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EMG-to-torque models for exoskeleton assistance: a
framework for the evaluation of in situ calibration

Lucas Quesada , Dorian Verdel , Olivier Bruneau , Bastien Berret , Michel-Ange Amorim ,
Nicolas Vignais

Abstract—In the field of robotic exoskeleton control, it is
critical to accurately predict the intention of the user. While
surface electromyography (EMG) holds the potential for such
precision, current limitations arise from the absence of robust
EMG-to-torque model calibration procedures and a universally
accepted model. This paper introduces a practical framework for
calibrating and evaluating EMG-to-torque models, accompanied
by a novel nonlinear model. The framework includes an in situ
procedure that involves generating calibration trajectories and
subsequently evaluating them using standardized criteria. A com-
prehensive assessment on a dataset with 17 participants, encom-
passing single-joint and multi-joint conditions, suggests that the
novel model outperforms the others in terms of accuracy while
conserving computational efficiency. This contribution introduces
an efficient model and establishes a versatile framework for
EMG-to-torque model calibration and evaluation, complemented
by a dataset made available. This further lays the groundwork
for future advancements in EMG-based exoskeleton control and
human intent detection.

Index Terms—Exoskeleton, Electromyography, EMG-to-torque
models, Intention detection, Human-machine interaction

I. INTRODUCTION

ACTIVE exoskeletons are a major potential tool to support
neurorehabilitation protocols and prevent the appearance

of musculoskeletal disorders (MSDs) at work. Concerning
rehabilitation, they can be used to improve gait and upper
limb control during daily activities for those who have suffered
a stroke or a spinal cord injury [1]–[4]. Exoskeletons can
also be used to decrease the biomechanical load on the body
[5], thus contributing to preventing the onset of MSDs when
the workspace cannot be adapted to improve ergonomics [6],
although more evidence is needed [7], [8]. In such situations,
integrating the human intention into the exoskeleton’s control
loop is necessary to ensure safe, appropriate, and intuitive
assistance [9].

Human intention detection (HID) involves continuously
estimating the motion of one or more human joints. There
are several approaches to this aim. Kinematics can be used
to anticipate the trajectory of a movement based on prior
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knowledge of typical trajectories. These techniques, often
based on probabilistic models [10], [11], have already been
used to assist with an active exoskeleton [12]. Another method
is to employ a bio-electric signal and a model to estimate the
movement. Data sources such as mechanomyography (MMG),
force myography (FMG) [13], electromyography (EMG), or
a fusion of signals [14], [15] may be processed to control an
exoskeleton. Thanks to the electromechanical delay, i.e., the la-
tency between EMG signal and muscle force production [16],
human intention detection can be predictive: the movement
estimation can occur before the onset of the movement itself.
This potential predictive capability can be advantageously
used in real-time assistive systems, making EMG signals an
appealing choice for human/machine interactions [17]–[19].

Several approaches can be employed to predict intent based
on EMG signals, but two general categories can be defined: i)
categorical classification and ii) continuous regression. Move-
ment classification tends to use convolutional neural networks
[20], [21], support vector machine [22], [23], gaussian mixture
models [24] and other various techniques [25] linked to pattern
recognition. This type of HID allows to predict which type of
movement is performed (e.g., elbow flexion/extension) but has
to be trained on a predetermined set, preventing its general-
ization. On the other hand, continuous movement regression
aims to predict a continuous feature of the movement, such
as joint angle or torque. This is generally achieved through
a mathematical model linking EMG signals to the predicted
feature. For example, neuromusculoskeletal models [26]–[30],
simple linear regressions [17], [30]–[33], various synergy-
based [31], [33]–[36] and other custom models [37]–[41]
currently coexist. However, comparing models in the literature
is difficult due to methodological differences in evaluation. To
provide accurate predictions, continuous regression typically
requires first calibrating the model to fit its internal parame-
ters to an individual [29]. Some studies propose to estimate
joint torques from EMG signals during isometric tasks [29],
[31], [32], [40], [42], and specific or periodic dynamic tasks
[28], [30], [33], [39], [43]. However, similarly to categorical
classification, a realistic general assistive system cannot be
restricted to isometric or predetermined tasks. Individualizing
a calibration procedure might also involve a long computation
time or specialized equipment, reducing its practicality for
future commercial or clinical applications. Therefore, devel-
oping a model that allows short in situ calibration procedures
capable of performing HID for arbitrary movements is crucial.
To validate and compare models, the data on which the model
is evaluated must be distinct from the data used for individual-
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Fig. 1: Participant with EMG sensors and reflective mark-
ers in the exoskeleton Visible reflective markers and EMG
sensors are highlighted with blue and pink lines, respectively.
The setup corresponds to the multi-joint condition.

ized calibration (e.g., different movements, efforts, etc.). Apart
from very few studies using this type of cross-validation [32],
most do not exploit this aspect, thus increasing the risk of
overfitting models and misinterpreting their performance.

In the present paper, we address these concerns by: i)
introducing an in situ calibration framework enabling a generic
calibration of upper limb EMG-to-torque models, ii) apply-
ing this framework to elbow and shoulder flexion/extension
concurrently and separately, iii) evaluating and comparing the
performances obtained by four models, one of which is intro-
duced. This paper is structured as follows: first, we provide
an overview of the experimental protocol that produced our
dataset, including the exoskeleton control law, arbitrary task
generation, and EMG placement; next, we explain the data
processing and model evaluation procedures; then, we describe
the four EMG-to-torque models we evaluated; and finally, we
present our results, along with their limitations and potential
future directions.

II. METHODS

A. Participants

17 healthy subjects (11 males, age 28.2 ± 7 years, height
175.4 ± 7 cm, weight 70 ± 11 kg) took part in the experi-
ment. The experimental protocol was approved by the ethics
committee of Université Paris-Saclay (CER-PS-2021-048/A1).
Participants signed a written informed consent form before
starting the experiment.

B. Material

1) Exoskeleton: The ABLE upper limb active exoskeleton
[45] was used to impose a viscous resistive force on the
participant’s wrist to induce torques in its elbow and shoulder.
Its movement was limited to a parasagittal plane, only allowing
flexion and extension of the elbow and the shoulder. Partici-
pants were attached to the exoskeleton through a previously

developed mechanical interface [44] composed of an orthosis
fixed on a force/torque (FT) sensor (1010 Digital FT, ATI,
Apex, USA) itself attached to a slider on the exoskeleton’s
forearm. This mechanical interface includes a passive rotation
between the exoskeleton and the human limb, which reduces
unwanted hyperstatic constraints and increases comfort while
permitting the measurement of interaction forces [46].

2) Electromyography: Electromyographic signals were
recorded using wireless MiniWave sensors with a WavePlus
receiver (Cometa, Bareggio, Italy). The receiver was connected
via USB to a computer, and the acquisition was performed
through the Qualisys Track Manager (QTM) software (Qual-
isys, Göteborg, Sweden). Muscle head recording locations
were identified following SENIAM recommendations [47].
The skin was locally shaved, cleaned with alcohol pads, and
dried before placing the Ag/AgCl EMG electrodes (F3010,
Fiab, Firenze, Italy). The muscle set included the long and
short head of the biceps (BICShort, BICLong), long, lateral,
and median heads of the triceps (TRILong, TRILat, TRIMed),
brachioradialis (BRD), brachialis (BRA), posterior, medial,
and anterior heads of the deltoids (DELTPost, DELTMed,
DELTAnt), clavicular head of pectoralis major (PECT), and
latissimus dorsi (LATI).

3) Motion capture: Kinematic data of the participant and
the exoskeleton were captured using a total of 10 Oqus
500+ motion capture cameras (Qualisys, Göteborg, Sweden).
Eight 10 mm markers were placed on anatomical landmarks,
including the acromion, seventh cervical vertebra, sternal end
of the clavicle, styloid processes of the ulna and radius, lateral
and medial epicondyles and distal end of the first metacarpus.
Additionally, two markers were placed on the anterior and
posterior sides of the arm, specifically at the midpoint of the
upper arm. Additional markers were placed on the exoskeleton
and orthosis (see Fig. 1) to track their movement for later data
synchronization and frame transformation purposes. Motion
capture data was recorded in synchronization with EMG using
the QTM software.

C. Procedure

1) MVC and anthropometric measurements: Participants
first completed maximum voluntary contraction (MVC) tasks
for flexion and extension of the elbow and shoulder. For the
elbow, they placed their arm vertically against their body,
resting their wrist on a horizontal bar set at the same height
as their elbow joint. To perform flexion and extension MVCs,
they adjusted the position of their wrist either above or below
the bar and pushed against it. The same process was applied
to the shoulder joint by moving the bar to the shoulder level
and asking the participant to extend their elbow fully. Each
task was repeated twice and lasted for 3 seconds. Following
the MVC trials, after placing markers on specific anatomical
landmarks as described in Section II-B3, participants were
instructed to stand still within the motion capture area to
capture a frame of a static pose.

2) Motor tasks: The experiments were based on a trajectory
tracking task and divided into two sessions. During the first
session, participants tracked a trajectory using only elbow
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Fig. 2: Illustration of the different experimental conditions. a) During the single-joint task, the movement was limited to
elbow flexion/extension. To limit hyperstatic constraints in the human-exoskeleton kinematic chain and increase comfort, a
passive translation along Xs (slider) and a passive rotation around Ys were allowed by the physical interface [44]. Both shoulder
and elbow flexion/extension were involved during the multi-joint task. Participants were only attached to the exoskeleton at
the wrist level, which implied that the slider needed to be fixed to transmit efforts from the human to the exoskeleton. The
Zs axis represents the sensor frame, while the Zo axis represents the orthosis frame. It is necessary to consider this angular
misalignment to compute accurate inverse dynamics. b) Participants were positioned in front of a projected screen during the
tasks. The trajectory that needed to be tracked was visualized as white dots, while a yellow dot represented the participant’s
current position. As participants successfully touched the white dots, they would turn green, indicating a successful catch. The
displayed score corresponded to the number of dots participants successfully caught. In the single-joint task, the height of the
yellow dot representing the participant’s position was determined by the angular position of their elbow. During the multi-joint
task, participants were turned 90 degrees, and the Cartesian coordinates of their wrist determined the position of the yellow dot.
Two screen dimensions were effectively utilized for spatial representation, where white dots represented the future trajectory,
and red dots represented the set of accessible positions during the current period (500ms). c) In both cases, B-splines are being
used to produce the trajectories with control points (gray dots) generated into the light-gray area that contains the reachable
workspace. Trajectory examples are shown as black lines. The section of the trajectory currently displayed on the screen of
the b panel is dashed.

flexion/extension (i.e., single-joint). During the second session,
participants tracked a trajectory using elbow and shoulder
flexion/extension (i.e., multi-joint). Two different kinematic
arrangements of the exoskeleton were employed, depending
on the condition (see Fig. 2.a). The first setup enabled only
the elbow to rotate while the wrist was secured to a slider.
The second configuration allowed both the elbow and the
shoulder to rotate. As previously stated in the material section,
these two configurations avoided hyperstaticity between the
subject and the exoskeleton, reducing unwanted interaction
efforts. The trajectory was projected on a screen positioned
frontally for the single-joint task and sagittally for the multi-
joint task (see Fig. 2.b). Visual feedback included a yellow dot
representing the participant’s current position, synchronized
with white dots depicting the desired trajectory scrolling across
the screen. For multi-joint tasks, red dots indicated specific

positions participants were expected to reach at a given time.
Participants earned a point each time the yellow dot coincided
with a target dot, displaying an interactive score to enhance
engagement.

a) Exoskeleton Control: The exoskeleton was controlled
to impose a viscous resistance at the elbow and shoulder
joints, increasing the muscle effort induced by the task. This
allowed to extend the range of measured muscle activities
and, therefore, the range of validity of the resulting calibra-
tion. Furthermore, to reduce the effort asymmetry generated
by the exoskeleton’s weight between upward and downward
movements, it compensated for its weight based on a former
identification [48]. For the single-joint condition, the resulting
exoskeleton control torque τe was computed as follows:

τe = ge(qe)− µcq̇e (1)
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with µc representing the viscous coefficient, and q̇e denoting
the angular velocity of the exoskeleton’s elbow joint. For the
multi-joint condition, the same gravity compensation and vis-
cous resistance scheme was applied, yielding control torques
computed from task space coordinates using the following
equation:

τe = ge(qe)− µcJe(qe)ṗh (2)

where Je(qe) and qe respectively represent the Jacobian
matrix and the angular positions of the exoskeleton and ṗh

the velocity vector of the hand expressed in the task space.
In both equations, ge or ge denotes the gravity model of the
exoskeleton.

b) Trajectory generation: The target trajectories were
generated using random b-splines (see Fig. 2.c). A set of
random control points was generated in time and space to
create a candidate trajectory. Among the generated trajectories,
the one maximizing the mechanical work while covering the
whole reachable workspace was chosen. This approach to
random trajectory generation can produce a broad spectrum
of trajectories, ranging from flat to very curved. To effectively
scan the workspace, two criteria were established to select
trajectories that displayed a wide range of movements. These
criteria were the amount of mechanical work and the evenness
of its distribution in the workspace. For each component i
of the trajectory (e.g., i ∈ [Y, Z] for multi-joint condition),
according to equations 1 and 2, a substitute to the mechanical
work created by the viscous field can be computed as

Wi = µc

∫ T

0

ṡ2i (t)dt (3)

where T was the duration of the trajectory, and s corresponds
to qe and ph for single and multi-joint conditions, respectively.
The distribution of mechanical work within the movement can
be assessed by analyzing partial work, which quantifies the
amount of work dedicated to movement in either the positive
or negative direction:

w+
i = µc

∫ T

0

⌊ṡi(t)⌋2+dt w−
i = µc

∫ T

0

⌊ṡi(t)⌋2−dt (4)

where w+
i and w−

i respectively denote the work of the
movement in the upward (i.e., positive and denoted ⌊ṡi(t)⌋+)
and downward (i.e., negative and denoted ⌊ṡi(t)⌋−) directions.
The normalized work balance criterion is then expressed as the
mean of relative partial work contributions. With the total work
as the sum of individual components work W =

∑D
i=1 Wi,

the criterion is thus expressed as:

CWB =
1

2D

D∑
i=1

2− |w+
i −W/(2D)|
W/(2D)

− |w−
i −W/(2D)|
W/(2D)

(5)
here, D represents the dimension of the task space (e.g.,
D = 1, 2 for single and multi-joint conditions, respectively).
For example, in multi-joint condition, forward, backward,
upward, and downward movements should all account for
a quarter of the total work. With equation 5, trajectories
with an evenly distributed work throughout space maximize

CWB. Before executing the task, a hundred trajectories were
generated, and their respective scores were computed as

C = W × CWB (6)

Finally, the trajectory with the highest score is selected and
used for the task.

3) Trials: Before initiating the main trials, preliminary test
tasks were conducted to iteratively set the viscous coefficient
for the robot controller. In these initial trials, a baseline viscous
coefficient was employed, and participants were requested to
rate their perceived effort on a subjective Borg scale. Based
on the participants’ ratings, the viscous coefficient was then
manually adjusted to achieve a moderate effort. Then, twenty
trials were performed, each lasting thirty seconds and featuring
a different random trajectory. Ten trials were conducted for
each condition: single-joint and multi-joint. The trial procedure
was as follows: a random trajectory was generated, and par-
ticipants were instructed to stand ready. A countdown with an
accompanying sound cue was initiated when the trial began. A
score, displayed on the top right of the screen, kept track of the
number of successfully caught dots, encouraging participants
to track the trajectory accurately. A one-minute rest period was
observed between each trial to prevent muscle fatigue.

D. Data processing

1) Data synchronization: EMG and motion capture data
were synchronized using the QTM software. However, the
exoskeleton kinematic data obtained from internal encoders
and force/torque measurements were recorded separately, ne-
cessitating temporal synchronization with the EMG and mo-
tion capture data. To address this, the exoskeleton’s positions
were measured using its internal encoders and the motion
capture system. The alignment process consisted of deter-
mining the optimal temporal shift that minimized the root
mean square error between the encoder-informed and motion-
capture-informed positions of the exoskeleton arm. Once this
optimal shift was determined, it was applied to the force/torque
data to ensure proper alignment across all data sources.

2) EMG feature extraction: EMG signals were processed
with successive filtering. First, a fourth-order Butterworth 20-
450Hz bandpass filter was applied, and the signal was rectified.
Second, the EMG envelope was extracted using a 3Hz fourth-
order Butterworth low-pass filter [49]. In this study, all filters
were bidirectionally applied to mitigate latency effects. Finally,
EMG signals were normalized using MVC data.

3) Anthropometrics: Data collected during the static motion
capture phase is used to scale an upper limb model [50] using
OpenSim’s scaling tool [51]. This process involves adjusting
the dimensions of the model’s bones to match the marker
spacing on anatomical landmarks. By adapting the bone di-
mensions, the model accurately represents the proportions of
the individual’s limb. Furthermore, the limb mass is computed
by considering the ratio of the new bone dimensions to the
original dimensions of Holzbaur’s model. This ensures that
the model incorporates the appropriate mass distribution (mass
matrix) to simulate the upper limb dynamics accurately.
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4) Kinematics: Although human kinematics could be de-
duced from the exoskeleton’s internal encoders into infield
situations, here it was instead computed from motion cap-
ture data to improve accuracy and compensate for a known
misalignment between the human and exoskeleton joint axes
[52]. Positions of the reflective markers were extracted and
labeled using the automatic identification models (AIM) fea-
ture provided by the QTM software. The methods used for
inverse kinematics varied depending on whether the trials
involved single or multiple joints. In single-joint trials, which
involved strictly only elbow flexion/extension, the angle of the
elbow was directly computed using the marker coordinates.
Conversely, in multi-joint trials, although the main focus was
on shoulder and elbow flexions and extensions, it was essential
to consider the potential movements of the entire upper body
to take into account its full dynamics. Consequently, a com-
prehensive inverse kinematic analysis was conducted using
OpenSim. Finally, kinematic data were filtered (4th order
3Hz low-pass Butterworth) to align the harmonic content of
kinematic data to the EMG envelope and ease the extraction of
time derivatives using numerical differentiation. Joint angles,
velocities and accelerations are referred to as qh, q̇h and q̈h.

5) Human dynamics: Human dynamics were automatically
computed from kinematics and anthropometric data previously
introduced using Opensim. Classically, the motion of the
human upper limb is described by the following dynamics,
for J joints:

τττh = M(qh)q̈h + c(qh, q̇h) + gggh(qh) + τττ i (7)

where, τττh ∈ RJ represents the torque exerted at the human’s
joints, M ∈ RJ×J denotes the mass matrix, c ∈ RJ

corresponds to the vector of Coriolis and centrifugal forces,
gggh ∈ RJ signifies the vector of gravitational torques, and
τττ i represents the vector of human-exoskeleton interaction
torques. By considering these factors, the equation provides
a comprehensive representation of the complex dynamics
involved in the motion of the human upper limb. Interaction
torques are computed by first transforming the FT data from
its original frame to the forearm’s frame and using the upper
limb’s jacobian matrix Jh(qh) so that

τττ i = JT
h (qh)fs + τττs (8)

where fs and τττs are the forces and torques measured from the
sensor underneath the orthosis.

6) Resampling: All signals were resampled at a rate of
30Hz to reduce the number of samples and speed up the
calibration of the models. All signals being 3Hz low-pass
filtered, no information was lost.

E. Analysis

As the present study aims to evaluate and compare EMG-
to-torque models, it is necessary to properly define the criteria
for selecting one model over another. In particular, for future
implementations, the model accuracy and its computational
cost (i.e., the calibration and evaluation durations) are essential
performance criteria. The specific criteria to quantify these
aspects are detailed below.

1) Cross validation: It is more conservative to provide
different calibration and evaluation datasets to mitigate the
risk of evaluating overfitted models. To that end, a K-fold
approach was employed. This partitioning consists of dividing
the dataset in k folds and then performing k iterations of
training/evaluation with k− 1 fold in the training set and one
fold in the evaluation set [53]. In this research, a two-fold
division approach was taken due to the limited data (10 trials
per condition) and after testing various values of k. For each
participant and condition (single and multi-joint), the ten 30 s
trials were randomly divided into two folds, each containing
five trials. This procedure resulted in two calibration and
evaluation scores for each model, condition, and participant.

2) Performance metric:
a) Joint torque estimation: The accuracy of the models

was evaluated using two metrics: the normalized root mean
square error (NRMSE) and Pearson’s coefficient of correlation
(R). These metrics provide insights into the performance of
calibrated models when estimating a joint torque in terms
of data distance and error trends. The NRMSE is defined as
follows

NRMSEj =

√
1
N

∑i=N
i=0 (τh,j(ti)− τ̂h,j(ti))

2

max(τh,j)−min(τh,j)
(9)

where N is the number of samples in the fold and ti is the
ith time sample. The reference torque τh,j for the jth joint is
calculated from equation 7, while τ̂h,j is an estimated torque
obtained from the tested EMG-to-torque model. The NRMSE
is normalized with respect to the amplitude of the reference
torque, obtained using max(τh,j) and min(τh,j). Similarly,
Pearson’s coefficient of correlation (Rj) is computed as

Rj =
cov(τh,j , τ̂h,j)
στh,j

στ̂h,j

(10)

where cov(·, ·) denotes the covariance, and στh,j
represents the

standard deviation. The NRMSE and R values were compared
during the cross-validation process to evaluate and compare
the performance of the models.

b) Computation efficiency: While EMG-to-torque model
accuracy is undoubtedly the most critical feature for exoskele-
ton control, it is also crucial to be as computationally efficient
as possible. Indeed, for future applications, it is necessary to
induce short calibration times, which will influence the us-
ability of the control on a daily basis with different users, and
quick evaluation times, which will impact the controller’s re-
sponsiveness. As such, during cross-validation, calibration and
evaluation durations were measured. The calibration duration
was measured for each k-fold iteration across conditions and
participants. The estimation duration was measured similarly
and then divided by the number of samples to evaluate a
feasible control loop period in a real-time application.

F. Statistical analysis

The 2-fold partitioning and validation process resulted in
two values for each criterion, which were then averaged,
leaving one value per subject and model as data. R scores were
normalized using the Fisher transform. The data was initially
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evaluated for its sphericity using Mauchly’s test. Subsequently,
a repeated measures analysis of variance (rm-ANOVA) was
conducted with the models as the within-subjects factor, and a
Greenhouse-Geisser correction was applied if the sphericity
was violated. Model-to-model post-hoc comparisons were
performed with a paired sample t-test and a Holm-Bonferroni
correction. In the results, ± corresponds to the standard devi-
ation (SD). Datapoints with a Z-score over 3 were considered
to be outliers and not included in the statistical analysis.

III. EMG-TO-TORQUE MODELS

The following section describes models using K muscles
and J joints. Data matrices contain N samples.

A. Linear mapping model

The multivariate linear regression (MVLR) model is a
straightforward formulation used to compute joint torques by
linearly combining muscle excitations [31]. This is achieved
with a mapping matrix, denoted as Hℓ ∈ RJ×K , which
establishes the link between the estimated torques τ̂ττh(t) ∈ RJ

and the muscle excitations m(t) ∈ RK
+ . This relationship can

be expressed as
τ̂ττh(t) = Hℓ ·m(t) (11)

The model is calibrated by first defining the data matrices T ∈
RJ×N and M ∈ RK×N

+ , which contain torque and muscle
excitation samples from the training dataset, respectively. The
calibration process involves finding the mapping matrix Hℓ

that satisfies the equation:

T = Hℓ ·M (12)

To achieve this, the mvregress function from Matlab (Math-
Works, Natick, MA, US) is employed on T and M to
determine the optimal values for Hℓ.

B. Neuromusculoskeletal model

Neuromusculoskeletal (NMS) models are a combination of
a neuromuscular Hill-type model [54] and a musculoskeletal
representation of the body. A previously developed [50] and
benchmarked [55] NMS model implemented on the OpenSim
simulation software [51] was used in this study. Muscle
activations are first derived from excitations via a nonlinear
activation function [56] as follows

ak(t) =
eAkmk(t) − 1

eAk − 1
(13)

where Ak, ak(t), and mk(t) are, respectively, the shape factor,
activation and excitation of the kth muscle. For a given muscle,
the force can then be expressed as follows (see also [57]),

FM = FM
iso

(
a(t)fL(l̃M )fV (ṽM ) + fPE(l̃M )

)
cosα (14)

where FM
iso denotes the maximal isometric force, while l̃M

and ṽM represent the normalized fiber length and velocity,
respectively. The function fL(l̃M ) characterizes the force-
length relationship, describing how a muscle fiber’s maximum
active force varies with its length. The normalized fiber length

is given by l̃M = lM/lM0 , where lM0 corresponds to the
optimal fiber length at which fL(l̃M ) reaches its maximum
value (i.e., l̃M = 1). Similarly, fV (ṽM ) describes the force-
velocity relationship, reflecting the changes in active force
generation of the muscle with fiber velocity (i.e., fV (0) = 1
for isometric contractions), and fPE(l̃M ) accounts for the
passive elastic behavior of the fiber. Lastly, α denotes the
pennation angle, which quantifies the angle between the axis
of muscle force and the orientation of its fibers. This model
incorporates a serial elastic element representing the tendon to
ensure equilibrium between the muscle fiber and tendon forces
and compute their lengths. This is captured by ensuring the
following constraint during forward dynamics:

FM − FM
isof

T (l̃T ) = 0 (15)

where l̃T represents the normalized tendon length, and fT (l̃T )
describes the force-length relationship of the tendon’s passive
elastic behavior. The normalized tendon length is given by
l̃T = lT /lT0 , where lT0 corresponds to the tendon slack length,
such that fT (l̃T ) = 0 when l̃T < 1. Equation 15 is solved
at each time step during forward estimation of muscle force.
Once the muscle force is obtained, the resulting estimated joint
torques can then be derived as

τ̂h,j(t) =

k=K∑
k=1

FM
k (t)× rk→j(t) (16)

where rk→j(t) is the moment arm of kth muscle on the jth

joint. During estimation and calibration, both the muscle force
and the moment arm [58] are computed via OpenSim. When a
muscle is not acting on a joint (i.e., brachioradialis on shoulder
flexion), rk→j is null.
The model is calibrated by first scaling the musculoskeletal
component using anthropometric data from motion capture,
adjusting the length and width of each limb. Then, the muscle
parameters are optimized using a single objective genetic
algorithm [29], [59] with a stalling criterion of 20 genera-
tions, 16 chromosomes per generation, and a maximum of
1000 generations. Crossover fraction and mutation rate were
determined with a parametric study showing that a value of
0.7 for each provided the best calibration. The cost function is
defined as the quadratic mean of the estimation mean square
error of each joint:

C(τh, τ̂h) =

√√√√j=J∑
j=1

1

N

n=N∑
n=0

(τ jh(tn)− τ̂ jh(tn))
2 (17)

Five parameters are optimized for each muscle: maximal
isometric force FM

iso, optimal fiber length lM0 , tendon slack
length lT0 , pennation angle at optimal fiber length α̃ and shape
factor A.

C. Synergy-based model

Synergies are described as a coherent activation, in space
or time, of a group of muscles [60]. A variety of synergy
decompositions, including spatial, temporal, spatiotemporal, or
space-by-time, can be extracted from a set of muscle excita-
tions depending on the specific analysis or application [61].
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However, since our dataset consists of randomly generated
trajectories without specific gait or periodic movements, we do
not anticipate the emergence of temporal synergies. Therefore,
we have decided to focus on a spatial synergy model for our
analysis. Considering the number of spatial synergies as S, the
muscle excitation data matrix M ∈ RK×N

+ can be factorized
into two nonnegative matrices as follows

M = W ·A+ εεε (18)

with W ∈ RK×S
+ the synergy weight matrix, mapping a

synergy activation to a group of muscles, and A ∈ RS×N
+

the synergies activation matrix, containing the corresponding
synergy activation for each sample of the data. εεε ∈ RK×N is
the muscle excitation residual matrix that contains the residual
error resulting from the factorization. After factorization, the
synergy-based EMG-to-torque models are formulated similarly
to the MVLR,

τ̂ττh(t) = Hs ·α(t) (19)

where Hs ∈ RJ×S is the synergy mapping matrix, which
maps a synergy to a joint, and α(t) ∈ RS

+ is the synergy
activation vector (i.e., one of the columns of A). In this frame-
work, α(t) is not measured directly and must be calculated
from the previously factorized synergy weight matrix:

α(t) = W+ ·m(t) (20)

with •+ the pseudo-inverse operator. Therefore, the final
formulation of the synergy-based model is

τ̂ττh(t) = Hs ·W+ ·m(t) (21)

The model is calibrated in several steps. First, the muscle exci-
tation matrix M from the training data (with a corresponding
torque matrix T) is factorized via Matlab’s NNMF function
to obtain the synergy weights and activation matrices W and
A. Then, the calibration problem corresponds to finding Hs

such that
T = Hs ·A (22)

Similarly to the MVLR model, this is done by using Matlab’s
mvregress function on T and A. In this paper, synergy-based
models are abbreviated SYN; if the number of synergies is
relevant in the context, the model is abbreviated SYNX, with
X replaced by the number of synergies. To ensure at least
one synergy per degree of freedom and direction, a minimum
of 2 and 4 synergies were used for single and multi-joint
conditions, respectively.

D. Nonlinear mapping model

While the MVLR model is easy to formulate and calibrate,
its main limitation stems from its inability to consider nonlin-
ear muscle activation effects. To address this, we incorporate
the shape factor, as described for the neuromusculoskeletal
model, to obtain a nonlinear mapping (NLMap). The model
formulation thus becomes:

ak(t) =
eAkmk(t) − 1

eAk − 1
τ̂ττh(t) =Hnℓ · a(t) (23)

where Ak, mk and ak are the corresponding shape factor,
excitation, and nonlinear activation of the kth muscle, and
Hnℓ ∈ RJ×K the nonlinear mapping matrix. a is the activation
vector.
The model is calibrated iteratively using a single-objective
genetic algorithm with multiple steps in each iteration. Ini-
tially, the genetic algorithm generates a set of shape factors
as a chromosome. These parameters are then used to compute
the nonlinear muscle activations of the training dataset, which
are compiled into an activation matrix A. Next, the mapping
matrix is computed using the torque data matrix T through the
mvregress function, solving the matrix form of equation 23.
Since the mapping problem has a unique solution, a specific set
of shape factors corresponds to a unique mapping, and hence,
the matrix coefficients are not part of the chromosome. The
final score of the chromosome is then computed with the cost
function described in equation 17, and the best chromosome
is determined through crossover and mutation operations in an
iterative way as part of a typical genetic algorithm, with a 0.8
crossover rate and 200 chromosomes per generation.

IV. RESULTS

A. Trajectory Generation

The trajectory generation framework exhibited Gaussian-
like distributions for elbow positions during single-joint and
multi-joint conditions. The central tendency of elbow move-
ments was observed around the 90◦ position, with the majority
falling within the 45◦ to 135◦ range (see Fig. 3). Shoulder
positions were concentrated in the 0◦ to 90◦ range. During
single-joint tasks, reference elbow torques were uniformly
distributed within the −10 Nm to 20 N.m range. A Gaussian-
like distribution emerged during multi-joint tasks, mainly
featuring positive elbow torques ranging from −5 N.m to
20 N.m and shoulder torques spanning −10 N.m to 30 N.m.

B. Torque estimation

1) Single-joint: For the estimation of single-joint torque,
the repeated measures ANOVA exhibited a notable influence
of the chosen model on the NRMS error and the correlation co-
efficient (p < 0.001). Figure 4 presents a comprehensive sum-
mary of the performance outcomes. Specifically, the NLMap
and NMS models attained NRMS errors of 4.66 ± 0.54%
and 5.93 ± 0.96%, respectively. In contrast, the MVLR had
a score of 7.11 ± 1.17%, and SYN models ranged from
7.31±1.28% (SYN5) to 8.46±2.37% (SYN2). Similarly, the
correlation coefficient for the NLMap and NMS models were
0.971±0.011 and 0.958±0.013, respectively, while the MVLR
was 0.942±0.019 and SYN models exhibited a range spanning
from 0.943±0.016 (SYN6) to 0.918±0.0418 (SYN2). Overall,
the NLMap model proved to be significantly better in terms
of NRMSE and R (p < 0.001) than any other model with a
strong effect (Cohen’s d > 1.65). The NMS model was also
significantly better than MVLR and SYN models for both
criteria (p < 0.05) with a strong effect (Cohen’s d > 1).
Figure 7 visually compares correlations between the NLMap
and MVLR models. The S-shaped correlation curve of the
MVLR model indicates the presence of nonlinear residual
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Fig. 3: Generated trajectory kinematics and reference torque distributions. For the single joint condition, each line
represents a participant. For the multi-joint condition, lines and fills represent the mean and standard deviation of the data
distribution across all participants. Solid and dashed lines represent the elbow and shoulder joints, respectively. A 0◦ angle
corresponds to a fully extended elbow and no shoulder elevation. Light red lines represent reference positions observed during
daily living tasks for the elbow [62] and the shoulder [63].

Fig. 4: Single-joint model accuracy. a) Pearson’s correlation
coefficient b) Normalized root mean square error

errors. However, incorporating the shape factor term in the
NLMap model contributes to their mitigation, resulting in a
straighter curve that aligns more closely with the ideal 45◦

line representing fully correlated torques.
2) Multi-joints: The repeated measures ANOVA showed

that model selection significantly affected the NRMS error
and correlation coefficient for the shoulder and elbow joints
(p < 0.01 and p < 0.001, respectively). The performance
results are presented in Figure 6 for both joints. An illustration
of the torque reconstruction capabilities of the NLMap mode
is shown in Figure 5.

a) Elbow: NLMap and NMS models obtained NRMS
errors of 6.58± 0.73% and 8.97± 1.51%. The MVLR model
had an error of 8.54±1.75%, while SYN models ranged from
9.07 ± 2.12% (SYN9) to 10.24 ± 2.72% (SYN4). Likewise,

NLMap and NMS models, respectively, obtained a correlation
score of 0.913± 0.019 and 0.844± 0.043, while MVLR was
0.863±0.041 and SYN ranged from 0.857±0.042 (SYN9) to
0.798± 0.082 (SYN4). Overall, the NLMap model proved to
be significantly (p < 0.01) better in terms of NRMSE and R
than any other model with a strong effect (Cohen’s d > 1.45).
On the other hand, the NMS model did not show significant
differences from the MVLR model.

b) Shoulder: The NRMS error for the NLMap and NMS
models were 6.87 ± 1.4% and 8.0 ± 2.1%, respectively. The
MVLR model had an error of 7.79±1.4%, while SYN models
exhibited a range from 8.08 ± 1.5% (SYN7) to 8.47 ± 1.9%
(SYN10). Similarly, the correlation scores for the NLMap
and NMS models were 0.885 ± 0.030 and 0.840 ± 0.052,
while MVLR was 0.855 ± 0.033 and SYN models ranged
from 0.849 ± 0.034 (SYN9) to 0.828 ± 0.075 (SYN10). In
terms of NRMSE, the NLMap model demonstrated statisti-
cally significant superiority (p < 0.05) with a moderate to
strong effect (Cohen’s d > 0.62). Regarding the correlation
coefficient, statistically significant differences (p < 0.01) were
found between the NLMap and the other models. In particular,
no significant differences were observed between the NMS and
MVLR models.

C. Computation efficiency

Duration results are shown in Table I. For linear models
such as MVLR and SYN, the calibration time ranged from 1s
to 2.5s in both conditions, while the NLMap model took an
average of 22s to 45s to calibrate, depending on the condition.
Finally, NMS models took the most time on average, ranging
from 20 minutes in the single-joint condition to one hour in the
multi-joint condition. Similarly, linear models were the fastest
to estimate in a real-time setup, with an estimation time of less
than a microsecond. The NLMap model took longer, with an



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

a)

b)

c)

[N
.m
]

[N
.m
]

[°
/s
]

[°
]

Fig. 5: Multi-joint torque estimation with the NLMap
model for a representative participant. a) Processed EMG
signals. b) Angular position and velocity of the Shoulder and
Elbow. c) Shoulder (τsho) and Elbow (τelb) reference and
estimated torques.

TABLE I: Calibration and estimation duration. Calibration
duration is the time necessary to perform the complete cali-
bration of a model. Estimation duration is the time necessary
to compute one estimation time step. The results with a value
of < 10−3 indicate that the estimation duration was less than
the resolution of the measurement.

Single-joint NLMap NMS MVLR SYN6 SYN2
Calibration [s] 22.1 1216 1.096 2.02 1.37

SD [s] 0.27 538 0.33 0.32 0.5
Estimation [ms] 0.08 10.8 < 10−3 < 10−3 < 10−3

SD [ms] 0.003 0.84 < 10−3 < 10−3 < 10−3

Multi joints NLMap NMS MVLR SYN10 SYN4
Calibration [s] 44.7 3662.14 1.49 2.45 1.89

SD [s] 2.6 1200 0.13 0.22 0.22
Estimation [ms] 0.1 15.6 < 10−3 < 10−3 < 10−3

SD [ms] 0.005 5.7 < 10−3 < 10−3 < 10−3

average of a tenth of a millisecond. The NMS model was the
longest, with an estimation time of 10.8ms for the single-joint
condition and 15.6ms for the multi-joint condition.

Fig. 6: Multi-joint model accuracy. In both panels, data
for the elbow joint is represented in gray, and data for the
shoulder joint in white. a) Pearson’s correlation coefficient b)
Normalized root mean square error

MVLR NLMap
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Fig. 7: Effect of mapping nonlinearization on Elbow
torques. Comparison between MVLR and NLMap of refer-
ence (τh) to estimated (τ̂h) torques correlations. Each line
corresponds to one participant and represents the smoothed
data from the ten 30s trials.

V. DISCUSSION

The present paper introduced a general framework for the
in-situ calibration and evaluation of EMG-to-torque models
to enable predictive exoskeleton control to assist arbitrary
human movements. We outlined a set of common models,
their ontology, and the associated calibration technique. We
also proposed a novel nonlinear mapping model designed
to be simple in its formulation, with low calibration and
estimation duration, yet able to consider nonlinear effects. We
generated random, non-periodic trajectories, enabling us to test
these models in various kinematic and dynamic situations. We
investigated the difficulty of predicting torques with different
degrees of freedom by testing single-joint and multi-joint
strategies, which has yet to be addressed in the literature
concerning arbitrary motions [9]. Finally, we evaluated the
models using a cross-validation approach to prevent biases
related to overfitting.

Creating a task to generate data with a wide range of
kinematic and dynamic situations is essential to obtain a
general calibration of EMG-to-torque models. While recent
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studies have used predefined or periodic movements [28], [64],
the proposed framework was able to generate arbitrary random
trajectories. Although the experimental setup prevented full
coverage of the elbow positions, the distributions of angular
positions were representative of daily tasks [62], [63].

A key issue when calibrating and using EMG-to-torque
models is their accuracy. We found that the NLMap model was
the most accurate for both single-joint and multi-joint condi-
tions. Given its simplicity, the MVLR model also demonstrated
remarkable accuracy and should not be ignored for potential
applications. Moreover, the NLMap and MVLR models do
not require kinematic data as input features, making their
implementation easier and necessitating fewer sensor types.
The NMS model was surprisingly underperforming: while it
had a satisfactory accuracy for single-joint estimation, it did
not perform better than the MVLR in the multi-joint condition.
This is due to the wide variety and the number of internal
parameters that must be fitted, making it difficult to find a
global minimum during calibration. Thus, while the NMS
model should theoretically have the best accuracy due to its
knowledge-based nature, this same nature mitigates the prac-
ticability of its calibration for infield applications. The SYN
models did not offer any notable advantages compared to their
counterparts. Although the decrease in dimensionality may
provide insight into how the central nervous system utilizes
muscle redundancy during different movements, this does not
appear to enhance the accuracy of movement prediction. It
is difficult to compare the accuracy of other models in the
literature because the evaluation method differs. Generally,
models are evaluated on a different limb, with a different
metric, feature, and task, and more often than not, without
any cross-validation procedure. However, Table II provides
an overview of some model scores reported in the literature
using the NMRSE metric. The NRMSE scores for single-joint

TABLE II: Overview of NMRSE model evaluations. Results
are reported ”as is”, taking the best score showcased in each
paper. These results must be compared cautiously as they are
reported using various evaluation methods, limbs, movements,
and features. KF, LSTM, CNN, and NMF, respectively, stand
for Kalman Filter, Long-Short Term Memory, Convolutional
Neural Network, and Non-negative Matrix Factorization.

Ref Type Feature Joint NRMSE [%]
- NLMap Torque Elbow 6.50
- NLMap Torque Shoulder (Flex/Ext) 6.87

[32] NMS Torque Wrist (Flex/Ext) 2.02
[65] LSTM Torque Hip (Flex/Ext) 3.6
[38] KF Torque Elbow 5.81
[66] CNN-LSTM Torque Shoulder (Flex/Ext) 12.44
[66] CNN-LSTM Torque Elbow 12.76
[30] NMS Angle Wrist & Elbow 13
[33] NMF-NMS Angle Wrist (Pro/Sup) 17

and multi-joint conditions indicated that the accuracy of the
estimation for a single joint (i.e. the elbow) may be reduced
when a more complex movement (e.g., shoulder rotations) is
included. This effect could be caused by various factors, such
as bi-articular muscles and movement artifacts due to the EMG
sensor cables.

While we tested the models on a powerful computer,

exoskeleton controllers are typically embedded systems with
limited computing power. Thus, it is important to assess the
computational complexity of the models. However, to our
knowledge, this kind of analysis has not been done in the
literature. We found that simpler models, such as MVLR and
SYN, were quicker to calibrate and provided faster real-time
torque estimation. The calibration process took less than three
seconds, and the duration of the estimation was so short that it
could not be accurately measured (< 10−3 ms). The NLMap
model calibration process took less than one minute, a suitable
wait time for most applications. The estimation duration was
less than one millisecond, allowing for a 1kHz exoskeleton
control frequency. On the contrary, the NMS model did not
demonstrate the same level of performance. Calibration took
anywhere from 20 minutes to an hour, depending on the
condition, and the estimation duration was more than ten
milliseconds. This is due to the number of parameters that
need to be adjusted during calibration (five parameters per
muscle, sixty in total for multi-joint condition). Moreover,
two steps are necessary for the computation of this model:
muscle equilibrium and moment arm computation. The muscle
equilibrium step is an iterative process that must be repeated
at each time step, and for each muscle to balance the lengths
of the fibers and tendons, it therefore influences computation
duration both during calibration and estimation. Because mus-
cle paths and insertions are not adjusted, the time taken to
calculate the moment arm does not significantly impact the
calibration duration since it is only necessary to do it once.
However, during real-time estimation, each muscle’s moment
arm must be computed for each actuated degree of freedom,
impacting its duration. Consequently, numerical methods have
been developed to accelerate this process [67].

This study offers new insights into the estimation of joint
torques from EMG signals. However, certain limitations re-
strict the scope of these findings. To begin with, this research
did not include all existing models as it would not have
been feasible: we compared models commonly encountered
in the literature and developed our model with practicality
in mind. However, we proposed an evaluation protocol that
enables anyone to test their model against others. To that
end, we provided a standardized dataset that can be used to
test new models and compare them with our results [68]. In
addition, even though sagittal movements encompass many
potential applications of exoskeleton assistance, these results
should be extended to include all the degrees of freedom
of the upper limbs. Furthermore, research has shown that
the EMG signal can be degraded due to changes in the
electrode/skin impedance over time, affecting the accuracy
of the model estimation [32]. Consequently, sweat and skin
degradation over time could impede exoskeleton assistance
in a workplace environment, potentially making it unsafe.
Although current EMG sensors allow the measurement of the
electrode/skin impedance, no model has yet been developed
to consider it in the torque estimation. Finally, muscle fatigue
may emerge as a factor impacting torque estimation accuracy
over time. Fatigued muscles typically exhibit a lower mean
EMG frequency [69] that current models fail to consider.

We anticipate conducting further research based on the
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results of this study. First, we will explore EMG feature
extraction and reducing the number of measured muscles to
enhance the robustness and widespread use of EMG-to-torque
models. Comparing various feature extraction methods and
muscle sets will be essential for improving the information
embedded in the signal. Several studies have examined feature
selection for EMG-based movement classification [22], [23],
[70], but to our knowledge, no comprehensive comparison of
EMG features has been conducted for continuous movement
regression. Also, minimizing the number of measured muscles
can simplify the placement of EMG sensors, which is a time-
consuming and specialized task. Second, using our dataset and
evaluation protocol, we plan to investigate artificial neural
network-based (ANN) models, including Long Short-Term
Memory (LSTM) networks. ANN models have the potential
to offer more accurate estimations while maintaining a short
calibration [21], [33]. They can be adapted to incorporate
multiple EMG features and other relevant factors, such as
kinematics. Finally, we aim to assess the impact of the
estimation error on exoskeleton assistance and user feedback,
considering potential safety concerns related to unexpected
feedback loops and system instabilities resulting from variable
human behavior and signal degradation over time. Despite
these challenges, real-time estimation of human torques holds
significant promises for the development of versatile assistive
control strategies.
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L. Zollo, W.-S. Kim, N.-J. Paik, and S. R. Soekadar, “Brain–computer
interface-controlled exoskeletons in clinical neurorehabilitation: Ready
or not?,” Neurorehabilitation and Neural Repair, vol. 36, pp. 747–756,
nov 2022.

[4] T. Proietti, V. Crocher, A. Roby-Brami, and N. Jarrasse, “Upper-
limb robotic exoskeletons for neurorehabilitation: A review on control
strategies,” IEEE Reviews in Biomedical Engineering, vol. 9, pp. 4–14,
2016.

[5] T. Moeller, J. Krell-Roesch, A. Woll, and T. Stein, “Effects of upper-limb
exoskeletons designed for use in the working environment—a literature
review,” Frontiers in Robotics and AI, vol. 9, apr 2022.

[6] S. M. Moore, J. Torma-Krajewski, and L. J. Steiner, “Practical demon-
strations of ergonomic principles,” 2011.

[7] J. Theurel and K. Desbrosses, “Occupational exoskeletons: Overview of
their benefits and limitations in preventing work-related musculoskeletal
disorders,” IISE Transactions on Occupational Ergonomics and Human
Factors, vol. 7, pp. 264–280, jul 2019.

[8] T. McFarland and S. Fischer, “Considerations for industrial use: A
systematic review of the impact of active and passive upper limb
exoskeletons on physical exposures,” IISE Transactions on Occupational
Ergonomics and Human Factors, vol. 7, pp. 322–347, oct 2019.

[9] L. Bi, A. G. Feleke, and C. Guan, “A review on emg-based motor
intention prediction of continuous human upper limb motion for human-
robot collaboration,” Biomedical Signal Processing and Control, vol. 51,
pp. 113–127, may 2019.

[10] J. Mainprice and D. Berenson, “Human-robot collaborative manipulation
planning using early prediction of human motion,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, nov
2013.

[11] J. Mainprice, R. Hayne, and D. Berenson, “Predicting human reaching
motion in collaborative tasks using inverse optimal control and iterative
re-planning,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, may 2015.

[12] M. Jamsek, T. Kunavar, U. Bobek, E. Rueckert, and J. Babic, “Predictive
exoskeleton control for arm-motion augmentation based on probabilistic
movement primitives combined with a flow controller,” IEEE Robotics
and Automation Letters, vol. 6, pp. 4417–4424, jul 2021.

[13] Z. G. Xiao and C. Menon, “A review of force myography research and
development,” Sensors, vol. 19, p. 4557, Oct. 2019.

[14] Q. Zhang, K. Lambeth, Z. Sun, A. Dodson, X. Bao, and N. Sharma,
“Evaluation of a fused sonomyography and electromyography-based
control on a cable-driven ankle exoskeleton,” IEEE Transactions on
Robotics, vol. 39, pp. 2183–2202, jun 2023.

[15] Y. Hu, Z. Li, G. Li, P. Yuan, C. Yang, and R. Song, “Development
of sensory-motor fusion-based manipulation and grasping control for
a robotic hand-eye system,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, pp. 1–12, 2016.

[16] P. R. Cavanagh and P. V. Komi, “Electromechanical delay in human
skeletal muscle under concentric and eccentric contractions,” European
Journal of Applied Physiology and Occupational Physiology, vol. 42,
pp. 159–163, nov 1979.

[17] K. Kiguchi and Y. Hayashi, “An EMG-based control for an upper-limb
power-assist exoskeleton robot,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 42, pp. 1064–1071, aug
2012.

[18] Z. Li, C. Xu, Q. Wei, C. Shi, and C.-Y. Su, “Human-inspired control
of dual-arm exoskeleton robots with force and impedance adaptation,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50,
pp. 5296–5305, Dec. 2020.

[19] J. Huang, G. Li, H. Su, and Z. Li, “Development and continuous control
of an intelligent upper-limb neuroprosthesis for reach and grasp motions
using biological signals,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 52, pp. 3431–3441, June 2022.

[20] Y. Jiang, C. Chen, X. Zhang, C. Chen, Y. Zhou, G. Ni, S. Muh,
and S. Lemos, “Shoulder muscle activation pattern recognition based
on semg and machine learning algorithms,” Computer Methods and
Programs in Biomedicine, vol. 197, p. 105721, dec 2020.

[21] B. Treussart, F. Geffard, N. Vignais, and F. Marin, “Controlling an
exoskeleton with EMG signal to assist load carrying: A personalized cal-
ibration,” in 2019 International Conference on Mechatronics, Robotics
and Systems Engineering (MoRSE), IEEE, dec 2019.

[22] A.-C. Tsai, T.-H. Hsieh, J.-J. Luh, and T.-T. Lin, “A comparison of
upper-limb motion pattern recognition using emg signals during dynamic
and isometric muscle contractions,” Biomedical Signal Processing and
Control, vol. 11, pp. 17–26, may 2014.

[23] A. Phinyomark, R. N. Khushaba, and E. Scheme, “Feature extraction
and selection for myoelectric control based on wearable EMG sensors,”
Sensors, vol. 18, p. 1615, may 2018.

[24] E. Trigili, L. Grazi, S. Crea, A. Accogli, J. Carpaneto, S. Micera,
N. Vitiello, and A. Panarese, “Detection of movement onset using
emg signals for upper-limb exoskeletons in reaching tasks,” Journal of
NeuroEngineering and Rehabilitation, vol. 16, mar 2019.
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