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Abstract

Electroencephalography (EEG) is a non-invasive method that allows for recording
rich temporal information and is a valuable tool for diagnosing various neurolog-
ical and psychiatric conditions. One of the main limitations of EEG is the low
signal-to-noise ratio and the lack of data availability to train large data-hungry
neural networks. Sharing large healthcare datasets is crucial to advancing medical
imaging research, but privacy concerns often impede such efforts. Deep generative
models have gained attention as a way to circumvent data-sharing limitations and
as a possible way to generate data to improve the performance of these models.
This work investigates latent diffusion models with spectral loss as deep genera-
tive modeling to generate 30-second windows of synthetic EEG signals of sleep
stages. The spectral loss is essential to guarantee that the generated signal contains
structured oscillations on specific frequency bands that are typical of EEG signals.
We trained our models using two large sleep datasets (Sleep EDFx and SHHS) and
used the Multi-Scale Structural Similarity Metric, Frechet inception distance, and
a spectrogram analysis to evaluate the quality of synthetic signals. We demonstrate
that the latent diffusion model can generate realistic signals with the correct neural
oscillation and could, therefore, be used to overcome the scarcity of EEG data.

1 Introduction

Sleep is a fundamental cognitive task in which quality and duration are essential for human well-
being. Nonetheless, many still experience sleep disorders, such as insomnia, sleep apnea, and
bruxism, linked to physical and emotional conditions [1, 2, 3, 4, 5, 6, 7]. Polysomnography (PSG)
is the standard test to capture various biosignals throughout the night and monitor sleep. PSG
involves categorizing 30-second time intervals into different sleep stages and using the distribution of
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these stages for diagnosing sleep disorders. Electroencephalography (EEG) data is considered the
most reliable PSG biomarker across all sleep stages [8, 9]. However, the variability of sleep data
poses significant challenges, including individual brain signal signature, low signal-to-noise ratio,
age-related variability, pathologies, and cognitive state on the distribution of sleep stages [9].

Deep generative methods, especially diffusion models, have reached state-of-the-art performance in
many medical imaging tasks, such as detecting anomalies, segmenting tasks, generating synthetic
data, and improving the traditional supervision classification [10, 11, 12, 13, 14, 15, 16, 17]. However,
deep generative applied to bio-signal is still an active area of research due to the challenges of EEG
decoding. Generative adversarial networks (GANs) have been used to generate EEG data [18, 19, 20].
However, the use of GANs poses challenges, including difficulties in scaling, the well-known issue
of mode collapsing, and a lack of flexibility in learning new tasks, even within the same domain
[21, 22, 23]. On the other hand, studies involving diffusion models in EEG have concentrated on
Brain-Computer Interface (BCI) applications and/or have been limited to datasets with fewer than
30 individuals [24, 25, 26, 27]. Diffusion models have a strong theoretical foundation and cannot
only capture the dynamics but also more context of signal structures when compared with GANs
[16, 17, 28, 29]. Nonetheless, Diffusion models can extract essential factors that affect the data, such
as age, pathology, and task, from experiments or other factors that impact EEG recordings.

In this work, we trained a Latent Diffusion Model with polysomnogram data to generate syn-
thetic EEG signals with a 30-second window. We conduct experiments using two large sleep
datasets: Sleep EDFx [30] and Sleep Heart Health Study (SHHS) [31]. We describe the model
and methodology in more detail in Appendix A. Our model was trained to work without restric-
tion on brain electrode position. We used an AutoEncoder with KL regularization (AE-KL) [17]
to compress the EEG signal and relied on the obtained latent space to train the Latent Diffusion
Model (LDM). Then, we evaluate the quality of the generated synthetic signal by implementing
well-established generative metrics: the Fréchet inception distance (FID), Multi-Scale Structural
Similarity Metric (MS-SSIM), and power spectrum analysis within the sleep band. Our model
can generate EEG trials that closely approximate the significant brainwave interval associated with
fundamental keys for the sleep stages, including δ (0.1 − 4Hz), θ (4 − 8Hz), and α (8 − 12Hz)
waves. The code and models are publicly available at https://github.com/bruAristimunha/
Synthetic-Sleep-EEG-Signal-Generation-using-Latent-Diffusion-Models.

2 Methodology

Dataset We employed two extensive sleep stage datasets to train our deep generative model: the
Physionet Sleep-EDFx dataset (Sleep EDFx)[30] and Sleep Heart Health Study (SHHS)[31]. More
pre-processing and epoch details can be found in Appendix A.1.

AutoEncoder with Kullback-Leibler regularization (AE-KL) In accordance with the model
proposed by [17, 13], we employed an AE-KL to compress the EEG windows.

The training of the AE-KL involved a combination of four objective loss functions: The L1 loss
(ℓrecons) to measure the discrepancy between the input (x) and the reconstructed output (x̂); a patch-
based adversarial objective (ℓadv); [32], the Kullback-Leibler Divergence (ℓkl); and the Jukebox loss
(ℓspec) [33, 34] to enhance spectral component learning. The Jukebox loss, denoted as ℓspec(x, x̂),
quantifies the L2 norm difference between the absolute values of Short-Time Fourier Transforms
(STFT) of the input (x) and the reconstructed output (x̂). We assessed its impact on signal generation
through ablation studies training models with and without this loss component. See Equation 1 for an
overview of all training losses in the AE-KL model.

min
∑

ℓrecons(x, x̂) + ℓadv(x, x̂) + ℓkl(zµ, zσ) + ℓspec(xi, x̂), (1)

The spectral loss is vital because sleep patterns are influenced by structured oscillations in specific
frequency bands (δ, θ, α) within the brain [35]. Spectrum analysis is particularly adept at capturing
and translating these dynamics from time series data into the frequency domain [35, 36]. The fre-
quency domain augmentations, associated with spectral information, have demonstrated a remarkable
improvement of the neural decoding when applied to EEG [37]. Appendix A.2.1 presents more
details about the AutoEncoder model.
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Latent Diffusion Model We trained a Denoising Diffusion Probabilistic Model (DDPM) to capture
the distribution of a latent representation of EEG sleep signals. DDPM acts as a deep generative
model that reconstructs original data points from noisy samples using a forward diffusion process.
Small increments of Gaussian noise are iteratively added to a data point x0 drawn from the data
distribution, controlled by a predefined variance schedule. As the number of steps, T , increases,
the final sample xT approximates a draw from an isotropic Gaussian distribution. The DDPM
incorporates a reverse diffusion process that leverages graph modeling principles based on Markov
chains. This reverse diffusion process facilitates the recovery of input data from noise while preserving
the data’s structural information. More details about the forward diffusion and reverse processes are
explained in Appendix A.3.

Network training We sample 30-second windows from each electrode from Polysomnographic
recording. Every 30-second window randomly sampled with overlapping was then used as a separate
entry and combined with other subjects to create the batch. The first step of our model was to
train an AE-KL to compress and reconstruct the EEG windows, with high-frequency components
learned later during training, as shown in more detail in Appendix B.1. Once AE-KL was trained,
we used the latent space as input for the LDM. Because the structural oscillation present in EEG
signals is essential, we tested if adding the Jukebox loss [33, 34] would improve the oscillations of
the generated signal and compared the models’ performance to assess the importance of this loss.
Appendix A illustrates the overview of our method.

Evaluation metrics Similar to the works from [38, 13], we used three metrics to quantitatively
evaluate the fidelity of the synthetic sleep EEG: Fréchet Inception Distance (FID), Multi-Scale
Structural Similarity Metric (MS-SSIM), and Power Spectral density (PSD).

The FID assesses the realism of the synthetic signals generated by calculating the distance between
feature vectors calculated for real and generated signals [39]. This metric uses the W2 Wasserstein
distance to compute the difference between two probability measures. In the imaging context, this
metric is called FID as it often uses the Inception model to compute the feature vectors, and since the
term, FID is well established even when not using the Inception model, we will refer to this metric
as FID hereafter. Our analysis used a pre-trained convolutional neural network [40, 41] trained to
classify different sleep stages to extract the latent feature vectors. Lower FID scores indicate that the
images are more similar, with a perfect score of zero indicating that the images are identical (Table 1).

The Multi-Scale Structural Similarity Metric (MS-SSIM) [42] evaluates the similarities between
signals. MS-SSIM is an extension of SSIM that computes the structural similarity measure at multiple
scales. This metric can assume values between 0 and 1, where 1 indicates perfect signal similarity.
We use the MS-SSIM metric to (1) compare the AutoEncoder reconstructed signals with the real ones,
where a high MS-SSIM means the latent space was able to condense all the necessary information,
and (2) analyze the diversity of the synthetic images using pairs of synthetic images (Table 1). For
both FID and MS-SSIM, we computed the average values from all available test samples.

In addition, we also evaluate the sleep data using a power spectral density (PSD) analysis on both the
real, synthetic with spectral, and synthetic without the spectral loss data. The PSD provides a way to
analyze the frequency content of a signal and understand how much power or energy is associated
with each frequency component. This tool is particularly relevant for sleep problems, as specific brain
rhythms are more prominent during certain sleep stages. Here, we compute the PSD by averaging
PSD plots of 1000 random samples and confidence intervals based on the percentile 10% and 90%.

3 Results and Discussion

Table 1 summarizes the quantitative metrics used to evaluate the quality of the dataset. We can see
that across both datasets, the MS-SSIM of the reconstruction—without (Rec) and with (Recspec) the
spectral loss—and the test dataset was bigger than 0.82. This indicates that the AE-KL could learn a
good latent representation of the data and reconstruct the original images with high fidelity. When
comparing the LDM models trained with and without the spectral loss, we can see that the spectral
models had a smaller FID and higher MS-SSIM, indicating a better result compared to the models
trained without the spectral loss. Additionally, LDMspec’s evaluation metrics had values closer to the
real signal, suggesting that they are more similar to the real signal when compared to models trained
without the spectral loss.
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Table 1: Quantitative evaluation of synthetic sleep stages on different datasets. The FID and MS-
SSIM were used to assess the realism of the generated and reconstructed sleep stage window. We
evaluated the LDMs trained without (LDM)/with a Spectral Loss (LDMspec), the metrics obtained for
the Real dataset, and the MS-SSIM of the AE-KL reconstruction (Rec). ↑ / ↓ means bigger/smaller
values are better.

Dataset FID ↓ MS-SSIM ↑
LDM LDMspec Real LDM LDMspec Real Rec Recspec

Sleep EDFx 11.933 0.308 0.015 0.205 0.515 0.622 0.983 0.907
SHHSh 0.936 0.168 0.086 0.228 0.598 0.449 0.969 0.827

Figure 1 showcases the frequency content of the real in test split and synthetic data with a PSD
analysis. The different sleep stages are showcased by different background colors δ (0.5 − 4Hz),
θ (4 − 8 Hz), α (8 − 12 Hz). It is striking that in the δ range, the real and synthetic data with
spectral have similar peaks and troughs, signaling that the LDM was able to learn fine structures in
the signal. To our understanding, the tail decay, which is more pronounced in the synthetic data with
spectral, may be associated with the filtering we performed during the pre-processing. Additionally,
as indicated by [43], the alpha α interval exhibits non-linear changes during aging, with distinctions
between REM and N-REM sleep stages. The rhythm variation could explain the challenges faced
by the LDM in matching the alpha distribution perfectly. Notably, the PSD feature alignment of our
synthetic dataset with the real dataset is a good indicator of the quality of the generative component
of the LDM.
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Figure 1: Averaged power spectral density of windows corresponding to the sleep data for the real in
the test split and synthetic data with Sleep EDFx model trained with and without spectrum loss.

Analyzing the Table 1 and Figure 1, the impact of spectral loss in optimizing the AutoEncoder is
clear. Given the peculiarities of brain time series, exploring the development of additional spectral
loss functions is essential. This is a critical step for improving the utility of generative models in this
field. A similar need is observed in audio, as documented by authors in [44], indicating substantial
room for enhancing spectral loss functions.

4 Conclusions

In this work, we used latent diffusion models to create artificial EEG brain waves and generate sleep
EEG signals that closely resemble existing sleep stage data. To the best of our knowledge, this is
the first time diffusion models were applied to sleep stage data, making it a pioneering achievement.
Our results demonstrate that LDMs can produce realistic sleep stage windows with sleeping patterns
closely resembling the real data. Further investigation can be taken by using specific variables (i.e.,
age, sex, or presence/absence of pathology) to address inherent challenges posed by the imbalance
present in EEG datasets. Our work highlights LDMs’ promising potential in generating EEG signals
and showcases the models’ performance in generating sleep EEG. Another possible avenue of research
is to explore the usage of diffusion models to learn directly from the raw signal instead of using a
latent representation from which to learn the LDM. Utilizing the capability to produce authentic
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signals featuring accurate neural oscillations could enhance the efficacy of EEG models, addressing
both the shortage and imbalance inherent in EEG data.
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A Further experimental settings

Random Sample 

with overlapping 

Figure 2: Overview of our method. A. Data sampling from the Polysomnographic recording. For
each record, we sampled 30-second windows from each electrode. Every 30-second window was
then used as a separate entry and combined with other subjects to create the dataset. For illustrative
purposes, this figure depicts the Sleep EDFx electrodes, but the SHHS electrodes are in a similar
location. B. Training of the AutoEncoder with Kullback-Leibler regularization and/or Spectral
component to generate a compressed feature space z (green) C. The compressed feature space z is
then used to train the Latent Diffusion model (LDM) with Attention Residual U-Net ϵθ (yellow).
Once the LDM has been trained, the AutoEncoder decoder transforms back from the compressed
representation (z) to the EEG signals.

A.1 EEG pre-processing and epoching

In our work, we employed two extensive Sleep Stage datasets to train our deep generative model: the
Physionet Sleep-EDFx dataset (Sleep EDFx)1[30] and Sleep Heart Health Study (SHHS)2[31]. These
publicly available datasets offer high-quality data from large cohorts of individuals and have been
utilized in various machine learning applications, including automatic sleep stage classification and
analysis of sleep-related physiological signals [40, 37, 41].

In the Sleep EDFx dataset, we selected the Sleep Cassette (SC) subset, which comprises 153 complete
sleep records from a healthy cohort of 78 subjects. We utilized the two EEG channels (Fpz-Cz and
Pz-Cz), recorded with a sampling rate of 100 Hz. The SHHS dataset encompasses data from over
6,441 individuals who participated in a large-scale epidemiological study on sleep and cardiovascular
health [45, 31]. To ensure consistency in our analyses, we resampled the SHHS dataset to 100 Hz.
Additionally, following the methodology employed in previous works [46], we created a subsample
consisting of 326 subjects, specifically selecting those with more regular sleep cycles, the SHHSh

with h healthy. We utilized the two EEG channels available, C3-A2 and C4-A1.

We also applied a low-pass filter at 18 Hz in all datasets using a 5th-order Butterworth filter from the
MNE-PYTHON library [47]. Higher frequencies in brain time series are typically less connected to

1https://physionet.org/content/sleep-edfx/1.0.0/
2https://sleepdata.org/datasets/shhs
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sleep stage-related activity. This upper-frequency limit was carefully chosen based on an extensive
investigation of Sleep Spindles, which are critical patterns in sleep stages [36]. Even though we are
more focused on analyzing the lower frequencies, according to the MNE library, it is important to
consider a delay compensated by the limiting edge for the band filter. Furthermore, we performed
min-max standardization at the channel level to normalize all the feature spaces before inputting them
into our models, leveraging the SCIKIT-LEARN library [48].

A.2 Models details

A.2.1 AutoEncoders with KL

AutoEncoders with Kullback-Leibler (KL) regularization are multi-layer networks trained to recon-
struct input values (x̂) at the output layer, with a bottleneck layer containing only a few neurons to
prevent a direct copy of the input, as illustrated in Figure 2B. Our AE-KL architecture incorporated
Residual blocks and an attention mechanism [17], with the bottleneck represented by the distribution
variables µ and σ. We used two residual blocks without the attention mechanisms and two Group
norm layers with the same number of dimensions as input. The trained encoder mapped the 30s
windows to latent representations (denoted as z) of size n×768, where n is the size of the mini-batch.

A.3 Forward and Reverse for the LDM

Forward Diffusion Process. Formally, as illustrated in Figure 2C, the forward diffusion process is
described as follows: Given a feature space z0, the DDPM adds small increments of Gaussian noise
over T steps, resulting in a sequence of noisy samples {z0, . . . , zT }. A predefined variance schedule
determines the step sizes:

q(zt|z(t−1)) = N (zt;
√
1− βt · z(t−1), βt · I), (2)

q(z1:T |z0) :=
T∏

t=1

q(zt|z(t−1)), (3)

where, βt is a hyperparameter defined in {βt}Tt=1 ∈ (0, 1), I is the identity matrix, and N (z, µ, σ)
consists of a normal distribution with mean µ and covariance σ. It is important to note that the
forward diffusion process does not require any trainable parameters, which makes it computationally
efficient and easy to implement, resulting in faster methods [13].

Reverse Process. To reconstruct the original data point z0 from the Gaussian noise input zT ∼
N (0, I), the DDPM utilizes a model pθ to approximate the conditional probabilities of the reverse
diffusion process, as described below:

pθ(z0:(T−1)|zT ) :=
T−1∏
t=1

pθ(z(t−1)|zt), (4)

pθ(z(t−1)|zt) =N (z(t−1);µθ(z, t),Σθ(xt, t)), (5)

In the above equations, pθ aims to approximate the conditional probabilities of the reverse diffusion
process, which reconstructs the original data point z0 from the final noisy sample zT . This is achieved
by maximizing the likelihood of the reverse process given the forward process. Since the data
likelihood is intractable, the model is trained using a variational lower bound on the log-likelihood.

A.4 Training setting

The training of all deep learning models was carried out using PYTORCH [49], MONAI CORE [50],
and MONAI GENERATIVE [34] libraries. We employed a hold-out method to train and evaluate
our generative model. We allocated 60% of the data for training, 20% for validation, and 20% for
testing purposes. To process the data, we treated each EEG channel as an individual time series and
randomly sampled 30-second windows for each subject. The sampled windows were then used to
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build a mini-batch of 1024 windows using the MONAI library [50], as illustrated in Figure 2 A.
For each dataset, we train and evaluate the set of electrodes together without distinction between
electrodes in the sampling process.

As these random windows samples may introduce discontinuity, we applied a board padding technique
by adding 72 (36 left and 36 right) points with constant values of 0 and transforming the size of the
time series into a multiple of the power of 2 with windows size of 3072. This step helps mitigate
potential numerical instability issues.

B Further experimental results

B.1 Samples signals

Frequency (Hz)Frequency (Hz) Frequency (Hz)

Training iterations

50 epochs 250 epochs 500 epochsOriginal Sleep Windows

Figure 3: Evaluation of the reconstruction quality over the epochs for the AE-KL trained without the
Spectral Loss. While the top row shows the Power Spectrum density of the original signal (blue) and
the AE-KL reconstruction (red) after 50, 250, and 500 epochs, the bottom row illustrates the temporal
oscillations of the signal. The signal reconstruction at the first epochs (epoch 50) is smoothed, and
as the training progresses with more epochs, we can see that the model learns the high-frequency
components of the original sleep signal.
The next three tables (Table 2 - 4) contain a breakdown of the results reported in Table 1 broken
down by the stages of sleep.

Table 2: Quantitative evaluation of synthetic sleep stages on delta (δ) signal

Dataset FID ↓ MS-SSIM ↑
LDMspec LDM Real LDMspec LDM Real Rec Recspec

Sleep EDFx 5.422 3.812 2.912 0.453 0.622 0.625 0.996 0.964
SHHSh 6.422 2.021 1.4682 0.534 0.461 0.503 0.995 0.943

Table 3: Quantitative evaluation of synthetic sleep stages on theta (θ) signal

Dataset FID ↓ MS-SSIM ↑
LDMspec LDM Real LDMspec LDM Real Rec Recspec

Sleep EDFx 11.005 101.162 0.6968 0.901 0.558 0.846 0.994 0.939
SHHSh 68.595 282.230 0.2233 0.949 0.416 0.694 0.996 0.863
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Table 4: Quantitative evaluation of synthetic sleep stages on alpha (α) signal

Dataset FID ↓ MS-SSIM ↑
LDMspec LDM Real LDMspec LDM Real Rec Recspec

Sleep EDFx 8.185 51.106 0.5147 0.996 0.547 0.932 0.992 0.962
SHHSh 43.745 595.601 0.2697 0.996 0.418 0.810 0.977 0.891
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