsymbol{\mathcal { H }}_{\Sigma_{i}}\right)^{\otimes m} \text { and } \Theta_{i}=\phi_{i}^{*}\left(\theta_{i}\right)=\wedge_{k=1}^{m} \Theta_{i}^{k} \in \wedge^{m} \mathcal{H}_{i} \subset\left(\mathcal{H}_{i}\right)^{\otimes m}
\end{gathered}
$$

- for any $y \in Y$, we set $y_{i}=\phi_{i}(y) \in \mathbf{P}^{1} \backslash \Sigma_{i}$ and we consider the (germs of) weight m hyperlogarithms

$$
A I_{\Sigma_{i}}^{m}=\operatorname{II}_{Y_{i}}^{y_{i}}\left(\theta_{i}\right) \in O_{\mathbf{P}^{1}, y_{i}} \quad \text { for } i=1, \ldots, d \quad \text { and } \quad A I_{i}^{m}=\operatorname{II}_{Y}^{y}\left(\Theta_{i}\right) \in O_{Y, y} .
$$

One verifies easily that for any i, the following relation holds true as germs on Y at y :

$$
A I_{i}^{m}=A I_{\Sigma_{i}}^{m} \circ \phi_{i} .
$$

For any $i=1, \ldots, d$, the hyperlogarithm $A I_{i}^{m}$ (or equivalently $A I_{\Sigma_{i}}^{m}$) is only well-defined up to multiplication by -1 . For each i, we fix one of the two possible choices for $A I_{i}^{m}$. The following result, although elementary to prove, is key since it will allow us to handle algebraically the functional identity we want to establish in $\S 3$:

Proposition 2.2. For $c_{1} \ldots, c_{d} \in \mathbf{C}$, the following statements are equivalent:
i. One has $\sum_{i=1}^{d} c_{i} \Theta_{i}=0$ in $\wedge^{n} \boldsymbol{\mathcal { H }} \subset \mathcal{H}^{\otimes n}$.
ii. There exists $y \in Y$ such that $\sum_{i=1}^{d} c_{i} A I_{\Sigma_{i}}^{m}\left(\phi_{i}\right)=0$ as a holomorphic germ at y on Y.
iii. For any $y \in Y, \sum_{i=1}^{d} c_{i} A I_{\Sigma_{i}}^{m}\left(\phi_{i}\right)=0$ as a holomorphic germ at y on Y.
iv. One has $\sum_{i=1}^{d} c_{i} A I_{\Sigma_{i}}^{m}\left(\phi_{i}\right)=0$ as multivalued functions on Y.

Proof. For a point $y \in Y$, we have $\sum_{i=1}^{d} c_{i} A I_{\Sigma_{i}}^{m}\left(\phi_{i}\right)=\operatorname{II}_{Y}^{y}\left(\sum_{i=1}^{d} c_{i} \Theta_{i}\right)$, where I_{Y}^{y} is the integration map in (6). The statement now follows from the fact that this map is injective.
2.2. Del Pezzo surfaces. Del Pezzo surfaces are smooth projective surfaces with ample anticanonical line bundle. A del Pezzo surface is isomorphic to either $\mathbf{P}^{1} \times \mathbf{P}^{1}$ or a blow-up $\mathbf{B l}_{p_{1}, \ldots, p_{r}}\left(\mathbf{P}^{2}\right)$ $(r \geq 8)$ at r points p_{1}, \ldots, p_{r} in general position in \mathbf{P}^{2}.

In what follows we consider del Pezzo surfaces $X_{r}=\mathbf{B l}_{p_{1}, \ldots, p_{r}}\left(\mathbf{P}^{2}\right)$ for $3 \leq r \leq 8$. We fix a blow-up map $\beta=\beta_{r}: X_{r} \rightarrow \mathbf{P}^{2}$. We refer to [Ma, Chap.IV] or [Do1, Chap.8] for general facts about del Pezzo surfaces. Here we make a list of the properties that we will use.
(1). The Picard group $\operatorname{Pic}\left(X_{r}\right)$ is a free abelian group generated by the classes e_{i} of the exceptional divisors $\beta^{-1}\left(p_{i}\right)$ (for $\left.i=1, \ldots, r\right)$ and the class h of the preimage under β of a general line in \mathbf{P}^{2}. The intersection pairing on X_{r} is determined by $h^{2}=1, h \cdot e_{i}=0$, $e_{i} \cdot e_{j}=-\delta_{i j}$, for all $i, j \in\{1, \ldots, r\}$.
(2). The canonical divisor is $K=K_{X_{r}}=-3 h+\sum_{i=1}^{r} e_{i}$ and the degree of X_{r} is $(-K)^{2}=9-r$.
(3). A line on X_{r} is a smooth curve $\ell \subset X_{r}$ with $K \cdot \ell=\ell^{2}=-1$. Such a line is necessarily a smooth rational curve and it can be naturally identified with its class in $\operatorname{Pic}\left(X_{r}\right)$. We denote by \mathcal{L}_{r} the set of lines on X_{r}.
(4). A conic on X_{r} is a curve $C \subset X_{r}$ with $C \cdot K=-2$ and $C^{2}=0$. When C is smooth, it is necessarily a smooth rational curve. Otherwise, it is the sum of two concurrent lines on X_{r}. We denote by \mathcal{K}_{r} the set of conic classes.

A conic fibration $X_{r} \rightarrow \mathbf{P}^{1}$ is given by the complete linear system of a conic on X_{r}. Hence, \mathcal{K}_{r} corresponds to the set of conic fibrations up to projective equivalence.
(5). The orthogonal complement $K^{\perp}=\left\{\alpha \in \operatorname{Pic}\left(X_{r}\right) \mid \alpha \cdot K=0\right\}$ is free of rank r and spanned by the classes

$$
\alpha_{i}=e_{i}-e_{i+1} \quad \text { for } i=1, \ldots, r-1 \quad \text { and } \quad \alpha_{r}=3 h-e_{1}-e_{2}-e_{3} .
$$

Together with the positive definite symmetric form $-\left.(\cdot, \cdot)\right|_{K^{\perp}}$ coming from the intersection pairing, the α_{i} 's define a root system of type E_{r}, with the convention that $E_{4}=A_{4}$, $E_{5}=D_{5}$, see the following figure:

Figure 1. Dynkin diagrams E_{r} (with i standing for α_{i} for any $i=1, \ldots, r$)
(6). For any $i=1, \ldots, r$, the map

$$
s_{\alpha_{i}}: \beta \longmapsto \beta+\left(\beta \cdot \alpha_{i}\right) \alpha_{i}
$$

is an involutive automorphism of $\left(\operatorname{Pic}\left(X_{r}\right),(\cdot, \cdot)\right)$ which lets K invariant. The restrictions of the $s_{\alpha_{i}}$'s to $R_{r}=K^{\perp} \otimes_{\mathbf{Z}} \mathbf{R}$ are orthogonal reflections and they generate a Weyl group of type E_{r}, denoted by W_{r}. In particular, W_{r} is finite.
(7). For simplicity, we set $s_{i}=s_{\alpha_{i}}$ for any i. When $i=1, \ldots, r-1$, the reflection s_{i} acts on $\operatorname{Pic}\left(X_{r}\right)$ by interchanging e_{i} with e_{i+1}, leaving other exceptional classes e_{k} and h fixed. The reflection s_{r} acts as a Cremona transformation, i.e., one has $s_{r}(h)=2 h-e_{1}-e_{2}-e_{3}$ and $s_{r}\left(e_{i}\right)=h-e_{j}-e_{k}$ for $\{i, j, k\}=\{1,2,3\}$ and s_{r} leaves e_{k} fixed for $k=4, \ldots, r$.
(8). For an element $w \in W_{r}$, we denote $(-1)^{w}=(-1)^{l(w)} \in\{ \pm 1\}$ the signature of w. Here $l(w)$ stands for the length of w which by definition is the smallest non negative integer m such that one can write $w=s_{i_{1}} \cdots s_{i_{m}}$ for some i_{1}, \ldots, i_{m} in $\{1, \ldots, r\}$. The map $W_{r} \rightarrow$ $\{ \pm 1\}, w \mapsto(-1)^{w}$ is a group morphism, called the signature. The associated signature representation is the unique non trivial representation of W_{r} of dimension 1 .
(9). Any line ℓ (respectively, any conic class \mathfrak{c}) on X_{r} belongs to the W_{r}-orbit of the exceptional divisor e_{1} (respectively, $h-e_{1}$). This follows from Noether's inequality (e.g., see [Do2, p. 288]). Equivalently: W_{r} acts transitively on the set \mathcal{L}_{r} of lines (respectively, on the set \mathcal{K}_{r} of conic classes).
(10). Any conic fibration $\phi_{c}: X_{r} \rightarrow \mathbf{P}^{1}$ corresponding to a conic class \mathfrak{c} has exactly $r-1$ reducible fibers, each a union of two lines intersecting at a point. In particular, each conic class is of the form $c=\ell+\ell^{\prime}$, with ℓ, ℓ^{\prime} lines such that $\ell \cdot \ell^{\prime}=1$. We will often write $\ell+\ell^{\prime}$ to indicate the reducible conic $\ell \cup \ell^{\prime}$.
(11). For $r>3$, the stabilizer $W_{e_{r}}$ of $e_{r} \in \mathcal{L}_{r}$ is generated by the reflections s_{i} 's for i ranging from 1 to r and distinct from $r-1$. It follows that $W_{e_{r}}$ is isomorphic to the Weyl group associated to the Dynkin diagram E_{r-1}^{\prime} obtained by removing the $(r-1)$-th node as well as the edge adjacent to it from E_{r}, that is $W_{e_{r}} \simeq W\left(E_{r-1}\right)$. In particular, for $r>3$ we have $l_{r}=\left|\mathcal{L}_{r}\right|=\left|W_{r}\right| /\left|W_{r-1}\right|$. For $r=3$, one has $W_{e_{3}}=\left\langle s_{1}\right\rangle \simeq\{ \pm 1\}$ and $l_{3}=\left|\mathcal{L}_{3}\right|=6$.
(12). The stabilizer $W_{\mathfrak{c}_{1}}$ of $\mathfrak{c}_{1}=h-e_{1} \in \mathcal{K}$ is generated by the reflections s_{2}, \ldots, s_{r}. This subgroup of W_{r} is isomorphic to the Weyl group associated to the Dynkin diagram $E_{r-1}^{\prime \prime}$ obtained by removing the first node as well as the edge adjacent to it from E_{r}, which hence is of type $D_{r-1} \sqrt[4]{4}$ In particular, we have $\kappa_{r}=\left|\mathcal{K}_{r}\right|=\left|W_{r}\right| /\left|W\left(D_{r-1}\right)\right|=\left|W_{r}\right| /\left(2^{r-2}(r-1)!\right)$.
(13). For any mutually disjoint $r-2$ lines $\ell_{1}, \ldots, \ell_{r-2}$, there exists an element w of the Weyl group W such that $w \cdot e_{i}=\ell_{i}$ for all $i=1, \ldots, r-2$ (cf. Corollary 26.8.(i) in [Ma]).

Some numerical invariants associated to the Weyl groups W_{r} and the sets of lines and conics \mathcal{L}_{r} and \mathcal{K}_{r} are gathered in the following table:

An important ingredient in our approach is that for each case $r \in\{3, \ldots, 8\}$, there are explicit descriptions of both sets \mathcal{L}_{r} and \mathcal{K}_{r} (when those are seen as subsets of $\operatorname{Pic}\left(X_{r}\right)$). We mention only the case when $r=8$ (from which the other cases can be easily deduced) and refer to [Ma, §26] and [Do1] for details and proofs.

When viewed as elements of $\operatorname{Pic}\left(X_{r}\right)$, any line or conic class is uniquely determined by the tuple of its integer coordinates $\left(d, m_{1}, \ldots, m_{r}\right) \in \mathbf{Z}^{r+1}$ with respect to the basis $\left(h,-e_{1}, \ldots,-e_{r}\right)$ of the Picard lattice. Let the type of a coordinate $(r+1)$-tuple $\left(d, m_{1}, \ldots, m_{r}\right)$ by a symbol $\left(d ; k_{1}^{n_{1}}, \ldots, k_{s}^{n_{s}}\right)$ for some integers $k_{t} \neq 0$ and $n_{t}>0$ for $t=1, \ldots, s \leq r$, with the defining property that among the non zero m_{1}, \ldots, m_{r}, exactly n_{t} are equal to k_{t}, this for all t ranging from 1 to s (for example, the type of $(6,2,2,2,3,2,2,2,0) \in \mathbf{Z}^{9}$ is $\left(6 ; 3,2^{6}\right)$, etc).

[^2]| \boldsymbol{r} | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{E}_{\boldsymbol{r}}$ | $A_{2} \times A_{1}$ | A_{4} | D_{5} | E_{6} | E_{7} | E_{8} |
| $\boldsymbol{W}_{\boldsymbol{r}}=\boldsymbol{W}\left(\boldsymbol{E}_{\boldsymbol{r}}\right)$ | $\Im_{3} \times \Im_{2}$ | \Im_{5} | $(\mathbf{Z} / 2 \mathbf{Z})^{4} \ltimes \Im_{5}$ | $W\left(E_{6}\right)$ | $W\left(E_{7}\right)$ | $W\left(E_{8}\right)$ |
| $\boldsymbol{\omega}_{\boldsymbol{r}}=\left\|\boldsymbol{W}_{\boldsymbol{r}}\right\|$ | 12 | $5!$ | $2^{4} \cdot 5!$ | $2^{7} \cdot 3^{4} \cdot 5$ | $2^{10} \cdot 3^{4} \cdot 5 \cdot 7$ | $2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7$ |
| $\boldsymbol{l}_{\boldsymbol{r}}=\left\|\mathcal{L}_{\boldsymbol{r}}\right\|$ | 6 | 10 | 16 | 27 | 56 | 240 |
| $\boldsymbol{\kappa}_{\boldsymbol{r}}=\left\|\mathcal{K}_{r}\right\|$ | 3 | 5 | 10 | 27 | 126 | 2160 |

Table 1.

In the table below, we list all the types of lines and conics classes on X_{8}, and indicate the number of classes there are for each type (see [Ma, Prop. 26.1] and [Do1, §8.8]).

Lines on $\boldsymbol{X}_{\mathbf{8}}$	
Types	Number of such
$(0 ;-1)$	8
$\left(1 ; 1^{2}\right)$	28
$\left(2 ; 1^{5}\right)$	56
$\left(3 ; 2,1^{6}\right)$	56
$\left(4 ; 2^{3}, 1^{5}\right)$	56
$\left(5 ; 2^{6}, 1^{2}\right)$	28
$\left(6 ; 3,2^{7}\right)$	8

Conic classes on $\boldsymbol{X}_{\mathbf{8}}$	
Types	Number of such
$(1 ; 1)$	8
$\left(2 ; 1^{4}\right)$	70
$\left(3 ; 2,1^{5}\right)$	168
$\left(4 ; 2^{3}, 1^{4}\right)$	280
$\left(4 ; 3,1^{7}\right)$	8
$\left(5 ; 2^{6}, 1\right)$	56
$\left(5 ; 3,2^{3}, 1^{4}\right)$	280
$\left(6 ; 3^{2}, 2^{4}, 1^{2}\right)$	420
$\left(7 ; 3^{4}, 2^{3}, 1\right)$	280
$\left(7 ; 4,3,2^{6}\right)$	56
$\left(8 ; 3^{7}, 1\right)$	8
$\left(8 ; 4,3^{4}, 2^{3}\right)$	280
$\left(9 ; 4^{2}, 3^{5}, 2\right)$	168
$\left(10 ; 4^{4}, 3^{4}\right)$	70
$\left(11 ; 4^{7}, 3\right)$	8

Table 2. Types of lines and of conic classes and their numbers for the degree 1 del Pezzo surface X_{8}.

3. The identity HLog ${ }^{r-2}$

In the whole section, we fix $3 \leq r \leq 8$. For most of the time, we will denote for simplicity

$$
X=X_{r}, \quad K=K_{X_{r}}, \quad \mathcal{L}=\mathcal{L}_{r}, \quad \mathcal{K}=\mathcal{K}_{r}, \quad \text { etc. }
$$

3.1. For each conic class $\mathfrak{c} \in \mathcal{K}$, we consider the corresponding conic fibration $\phi_{c}: X \rightarrow \mathbf{P}^{1}$ and we denote by $\Sigma_{c} \subset \mathbf{P}^{1}$ the set of $r-1$ distinct points corresponding to the reducible fibers of ϕ_{c}. We may assume without loss of generality that $\Sigma_{c}=\left\{\sigma_{c}^{1}, \ldots, \sigma_{c}^{r-1}\right\}$ (with $\sigma_{c}^{r-1}=\infty$), i.e., we are in the situation of a web of hypersurfaces (conics, in our case) as described in $\$ 2.1 .5$. We consider the same set-up and notations as in $\$ 2.1 .5$, we have

- $Y=X \backslash L$ with $L=L_{r}=\sum_{\ell \in \mathcal{L}} \ell \subset X$, and $\mathcal{H}=\mathbf{H}^{0}\left(X, \Omega_{X}^{1}(\log L)\right)$;
- and for any conic class $c \in \mathcal{K}$, we set:

$$
\begin{aligned}
& -\mathcal{H}_{\Sigma_{\mathrm{c}}}=\mathbf{H}^{0}\left(\mathbf{P}^{1}, \Omega_{\mathbf{p}^{\mathrm{l}}}^{1}\left(\log \Sigma_{\mathrm{c}}\right)\right) \text { and } \boldsymbol{\mathcal { H }}_{\mathrm{c}}=\phi_{\mathrm{c}}^{*} \boldsymbol{\mathcal { H }}_{\Sigma_{\mathrm{c}}} \subset \boldsymbol{\mathcal { H }} ; \\
& -\eta_{\mathrm{c}}^{\prime}=\wedge_{i=1}^{r-2}\left(\frac{d z}{z \sigma_{\mathrm{c}}^{\prime}}\right) \in \wedge^{r-2} \boldsymbol{H}_{\Sigma_{\mathrm{c}}} \subset\left(\boldsymbol{\mathcal { H }}_{\Sigma_{\mathrm{c}}}\right)^{\otimes r-2} ; \text { and } \\
& -\eta_{\mathrm{c}}=\wedge_{i=1}^{r-2}\left(\frac{d \phi_{\mathrm{c}}}{\phi_{\mathrm{c}}-\sigma_{\mathrm{c}}^{\prime}}\right)=\phi_{\mathrm{c}}^{*} \eta_{\mathrm{c}}^{\prime} \in \wedge^{r-2} \boldsymbol{\mathcal { H }}_{\mathrm{c}} \subset\left(\boldsymbol{\mathcal { H }}_{\mathrm{c}}\right)^{\otimes r-2} .
\end{aligned}
$$

Each of the elements η_{c} generate the 1-dimensional \mathbf{C}-vector spaces $\wedge^{r-2} \boldsymbol{\mathcal { H }}_{\mathrm{c}}$ and is canonically defined up to sign. In what follows, we identify $\wedge^{r-2} \boldsymbol{\mathcal { H }}_{\text {c }}$ with its image in $\wedge^{r-2} \mathcal{H}$.

Using the notations of $\$ 2.1 .5$ for any $y \in Y$ and as holomophic germs at this point, one has

$$
\begin{equation*}
A I_{\mathrm{c}}^{r-2}\left(\phi_{c}\right)=A I_{\Sigma_{c}, y}^{r-2}\left(\phi_{\mathrm{c}}\right)=\mathrm{II} y_{y}\left(\eta_{c}\right) \in O_{Y, y} . \tag{8}
\end{equation*}
$$

It then follows from Lemma 2.2, that Theorem 1.1 is equivalent to the following statement:
Theorem 3.1. 1. Up to a global sign, there is a canonical choice of a tuple $\left(\tau_{c}\right)_{c \in \mathcal{K}}$ with $\tau_{c}= \pm \eta_{c}$ for each $\mathfrak{c} \in \mathcal{K}$ and such that the following equality holds true in $\wedge^{r-2} \mathcal{H}$:

$$
\begin{equation*}
\sum_{c \in \mathcal{K}_{r}} \tau_{c}=0 \tag{9}
\end{equation*}
$$

2. Moreover, the identity (9) spans the space of linear relations between the τ_{c} 's, i.e., if $\left(c_{c}\right)_{c \in \mathcal{K}} \in$ $\mathbf{C}^{\mathcal{K}}$ is such that $\sum_{\mathrm{c} \in \mathcal{K}_{r}} c_{\mathrm{c}} \tau_{\mathrm{c}}=0$ then all the c_{c} 's are equal.

The rest of this section is devoted to proving this result.
3.2. The irreducible components of L being the lines $\ell \in \mathcal{L}$, one can define a Poincaré residue map $\operatorname{Res}_{L}=\oplus_{\ell \in \mathcal{L}} \operatorname{Res}_{\ell}: \Omega_{X}^{1}(\log L) \rightarrow \oplus_{\ell \in \mathcal{L}} O_{\ell}$ wich makes the following sequence of sheaves exact:

$$
0 \rightarrow \Omega_{X}^{1} \longmapsto \Omega_{X}^{1}(\log L) \longmapsto \oplus_{\ell \in \mathcal{L}} O_{\ell} \rightarrow 0
$$

As X is a rational variety, we have that $\mathbf{H}^{0}\left(X, \Omega_{X}^{1}\right)=0$, hence the residue map induces an injective map of \mathbf{C}-linear vector spaces $\operatorname{Res}_{L}: \mathcal{H} \hookrightarrow \mathbf{C}^{\mathcal{L}}$ and in turn an injective linear map $\wedge^{r-2} \mathcal{H} \hookrightarrow$ $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$.

Given a conic fibration $\phi_{c}: X \rightarrow \mathbf{P}^{1}$ associated to a conic class $c \in \mathcal{K}$, we denote by $C_{\mathrm{c}}^{1}, \ldots, C_{\mathrm{c}}^{r-1}$ the reducible fibers of ϕ_{c}, with $C_{\mathrm{c}}^{i}=\phi_{\mathrm{c}}^{-1}\left(\sigma_{\mathrm{c}}^{i}\right)$ for $i=1, \ldots, r-1$ (with $\sigma_{\mathrm{c}}^{r-1}=\infty$). Each conic C_{c}^{i} is a union of two lines $\ell_{\mathrm{c}}^{i}, \tilde{\ell}_{\mathrm{c}}^{i}$ intersecting in one point. It follows that the residues

$$
\operatorname{Res}_{L}\left(d \phi_{\mathrm{c}} /\left(\phi_{\mathrm{c}}-\sigma_{\mathrm{c}}^{i}\right)\right)=C_{\mathrm{c}}^{i}-C_{\mathrm{c}}^{r-1}=\left(\ell_{\mathrm{c}}^{i}+\tilde{\ell}_{\mathrm{c}}^{i}\right)-\left(\ell_{\mathrm{c}}^{r-1}+\tilde{\ell}_{\mathrm{c}}^{r-1}\right) \in \mathbf{C}^{\mathcal{L}}
$$

for $i=1, \ldots, r-2$, form a basis for the image of $\mathcal{H}_{c} \subset \mathcal{H}$ under the injective map $\mathcal{H} \hookrightarrow \mathbf{C}^{\mathcal{L}}$. Consequently, we get that the image of $\eta_{c} \in \wedge^{r-2} \boldsymbol{H}_{c} \subset \wedge^{r-2} \mathcal{H}$ under the injective map $\wedge^{r-2} \mathcal{H} \hookrightarrow$ $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$ is

$$
\begin{equation*}
\left(C_{\mathrm{c}}^{1}-C_{\mathrm{c}}^{r-1}\right) \wedge \ldots \wedge\left(C_{\mathrm{c}}^{r-2}-C_{\mathrm{c}}^{r-1}\right) \tag{10}
\end{equation*}
$$

3.3. The Weyl group W acts on the set of lines \mathcal{L} and on the set of conic classes \mathcal{K} in a compatible way. In particular, for $\mathfrak{c} \in \mathcal{K}$ given, the action of any $w \in W$ sends the reducible fibers of ϕ_{c} to the reducible fibers of $\phi_{w \cdot c}$ in the following way:

$$
w \cdot C_{\mathrm{c}}^{i}=w \cdot \ell_{\mathrm{c}}^{i}+w \cdot \tilde{\ell}_{\mathrm{c}}^{i} .
$$

On the other hand, the action of W on \mathcal{L} induces a canonical linear action of W on $\mathbf{C}^{\mathcal{L}}$, and therefore on $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$. The action of $w \in W$ on any wedge product $\wedge_{i=1}^{r-2} \ell_{i}$ with $\left(\ell_{i}\right)_{i=1}^{r-2} \in \mathcal{L}^{r-2}$ is given by

$$
w \cdot\left(\ell_{1} \wedge \cdots \wedge \ell_{r-2}\right)=\left(w \cdot \ell_{1}\right) \wedge \cdots \wedge\left(w \cdot \ell_{r-2}\right) .
$$

3.4. We now fix a base conic class $\mathfrak{c}_{1}=h-e_{1}$ and label the reducible fibers of the associated conic fibration $\phi_{c_{1}}: X \rightarrow \mathbf{P}^{1}$ by

$$
C^{i}=C_{\mathrm{c}_{1}}^{i-1}=l_{1 i}+e_{i} \quad \text { for } \quad i=2, \ldots, r,
$$

where $l_{1 i}$ stands fo the class of the strict transform under the blow-up map β of the line in \mathbf{P}^{2} through p_{1} and p_{i}, i.e., $l_{1 i}=h-e_{1}-e_{i}$. As a generator of (the image in $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$ of) $\wedge^{r-2} \boldsymbol{\mathcal { H }}_{\mathrm{c} 1}$, we choose and fix

$$
\tau_{c_{1}}=\left(C^{2}-C^{r}\right) \wedge\left(C^{3}-C^{r}\right) \wedge \ldots \wedge\left(C^{r-1}-C^{r}\right) \in \wedge^{r-2} \mathbf{C}^{\mathcal{L}}
$$

For $w \in W$ arbitrary, we have:

$$
\begin{equation*}
w \cdot \tau_{c_{1}}=\left(w \cdot C^{2}-w \cdot C^{r}\right) \wedge\left(w \cdot C^{3}-w \cdot C^{r}\right) \wedge \ldots \wedge\left(w \cdot C^{r-1}-w \cdot C^{r}\right) \in \wedge^{r-2} \mathbf{C}^{\mathcal{L}} \tag{11}
\end{equation*}
$$

The stabilizer $W_{c_{1}}$ of \mathfrak{c}_{1} is a subgroup of W hence naturally acts on $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$. This action lets $\wedge^{r-2} \boldsymbol{H}_{\mathrm{c}_{1}} \subset \wedge^{r-2} \mathbf{C}^{\mathcal{L}}$ invariant hence $\wedge^{r-2} \boldsymbol{H}_{\mathrm{c}_{1}}$ is naturally a $W_{\mathrm{c}_{1}}$-representation (of dimension 1).
Lemma 3.2. 1. As a $W_{c_{1}}$-representation, $\wedge^{r-2} \boldsymbol{\mathcal { H }}_{\mathrm{c}_{1}}$ is isomorphic to the signature representation.
2. For $w \in W$ and $\mathfrak{c} \in \mathcal{K}$ such that $\mathfrak{c}=w \cdot \mathfrak{c}_{1}$, the element

$$
\tau_{c}=(-1)^{w}\left(w \cdot \tau_{c_{1}}\right)
$$

is a well defined generator of $\wedge^{r-2} \boldsymbol{H}_{c} \subset \wedge^{r-2} \mathbf{C}^{\mathcal{L}}$.
With the notation of this lemma, since the $w \cdot C^{i}$, for $i=2, \ldots, r-1$ are the non irreducible fibers of ϕ_{c}, one clearly has that τ_{c} coincides with η_{c} up to sign, hence, in particular, is a generator of $\wedge^{r-2} \boldsymbol{H}_{\mathrm{c}}$. The interest of the second statement in this lemma is that it asserts that τ_{c} only depends on c and not on w (once $\tau_{c_{1}}$ has been fixed).

Proof. Proving 1. is elementary. Indeed, being a $W_{c_{1}}$-representation of dimension 1, there are only two possibilities for $\wedge^{r-2} \mathcal{H}_{\mathrm{c}_{1}}$: either it is the trivial $W_{\mathrm{c}_{1}}$-representation, or it is the signature representation. To prove that the second case does occur, it suffices to exhibit an element $w \in W_{c_{1}}$ such that $w \cdot \tau_{\mathrm{c}_{1}}=-\tau_{\mathrm{c}_{1}}$. Using (7) and (11), it is straightforward to check that any of the generators s_{2}, \ldots, s_{r} of $W_{c_{1}}(c f$. s[2.2] (12)) has this property.

The second part of the lemma follows easily from the first: for $w_{1}, w_{2} \in W$ such that $w_{1} \cdot \mathfrak{c}_{1}=$ $w_{2} \cdot \mathfrak{c}_{1}=\mathfrak{c}$, one has $w_{2}^{-1} w_{1} \in W_{\mathfrak{c}_{1}}$, hence $w_{2}^{-1} w_{1} \cdot \tau_{\mathfrak{c}_{1}}=(-1)^{w_{2}^{-1} w_{1}} \tau_{\mathfrak{c}_{1}}$ by 1 . Thus $w_{2} \cdot\left(w_{2}^{-1} w_{1} \cdot \tau_{\mathfrak{c}_{1}}\right)=$ $(-1)^{w_{2}^{-1} w_{1}} w_{2} \cdot \tau_{c_{1}}$. The signature $w \mapsto(-1)^{w}$ being a group morphism, one has $(-1)^{w^{-1}}=(-1)^{w}$ for any w, therefore one obtains that $w_{1} \cdot \tau_{c_{1}}=(-1)^{w_{2}}(-1)^{w_{1}} w_{2} \cdot \tau_{c_{1}}$. This is equivalent to $(-1)^{w_{1}} w_{1} \cdot \tau_{c_{1}}=(-1)^{w_{2}} w_{2} \cdot \tau_{c_{1}}$, which is the relation ensuring that 2 . holds true.
3.5. Proof of Theorem 3.1, We are going to prove that the following statements are satisfied:

1. The \mathcal{K}-tuple $\left(\tau_{\mathrm{c}}\right)_{\mathrm{c} \in \mathcal{K}}$ is a basis of $\oplus_{\mathrm{c} \in \mathcal{K}} \wedge^{r-2} \mathcal{H}_{\mathrm{c}}$ which is canonical, up to a global sign.
2. The sum $\sum_{c \in \mathcal{K}} \tau_{c}$ in $\wedge^{r-2} \boldsymbol{\mathcal { H }}$ transforms as the signature under the action of W.
3. One has $\sum_{\mathrm{c} \in \mathcal{K}} \tau_{\mathrm{c}}=0$ in $\wedge^{r-2} \mathcal{H}$.
4. Any scalar linear relation between the τ_{c} 's in $\wedge^{r-2} \boldsymbol{\mathcal { H }}$ is a multiple of the one corresponding to the identity of 3 .

The first assertion follows easily from the second part of Lemma 3.2 and from the fact that each τ_{c} necessarily coincides with η_{c} up to sign (details are left to the reader). In this subsection, we are going to establish first 2. (cf. Lemma 3.5) then 3. and 4. which will follow in the same time from Lemma 3.7

For $k \geq 1$, following Manin (cf. [Ma, §26]), we call an exceptional k-tuple any k-tuple $\left(\ell_{i}\right)_{i=1}^{k} \in$ \mathcal{L}^{k} of non intersecting lines, i.e., such that $\ell_{i} \cdot \ell_{j}=0$ for any i, j such that $1 \leq i<j \leq k$. Our approach to prove both 2 . and 3. together is elementary and relies on the following

Lemma 3.3. Let \mathcal{E} be an exceptional $(r-2)$-tuple. There are exactly two conic classes such that each element of \mathcal{E} appears as a component of a reducible fiber of the associated conic fibration.

Proof. Since W acts transitively on the set of exceptional ($r-2$)-tuples (according to $\$ 2.2$ (13)), one can assume that $\mathcal{E}=\left(e_{3}, \ldots, e_{r}\right)$. Concretely, one wants to determine the conic classes $\mathfrak{c} \in \mathcal{K}$ such that $\mathfrak{c}-e_{i} \in \mathcal{L}$ for $i=3, \ldots, r$. Since the two sets \mathcal{L} and \mathcal{K} are finite and can be explicitly described (See Table 2 above for the case $r=8$), the claim can be checked by a straightforward case by case verification. One finds that only the two conic classes $\mathfrak{c}_{1}=h-e_{1}$ and $\mathfrak{c}_{2}=h-e_{2}$ satisfy the above conditions.

We consider the following element of $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$:

$$
\mathbf{h} \log =\mathbf{h} \log ^{r-2}=\sum_{c \in \mathcal{K}} \boldsymbol{\tau}_{\mathrm{c}}
$$

We now prove that this element is equal to zero, by decomposing it in the canonical basis of $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$ given by the wedge products $\ell_{1} \wedge \ell_{2} \wedge \ldots \wedge \ell_{r-2}$ of $r-2$ pairwise distinct lines $\ell_{1}, \ldots, \ell_{r-2} \in \mathcal{L}$.

Let $\wedge_{e x c}^{r-2} \mathbf{C}^{\mathcal{L}}$ be the proper subspace of $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$ spanned by the wedge products $\ell_{1} \wedge \ell_{2} \wedge \ldots \wedge \ell_{r-2}$ for all exceptional $(r-2)$-tuple of lines $\left(\ell_{i}\right)_{i=1}^{r-2}$. We call such wedge products exceptional. We fix once for all a basis of $\wedge_{\text {exc }}^{r-2} \mathbf{C}^{\mathcal{L}}$ formed by exceptional wedge products and call it the exceptional basis of $\wedge_{e x c}^{r-2} \mathbf{C}^{\mathcal{L}}$. Note that this basis is unique but only up to changing the signs of its elements. However, the arguments below are not essentially affected by this ambiguity.

We may assume that $\wedge_{i=3}^{r} e_{i}$ is an element of the exceptional basis and we denote by

$$
\begin{equation*}
\Lambda: \wedge_{e x c}^{r-2} \mathbf{C}^{\mathcal{L}} \longrightarrow \mathbf{C} \tag{12}
\end{equation*}
$$

the associated linear coordinate form with respect to the exceptional basis we are working with, i.e., Λ is the linear form on $\Lambda_{e x c}^{r-2} \mathbf{C}^{\mathcal{L}}$ characterized by the relations $\Lambda\left(\wedge_{i=3}^{r} e_{i}\right)=1$ and $\Lambda\left(\wedge_{i=3}^{r} \ell_{i}\right)=0$ for any exceptional wedge product $\wedge_{i=3}^{r} \ell_{i}$ such that $\left\{\ell_{i}\right\}_{i=3}^{r} \neq\left\{e_{i}\right\}_{i=3}^{r}$.

We first prove the
Lemma 3.4. For any $\mathrm{c} \in \mathcal{K}, \tau_{c}$ belongs to $\wedge_{\text {exc }}^{r-2} \mathbf{C}^{\mathcal{L}}$, therefore $\mathbf{h l o g}=\sum_{\mathrm{c} \in \mathcal{K}} \tau_{c}$ as well.
Proof. For $\mathrm{c} \in \mathcal{K}, \tau_{c}$ is equal to (10) up to sign. The lemma follows easily by noticing that the conics $C_{\mathrm{c}}^{1}, \ldots, C_{\mathrm{c}}^{r-1}$ are pairwise disjoint and because each of them is the sum of two lines.

We also need the following
Lemma 3.5. For any $w \in W$, one has $w \cdot \mathbf{h l o g}=(-1)^{w}$ hlog.
Proof. For a conic class $\mathfrak{c} \in \mathcal{K}$, let $w_{c} \in W$ be such that $\mathfrak{c}=w_{c} \cdot \mathfrak{c}_{1}$. By the definition of $\tau_{\mathfrak{c}}$, one has

$$
\tau_{c}=(-1)^{w_{c}} w_{c} \cdot \tau_{c_{1}}=(-1)^{w_{c}} \wedge_{i=2}^{r-1}\left(w_{c} \cdot C^{i}-w_{c} \cdot C^{r}\right) .
$$

Let w be an arbitrary element of W. From (11) and because $w w_{c} \cdot \mathfrak{c}_{1}=w \cdot \mathfrak{c}$, it comes that

$$
w \cdot \tau_{c}=(-1)^{w_{c}} \wedge_{i=2}^{r-1}\left(w w_{c} \cdot C^{i}-w w_{c} \cdot C^{r}\right)=(-1)^{w} \tau_{w \cdot c} .
$$

Summing up on the conic classes and because $\mathfrak{c} \mapsto w \cdot \mathfrak{c}$ is a bijection of \mathcal{K}, one gets

$$
w \cdot \mathbf{h l o g}=\sum_{c \in \mathcal{K}} w \cdot \tau_{c}=(-1)^{w} \sum_{c \in \mathcal{K}} \tau_{w \cdot c}=(-1)^{w} \mathbf{h l o g} .
$$

Since the W-action on $\operatorname{Pic}(X)$ preserves the intersection product, $\wedge_{e x c}^{r-2} \mathbf{C}^{\mathcal{L}}$ is a proper W-submo -dule of $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$. Furthermore, W acts on $\wedge_{e x c}^{r-2} \mathbf{C}^{\mathcal{L}}$ by permuting the elements of the exceptional basis. Moreover, by $\$ 2.2$, (13) this action on the exceptional wedge products is transitive (up to sign). To check that hlog $=0$ in $\wedge_{e x c}^{r-2} \mathbf{C}^{\mathcal{L}}$, it suffices to check that any element $\wedge_{i=1}^{r-2} \ell_{i}$ in the exceptional basis appears in hlog with coefficient zero. For such $\wedge_{i=1}^{r-2} \ell_{i}$, let $w \in W$ be such that $w \cdot\left(\wedge_{i=3}^{r} e_{i}\right)=\wedge_{i=1}^{r-2} \ell_{i}$. It suffices to check that $\Lambda\left(w^{-1} \cdot \mathbf{h l o g}\right)=0$ (see notation (12). By Lemma 3.5, this would follow from verifying that $\Lambda(\mathbf{h l o g})=0$.

From Lemma (3.3), the only conic classes $c \in \mathcal{K}$ for which $\wedge_{i=3}^{r} e_{i}$ appears with non-zero coefficient in the decomposition of τ_{c} in the exceptional basis are $\mathfrak{c}_{1}=h-e_{1}$ and $\mathfrak{c}_{2}=h-e_{2}$, i.e.,

$$
\begin{equation*}
\{c \in \mathcal{K} \mid \Lambda(c) \neq 0\}=\left\{c_{1}, \mathfrak{c}_{2}\right\} . \tag{13}
\end{equation*}
$$

Consequently, one has

$$
\begin{equation*}
\Lambda(\mathbf{h} \log)=\sum_{c \in \mathcal{K}} \Lambda\left(\tau_{\mathrm{c}}\right)=\Lambda\left(\tau_{\mathrm{c}_{1}}\right)+\Lambda\left(\tau_{\mathrm{c}_{2}}\right) . \tag{14}
\end{equation*}
$$

On the other hand, considering our initial choice for $\tau_{c_{1}}$, we have (see $\S 3.2$ above)

$$
\tau_{c_{1}}=\left(\ell_{12}+e_{2}-\ell_{1 r}-e_{r}\right) \wedge\left(\ell_{13}+e_{3}-\ell_{1 r}-e_{r}\right) \wedge \ldots \wedge\left(\ell_{1 r-1}+e_{r-1}-\ell_{1 r}-e_{r}\right)
$$

from which we have immediately that

$$
\begin{equation*}
\Lambda\left(\tau_{c_{1}}\right)=\Lambda\left(-e_{r} \wedge e_{3} \wedge e_{4} \wedge \ldots \wedge e_{r-1}\right)=(-1)^{r} . \tag{15}
\end{equation*}
$$

From $\$ 2.2$.(7), we know that the first fundamental reflection s_{1} acts as the transposition exchanging e_{1} and e_{2} on the set $\left\{h, e_{1}, \ldots, e_{r}\right\}$. Therefore, one has $s_{1} \cdot \mathfrak{c}_{1}=\mathfrak{c}_{2}$ and $s_{1} \cdot\left(e_{3} \wedge \ldots \wedge e_{r}\right)=$ $\left(s_{1} \cdot e_{3}\right) \wedge \ldots \wedge\left(s_{1} \cdot e_{r}\right)=e_{3} \wedge \ldots \wedge e_{r}$ which implies that $\Lambda\left(s_{1} \cdot \tau_{c_{1}}\right)=\Lambda\left(\tau_{c_{1}}\right)$. Since $\tau_{c_{2}}=(-1)^{s_{1}} s_{1} \cdot \tau_{c_{1}}$ by definition and because $(-1)^{s_{1}}=-1$, one obtains that

$$
\begin{equation*}
\Lambda\left(\tau_{c_{2}}\right)=(-1)^{r-1}=-\Lambda\left(\tau_{c_{1}}\right) . \tag{16}
\end{equation*}
$$

Substituting (15) and (16) in (14) gives $\Lambda(\mathbf{h l o g})=0$ which, as explained above, implies the

Lemma 3.6. One has $\mathbf{h l o g}=0$.

The assertion 3. at the beginning of $\$ \sqrt[3]{3.5}$ is proved. We now prove assertion 4 . Consider the graph with vertices in \mathcal{K}, with \mathfrak{c}, $\mathfrak{c}^{\prime} \in \mathcal{K}$ joined by an edge if there exists an element $\wedge_{i=1}^{r-2} \ell_{i}$ of the exceptional basis that appears with non-zero coefficient in the decomposition of both τ_{c} and $\tau_{c^{\prime}}$ in the exceptional basis. We have
Lemma 3.7. For any element $\ell_{1} \wedge \ldots \wedge \ell_{r-2}$ of the exceptional basis, there are exactly two conic classes \mathfrak{c}, $\mathfrak{c}^{\prime} \in \mathcal{K}$ such that $\ell_{1} \wedge \ldots \wedge \ell_{r-2}$ appears with non-zero coefficient in the decomposition of τ_{c} and $\tau_{c^{\prime}}$ in the exceptional basis. Moreover, these two coefficients are opposite.

Proof. For $e_{3} \wedge \ldots \wedge e_{r}$, this has been proved above (cf. (13), (15) and (16)). The general case follows by considering the action of W.

Assume now that there exists a relation $\sum_{c \in \mathcal{K}} c_{c} \tau_{c}=0$ for some $c_{c} \in \mathbf{C}$. By Lemma 3.7 for two conic classes c and c^{\prime} connected by an edge, we have $c_{\mathrm{c}}+c_{\mathrm{c}^{\prime}}=0$. Hence it suffices to prove that our graph is connected. As the action of W on \mathcal{K} is transitive, it suffices to check that for all $w \in W$ the classes $\mathfrak{c}_{1}=h-e_{1}$ and $w \cdot c_{1}$ are connected by a sequence of edges. Furthermore, using again the action of W, it suffices to check this for $w=s_{i}(i=1, \ldots, r)$. The reflections s_{2}, \ldots, s_{r} belong to the stabilizer of \mathfrak{c}_{1}, so there is nothing to prove. If $w=s_{1}$, then $\mathfrak{c}_{2}=w \cdot \mathfrak{c}_{1}=h-e_{2}$. As proved above, c_{1} and c_{2} are connected by an edge. The proof of Theorem 3.1 is now complete.
3.6. A representation-theoretic interpretation. The \mathcal{K}-tuple $\tau_{\mathcal{K}}=\left(\tau_{\tau}\right)_{\epsilon \in \mathcal{K}}$ is an algebraic avatar of the κ_{r}-tuple of hyperlogarithms $\left(\epsilon_{i} A I_{i}^{r-2}\left(U_{i}\right)\right)_{i=1}^{K_{r}}$ involved in the statement of Theorem 1.1. It turns out that $\tau_{\mathcal{K}}$ as well as the fact that the identity

$$
\begin{equation*}
\mathbf{h l o g}^{r-2}=\sum_{c \in \mathcal{K}} \tau_{c}=0 \tag{17}
\end{equation*}
$$

is satisfied in $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$ can be interpreted within the representation theory of the Weyl goup W. This subsection is devoted to an exposition of this. For details, we refer to [$[\mathbf{P i}]$ where the second author used this approach to give a representation theoretic proof of Theorem 3.1 for del Pezzo surfaces of degree $d \in\{2, \ldots, 6\}$.

The key points from this perspective are the following ($c f$. [Pi, §3.2] for details):

1. one can define a natural action of W on the direct $\operatorname{sum} \oplus_{c \in \mathcal{K}} \wedge^{r-2} \boldsymbol{H}_{\mathrm{c}}$ such that the map

$$
\iota_{\mathcal{K}}: \oplus_{\mathfrak{c} \in \mathcal{K}} \wedge^{r-2} \boldsymbol{H}_{\mathrm{c}} \longrightarrow \wedge^{r-2} \mathbf{C}^{\mathcal{L}}
$$

induced by the natural inclusion $\wedge^{r-2} \boldsymbol{H}_{\mathrm{c}} \hookrightarrow \wedge^{r-2} \boldsymbol{\mathcal { H }} \xrightarrow{\operatorname{Res}_{L}} \wedge^{r-2} \mathbf{C}^{\mathcal{L}}$ becomes a morphism of W-representations;
2. as a W-representation, $\oplus_{\mathrm{c} \in \mathcal{K}} \wedge^{r-2} \boldsymbol{\mathcal { H }}_{\mathrm{c}}$ is isomorphic to $\boldsymbol{\operatorname { s i g n }} \otimes \mathbf{C}^{\mathcal{K}}$ where $\boldsymbol{\operatorname { s i g n }}$ stands for the signature W-representation and where the W-module structure on $\mathbf{C}^{\mathcal{K}}$ is the one induced by the action of W on \mathcal{K} by permutations;
3. the span of $\tau_{\mathcal{K}}=\left(\tau_{\mathrm{c}}\right)_{\mathrm{c} \in \mathcal{K}}$ is W-invariant and is the unique 1 -dimensional irreducible component of $\oplus_{c \in \mathcal{K}} \wedge^{r-2} \mathcal{H}_{\mathrm{c}}$ which is isomorphic to the signature representation sign;
4. from 1. and 3. it follows that $\iota_{\mathcal{K}}\left(\tau_{\mathcal{K}}\right)=\sum_{\mathrm{c}} \tau_{\mathfrak{c}}=\mathbf{h} \boldsymbol{l o g}^{r-2}$ spans a W-subrepresentation of $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$ which either is zero or is isomorphic to sign;
5. the decomposition of $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$ in W-irreducibles can be determined explicitly (by means of computations with GAP). In particular, sign appears with positive multiplicity in this decomposition if and only if $r=8$.

From the points 4 . and 5 . above, one obtains an alternative, conceptual proof of the identity (9) of Theorem 3.1. This proof relies on the decompositions of $\wedge^{r-2} \mathbf{C}^{\mathcal{L}}$ in irreducible W-modules which are interesting on their own and appear to be new for $r>4$ (see [$\mathbf{P i}$, Proposition 3.2]). Note, for $r=8$ one would need to adapt this approach in order to prove our main result, possibly by considering the subrepresentation given by $\wedge_{\text {exc }}^{r-2} \mathbf{C}^{\mathcal{L}}$ (Lemma 3.4). More generally, it would be interesting to determine the decomposition into irreducibles of $\wedge_{e x c}^{r-2} \mathbf{C}^{\mathcal{L}}$ for any r and to verify wether it admits the signature as one of its irreducible components or not (we know that it is not the case for $r \leq 7$).
3.7. The identity $\mathbf{H L o g}^{r-2}$ is defined over \mathbf{Z}. By requiring that all the residues considered are integers, one defines canonical \mathbf{Z}-structures $\boldsymbol{H}^{\mathbf{Z}}, \boldsymbol{H}_{\Sigma_{c}}^{\mathbf{Z}}, \mathcal{H}_{\mathrm{c}}^{\mathbf{Z}}$ on the spaces $\boldsymbol{\mathcal { H }}, \boldsymbol{\mathcal { H }}_{\Sigma_{\mathrm{c}}}, \boldsymbol{\mathcal { H }}_{\mathrm{c}}$ respectively, which are compatible with respect to pull-backs and inclusions, i.e., one has $\phi_{\mathrm{c}}^{*} \mathcal{H}_{\Sigma_{\mathrm{c}}}^{\mathbf{Z}}=\mathcal{H}_{\mathrm{c}}^{\mathbf{Z}}$ and $\mathcal{H}_{\mathrm{c}} \subset \boldsymbol{\mathcal { H }}$ induces an inclusion $\boldsymbol{H}_{\mathrm{c}}^{\mathbf{Z}} \subset \mathcal{H}^{\mathbf{Z}}$ for any $\mathfrak{c} \in \mathcal{K}$. Moreover, the residue map Res_{L} of $\$ 3.2$ admits a canonical lift $\mathcal{H}^{\mathbf{Z}} \longrightarrow \mathbf{Z}^{\mathcal{L}}$ over \mathbf{Z}. We leave it to the reader to verify that all the statements in $\S 3.3-\S 3.6$ hold over \mathbf{Z}. In conclusion, $\mathbf{H L o g}^{r-2}$ is defined over \mathbf{Z}, a fact which may be interesting from an arithmetic perspective.
3.8. For any $n \geq 2$, it is tempting to consider more generally blow-ups $Y_{r}=\mathrm{Bl}_{r}\left(\mathbf{P}^{n}\right)$ at $r \geq n+2$ general points and attempt to generalize Theorem 3.1 by following the exact same approach as in this section. One defines a symmetric bilinear form (\cdot, \cdot) on $K_{Y_{r}}^{\perp} \subset \operatorname{Pic}\left(Y_{r}\right)=\mathbf{Z}\left\{H, E_{1} \ldots, E_{r}\right\}$ (where H is the hyperplane class and the E_{i} 's are the classes of the exceptional divisors) by setting

$$
(H, H)=n-1, \quad\left(H, E_{i}\right)=0 \quad \text { and } \quad\left(E_{i}, E_{j}\right)=-\delta_{i j} \quad \text { for } i, j=1, \ldots, r
$$

One can define a Coxeter group W associated to a T-shaped Dynkin-type diagram $T_{2, n+1, r-n-1}$ such that W acts on $\operatorname{Pic}\left(Y_{r}\right)$ in a geometric fashion, in particular preserving the bilinear form (\cdot, \cdot). It is known that W is finite if and only if

$$
\begin{equation*}
\frac{1}{n+1}+\frac{1}{r-n-1}>\frac{1}{2} \tag{18}
\end{equation*}
$$

This condition is equivalent to Y_{r} being a Mori dream space [Mu, CT] and translates to $r \leq n+3$ if $n \geq 5, r \leq 8$ if $n=4,2$, and $r \leq 7$ if $n=3$. Such blow-ups are natural generalizations of del Pezzo surfaces. We refer to [$\overline{\mathbf{M u}}, \mathbf{C T}]$ for more details.

Assume that (18) is satisfied. One can replace the set of lines \mathcal{L} by the set of Weyl divisors, i.e., divisors in the finite orbit $W \cdot E_{1}$, and the set \mathcal{K} of conic classes with the set of Weyl pencils, which we define as one-dimensional linear systems $|E+F|$, for E, F Weyl divisors such that $(E, F)=1$. Such a linear system c induces a rational map $\phi_{c}: Y_{r} \rightarrow \mathbf{P}^{1}$ which has $r-n+1$ reducible fibers, with components E^{\prime}, F^{\prime} Weyl divisors such that $\left(E^{\prime}, F^{\prime}\right)=1$ and $E^{\prime}+F^{\prime}=E+F$ in $\operatorname{Pic}\left(Y_{r}\right)$. It is straightforward to check that the group W acts transitively on the sets \mathcal{L} and \mathcal{K}. All the constructions leading up to Lemma 3.2 hold in this more general context, i.e., for each Weyl pencil $c \in \mathcal{K}$ we can construct canonical elements $\tau_{c} \in \wedge^{r-n} \mathbf{C}^{\mathcal{L}}$ (well-defined up to a global sign) such that Lemma 3.2 and the statements 1 . and 2. at the beginning of $\$ 3.5$ hold. However, if $n \geq 3$, the identity $\sum_{c} \tau_{c}=0$ never holds. One can follow the same approach as in this section to prove an analogue of Lemma3.3; for any exceptional $(r-n)$-tuple \mathcal{E} there are exactly n Weyl pencils such that each element of \mathcal{E} appears as a component of a reducible fiber of the associated fibration. The analogue of Lemma3.7 is that the coefficient with which an element $E_{1} \wedge \ldots \wedge E_{r-n}$ in the exceptional basis appears in $\sum_{\mathrm{c} \in \mathcal{K}} \tau_{\mathrm{c}}$ is (up to a sign) $(n-2)$, hence, never zero if $n \geq 3$. In analytic terms, this translates as the fact that, if $A I_{\mathrm{c}}^{r-n}$ stands for the hyperlogarithm on \mathbf{P}^{1} such that $A I_{c}^{r-n}\left(\phi_{c}\right)=I_{Y_{r}}^{y}\left(\tau_{c}\right)$ for any $\mathrm{c} \in \mathcal{K}$ (for a previously chosen base point y general in Y_{r}), then the functional identity $\sum_{\mathrm{c} \in \mathcal{K}} A I_{\mathrm{c}}^{r-n}\left(\phi_{\mathrm{c}}\right)=0$ is not satisfied in the vicinity of y on Y_{r}.

However, the space $\mathbf{H L o g}_{Y_{r}}^{r_{r}-n}$ of tuples $\left(\alpha_{\mathrm{c}}\right)_{\mathrm{c} \in \mathcal{K}} \in \mathbf{C}^{\mathcal{K}}$ such that $\sum_{\mathrm{c} \in \mathcal{K}} \alpha_{\mathrm{c}} A I_{\mathrm{c}}^{r-n}\left(\phi_{\mathrm{c}}\right)=0$ is not trivial. Similar to the case of del Pezzo surfaces, for every exceptional r-tuple \mathscr{E} there exists a small modification $F_{\mathscr{E}}: Y_{r} \rightarrow \mathrm{Bl}_{q_{1}, \ldots, q_{r}}\left(\mathbf{P}^{n}\right)$, where $\beta: \mathrm{Bl}_{q_{1}, \ldots, q_{r}}\left(\mathbf{P}^{n}\right) \rightarrow \mathbf{P}^{n}$ is a blow-up of a (possibly distinct) configuration of points q_{1}, \ldots, q_{r} in general position. Let $J \subset\{1, \ldots, r\}$ be of cardinal $n-2$ and let $\pi_{J}: \mathbf{P}^{n} \rightarrow \mathbf{P}^{2}$ be the linear projection from the ($n-3$)-plane in \mathbf{P}^{n} spanned by the q_{j} 's for $j \in J$. Setting $q_{k}^{\prime}=\pi_{J}\left(q_{k}\right)$ for $k \notin J$, one has $r-n+2$ points in general position in \mathbf{P}^{2}. The total space of the blow-up $\beta_{J}: \mathrm{Bl}_{\left\{q_{k}^{\prime}\right\}_{k \notin J} \mid}\left(\mathbf{P}^{2}\right) \rightarrow \mathbf{P}^{2}$ is a del Pezzo surface of degree $d=7-r+n$ which we will denote by $\mathrm{dP}_{d, J}$. We let $\Pi_{\mathscr{E}, J}: Y_{r} \rightarrow \mathrm{dP}_{d, J}$ be the induced rational maps (so that one has $\beta_{J} \circ \Pi_{\mathscr{E}, J}=\pi_{J} \circ \beta \circ F_{\mathscr{E}}$ as rational maps). If \mathcal{K}_{J} denotes the set of conic classes on $\mathrm{dP}_{d, J}$ and $\psi_{\kappa}: \mathrm{dP}_{d, J} \rightarrow \mathbf{P}^{1}$ denotes the associated conic fibration for $\boldsymbol{\kappa} \in \mathcal{K}_{J}$, then the compositions $\phi_{\kappa}=\psi_{\kappa} \circ \Pi_{\mathscr{E}, J}: Y_{r} \rightarrow \mathbf{P}^{1}$ are Weyl pencils (and all Weyl pencils are of this form). Consequently one obtains an injection $\mathcal{K}_{J} \subset \mathcal{K}$. If $\sum_{\kappa \in \mathcal{K}_{J}} \epsilon_{\kappa} A I_{\mathcal{K}}^{r-n}\left(\psi_{\kappa}\right)=0$ stands for the identity on $\mathrm{dP}_{d, J}$ given by Theorem 1.1] (with $\epsilon_{\kappa} \in\{ \pm 1\}$ for any $\kappa \in \mathcal{K}_{J}$), one gets that the hyperlogarithmic identity $\sum_{\kappa \in \mathcal{K}_{J}} \epsilon_{\kappa} A I_{\kappa}^{r-n}\left(\phi_{\kappa}\right)=0$ holds true locally at y on Y_{r}. This identity corresponds to a non-zero element of $\mathbf{H L o g}_{Y_{r}}^{r-n}$, which we denote by $\mathbf{H L o g}_{\mathscr{E}, J}^{r-n}$. It follows that $\mathbf{H L o g}_{Y_{r}}^{r-n}$ is not trivial.

It is natural to ask whether the span of the set of $\mathbf{H L o g}_{\mathscr{E}, J}^{r-n}$, s for all pairs (\mathscr{E}, J) as above coincides with the whole space $\mathbf{H L o g}_{Y_{r}}^{r-n}$ or not. For the case when $r=n+2$ with $n \geq 2$ arbitrary, this follows from computations in $[\mathbf{P e}]$. By direct computations, we have verified that it is the case as well for $(n, r)=(3,6)$ and $(n, r)=(4,7)$. We conjecture that this happens in all cases. If true, this would say that regarding functional identities satisfied by the complete antisymmetric hyperlogarithms $A I_{\mathrm{c}}^{r-n}$ on Y_{r}, there is nothing new since everything come from the 2-dimensional del Pezzo hyperlogarithmic identity $\mathbf{H L} \mathbf{g o g}^{r-n}$ (up to pull-backs under the maps $\Pi_{\mathscr{E}, J}: Y_{r} \rightarrow \mathrm{dP}_{d, J}$).

4. The identity HLog^{3} in explicit form

The identity HLog ${ }^{2}$ is equivalent to Abel's relation ($\mathcal{A b}$) which is written in explicit form. One can make the other hyperlogarithmic identities $\mathbf{H L o g}^{r-2}$ explicit as well. We illustrate this with the case when $r=5$.

Let X_{5} stand for the blow-up of \mathbf{P}^{2} at the following five points: $p_{1}=[1: 0: 0], p_{2}=[0: 1: 0]$, $p_{3}=[0: 0: 1], p_{4}=[1: 1: 1]$ and $p_{5}=[a: b: 1]$, for some parameters $a, b \in \mathbf{C}$ such that

$$
a b(a-1)(b-1)(a-b) \neq 0,
$$

a condition that we assume to be satisfied in what follows.
We make explicit the weight 3 hyperlogarithmic identity $\operatorname{HLOg}\left(X_{5}\right)$ when expressed in the affine coordinates x, y corresponding to the affine embedding $\mathbf{C}^{2} \hookrightarrow \mathbf{P}^{2},(x, y) \mapsto[x: y: 1]$.

Relatively to the coordinates x, y, the conic fibrations on X_{5} correspond on \mathbf{P}^{2} to the following rational functions U_{i} (where P stands for the affine polynomial $\left.P=(1-b) x-(1-a) y-(a-b)\right)$:

$$
\begin{array}{lllll}
U_{1}=x & U_{2}=\frac{1}{y} & U_{3}=\frac{y}{x} & U_{4}=\frac{x-y}{x-1} & U_{5}=\frac{b(a-x)}{a y-b x} \\
U_{6}=\frac{P}{(x-1)(y-b)} & U_{7}=\frac{(x-y)(y-b)}{y P} & U_{8}=\frac{x P}{(x-y)(x-a)} & U_{9}=\frac{y(x-a)}{x(y-b)} & U_{10}=\frac{x(y-1)}{y(x-1)} .
\end{array}
$$

For any $i=1, \ldots, 10$, the set of $\lambda \in \mathbf{P}^{1}$ for which $U_{i}^{-1}(\lambda)$ is reducible has the form $\left\{0,1, \mathfrak{r}_{i}, \infty\right\}$ where $\mathrm{r}_{i} \in \mathbf{P}^{1} \backslash\{0,1, \infty\}$ is given by

$$
\begin{array}{lllll}
\mathfrak{r}_{1}=a & \mathfrak{r}_{2}=\frac{1}{b} & \mathfrak{r}_{3}=\frac{b}{a} & \mathfrak{r}_{4}=\frac{a-b}{a-1} & \mathfrak{r}_{5}=\frac{b(a-1)}{a-b} \\
\mathfrak{r}_{6}=\frac{b-a}{b} & \mathfrak{r}_{7}=\frac{1}{1-a} & \mathfrak{r}_{8}=1-b & \mathfrak{r}_{9}=\frac{1-a}{1-b} & \mathfrak{r}_{10}=\frac{a(b-1)}{b(a-1)} .
\end{array}
$$

For a triple (a, b, c) of pairwise distinct points on \mathbf{C} and a given base point $\xi \in \mathbf{C} \backslash\{a, b, c\}$, we consider the weight 3 hyperlogarithm $L_{a, b, c}^{\xi}$ defined by

$$
L_{a, b, c}^{\xi}(z)=\int_{\xi}^{z}\left(\int_{\xi}^{u_{3}}\left(\int_{\xi}^{u_{2}} \frac{d u_{1}}{u_{1}-c}\right) \frac{d u_{2}}{u_{2}-b}\right) \frac{d u_{3}}{u_{3}-a}
$$

for any z sufficiently close to ξ, and we denote by $A I_{a, b, c}^{\xi}$ its antisymmetrization:

$$
\begin{equation*}
A I_{a, b, c}^{\xi}=\frac{1}{6}\left(L_{a, b, c}^{\xi}-L_{a, c, b}^{\xi}-L_{b, a, c}^{\xi}+L_{b, c, a}^{\xi}+L_{c, a, b}^{\xi}-L_{c, b, a}^{\xi}\right) . \tag{19}
\end{equation*}
$$

We now fix a base point $\zeta \in \mathbf{C}^{2}$ image of a point in X_{5} which does not belong to any line. For $i=1, \ldots, 10$, we set $\zeta_{i}=U_{i}(\zeta) \in \mathbf{C} \backslash\left\{0,1, r_{i}\right\}$ and

$$
A I_{i}^{3}=A I_{0,1, r_{i}}^{\zeta_{i}}
$$

Then one can verify that $\mathbf{H L O g}\left(X_{5}\right)$ has the following explicit form

$$
\begin{equation*}
\sum_{i=1}^{10} A I_{i}^{3}\left(U_{i}\right)=0 \tag{20}
\end{equation*}
$$

a functional identity which is satisfied on any sufficiently small neighborhood of ζ.

References

[Ab] N. H. Abel. Note sur la fonction $\psi(x)=x+\frac{x^{2}}{2^{2}}+\frac{x^{3}}{3^{2}} \cdots+\frac{x^{n}}{n^{2}}+\cdots$ Unpublished note (1826). In: "Oeuvres complètes de N.H. Abel", tome II, Grøndhal \& Søn, 1881, pp. 249-252.
[BPP] P. Banks, E. Panzer, B. Pym. Multiple zeta values in deformation quantization. Inv. Math. 222 (2020), pp. 79-159.
[B\&al] J. Bourjaily \& al. Functions Beyond Multiple Polylogarithms for Precision Collider Physics Preprint arXiv:2203.07088(2022).
[Br] F. Brown. Single-valued hyperlogarithms and unipotent differential equations Unpublished text (2004).
[CT] A.-M.Castravet, J. Tevelev. Hilbert's 14th problem and Cox rings Compos. Math. 142 (2006), pp. 1479-1498.
[CDG] S. Charlton, C. Duhr, H. Gangl. Clean single-valued polylogarithms SIGMA Symmetry Integrability Geom. Methods Appl. 17 (2021), Paper No. 107, 34 pp.
[dJ] R. de Jeu. Describing all multivariable functional equations of dilogarithms Preprint arXiv:2007.11014 (2020).
[Do1] I. Dolgachev. Classical algebraic geometry. A modern view Cambridge Univ. Press, 2012.
[Do2] I. Dolgachev. Weyl groups and Cremona transformations Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983), pp. 283-294
[Ga] H. Gangl. Functional equations for higher logarithms Selecta Math. 9 (2003), pp. 361-377.
[G1] A. B. Goncharov. The classical polylogarithms, algebraic K-theory and $\zeta_{\mathrm{F}}(n)$ In: "The Gel'fand Mathematical Seminars, 1990-1992", Birkhäuser (1993), pp. 113-135.
[G2] A. B. Goncharov. Polylogarithms in arithmetic and geometry Proceedings of the ICM (Zürich, 1994), Vol. 1, 2, Birkhäuser (1995), pp. 374-387.
[G3] A. B. Goncharov. Geometry of configurations, polylogarithms, and motivic cohomology Adv. Math. 114 (1995), pp. 197-318.
[GR] A. B. Goncharov, D. Rudenko Motivic correlators, cluster varieties and Zagier's conjecture on zeta(F,4) Preprint arXiv:1803.08585 (2018).
[Gri] P. A. Griffiths. The legacy of Abel in algebraic geometry. In "The legacy of Niels Henrik Abel", Springer, 2004, pp. 179-205.
[Ma] I. Manin. Cubic forms. Algebra, geometry, arithmetic North-Holland Math. Lib. 4. North-Holland Pub., 1986.
[Mu] S. Mukai. Counterexample to Hilbert's fourteenth problem for the 3-dimensional additive group RIMS preprint \#1343, Kyoto, 2001.
[Pa] E. Panzer. Feynman integrals and hyperlogarithms Ph.D. Thesis, Humboldt University, Berlin, Inst. Math. 2015 (arXiv:2212.02556).
[Pe] J. V. Pereira. Resonance webs of hyperplane arrangements In ‘Arrangements of hyperplanes - Sapporo 2009', Adv. Stud. Pure Math., 62, Math. Soc. Japan (2012), pp. 261-291.
[Pi] L. Pirio. Webs by conics on del Pezzo surfaces and hyperlogarithmic functional identities. Preprint arXiv:2212.02556(2022).
[We] G. Wechsung. Functional equations of hyperlogarithms. In: 'Structural properties of polylogarithms', Math. Surveys Monogr. 37, Amer. Math. Soc. (1991), pp. 171-184.
[Za] D. Zagier. The dilogarithm function in geometry and number theory. In: "Number Theory and Related Topics, papers presented at the Ramanujan Colloquium", Bombay 1988, Tata and Oxford (1989), pp. 231-249.

Ana-Maria Castravet, Luc Pirio

Laboratoire de Mathématiques de Versailles
Université Paris-Saclay, UVSQ \& CNRS (UMR 8100)
45 Avenue des États-Unis, 78000 Versailles, France
E-mails: ana-maria.castravet@uvsq.fr, luc.pirio@uvsq.fr

[^0]: ${ }^{1}$ E.g., see the works Goncharov Gangl Goncharov-Rudenko, Charlton-Gangl-Radchenko Rudenko
 ${ }^{2}$ For more details, we refer to the surveys [Za] or [G2].

[^1]: ${ }^{3}$ The 3-term identity of the logarithm can also be considered from a geometric perspective, but it is less meaningful from this point of view, because it is "too simple". This is why we only consider the case of Abel' equation.

[^2]: ${ }^{4}$ Here we use the convention that $D_{2}=A_{1} \times A_{1}$ and $D_{3}=A_{3}$.

