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1. Introduction  

Artificial Intelligence in Education (AIED) and Assistive technologies (AT) aim at developing user specific solutions adapted to the 

learner’s competencies. A crucial aspect is to take into account specificities of each learner to propose an intelligent learning environment 

taking advantage of the learner’s interactive behavior. Two main approaches could be distinguished in the context of AIED that are 

computer-supported learning (Kirschner and Gerjets, 2006) and student-centered learning (Calder, 2015). In the computer-supported 

learning, the adaptation of learning content is straightforward, since it provides a suitable background for the implementation of adaptation 

algorithms (Spüler et al., 2016). Despite the multitude of learning environments, e.g., iWeaver (Wolf, 2003), INSPIRE (Papanikolaou et 

al., 2002) or Calcularis (Käser et al., 2013), attempts to implement adaptation of the learning process revealed unsatisfactory results. In 

their interactions with learners, these systems are essentially based on the so-called Pedagogical Agents (PA) which support with great 

autonomy the learner’s interactions. Regarding the multi-interactions which can take place between learners and PA, these environments 

can support both the individualized and the collaborative learnings. The common architecture used in these environments is based on four 

modules (Moreno et al., 2001; Kim and Baylor, 2006; Hooshyar et al., 2015), namely Domain module, Learner module, Pedagogical 

module and Interface module. In the general case, the domain module represents an expert knowledge on a particular field. It contains 

not only expertise in acquiring skills, but also offers an internal representation of the competence to build. The domain module must be 

able to generate solutions to problems in the same context where the learner is placed. This allows the system to determine the differences 

and correspondences in the learner and tutor actions. The learner module provides the learner knowledge measurement about the problem. 

It is a tuple of expertise, knowledge, cognitive profile and learner history. The pedagogical module allows to define the mediation to assist 

the learner in the learning process. It must consider each of educational, pedagogical and psychological principals. The major aim of this 

module is answering the three questions (1) why interfere? (2) when interfere? and (3) how interfere? The interaction module is the 

responsible for the system internal representations and the learner interface connection. This module is in a permanent cooperation with 

the educational system and the learner’s assessing skills. On another hand, it determines the final form used by the system to transfer 

information. 

Compounding the weakness of content adaptation, current learning environments are not generic and specialize in teaching a specific 

field. For instance, the “Calcularis” environment (Käser et al., 2013) specializes in teaching mathematics to children. In its interactions 

with children, the domain module of this learning environment adapts the learning content based on the knowledge and skills acquired in 

the previously addressed levels. In addition, the learner module evaluates the learner’s skills and competencies level by comparing the 

accuracy of her interactions. However, based only on the accuracy of the learner’s interactions, this solution remains weak in terms of 

content adaptation. This is because it does not take into account neither the learner’s calculation capacities nor her current internal state 

and cognitive load. To address these issues, the most sophisticated and suitable approach is to incorporate physiological and brain factors 

to estimate learners’ mental efforts and cognitive load. Among these factors, we distinguish Heart Rate Variation (HRV), Galvanic Skin 

Response (GSR), and Electroencephalogram activity (EEG) (Mühl et al., 2014 ; Ayres et al., 2021). 

In (Blitz et al., 1970; Jorna, 1992; Mehler et al., 2012; Ayres et al., 2021) it has been demonstrated that heart rate is a sensitive 

physiological measure for detecting systematic variations in the cognitive load. In a study on the usefulness of HRV, (Aasman et al., 

1987) clarified that the measurement of this physiological marker is determined by three different feedback mechanisms related to: 

respiration, blood pressure and temperature regulation (Ayres et al., 2021). Based on spectral analysis, in the objective to study the periodic 

behavior of HRV, (Aasman et al., 1987) were able to show that cognitive load is specifically linked to the short-term regulation of blood 

pressure. The relationship between cognitive load and HRV is indirect (Solhjoo et al., 2019) because an increase in the cognitive load 

will lead to an increase in blood pressure which will lead to a decrease in HRV. The measurement of HRV is generally accepted as a 

measure of cognitive load. However, in the work of (Paas et al., 1994) it has been shown that the HRV is mainly used to measure cognitive 

load when it is a short-term duration cognitive task. In the work of (Paas et al., 1994) it has been demonstrated that for long-duration 

learning tasks, the validity and sensitivity of HRV spectral analysis is low. 

ABST RACT  

In the context of learning environments, the learner’s attention and mental effort are of primary interest in the process of acquiring 

knowledge. Due to the skills and abilities of each learner, there is a growing need for generic and adaptive environments. In this 

work, we introduce a new architecture for such environments to assist the learner with a multi-agent-based approach. Using 

Electroencephalogram, this architecture generates learning content and interactions adapted for each learner. Moreover, this work 

presents a new unsupervised approach to estimate and recognize the learner’s cognitive load based on the Standardized Euclidean 

Distance (SED) and the Power Spectral Density (PSD) of brain rhythms within low frequencies, namely Theta[4-7 Hz] (𝜃) and 

Alpha [8-11 Hz] (𝛼). The learner’s outcomes and estimated mental efforts are combined in the evaluation process using a fuzzy 

logic-based approach. Three experimental protocols are adopted in order to validate our study. These protocols are based on 

cognitive tasks with different difficulty levels. Experimental results show that PSD in 𝜃 and 𝛼 bands in the occipital lobe accurately 

describe changes in the learner’s mental efforts and cognitive load according to the cognitive task difficulty level. Based on the 

Cohen Kappa coefficient, our cognitive load estimation approach, using  𝛼, is compared to an existing workload index from the 

literature. This performance assessment process revealed large values ( 𝑘 ≥ 0.48) in the occipital lobe, which reflects the 

efficiency of the proposed approach. Results from this study are mainly used in educational engineering and reeducation in order 

to subjectively assess the approaches and treatments offered in these contexts. 
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The measurement of GSR is based on the variation of the electrical activity of the eccrine sweat glands on the plantar and palmar 

surfaces of the hand which are particularly sensitive to psychological stimuli imposing stress. Increased stress will lead to increased 

sweating, which decreases resistance and increases the electrical conductance of the skin (Dawson et al., 2000; Ayres et al., 2021). The 

electrodermal signal makes it possible to distinguish, on the one hand, the level of cutaneous conductance which changes over time, which 

is considered as a measure of psychophysiological activation. On the other hand, it allows to distinguish the response of the cutaneous 

conductance which changes abruptly. These rapid changes are reflected in spikes in the electrodermal signal and are also referred to as 

cutaneous galvanic responses (Braithwaite et al., 2013). This component is influenced by stress and excitement (Hoogerheide et al., 2019). 

In (Setz et al., 2009) and (Larmuseau et al., 2019) it was demonstrated that the increase in skin conductance is a function of cognitive 

load. However, in the work of (Vanneste et al., 2020) it has been shown that the usability of GSR measures as a cognitive load marker is 

limited. This is explained by the fact that GSR can only describe a limited proportion of cognitive load variation. (Charles and Nixon 

2019) proposed that GSR might be sensitive to sudden but not gradual changes in cognitive load (Ayres et al., 2021). 

Given the applicative context of learning environments and strong effects of learners’ cognitive state on EEG, an approach based on 

EEG seems very appropriate to assist the learner (Wang et al., 2013; Spüler et al., 2016; Zammouri et al., 2017; Zammouri et al., 2018; 

Lotte et al., 2018). In the context of assistive technology, leveraging the brain activity is often associated with Brain-Computer Interfaces 

(BCI). These interfaces endow systems of a direct communication relying only on the brain signals (Pfurtscheller et al., 1993; Minguillon 

et al., 2017; Cirillo et al., 2020; Liu et al., 2020, Zammouri and Zerouali, 2021). While the design of BCI was always focused on 

developing technical solutions for subjects’ motor capacities rehabilitation (Leeb et al., 2013 ; Kalunga et al., 2014 ; Wang et al., 2014 ; 

Xie et al., 2022)  currently the development of such interfaces converges to the use of spontaneous brain activity in order to derive and 

recognize the user’s various cognitive states (Blankertz et al., 2010; Anderson et al., 2012; Wang et al., 201; Hong et al., 2018; Gaume et 

al., 2019; Mora-Sanchez et al., 2020; Martinez Beltran et al., 2022). Thus, it has given rise to Passive BCIs (pBCIs). Several works from 

the literature using EEG, functional Near Infrared Response Spectroscopy (fNIRS) (Khalil et al., 2022) or functional Magnetic Resonance 

Imaging (fMRI) (Baqapuri et al., 2021) have proven their potential to assess users’ cognitive load in the everyday life activities. Good 

examples are information visualization interfaces (Peck et al., 2013) and Virtual Reality (VR) environments (Mühl et al., 2014). Using 

pBCIs to estimate the cognitive load aims at reflecting information about the user’s spontaneous brain activity. Most of the EEG-based 

approaches used in this context take advantage of the spectral aspect of the brain electrical signal. The electrical brain activity generates 

different rhythms (Başar et al., 2001). These rhythms represent a continuum of waves: Delta [0.5-3 Hz] (𝛿), Theta [4-7 Hz] (𝜃), Alpha 

[8-11 Hz] (𝛼), Beta [12-30 Hz] (𝛽) and Gamma (>30 Hz) (𝛾). For Klimesch (Klimesch, 1999) and Andreassi (Andreassi, 2000) 𝜃 and 𝛼 

oscillations are sensitive to task difficulties. According to Holm (Holm et al., 2009), the increase of activity increases the 𝜃 oscillations 

in the frontal brain area and decreases the 𝛼 oscillations in the parietal brain area. Apart from brain rhythms, measuring Event Related 

Potentials (ERPs) represents specific responses to cognitive events. These potentials represent electrical variations measured on the 

nervous system in response to stimuli. Considered as the commonly used evoked potential, P300 has justified its accuracy to assess the 

cognitive load through its sensitivity to brain processing competencies (Van Dinteren, et al., 2014). However, using ERP signals to 

measure the cognitive load requires multiplying the number of trials in order to make a one decision. This would be very tedious for 

learners and not suitable for adapting the content in an online mode. 

Through the present work we seek to achieve several objectives. First, we seek to identify the brain regions which are solicited while 

performing a cognitive task. Here we are interested in identifying brain regions which describe changes in the cognitive load levels, and 

which have not been reported in literature. The illustration of this objective led us to design several experimental protocols and to develop 

a cognitive load levels classifying algorithm based on 𝜃 and 𝛼 bands. In a second step, and after having illustrated the first objective, we 

seek to integrate our algorithm in a new architecture of intelligent tutoring systems. To achieve this objective, we designed a dedicated 

experimental protocol based on the 𝛼 band. It has been reported that the 𝛼 band decreases when increasing the cognitive task difficulty 

level (Sterman and Mann, 1995). The 𝛼 spectrum also decreases when the duration time to perform the cognitive task puts an additional 

stress on the subject (Slobounov et al., 2000). This decrease in the 𝛼 spectrum is mainly identified in the occipital and parietal lobes 

(Kramer, 1991). This decrease in the 𝛼 spectrum in these regions is generally attributed to modulation due to attention demand related to 

the cognitive task. But sometimes, the involvement in a cognitive task can lead to disappearance of the 𝛼waves in these regions (Curtis 

et al., 1993; Puma et al., 2018). In (Zhu et al., 2021), the authors studied variations of 𝜃 and 𝛼 waves when performing scientific problems. 

According to (Zhu et al., 2021) the increase in the mental effort is accompanied by a decrease in spectrums of 𝜃 and 𝛼 in the occipital 

lobe. According to (Zhu et al., 2021) these results mean that the mental effort expanded while performing a scientific problem is related 

to working memory, spatial-visual processing as well as semantic processing. 

Since the advent of brain-computer interfaces in the 2000s, works in literature have been interested in exploring and studying cerebral 

behavior during a cognitive task performance. These works have mainly explored the brain frontal areas because these regions have been 

associated to the working memory (Baddeley, 2000; Nissim et al, 2017). In works dating from the last decade, links have been established 

between the cognitive load in general and the brain posterior regions. As an illustration, this link can be found in (Jap et al, 2009) where 

𝜃, 𝛼 and 𝛽 brain waves measured on the occipital lobe were used to describe levels of mental fatigue and sleepiness in a context of car 

driving. In this context of studying the cognitive load, our previous work (Zammouri et al., 2018), carried out with the aim of developing 

a classifier to distinguish two cognitive load levels, demonstrated that the brain waves measured on the occipital lobe describe the 

cognitive load levels variations. In this way, our present work aims to explore and study the occipital lobe’s EEG signals to describe the 

brain behavior while using an intelligent tutoring system and while performing a cognitive task with more than two difficulty levels.   

This work presents a new architecture of a generic and adaptive computer-supported-based learning environment combining an EEG-

based passive BCI to assess the learner’s current mental effort and cognitive load. Such an architecture presents and adapts the learning 

content in the adequate difficulty level. Our approach consists in designing a new architecture of each of the learner module, the 

pedagogical module and the interface module. Moreover, we introduce a new unsupervised method for the estimation of cognitive load 

from the occipital lobe. Regarding the generic character of this new architecture, for instance, we have chosen an implementation in the 

context of mathematical logic. Learners’ outcomes and the measures of the cognitive load are used as input variables in our fuzzy logic-

based evaluation algorithm. Experimental results show, for both 𝜃 and 𝛼 oscillations in the occipital brain area, a decrease in power while 



increasing the cognitive task difficulty and vice versa. Based on the Kappa test (Cohen, 1967), the comparison of performances to the 

rates of Event Related Desynchronization (ERD) and Synchronization (ERS) demonstrates that our proposed cognitive load estimation 

approach could be of a reliable and optimal alternative solution, especially for developing lightweight systems on devices with limited 

memory capacities. Moreover, findings presented in this work demonstrate that the developed learning environment could be of 

considerable help and assessment in the learning process for disabled people.

2. Learning environment architecture 

The objective of the learning environment presented in this work aims at evaluating and supervising the learner’s knowledge taking 

advantage of her cognitive capacities. For this reason, the environment must embed adequate tools to select and sequentially present the 

learning content to the learner. This requires endowing the environment with a good representational power regarding the domain 

knowledge and the learner’s one. These information are necessary for the environment to update the learner profile and provide an 

assessment feedback to the learner according to her profile and current cognitive load. The aspect of Generic Learning Environment 

(GLE) introduced in our work requires that the domain module should be able to dispose of knowledge on the learning domain. This is 

modelled in our architecture using a Domain Knowledge Base (DKB). Each domain to learn has its own DKB. A distinction should be 

made between the domain knowledge and the pedagogical knowledge (Mizoguchi, 2003; Hayashi et al., 2006). Indeed, the pedagogical 

knowledge represents styles and strategies to interact with the learner. This knowledge must insure the tutoring process and allows to 

each learner an adequate learning experience. The domain knowledge reflects the subject to be learned, its explanations and all learning 

activities, i.e., exercises etc. In our architecture we have chosen to associate a Pedagogical Knowledge Base (PKB) to each DKB. The 

designed architecture to consider these points is presented in Figure 1. The advantage of using a multi-agent architecture is that it exhibits 

interesting characteristics such as: modularity, ease of evolution, the possibility of repeating agents in the learning environment, which is 

a distributed environment, taking into account the distributed and asynchronous nature of the problem. 

 

A learning scenario comprises a set of activities. These activities are all initiated by the learner and differ among reading a course, 

doing exercises, answering quiz and interacting with forums of the learning environment. Choosing these educational activities allows 

the system to present concepts in different ways in order to reach a best possible presentation. Each learning scenario has a specific 

instance of Learning Session in order to accurately modelling the learning activities and building a learner’s specific history. In the 

Pedagogical Module, planification rules define “learning levels” associated to each learning domain. Each learning level consists of a set 

of learning activities. The induced learning activities can be of three different levels of difficulty (Low: 𝑙1, Medium: 𝑙2 and Difficult: 𝑙3). 

The adopted methodology advocates relying on modelling the learner profile through (1) the observation of the learner’s learning activity, 

(2) estimation of the learner’s brain activity and (3) the construction of the observables in the learner profile. All information are organized 

to allow the environment to clearly define the learner’s situation and guide her to the best in the learning process. During her learning 

process, the learner performs an effective trajectory, identified as her personal path. This trajectory probably differs from that one which 

was planned by the tutor. This path allows tracking the learner’s learning process.

Taking advantage of the ontology engineering approach (Hayashi et al., 2006), we developed our simple ontology to represent activities 

of a learning scenario. We propose the concept of Learning Activity Objectives (LAO). For each learning level, a set of objectives are 

assigned to the learner in order to decide her transition to the next learning level. This allows the learner module to determine the learner’s 

learning process by searching the existing correlation between expended cognitive efforts, learning outcomes and the learning taken time. 

Hence, the environment can distinguish when learning results from good acquisition of the learning content. Also, using the learner 

module information, the environment selects and presents appropriately the content to learn in order to assist and/or improve the learning 

process. These interactions with the learning environment are analyzed and designed based on a multi-agent-oriented software engineering 

 

Fig. 1 Overview of the developed learning environment architecture. – Brain Signal Measuring Agent: Its role is to measure the EEG signal from the used 

electrodes. – Brain Load Estimation Agent: It receives the measured EEG signals and process them to estimate the cognitive load level. - Profile Updating 

Agent: Its role is to update all the information concerning the learner. – Planification Agent: Its role is to select the appropriate learning content for the learner 

based on her measured cognitive load. – Evaluation Agent: Its role is to assess the learning outcomes of a learner by taking into account the levels of the 

cognitive load while performing the cognitive task. - Content Presentation Agent: Takes care of presenting, to the learner, the content chosen by the Planification 

Agent. – Resources Management Agent: It allows to tutor to upload the learning contents. – Assistance Agent: Its role is to suggest help (as indication) when 

the learner’s cognitive load level is low.                 



method. The behavior of each agent comprising the learning environment depends on the learner’s brain activity and the resulting actions. 

The use of a multi-agent-based architecture offers a high flexibility, for modelling, the learner profile, her interactions as well as the 

creation of the content adaptation strategies. 

In the architecture shown in Figure 1, a learning session begins with an interaction between the learner and the Interface Module. This 

interaction solicits the Content Presentation Agent and the Brain Signal Measuring Agent. These two agents are executed in the 

background since they operate permanently throughout the learning session. The Content Presentation Agent communicates with the 

Planification Agent in order to select the learning content for the learner. To do this, the Planification Agent requests the Profile Updating 

Agent which provides the necessary information on the learner. This content is used by the Content Presentation Agent. On the other 

hand, the Brain Load Estimation Agent runs permanently and in the background while communicating with the Brain Signal Measuring 

Agent. The Brain Load Estimation Agent controls the operations of the Assistance Agent. In fact, if the Brain Load Estimation Agent 

gives an estimation on mental fatigue in the learner, the Assistance Agent triggers the rules entered by the tutor in the PKB. For example, 

the PKB could contain response indications to be communicated to the learner in the case of difficulty. At the end of a learning activity, 

the Evaluation Agent is triggered to give a decision on the learner’s learning experience. The result of the Evaluation Agent is received 

by the Profile Updating Agent which saves it in the “Learner Base” (LB).  Since in our experimentations we use the OpenViBE software 

(Renard et al., 2010) for the EEG signals measurements, these are routed from the acquisition software to the learning environment based 

on a virtual-reality peripheral network (VRPN) server. The arrival and management of the EEG signals on the learning environment is 

ensured by the Brain Signal Measurement Agent.    

The Assistance Agent, Evaluation Agent and Planification Agent represent the kernel of our learning environment. They primarily 

model the nature of the subject to be taught and the difficulty levels of the considered learning activities. Thus, the pedagogical module 

performs the measurement and the evaluation of the learner’s knowledge in relation to the considered domain knowledge. This is done 

based on her learning activities in the environment and on measures of her expended mental efforts. Indeed, the Evaluation Agent analyses 

the learner’s interactions based on checking results achieved during the learning activities. We incorporated in this agent a fuzzy logic-

based evaluation algorithm. This algorithm takes advantage of qualitative measures, i.e., correct outcomes during the learning activities, 

and measures of the cognitive load and mental efforts. This combination provides more qualitative characteristics of the learner’s learning 

process. 

3. Cognitive load estimation approach 
 

3.1. Experimental setups 
In this study three experimental protocols are adopted. In order to evaluate our cognitive load estimation approach, we have chosen 

two experimental protocols. The first experimental protocol is based on the Raven’s matrix test. Considered as an intelligence test in 

competitive recruitment, Raven’s matrix test consists of either completing a figure with a missing part or finding the law of progression 

of graphic series of matrices (2,2), (3,3) etc. In our protocol we used matrices of size (3,3). As a first step of validation of our classification 

algorithm, we studied the 𝜃 and 𝛼 modulations while going from a rest state to a state of Raven’s matrix resolution. In the second 

experimental protocol we used the N-Back test as a cognitive task. This test consists of presenting the participant with a series of 

consecutive letters. The participant has 5 seconds to memorize them and then correctly answer the questions asked: letters are suggested 

to her and she must indicate whether or not they exist in the series supposed memorized. We chose to introduce this experimental protocol 

in order to identify brain regions which undergo significant modulations during an auditory cognitive task. The interest behind this is to 

study the modulations of the 𝜃 and 𝛼 waves in the occipital lobe during an auditory cognitive task. This will allow us to illustrate the 

involvement and modulation of the 𝛼 rhythms while performing a cognitive task which does not require visual attention.       

In order to evaluate and validate the usability of the new architecture of ITS presented in this study, we introduced a third experimental 

protocol in which we have chosen as a test scenario conducting a positioning test. The chosen learning activity consists of 20 multiple-

choice questions covering mathematical and arithmetic logic. The 20 questions induce three different difficulty levels. In the first level, 

denoted by 𝑙1, subjects were asked to complete the missing element in a numerical series. In the second level, denoted by 𝑙2, subjects 

were asked to solve problems such as conversion of time and temperature units. Finally, in the third level, denoted by 𝑙3, we presented to 

subjects questions which require problem solving using different arithmetic operations. These questions are presented randomly to the 

learner. This presentation mode is used to assess the learner’s brain reactions to the difficulty level changes. Each question is presented 

separately with four answer proposals. The learner selects her answer using the computer mouse. The learner is asked to restrict her 

movements and move only her handful in order to select the answer. 

Experimentations from each protocol include ten subjects (i.e., a total of 30 participants) who have voluntarily accepted to participate 

in this study. Subjects are all male university students (from different countries) aged from 20 to 30 years old. Informed consent is obtained 

from each subject. The participants do not present any mental or ocular trouble that may affect the experimental results. In all our 

experimental protocols, a 5-minutes relaxation session (with closed eyes) is required to each subject before starting the experiment. This 

relaxation session aims to reduce effects of the learner’s activities before starting the experiment. For example, walking to the place of 

experimentation could influence brain rhythms associated with motor activity. 

3.2. EEG data recording 
For experimentations from the first and second protocols, the EEG data acquisition system uses 14 channels. Electrodes are placed at 

the occipital, parietal, frontal and temporal lobes following the extended 10-20 international system. The used electrodes are: AF3, F7, 

F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4 as presented in Figure 2. EEG data are measured continuously based on the epoc 

emotiv acquisition device using a sampling frequency of 128Hz.  

In the third experimental protocol, the EEG data acquisition system uses eight channels with a reference to the left earlobe.  Electrodes 

are placed at the occipital and parietal lobes following the extended 10-20 international system. The used electrodes are Pz, PO3, POz, 

PO4, O1, Oz, O2 and Iz as presented in Figure 2. EEG data are measured continuously based on the g.Mobilab+ acquisition device using 



a sampling frequency at 256Hz. Since the learning environment is destined for a real-time use, no sophisticated method for noise 

elimination is applied. 

In all protocols, EEG data are acquired using the OpenViBE platform (Renard et al., 2010) and are filtered using a pass band filter for 

1-30 Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.3. Cognitive load estimation approach 

In order to control and supervise the learner’s different levels of cognitive load during her interaction with the learning environment, 

we introduce an unsupervised approach to estimate such levels of cognitive load from the EEG signals. On the one hand, our method 

consists in calculating the EEG power spectrum using a Short Time Fourier Transform (STFT). The cognitive load is estimated on a 5-

seconds moving window and using an averaged periodogram based on the Hanning-window. According to literature works, developed 

approaches in the context of cognitive load estimation in general are based on analyzing 𝜃 and 𝛼 waves. In this way, we have chosen to 

focus our study on these two brain rhythms, thus, through this approach two Cognitive Models (CM) are designed. These CM describe 

changes in the cognitive load levels based on the power spectrum of each of 𝜃 and 𝛼 rhythms. These rhythms are the most likely to reflect 

changes in the cognitive load. For each of the two models we propose to compute a Cognitive Reference Model (CRM). These CRM are 

denoted by 𝐶𝑅𝑀𝑖 (𝑖 ∈ {𝜃, 𝛼}). A 𝐶𝑅𝑀𝑖 is an epoch which represents the baseline power spectrum of the considered rhythm. It is computed 

using a 5-seconds time window. This time window is chosen before starting the experimentation and after having finished the relaxation 

session and so that the power spectrum of the corresponding rhythm is a normal distribution. We assume that before starting the 

experimentation, the learner is in a state of quasi-rest. The 𝐶𝑅𝑀𝑖 allow evaluating and estimating the level of the learner’s cognitive load 

by computing the distance from these models. We assume that a large distance represents a great expenditure of mental effort and cognitive 

load. 

In our investigation we used the Standardized Euclidean Distance (SED). The Euclidean distance calculates the distance between tow 

real-valued vectors. If vectors have values with different scales, it is common to normalize the numeric values across all columns before 

calculating the Euclidean distance. Otherwise, columns with large values will dominate the distance measurement. The obtained scores 

are used to find the most similar examples. In our study we apply the SED to compare if the vector 𝐶𝑅𝑀𝑖 is from the same distribution 

of each 5-seconds time window of the power spectrum of the considered rhythm, i.e., 𝜃 or 𝛼.  Let us consider the case of a single channel; 

each one of the cognitive reference models is represented by 𝐶𝑅𝑀𝑖(𝜇𝑖 , (𝜎𝑖)2), where 𝜇𝑖 and (𝜎𝑖)2 represent respectively the mean and 

the variance of the 𝐶𝑅𝑀𝑖. Let 𝑃𝑖 be the power spectrum vector during a given instant of the moving-window. The standardized Euclidean 

distance from each cognitive reference model is obtained as follows: 

𝑆𝐸𝐷𝑖(𝑃𝑖, 𝐶𝑅𝑀𝑖) = √∑ 𝑤𝑛(𝑃𝑛
𝑖 − 𝐶𝑅𝑀𝑖 )

2𝑁
𝑛=1 . (1) 

where 𝑤𝑛 is the inverse of the variance, 𝑃𝑛
𝑖 is the power spectrum vector and 𝑁 is the number of observations during the considered epoch. 

This distance is then used by the Evaluation Agent in order to determine the current learner’s cognitive load. For each 5-seconds epoch, 

the classifier makes its decision by computing the 𝑆𝐸𝐷𝑖 distances. The final decision on the expended cognitive load when following a 

learning activity is made by computing the average of 𝑆𝐸𝐷𝑖 distances over the learning activity epochs. This average is denoted by 𝐴𝑆𝐸𝐷𝑖. 

The classifier performance is assessed based on the 𝐴𝑆𝐸𝐷𝑖 averages.  

In our experimental protocols, EEG signals are measured based on multiple electrodes, but it is possible to reduce the number of 

electrodes while keeping a good accuracy. A subset of electrodes could be selected to obtain a very light system as detailed in the next 

sections. 

3.4. Fuzzy-logic-based knowledge evaluation algorithm 
Fuzzy logic or fuzzy sets theory offers tools to deal with uncertainties in tasks associated with data mining contexts, identification and 

control of systems, signal and image processing and patterns classification. One of the important directions, in theory and practice, of 

 
Fig. 2 Placements of the used electrodes according to the extended 10-

20 international system. In orange color are presented electrodes used in 

the first and second protocols. The blue color represents electrodes used 

in the third experimental protocol. The green color represents common 

electrodes to all the experimental protocols.    



machine learning methods is kernel-based methods, especially Support Vector Machine (SVM) (Suthaharan, 2016). According to Chen 

(Chen, 1998), under a general hypothesis made on membership functions, a fuzzy logic classifier is equivalent to a kernel-based classifier 

in terms of decision boundaries. Our fuzzy logic-based evaluation algorithm consists of three steps, namely (1) the definition of the input 

and output variables as well as the definition of their matching membership functions (2) the design of a fuzzy rules base (inference 

process) (3) the projection of the outputs of the inference process in the real domain. In the first step, we define variables which compose 

inputs of the evaluation algorithm. We are interested in the learner’s outcomes and cognitive load estimation. Our evaluation algorithm 

tracks the accuracy of the learner’s response (𝐶𝑜𝑟𝑟𝑜𝑢𝑡) and the cognitive load estimation (𝐴𝑆𝐸𝐷𝑖, 𝑖 ∈ {𝜃, 𝛼}). Setting these variables 

allows designing the membership functions in order to decide on the learner’s knowledge. These functions place decisions on learner’s 

knowledge in the interval of values ranging from 0 to 1. A value of 0 indicates that the decision is not included, while a value of 1 

corresponds to a fully included one. The membership function acts on the set of values taken by an input variable. This set is called the 

universe of discourse. Let 𝐼 be this set; in our case 𝐼 consists of values of the variables 𝐶𝑜𝑟𝑟𝑜𝑢𝑡  and 𝐴𝑆𝐸𝐷𝑖. We give the formal definition 

of the membership function as follows: 

ℳ:    𝐼 → [0,1]. (2) 

In the second step of the evaluation algorithm, we define the fuzzy rules base. This base consists of rules that are used in parallel. 

Regarding the generic aspect induced by our proposed ITS architecture, each learning activity has its own inference process. The latter is 

defined by the expert of the considered domain. Thus, the fuzzy rules operate based on the knowledge base from the expertise of the tutor. 

One should note that the fuzzy rules are stored in the PKB. The last step, for an operational evaluation process, is the defuzzification. 

Indeed, in the second step, a set of commands is generated upon the execution of the fuzzy rules. The aim of the defuzzification is to 

transform the resulting parameters in digital format. In Figure 3 we give an example of this evaluation process. 

4. Experimental results 

To begin with, our study is conducted with the aim to identify the brain regions which describe the variations of the cognitive load, 

and this through the development of a classifier of cognitive load levels. In this first step, two experimental protocols are adopted. We 

designed these protocols to demonstrate the sensitivity of our classifier when it comes to evaluating the level of cognitive load when 

moving from a state of rest to a state of performing a cognitive task. In order to demonstrate the implication of the 𝛼 wave in any cognitive 

task, including those which do not require visual attention, we chose Raven's matrices and the N-Back test as cognitive tasks of test. In 

Figure 4 and Figure 5 we present the obtained results. In these figures, the origin of the y-axis actually represents the 𝐶𝑅𝑀𝑖 vector. The 

value of a bar, meanwhile, represents, on average, the distance separating 𝑃𝑛
𝑖 from 𝐶𝑅𝑀𝑖. These results represent, for each used electrode, 

the averaged 𝐴𝑆𝐸𝐷𝑖 for all participants in each experimental protocol of this first step. In general, and in the case of both 𝜃 and 𝛼 waves, 

these results show large 𝐴𝑆𝐸𝐷𝑖 values on the frontal lobe electrodes. In the case of the Raven matrix test we observe large values on the 

occipital lobe's electrodes. Regarding the N-Back test, in addition to the large values from the frontal electrodes, results show large values 

on the temporal and occipital lobes. 

In a second step, and after validating our cognitive load classifier, we integrated it into our new ITS architecture. To do this, we 

designed a third experimental protocol. In this protocol the cognitive load classifier is applied to all EEG recordings measured on ten 

subjects. The durations of experimentations range from 5 to 20 minutes. This difference is due to the various strategies of each subject to 

analyze and answer questions. We chose not to fix the time to answer questions in order not to stress the subject and therefore influence 

the outcome of this study. The 20 questions used in this experimental protocol induce three difficulty levels. However, the subject’s 

analysis of the question to build her answer may involve different cognitive load sublevels associated to each difficulty level. In order to 

select a subset of electrodes, we were interested to the correlation coefficients between time on task, 𝐴𝑆𝐸𝐷𝑖 and scores.  

 

 

 

 

 

 

 

 

Fig. 3 Example of fuzzification and defuzzification of our knowledge evaluation algorithm while using the  α rhythm. -a- fuzzy rules applied on the 𝐶𝑜𝑟𝑟𝑜𝑢𝑡 

input. -b- fuzzy rules applied on the 𝐴𝑆𝐸𝐷𝑖 . -c- fuzzy rules related to the decision on the learner’s knowledge.    



 

 

The averaged correlation coefficients obtained on all the ten subjects show a strong positive correlation on electrodes Oz, PO3, POz, 

O2, Iz, and O1 as presented in Figure 6. We choose to select three electrodes with the greatest correlation coefficients, i.e., electrodes O1, 

O2 and Oz. 

One should note that in the 𝑙1 level subjects were asked to complete the missing element in a numerical series. In the 𝑙2 level we asked 

subjects to solve problems such as conversion of time units. Finally, in the 𝑙3 level, questions that require problem solving using different 

arithmetic operations are induced. Figure 7 displays the averaged value, across the ten subjects, of the 𝐴𝑆𝐸𝐷𝑖 in each difficulty level. 

These results show that for the 𝜃 band, maximal distances are obtained while answering level 𝑙3 questions. The question of level 𝑙2 

displays intermediate 𝐴𝑆𝐸𝐷𝑖 values, while 𝑙1 level show lower values. These findings are similar for all the three electrodes except O2. 

This exception is due to the fact that the subject 2 has produced more mental effort to answer the question of 𝑙2 level. Thus, these results  

 

 

 

 

 

 

 

 

 

 

-a- -b- 

Fig. 4 𝐴𝑆𝐸𝐷𝛼 distances (averaged across all the subjects). -a- case of the N-Back test. -b- case of the Raven’s matrix test.  

 

 

 

 

 

 

 

 

 

 

-a- -b- 

Fig. 5 𝐴𝑆𝐸𝐷𝜃  distances (averaged across all the subjects). -a- case of the N-Back test. -b- case of the Raven’s matrix test 

 

 

 

 

 

 

 

 

 

Fig. 6 Correlation coefficients between time on task, 𝐴𝑆𝐸𝐷𝑖  and scores. 



show that the 𝐴𝑆𝐸𝐷𝜃 moves away from the 𝐶𝑅𝑀𝜃 according to the difficulty level. On another hand, for the 𝛼 band, results displayed in 

Figure 7 illustrate maximum distance in the case of questions from the 𝑙3 difficulty level. These distances are immediately followed by 

the distance value corresponding to 𝑙2 level. Finally, we find the matching value to the 𝑙1 difficulty level. Thus, and similar to the 𝜃 band, 

our results illustrate that the 𝐴𝑆𝐸𝐷𝛼 moves away from the 𝐶𝑅𝑀𝛼 according to the cognitive task difficulty level. 

In both cases, i.e., 𝜃 and 𝛼, increasing the difficulty level of the cognitive task involves a large 𝑆𝐸𝐷𝑖 (consequently  𝐴𝑆𝐸𝐷𝑖) from the 

corresponding 𝐶𝑅𝑀𝑖 and vice versa. To evaluate the performance of our cognitive load estimation method, we compare the results of our 

method in the 𝛼 band with the reference neuro-index of the literature that are the ERD and ERS rates. According to (Fink et al., 2005), 

(Grabner et al., 2004) these rates well measure the oscillatory dynamics. Indeed, it reflects the perceptual decrease (ERD) or increase 

(ERS) in band power of a brain wave during a test epoch compared to a baseline epoch (Fink et al., 2005).,Let 𝑒𝑏 be the baseline time 

epoch. We denote by 𝑃𝑒𝑏
𝛼  the band powers during the baseline time epoch. 𝑃𝑒𝑏

𝛼  is nothing other than the 𝐶𝑅𝑀𝛼 . Thus, we define the index 

𝑧 = 𝐸𝑅𝐷/𝐸𝑅𝑆  as follows: 

𝑧 =
𝑃𝑒𝑏

𝛼  −𝑃𝛼 

𝑃𝑒𝑏
𝛼 ∗ 100. (3) 

According to Antonenko (Antonenko et al., 2010), a positive value of 𝑧 indicates a decrease in the band power i.e., ERD, whereas a 

negative value indicates an increase in the band power i.e., ERS. For Grabner (Grabner et al., 2004), (Brouwer et al., 2012) performing 

a difficult cognitive task increases the ERD in the 𝛼 which implies a decrease in the power spectrum. The performance evaluation using 

the 𝑧 index is based on the computation of the Cohen Kappa coefficient (Cohen, 1967). This test represents a statistical metric of agreement 

between the classifiers as defined in equation (4) : 

𝑘 =
𝑃𝑏(𝑎)−𝑃𝑏(𝑒)

1−𝑃𝑏(𝑒)
. (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 𝐴𝑆𝐸𝐷𝑖  distances for all levels of the experimental test on each electrode (averaged across all the subjects) 



where 𝑃𝑏(𝑎) represents the agreement which exists between decisions made by our approach and those reflected by the 𝑧 index. 𝑃𝑏(𝑒) is 

the probability of a random agreement. We use this coefficient to interpret the agreement rate between decisions made by our approach 

and those of the 𝑧 index when changing the task difficulty level in 𝑙1 and 𝑙3. The obtained results of the agreement, in the case of 𝛼, show 

a strong agreement, 𝑘 = 0.63,  between the 𝑧 index and our SED-based classifier while using electrode O2. For O1 and Oz electrodes, 

the Kappa test gives, respectively, values 𝑘 = 0.51 and 𝑘 = 0.48 which reflects a moderated agreement. 

We present on Table 1 results from the evaluation process based on the outcomes of each participant from the third protocol and using 

workload measures from electrode O2. For our experimental test, we have two inputs, namely 𝐶𝑜𝑟𝑟𝑜𝑢𝑡  and the mean of the 𝐴𝑆𝐸𝐷𝛼 values 

from O2 all during the experimental test. The evaluation represents an estimation of the learner’s knowledge. These evaluations are 

obtained by using trapezoid membership functions. The results of Table 1 are compared to the traditional evaluation which takes into 

consideration only the rate of correct outcomes. 

5. Discussion 

In this work, we present a new learning environment architecture. This multi-agent-based environment exploits brain signal 

measurements for the learner’s knowledge evaluation and content adaptation. Our estimation approach of the learner’s cognitive load 

analyzes the evolution of these signals from an initial state in which the learner is not considered tired. The evolution or the moving 

distance is estimated by computing the standardized Euclidean distance on the power spectral densities of 𝜃 and 𝛼 measured from different 

brain regions. For this classifier, a large distance from the baseline reflects an important expanded cognitive load. This is demonstrated 

with all experimental protocols where 𝐴𝑆𝐸𝐷𝑖  increased according to the increase in the cognitive task difficulty level and vice versa. This 

result is well demonstrated on Figure 8 in which, variations of 𝐴𝑆𝐸𝐷𝑖 regarding each question are given.  This assumption is justified and 

proved by comparing our decisions to the ERD and ERS rates. Indeed, using the Cohen Kappa test we found (in averaged value) a strong 

agreement between decisions from our classifier and those using the 𝑧 index. Through the EEG data measured on 30 participants, we 

were able to demonstrate the involvement of 𝜃 and 𝛼 waves in the description of the cognitive load levels variations during the 

performance of a cognitive task of long-term duration. In addition to findings already known in the literature, and which concern the 

involvement of these two brain rhythms from the frontal lobe, our results have highlighted the modulations of the occipital 𝜃 and 𝛼 waves 

when it comes to perform a long-lasting cognitive task. Furthermore, our results show significant modulations of 𝜃 and 𝛼 in the occipital  

 

lobe even when it comes to performing a cognitive task which does not require any visual attention, and which could influence posterior 

brain regions. 

Findings from our work corroborate those previously found in the literature. Brouwer (Brouwer et al., 2012) demonstrated, through an 

experimental protocol based on the N-Back test, that mental efforts increase with respect to the increase in N-Back difficulty level. Using 

an SVM-based approach, Brouwer demonstrated 80% of classification while using the 𝛼 band, and 72% while using the 𝜃 band. In a 

work of Röy (Röy et al., 2016) authors studied features of mental fatigue. Also based on the N-Back test, this study demonstrated that the 

𝛼 band in the parieto-occipital lobe well describes changes in individuals’ cognitive load and mental fatigue. In another work (Charbonnier 

et al., 2016), the same authors demonstrated that using ERPs describes the workload changes better than spectral features, i.e., brain 

rhythms. One can easily establish similarities which exist between these works and findings presented in our work. However, the 

robustness aspect from our work lies in the optimal required processes contrary to these approaches. Indeed, in the former work of Röy 

(Röy et al., 2016) the designed mental fatigue marker makes use of the Frobenius distance of the EEG spatial covariance matrices of 

different brain regions calculated on 20 seconds epochs to a mean covariance matrix learned during an initial reference state. Similar to 

our approach Pal (Pal et al., 2008) have shown, based on the Mahalanobis distance and using only the electrode Oz, that changes in the 𝜃 

and 𝛼 powers perfectly describe drivers’ drowsiness and depart from alertness. Despite the robustness of these approaches, their uses in 

the context of learning environments are limited by some constraints. Indeed, in such environments, some interactions like answering 

multi choice questions can take a duration much less than 20 seconds. The 5 seconds moving time-window used in our investigation 

seems suitable for the necessary process of estimating spectra. Moreover, it takes into account the cognitive load estimation in short 

interactions with the environment. However, the use of the Mahalanobis distance on this time window is not possible since it requires an 

input matrix with certain rows and columns. Differently to these approaches as well as to the investigation of Spüler (Spüler et al., 2016), 

using standardized Euclidean distance allowed distinguishing more than two cognitive workload levels in learners. This could be 

explained by the fact that experimental protocols used in these works generate only two levels of brain workload which well matches to 

the study of drowsiness. 

 

 

 

 

 

 

 

 

Fig. 8 𝐴𝑆𝐸𝐷𝑖  distance variations according to questions of the experimental test on each electrode (averaged on all subjects). Questions 4, 10 and 14 correspond 

to the𝑙3 difficulty level. Question 19 corresponds to the 𝑙2 difficulty level. Other questions correspond to the 𝑙1 difficulty level.    



Table 1. Results of the evaluation process 

 

 

 

 

 

 

 

 

 

 

 

Results, in terms of evaluation of learners’ knowledge levels, show that estimates made by the evaluation algorithm correspond at 90% 

to the traditional evaluation which makes use of correct outcomes rates. This agreement allows postulating that the Evaluation Agent 

incorporated in our environment returns a reliable estimation of the learner’s knowledge level. Unlike traditional evaluation, using an 

approach that analyzes the learner’s cognitive load allows to decide when answering a learning activity results from a sustained mental 

effort and not to chance. This is illustrated in results of Table 1. Indeed, using only the correct outcomes of the subject S7, the traditional 

evaluation process returns “Excellent” as level of knowledge, whereas using our evaluation algorithm, the decision gives the level “Good” 

with the percentage 0.4. On another hand, for subjects S4 and S5, the two evaluation processes returned “Medium” as decision on the 

knowledge level. Yet, our evaluation algorithm gives this decision with a low percentage of membership (0.26). According to the inference 

rules of the pedagogical agent, this information could be used to decide and design the adequate remedial learning activities. Apart from 

this, it illustrates that using a fuzzy logic-based approach, which combines information on the learner’s cognitive load, could address 

some learning problems such as uncertainty of learners in answering questions. 

 

Conclusion 

This work presents a new architecture of a learning environment based on brain signals in order to evaluate learners’ knowledge and 

adapt the learning contents according to their current mental states and cognitive load. The presented architecture makes use of a multi-

agent concept to design the different modules composing the learning environment. Results obtained from the used experimental protocol 

illustrate that increasing the difficulty level in the environment learning activities implies modulations of 𝜃 and 𝛼 bands in the occipital 

lobe. The novelty aspect and the robustness of this architecture lie in the incorporation of various agents which communicate and share 

functionalities. The cognitive load classifier incorporated in this environment is based on the power spectral density analysis, using an 

averaged periodogram, and the standardized Euclidean distance. EEG powers are computed in 𝜃 and 𝛼 PSD in the occipital brain area. 

These powers and the learner’s outcomes are then used as input variables of our fuzzy logic-based evaluation algorithm. The Brain Load 

Estimation Agent and Evaluation Agent represent the kernel of our new learning environment architecture. In the Brain Load Estimation 

Agent, we incorporated a new cognitive load classifier which makes use of the 𝜃 and 𝛼 PSD based on an averaged periodogram and the 

standardized Euclidean Distance. EEG PSD are computed in the occipital brain area. Based on the 𝛼 rhythm, our classifier is compared 

to the ERD/ERS ratio based on the Kappa coefficient. This comparison revealed a strong agreement (𝑘 = 0.63). This 𝛼 PSD-based 

classifier is used in the Evaluation Agent. Indeed, the 𝐴𝑆𝐸𝐷𝛼 and the learner’s 𝐶𝑜𝑟𝑟𝑜𝑢𝑡 are used as input variables in our fuzzy-logic 

based evaluation algorithm. 

In this study we were interested in developing an approach which makes it possible to estimate the cognitive load while answering a 

cognitive task in general. It is limited to healthy individuals who have participated in the experimentations under conditions which no 

longer disturb their cognitive activities. As a perspective of our work, we aim to study the effect of certain phenomena, such as stress, on 

the performance of our proposed approach. On the other hand, we seek to apply our approach to patients suffering from certain diseases 

such as cerebral palsy. The development and adaptation of our algorithm could make it possible to study and analyze the learning process 

in children suffering from certain difficulties such as dyslexia, dyscalculia, etc. This could be achieved by studying the variations in their 

cognitive load levels while performing cognitive tasks on our learning environment. Such an adaptation would make our intelligent 

tutoring system a tool for subjective evaluating rehabilitation methods. 
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